SUPPORTING INFORMATION

AN IMPROVED SYNTHESIS OF AMANTADINE HYDROCHLORIDE

Duong Binh Vu¹, Thinh Van Nguyen¹, Son Trung Le¹ and Chau Dinh Phan²*

¹Vietnam Military Medical University, No. 160, Phung Hung Str., Phuc La ward, Ha

Dong district, Hanoi, Vietnam.

²School of Chemical Engineering, Hanoi University of Science and Technology, No.1, Dai Co Viet Str., Bach Khoa ward, Hai Ba Trung district, Hanoi, Vietnam.

*Corresponding author. Email: chau.phandinh@hust.edu.vn; Telephone: +84913092005;

TABLE OF CONTENTS

1. GENI	ERAL PROCEDURE FOR THE SYNTHESIS OF N - (1-ADAMANTYL) ACETAMIDE	3
	1.1. Effect of reaction parameters on the yield of <i>N</i> -(1-adamantyl) acetamide (4)	3
	1.2. Experimental section	5
	IR spectrum of N-(1-adamantyl)acetamide (4)	6
	MS spectrum of N-(1-adamantyl)acetamide (4)	7
	¹ H-NMR spectrum of N-(1-adamantyl)acetamide (4) in CDCl ₃	8
	¹³ C-NMR spectrum of N-(1-adamantyl)acetamide (4) in CDCl ₃	9
	GC data of the synthesized N-(1-adamantyl)acetamide (4)	10
	Figure S1. GC chromatogram of the synthesized N-(1-adamantyl)acetamide (4)	11
2. GENI	ERAL PROCEDURE FOR THE SYNTHESIS OF AMANTADINE HYDROCHLORIDE	12
	2.1. Effect of reaction parameters on the synthesis of amantadine.HCl (1)	12
	2.2. Experimental section	14
	IR spectrum of amantadine hydrochloride (1)	15
	MS spectrum of amantadine hydrochloride (1)	16
	¹ H-NMR spectrum of amantadine hydrochloride (1) in CDCl ₃	17
	¹³ C-NMR spectrum of amantadine hydrochloride (1) in CDCl ₃	18
	TLC of standard amantadine HCl (A), synthesized amantadine HCl (B), and a mixture of	these
two re	agents (C)	19
	Figure S2. TLC of amantadine HCl. (A) standard amantadine HCl, (B) synthesized amanta	adine
HCl, (C) a mixture of the two reagents.	19
	GC data of the synthesized amantadine hydrochloride (1)	20
	Figure S3. GC chromatogram of the synthesized amantadine hydrochloride (1)	21

1. GENERAL PROCEDURE FOR THE SYNTHESIS OF N- (1-

ADAMANTYL) ACETAMIDE

1.1. Effect of reaction parameters on the yield of N-(1-adamantyl) acetamide (4)

Table S1. Effect of reaction temperature on the yield of N-(1-adamantyl) acetamide (4)

No.	Temperature (°C)	Weight (g)	Yield (%)
1	35	1.68	43.37
2	45	2.31	59.64
3	55	2.57	66.35
5	65	2.86	73.84
6	75	2.37	61.19
7	85	1.99	51.38

Other reaction parameters. Time = 3.5 h; Molar ratio of (sulfuric acid: acetonitrile: adamantane) = (18: 5: 1).

Table S2. Effect of reaction time on the yield of *N*-(1-adamantyl) acetamide (4)

No.	Reaction time (h)	Weight (g)	Yield (%)
1	1.5	2.25	58.09
2	2.0	2.54	65.57
3	2.5	2.99	77.19
4	3.5	2.86	73.84
5	4.5	2.74	70.74

Other reaction parameters. Temperature = 65° C; Molar ratio of (sulfuric acid: acetonitrile: adamantane) = (18: 5: 1).

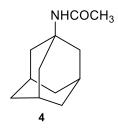
Table S3. Effect of molar ratio between CH_3CN and adamantane (2) on the yield of N-(1-adamantyl) acetamide (4)

No.	Molar ratio of CH ₃ CN : adamantane	Weight (g)	Yield (%)
1	2:1	2.18	56.28
2	3:1	2.67	68.93
3	4:1	3.06	79.00
4	5:1	2.99	77.19
5	6:1	2.88	74.35

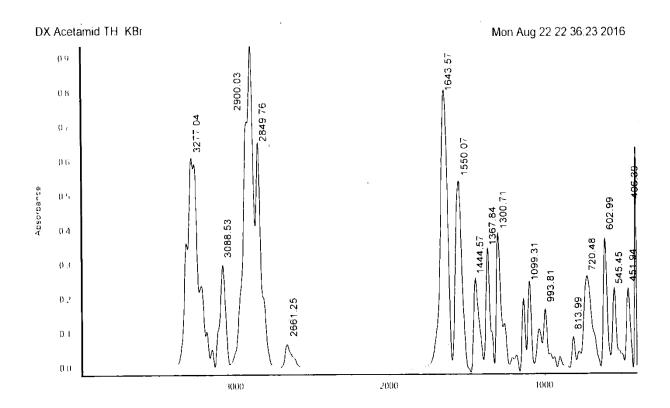
Other reaction parameters. Time = 2.5 hours; Temperature = 65°C, Molar ratio of (sulfuric acid: adamantane) = (18: 1).

Table S4. Effect of molar ratio between sulfuric acid and adamantane (2) on the yield of N-(1-adamantyl) acetamide (4)

No.	Molar ratio of H ₂ SO ₄ : adamantane	Weight (g)	Yield (%)
1	8:1	2.42	62.48
2	10:1	2.72	70.22
3	12 :1 :	2.96	76.42
4	14:1	3.11	80.29
5	16:1	3.07	79.26
6	18:1	3.06	79.00

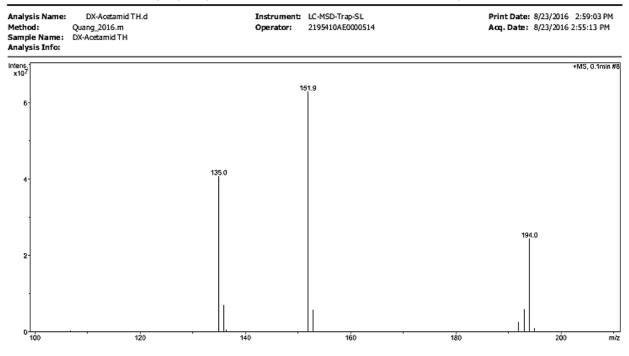

Other reaction parameters. Time = 2.5 h; Temperature = 65°C , Molar ratio of (acetonitrile: adamantane) = (4: 1).

Results. The combination of reaction parameters that gives the highest yield of N-(1-adamantyl) acetamide (4): Temperature = 60-65°C; Time = 2.5 h; Molar ratio of (sulfuric acid: acetonitrile: adamantane) = (14: 4: 1).


1.2. Experimental section

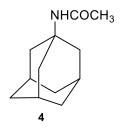
N-(1-adamantyl)acetamide (**4**). To a mixture of 99.5% acetonitrile (400 mL, 7.66 mol) and 98% adamantane **2** (277g, 2.0 mol) was added dropwise 98% sulfuric acid (1.56 L, 28.4 mol) with stirring at 25-30°C for 2 h. The reaction mixture was stirred at 60-65°C for an additional 2.5 h. At the end of the reaction, ice water (5.00 L) was added to the reaction mixture and stirred for 1.0 h at 0-5°C. The resulting mixture was then extracted with dichloromethane (8.00 L); the separated organic layer was washed with cold water (0-5°C) and dried over Na₂SO₄. The solvent was removed under vacuum to yield **4** as a white solid. Yield: 314 g (82%). Purity (GC): 99.20%, t_R 15.90 min; mp 147-149°C. ¹H-NMR (CDCl₃, 500 MHz): δ 5.45 (s, 1H), 2.06 (s, 3H), 2.00 (s, 6H), 1.91 (s, 3H), 1.67 (s, 6H). ¹³C-NMR (CDCl₃, 125 MHz): δ 169.32, 51.78, 41.58, 36.35, 29.41, 24.59. IR (KBr): cm⁻¹ 3277.04 (N-H); 2900.03-2849.76 (C-H); 1643.57 (C=O). MS: m/z = 194.0 [M+1]⁺, 151.9 [M-COCH₃+1]⁺, 135.0 [M-NHCOCH₃]⁺.

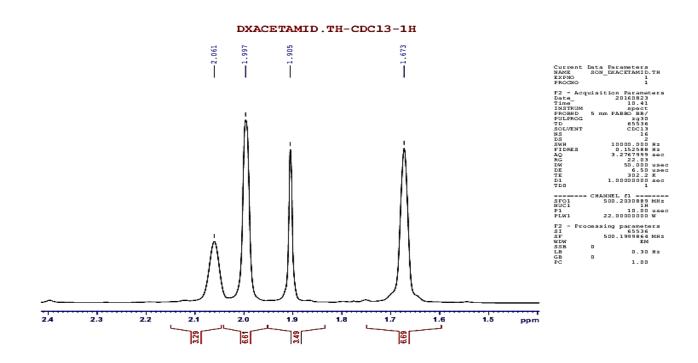
IR spectrum of N-(1-adamantyl)acetamide (4)


IR (**KBr**): cm⁻¹ 3277.04 (N-H); 2900.03-2849.76 (C-H); 1643.57 (C=O).

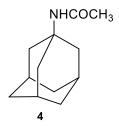
MS spectrum of N-(1-adamantyl)acetamide (4)

MS: $m/z = 194.0 \text{ [M+1]+}, 151.9 \text{ [M-COCH}_3+1]+, 135.0 \text{ [M-NHCOCH}_3]+.$

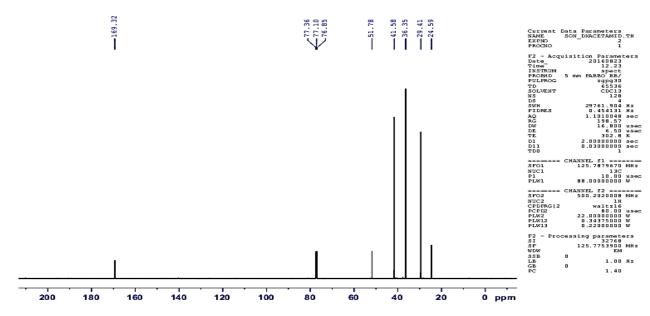

Display Report - Selected Window Selected Analysis


MSD Trap Report v 4 (A4-Opt2)

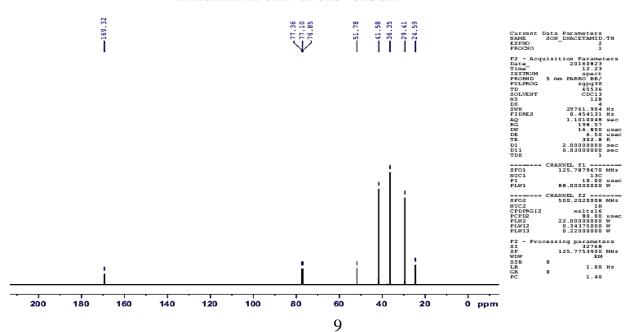
Page 1 of 1


$^{1}\text{H-NMR}$ spectrum of N-(1-adamantyl)acetamide (4) in CDCl₃

¹H-NMR (CDCl₃, 500 MHz): δ 5.45 (s, 1H), 2.06 (s, 3H), 2.00 (s, 6H), 1.91 (s, 3H), 1.67 (s, 6H).



¹³C-NMR spectrum of N-(1-adamantyl)acetamide (4) in CDCl₃



¹³C-NMR (CDCl₃, 125 MHz): δ 169.32, 51.78, 41.58, 36.35, 29.41, 24.59.

DXACETAMID.TH-CDC13-C13CPD

DXACETAMID.TH-CDC13-C13CPD

GC data of the synthesized N-(1-adamantyl)acetamide (4)

GC conditions: FID Detector, temperature of 250°C

Column: (5%-Phenyl)-methylpolysiloxane, length of 30 m, diameter of 0.32 mm, film layer of 0.25 $\mu m.$

Column temperature of 115°C; Oven temperature of 250°C

Injection volume: 1 μl.

```
Data file : C:\HPCHEM\1\DATA\ADAC0000.D Sample Name: AdAc1000ppm
Injection Date : 6/5/2017 2:48:14 PM Seq Line : Sample Name : AdAc1000ppm Location :
Sample Name : AdAc1000ppm
Acq Operator : NguyenVanThinh
                                                                                     Vial 1
                                                             Inj. No. :
Inj. Vol. :
Acq. Method : AMANTADI.M
Analysis Method : C:\HPCHEM\1\METHODS\HC2016.M
Last Changed : Wed, 2. Aug. 2017, 10:19:53 am
        FID1 B, (ADAC0000.D)
    280
    260
   240
    220
    200
    180
                                                                             20
                        Customized Report: Short
Sorted By Signal
Calib. Data Modified
                           : Wed, 31. Dec. 1969,04:00:00 pm
                            : 1.000000
Multiplier
                            : 1.000000
Dilution
Uncalibrated Peaks
                            : not reported
Signal 1: FID1 B,
           RT
                   | Type | Width |
| Peak |
                                             Area
                                                     | Area % |
# |
          [min]
                                [min]
                               0.003
           11.564 MM T
15.899 MM T
                                             1.654 | 0.800 |
205.135 | 99.200 |
                              0.0421
                                *** End of Report ***
```

Instrument 1 Wed, 2. Aug. 2017 10:21:24 am Page 1 of 1

Figure S1. GC chromatogram of the synthesized N-(1-adamantyl)acetamide (4)

2. GENERAL PROCEDURE FOR THE SYNTHESIS OF AMANTADINE HYDROCHLORIDE

2.1. Effect of reaction parameters on the synthesis of amantadine.HCl (1)

Table S5. Effect of temperature on the yield of amantadine.HCl (1)

No.	Temperature (°C)	Reaction time* (h)	Weight (g)	Yield (%)
1	188	3,5	0.84	55.62
2	150	4,5	1.00	66.22
3	140	7	1.03	68.20
4	130	6	1.12	74.16
5	125	8	1.15	76.15
6	120	10	1.14	75.49
7	110	15	1.03	68.20

Other reaction parameters. Molar ratio of reactants (KOH: PG: H_2O : N-(1-adamantyl)acetamide (4)) = (5: 8: 3.7: 1).

Table S6. Effect of reaction time on the yield of amantadine.HCl

No.	Reaction time (h)	Weight (g)	Yield (%)
1	6	1.02	67.54
3	7	1.08	71.51
4	8	1.15	76.15
5	8.5	1.18	78.13
6	9	1.15	76.15

Other reaction parameters. Temperature = 125°C; Molar ratio of reactants (KOH:

PG: $H_2O: N$ -(1-adamantyl)acetamide (4)) = (5 : 8 : 3.7 : 1).

^{*} Time for reaction to finish determined by TLC.

Table S7. Effect of molar ratio of KOH to N-(1-adamantyl) acetamide (4) on the yield of amantadine .HCl

No.	Molar ratio of KOH: Compound 4	Weight (g)	Yield (%)
1	3.5 : 1	0.61	40.39
2	4.5 : 1	1.05	69.53
3	5.0:1	1.18	78.13
4	5.5:1	1.21	80.12
5	6.0 : 1	1.22	80.78

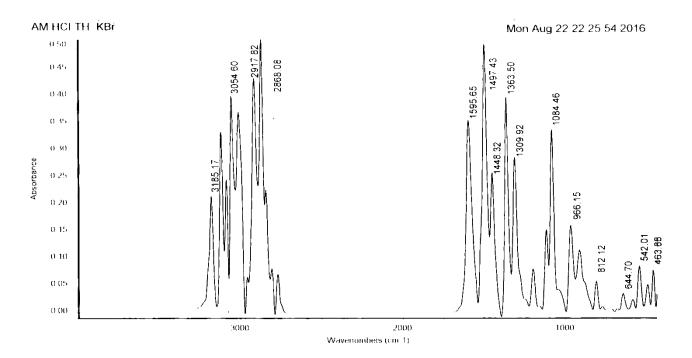
Other reaction parameters. Temperature = 125° C; Time = 8.5 h; Molar ratio of reactants (PG: H₂O: N-(1-adamantyl)acetamide (4)) = (8: 3.7: 1).

Table S8. Effect of mole ratio of PG to *N*-(1-adamantyl) acetamide (4) on the yields of amantadine. HCl

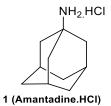
No.	Molar ratio of PG: Compound 4	Weight (g)	Yield (%)
1	5:1	0.99	65.55
2	6:1	1.19	78.80
3	7:1	1.23	81.44
4	8:1	1.21	80.12
5	9:1	1.18	78.13

Other reaction parameters. Temperature = 125°C, Time = 8.5 h, Molar ratio of (KOH: H₂O: *N*-(1-adamantyl)acetamide) = (5.5 : 3.7 : 1).

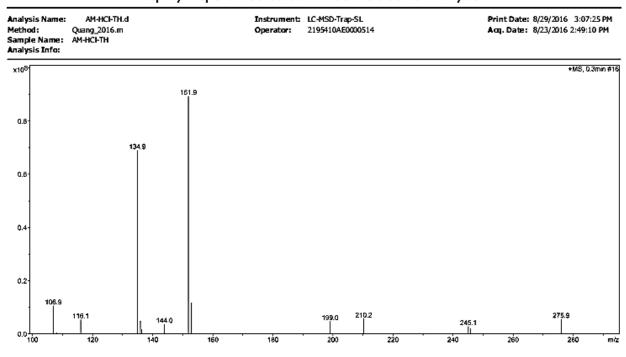
⇒ **Results.** The combination of reaction parameters that gives the highest yield of amantadine. HCl: Temperature = 125°C; Time = 8.5 h; Molar ratio of (KOH: PG: H₂O: N-(1-adamantyl)acetamide molar ratio (4)) = (5.5: 7: 3.7: 1).


2.2. Experimental section

Amantadine hydrochloride (1). A mixture of 82% potassium hydroxide (600 g, 8.74 mol), water (100 mL) and propylene glycol (750 mL) was stirred at room temperature for 1 h, to which was added 4 (290 g, 1.5 mol). The mixture was maintained at 125°C-130°C for 8.5 h, then cooled to room temperature and followed by the addition of ice-cold water (2.00 L). The reaction mixture was extracted with dichloromethane (3 x 2.00 L). The separated organic layer was concentrated by three-fold. To the concentrate was added 5N aq. HCl (1.40 L), stirred at 55-60°C for 1 h, and then cooled to room temperature. The resulting aqueous layer was evaporated under vacuum to give a white solid, to which was added acetone (200 mL), stirred at 50°C for 1 h, and then at 0-5°C for additional 1 h. The obtained colorless precipitate was filtered off and dried under vacuum to give 1. Yield: 232 g (82%). R_f =0.5 (CHCl₃/MeOH/25% aqueous NH₃= 6:1:1). Purity (GC): 99.22%, t_R 10.10 min; mp 360°C. 1 H-NMR (CDCl₃, 500 MHz): δ 8.28 (br, s, 3H), 2.15 (s, 3H), 2.04 (s, 6H); 1.69 (s, 6H). 1 3C-NMR (CDCl₃, 125 MHz): δ 52.95, 40.56, 35.38, 28.97. IR (KBr): cm⁻¹ 3331.73-3185.17 (N-H); 3054.60-2917.82 (C-H); 1363.50 (C-N). MS: m/z = 151.9 [M+1]⁺, 135.0 [M-NH₂-1]⁺.

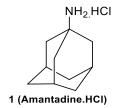

IR spectrum of amantadine hydrochloride (1)

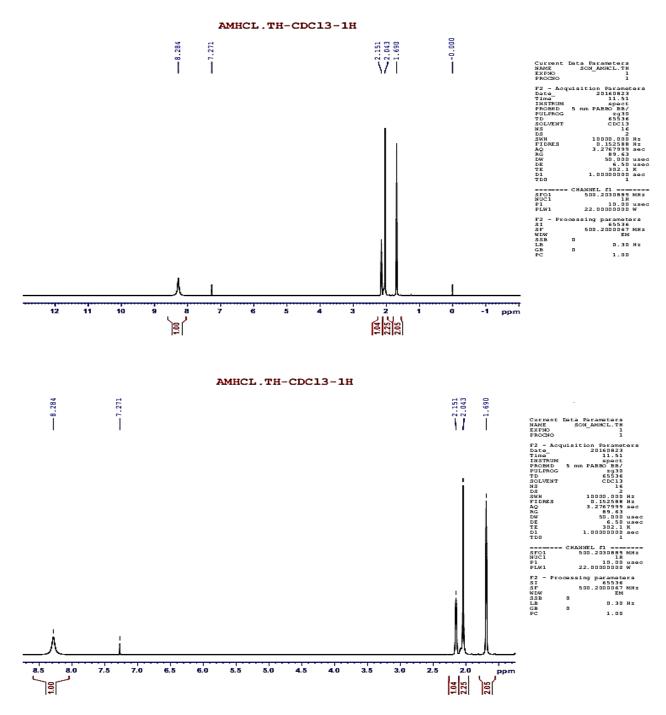
IR (KBr): cm⁻¹ 3331.73-3185.17 (N-H); 3054.60-2917.82 (C-H); 1363.50 (C-N)



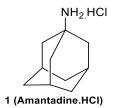
MS spectrum of amantadine hydrochloride (1)

MS: $m/z = 151.9 [M + 1]^+$, 135.0 [M-NH₂-1]⁺.

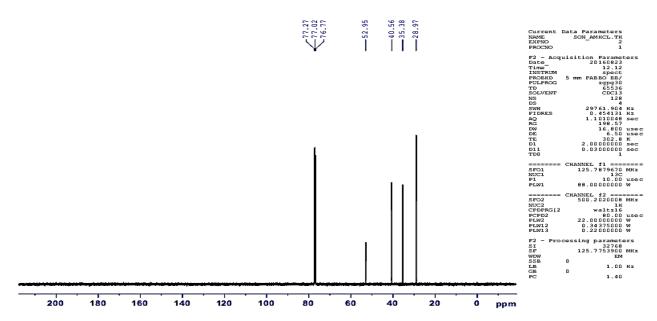

Display Report - Selected Window Selected Analysis


MSD Trap Report v 4 (A4-Opt2)

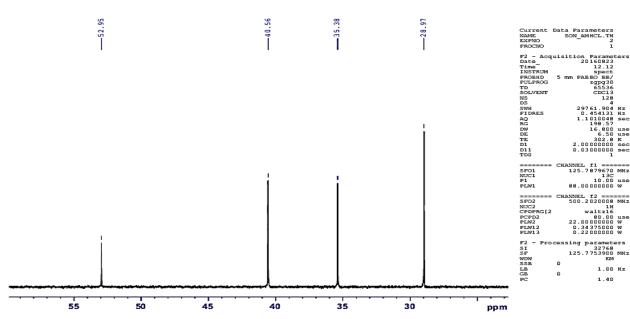
Page 1 of 1


¹H-NMR spectrum of amantadine hydrochloride (1) in CDCl₃

 1 H-NMR (CDCl₃, 500 MHz): δ 8.28 (br, s, 3H), 2.15 (s, 3H), 2.04 (s, 6H); 1.69 (s, 6H).



¹³C-NMR spectrum of amantadine hydrochloride (1) in CDCl₃



¹³C-NMR (CDCl₃, 125 MHz): δ 52.95, 40.56, 35.38, 28.97.

AMHCL.TH-CDC13-C13CPD

AMHCL.TH-CDC13-C13CPD

TLC of standard amantadine HCl (A), synthesized amantadine HCl (B), and a mixture of these two reagents (C)

Method: Silicagel Aluminium Art 5562 DC – Alurolle Kieselgel 60 F254 (Merck).

Solvent system: chloroform: methanol (9:1).

Visualization Reagents: Dragendorf reagent.

Samples for TLC: Synthesized amantadine. HCl, reference amantadine. HCl, and a mixture of these two reagents. The chemicals were dissolved in dichloromethane (0.1g/1ml).

Triple small spots of each solution were applied to a TLC plate. The plate was dried shortly in a vacuum chamber at room temperature. Development and visualization of TLC were performed following above conditions.

Results: Three red spots on TLC plate have the same $R_{\rm f}$ value, indicating that they could be the same compound.



Figure S2. TLC of amantadine HCl. (A) standard amantadine HCl, (B) synthesized amantadine HCl, (C) a mixture of the two reagents.

GC data of the synthesized amantadine hydrochloride (1)

GC condition: FID Detector, temperature of 250°C

Column: (5%-Phenyl)-methylpolysiloxane, length of 30 m, diameter of 0.32 mm, film layer of 0.25 $\mu m.$

Column temperature of 115°C; Oven temperature of 250°C

Injection volume: 1 μl.

```
Data file : C:\HPCHEM\1\DATA\170227\AMHCL000.D
Sample Name: Amatadin
Injection Date : 2/27/2017 1:15:36 PM
                                        Seq Line :
Location :
Sample Name : Amatadin
Acq Operator : NguyenVanThinh
                                                                 Vial 1
                                               Inj. No. :
Inj. Vol. :
Acq. Method : AMANTADI.M
Analysis Method : C:\HPCHEM\1\METHODS\HC2016.M
Last Changed : Wed, 2. Aug. 2017, 10:33:30 am
      FID1 B, (170227\AMHCL000.D)
   pΑ
                               10.095
   190
   180
  170
   160
   150
   140
   130
   120
                                10
                                             15
                  Customized Report: Short
______
Sorted By Signal
Multiplier : 1.000000
Dilution : Wed, 31. Dec. 1969,04:00:00 pm
Uncalibrated Peaks
                    : not reported
Signal 1: FID1 B,
            | Type | Width |
|Peak|
        RT
                                  Area | Area % |
       [min] |
1 # 1
                       | [min] |
        2.167|BP
                       1 0.0301
                                    1.143|
   11
        10.095|MM T
                       0.0491
*** End of Report ***
```

Instrument 1 Wed, 2. Aug. 2017 10:34:01 am Page 1 of 1

Figure S3. GC chromatogram of the synthesized amantadine hydrochloride (1)