Supporting Information

Pd-Catalyzed Dimethylation of Tyrosine-Derived Picolinamidefor Synthesis of (S)-N-Boc-2,6-dimethyltyrosine and Its
Analogues
Xuning Wang, ${ }^{\dagger}$ Songtao Niu, ${ }^{\dagger}$ Lanting Xu, ${ }^{\dagger}$ Chao Zhang, ${ }^{\dagger}$ Lingxing Meng, ${ }^{\dagger}$ Xiaojing Zhang, ${ }^{\text {* }^{*}}$ and Dawei $\mathrm{Ma}^{\ddagger}{ }^{\ddagger}$
'Shenyang Pharmaceutical University, 103 Wenhua Lu, Shenyang 110016, China
${ }^{\dagger}$ State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
E-mail: madw@mail.sioc.ac.cn
Table of contents

1. General Information S2
2. Substrate preparation S2
3. Pd-catalyzed ortho-dimethylation of tyrosine derivatives S8
4. Scaling up the dimethylation and synthesis of (S)-N-Boc-2,6-dimethyltyrosine ..S11
5. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum S13

1. General Information

Reagents:

All commercial materials were used as received unless otherwise noted. Toluene was distilled from $\mathrm{Na} . \mathrm{Pd}(\mathrm{OAc})_{2}(98 \%, \mathrm{TCI})$ were used in the Pd -catalyzed reactions. Flash chromatography was performed using 230-400 mesh SiliaFlash® P60 (Silicycle Inc.).

Reactions:

All reactions for the Pd-catalyzed ortho-dimethylation of tyrosine-derivatives were set up on bench-top in the open air and carried out in re-sealable test tubes with Teflon septa under different atmosphere. Unless otherwise noted, the reaction test tubes were cooled to room temperature prior to other operations. Unless otherwise noted, the solvents and the solutions of reagents/reactants were transferred via microsyringe or plastic syringe (fitted with metal needle) into the reaction test tubes under a positive pressure (oxygen or argon).

Instruments:

NMR spectra were recorded on Bruker Ultrashield ${ }^{\text {TM }} 400$ Plus, Agilent Technologies 400/54 Premium Shielded, Agilent Technologies 500/54 Premium Shielded instruments and calibrated using residual solvent peaks as internal reference. Multiplicities are recorded as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{m}=$ multiplet. High resolution ESI mass experiments were operated on a Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS instrument and a Thermo Fisher Scientific LTQ FT Ultra instrument. Optical rotations were obtained on a Jasco P1030 Polarimeter instrument and reported as follows: $[\alpha]_{\mathrm{D}}^{\mathrm{T}}(c=\mathrm{g} / 100 \mathrm{~mL}$, solvent $)$.

2. Substrate preparation

(S)-Methyl 3-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-(picolinamido)
propanoate 7.

L-tyrosine

To a solution of L-tyrosine ($9.06 \mathrm{~g}, 50 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(50 \mathrm{~mL}$) was added $\mathrm{SOCl}_{2}(4.0 \mathrm{~mL}, 55 \mathrm{mmol})$ in a dropwise manner. The reaction mixture was heated at reflux overnight. The volatile was removed under vacuum to give the crude methyl L-tyrosinate hydrochloride as a white solid, which was used directly for the next step.

To a solution of the above crude product in dry DCM (250 mL) were added imidazole $(4.08 \mathrm{~g}, 60 \mathrm{mmol})$ and $\operatorname{TBSCl}(9.04 \mathrm{~g}, 60 \mathrm{mmol})$. The reaction mixture was stirred at room temperature overnight before the reaction was quenched by adding saturated NaHCO_{3}. The organic layer was separated and the aqueous layer was extracted with DCM. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give the crude TBS-ether as colorless oil, which was used directly for the next step. A mixture of the above crude product, picolinic acid ($7.4 \mathrm{~g}, 60 \mathrm{mmol}$), TBTU (19.25 $\mathrm{g}, 60 \mathrm{mmol}$) and DIPEA ($21.7 \mathrm{~mL}, 125 \mathrm{mmol}$) in anhydrous DCM ($250 \mathrm{~mL}, 0.2 \mathrm{M}$) was stirred at room temperature overnight before the reaction was quenched by adding saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was extracted with DCM. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash chromatography (eluting with $10: 1$ to $4: 1$ petroleum ether/ethyl acetate) to afford $7(18.2 \mathrm{~g}, 88 \%$ yield for 3 steps) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.44$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J$ $=7.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.03-4.99(\mathrm{~m}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,164.1,154.8,149.5,148.4,137.4,130.4,128.8,126.4,122.4$, 120.3, 53.7, 52.4, 37.7, 25.8, 18.3, -4.3; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+$ $\mathrm{H})^{+} 415.2048$, Found: 415.2052; $[\alpha]_{\mathrm{D}}^{23.2}=+66.86\left(c=1, \mathrm{CHCl}_{3}\right)$.

(S)-Methyl 3-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-(quinoline-2carboxamido)propanoate 10

Following the same procedure for preparing 7, 10 was obtained by condensation of the silyl ether with quinalidic acid in 91% yield (4.23 g , white solid). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.31-8.24(\mathrm{~m}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.08-5.04(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 2 H), $0.96(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}){ }^{; 13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.1, 164.2, 154.9, $149.2,146.6,137.6,130.5,130.2,130.1,129.5,128.8,128.1,127.8,120.3,118.9$, 53.8, 52.4, 37.7, 25.8, 18.3, -4.3; HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$ 465.2204, Found: 465.2207; $[\alpha]_{\mathrm{D}}^{26.4}=+7.45\left(c=1, \mathrm{CHCl}_{3}\right)$.

(S)-Methyl 3-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-(pyrazine-2-carboxamido) -propanoate 12

Following the same procedure for preparing 7, 12 was obtained by condensation of the silyl ether with 2-pyrazinecarboxylic acid in 79% yield (3.26 g , white solid). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 9.35(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.18$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 5.05-4.99 (m, 1H), $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.16(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 171.7,162.7,154.9,147.5,144.5,144.1,142.9,130.3$,
128.4, 120.4, 53.5, 52.5, 37.5, 25.8, 18.3, -4.3; HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}$ $(\mathrm{M}+\mathrm{Na})^{+} 416.2000$, Found: 416.2000; $[\alpha]_{\mathrm{D}}^{26.5}=+50.60\left(c=1, \mathrm{CHCl}_{3}\right)$.

(S)-Methyl 3-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-(2-(diisopropylamino)-2oxoacetamido)propanoate 14

Following the same procedure for preparing 7, 14 was obtained by condensation of the silyl ether with 2-[bis(1-methylethyl)amino]-2-oxoacetic acid in 64% yield (2.99 g , colorless oil). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.82-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.00(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,162.9,162.6,154.9,130.4,128.3,120.3,53.5,52.5,49.8,46.6,37.4,25.8$, 21.0, 20.9, 20.2, 18.3, -4.3; ESI-HRMS Calcd for $\mathrm{C}_{2} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 465.2779$, Found: 465.2784; $[\alpha]_{D}^{27.1}=+30.9\left(c=1, \mathrm{CHCl}_{3}\right)$.

(S,E)-Methyl 3-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-(2-(methoxyimino)propanamido) propanoate 16

Following the same procedure for preparing 7, 16 was obtained by condensation of the silyl ether with 2-methoxyiminoacetic acid in 85% yield (3.5 g , colorless oil). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.85-4.80(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.97(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,162.7$, 154.8, 150.0, 130.3, 128.5, 120.3, 63.0, 53.4, 52.3, 37.5, 25.7, 18.3, 9.7, -4.4; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}$409.2153, Found: 409.2156; $[\alpha]_{\mathrm{D}}^{26.5}=$ $+23.03\left(c=1, \mathrm{CHCl}_{3}\right)$.

(S)-Methyl 3-(4-(benzyloxy)phenyl)-2-(picolinamido)propanoate 18a. A mixture of methyl (S)-3-(4-(benzyloxy)- phenyl)propanoate hydrochloride (3.22 g, 10 mmol , commercial available $)$, picolinic acid $(1.48 \mathrm{~g}, 12 \mathrm{mmol})$, TBTU $(3.85 \mathrm{~g}, 12 \mathrm{mmol})$ and DIPEA ($4.35 \mathrm{~mL}, 25 \mathrm{mmol}$) in anhydrous DCM ($50 \mathrm{~mL}, 0.2 \mathrm{M}$) was stirred at room temperature overnight before the reaction was quenched by adding saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was extracted with DCM. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash chromatography (eluting with $10: 1$ to $4: 1$ petroleum ether/ethyl acetate) to afford $\mathbf{1 8 a}(3.12 \mathrm{~g}, 80 \%)$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.83(\mathrm{~m}, 6 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 5.05-5.01(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 172.0,164.0,158.0,149.4,148.4,137.5,137.1,130.5,128.7$, 128.4, 128.1, 127.7, 126.5, 122.5, 115.1, 70.1, 53.8, 52.5, 37.6; HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$391.1652, Found: 391.1650; $[\alpha]_{\mathrm{D}}^{26.5}=+55.92(c=1$, CHCl_{3}).

(S)-Methyl 3-(4-chlorophenyl)-2-(picolinamido)propanoate 18b. To a solution of 4-chloride-L-tyrosine ($1.99 \mathrm{~g}, 10 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$ was added dropwise $\mathrm{SOCl}_{2}(0.8 \mathrm{~mL}, 11 \mathrm{mmol})$. The reaction mixture was heated at reflux overnight. The volatile was removed under vacuum to give the crude methyl L-tyrosinate hydrochloride as a white solid, which was used directly for the next step.

A mixture of the above crude ester, picolinic acid ($1.48 \mathrm{~g}, 12 \mathrm{mmol}$), TBTU (3.85 g , 12 mmol) and DIPEA ($4.4 \mathrm{~mL}, 25 \mathrm{mmol}$) in anhydrous DCM ($50 \mathrm{~mL}, 0.2 \mathrm{M}$) was stirred at room temperature overnight before the reaction was quenched by adding saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was extracted with DCM. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash chromatography (eluting with $10: 1$ to $4: 1$ petroleum ether/ethyl acetate) to afford $\mathbf{1 8 b}(2.87 \mathrm{~g}, 90 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.07-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,164.0,149.2,148.4,137.5,134.7,133.1,130.7$, 128.8, 126.6, 122.4, 53.4, 52.5, 37.7; HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$ 319.0844, Found: 319.0846; $[\alpha]_{\mathrm{D}}^{26.4}=+62.46\left(c=1, \mathrm{CHCl}_{3}\right)$.

(S)-Ethyl 4-(3-methoxy-3-oxo-2-(picolinamido)propyl)benzoate 18c. A solution of (S)-methyl 3-(4-iodophenyl)-2-(picolinamido)propanoate ($1.64 \mathrm{~g}, 4 \mathrm{mmol}$, prepared from (S)-2-amino-3-(4-iodophenyl)propanoic acid), $\mathrm{Et}_{3} \mathrm{~N}$ ($2.2 \mathrm{~mL}, 16 \mathrm{mmol}$), EtOH ($9.3 \mathrm{~mL}, 160 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($180 \mathrm{mg}, 0.8 \mathrm{mmol}$), and 1,3-bis(diphenylphosphino)propane ($330 \mathrm{mg}, 0.8 \mathrm{mmol}$) in 20 mL anhydrous DMF was stirred at room temperature until everything dissolved. The mixture was placed under carbon monoxide atmosphere and stirred while heated at $70{ }^{\circ} \mathrm{C}$ with constant charging with additional carbon monoxide. The reaction was completed in about 7 h when TLC showed no remaining iodide. Reaction mixture was filtered through diatomaceous earth and the filtrate was partitioned between diethyl ether (100 mL) and water (100 mL). The aqueous portion was extracted with an additional portion of diethyl ether $(200 \mathrm{~mL})$. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Silica gel flash chromatography (eluting with 10:1 to 3:1 petroleum ether/ethyl
acetate) of the residue afforded $\mathbf{1 8 c}(1.14 \mathrm{~g}, 80 \%)$ as a white solid. ${ }^{[3]}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=7.6,6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=6.6,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 3.33(\mathrm{dd}, J=14.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.6, 166.6, 164.0, 149.2, 148.4, 141.5, 137.6, 129.9, 129.4, 129.4, 126.7, 122.5, 61.1, 53.4, 52.6, 38.4, 14.5; HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 357.1445$, Found: 357.1439; $[\alpha]_{\mathrm{D}}^{26.4}=+49.64(c=1$, CHCl_{3}).

3. Pd-catalyzed ortho-dimethylation of tyrosine derivatives

(S)-Methyl

3-(4-((tert-butyldimethylsilyl)oxy)-2,6-dimethylphenyl)-2-
(picolinamido) propanoate 8. A mixture of tyrosine derivative 7 (0.2 mmol), MeI (1 $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(83 \mathrm{mg}, 0.6 \mathrm{mmol})$ and toluene $(1 \mathrm{~mL})$ in a 10 mL sealable test tubes with Teflon septa was heated at $120^{\circ} \mathrm{C}$ with vigorous stirring for 24 h . The reaction mixture was cooled to room temperature, and diluted with ethyl acetate and filtered through celite. The filtrate was concentrated in vacuo and purified by column chromatography (eluting with 20:1 to $12: 1$ petroleum ether/ethyl acetate) to give $\mathbf{8}(80 \mathrm{mg}, 90 \%)$ as a white solid. (When the reactions were conducted under oxygen or argon atmosphere, the solvents and the solutions of reagents/reactants were transferred via microsyringe or plastic syringe (fitted with metal needle) into the reaction test tubes under a positive pressure (oxygen or argon)). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55-8.53(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.79 (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=6.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 4.97-4.91$ $(\mathrm{m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.81,163.92,153.90,149.29,148.27,138.35$,
$137.31,126.38,126.03,122.26,119.88,52.33,52.10,32.44,25.75,20.33,18.23$, -4.33; HRMS (ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 443.2361$, Found: 443.2358; $[\alpha]_{\mathrm{D}}^{23.4}=-43.40\left(c=1, \mathrm{CHCl}_{3}\right)$.

(S)-Methyl 3-(4-((tert-butyldimethylsilyl)oxy)-2,6-dimethylphenyl)-2-(quinoline-

2-carboxamido) propanoate 11. Compound $\mathbf{1 1}(14 \mathrm{mg})$ was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.76$ $(\mathrm{m}, 1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 2 \mathrm{H}), 5.02-4.96(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $173.0,164.2,154.0,149.2,146.6,138.5,137.6,130.2,130,129.5,128.1,127.8,126.1$, 120.0, 118.9, 52.5, 52.3, 32.5, 25.8, 20.5, 18.3, -4.3; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$493.2517, Found: 493.2518; $[\alpha]_{\mathrm{D}}^{28.1}=-42.76\left(c=1, \mathrm{CHCl}_{3}\right)$.

(S)-Methyl 3-(4-((tert-butyldimethylsilyl)oxy)-2,6-dimethylphenyl)-2-(pyrazine-2carboxamido) propanoate 13. Compound $13(11 \mathrm{mg})$ was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.30(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H})$, $8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 4.99-4.92(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.11(\mathrm{~m}$, 2H), 2.32 ($\mathrm{s}, 6 \mathrm{H}$), $0.94(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6$, $162.6,154.1,147.5,144.5,144.1,142.8,138.4,125.8,120.0,52.5,52.0,32.4,25.8$, 20.4, 18.3, -4.3; HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 466.2133$, Found: $466.2128 ;[\alpha]_{\mathrm{D}}^{26.1}=-25.00\left(c=1, \mathrm{CHCl}_{3}\right)$.

(S)-Methyl 3-(4-((tert-butyldimethylsilyl)oxy)-2,6-dimethylphenyl)-2-
(2-(diisopropylamino)-2-oxoacetamido)propanoate 15. Compound 15 (5 mg) was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.49(\mathrm{~s}, 2 \mathrm{H}), 4.78-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.43(\mathrm{~m}, 1 \mathrm{H})$, $3.12-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8,3 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8,3 \mathrm{H}), 1.16(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,162.6,162.4,154.0,138.5,125.7,119.8,52.5,51.8,49.6,46.7$, 32.4, 25.8, 20.9, 20.9, 20.4, 20.2, 20.1, 18.3, -4.3; HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 515.2912$, Found: 515.2913; $[\alpha]_{\mathrm{D}}^{24.6}=1.32(c=1$, CHCl_{3}).

(S,E)- Methyl 3-(4-((tert-butyldimethylsilyl)oxy)-2,6-dimethylphenyl)-2-(2-(methoxyimino)propanamido)propanoate 17. Compound 17 (19 mg) was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.50(\mathrm{~s}, 2 \mathrm{H}), 4.79-4.72(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.08-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}$, $6 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9$, $162.6,154.0,150.0,138.3,125.8,119.9,62.9,52.3,51.8,32.2,25.7,20.3,18.2,9.6$, -4.4; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$437.2466, Found: 437.2465; $[\alpha]_{\mathrm{D}}^{27.1}=-15.14\left(c=1, \mathrm{CHCl}_{3}\right)$.

(S)-Methyl 3-(4-(benzyloxy)-2,6-dimethylphenyl)-2-(picolinamido)propanoate 19a. Compound 19a (71 mg) was obtained as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.58-8.56(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 5.03-4.92(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, 3.21-3.18 (m, 2H), $2.39(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.78, 164.02, $157.21,149.35,148.34,138.56,137.39,137.29,128.62,127.95,127.58,126.45$,
125.77, 122.34, 114.66, 69.79, 52.47, 52.29, 32.53, 20.57; HRMS (ESI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 419.1965$, Found: 419.1972; $[\alpha]_{\mathrm{D}}^{27.7}=-164.48\left(c=1, \mathrm{CHCl}_{3}\right)$.

(S)-Methyl 3-(4-chloro-2,6-dimethylphenyl)-2-(picolinamido)propanoate 19b. Compound 19b (7 mg) was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.58-8.56(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J$ $=7.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 5.00-4.95(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.15(\mathrm{~m}, 2 \mathrm{H})$, 2.37 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,164,149.2,148.3,139.0,137.5$, 132.0, 131.8, 128.1, 126.5, 122.4, 52.5, 51.9, 32.7, 20.2; HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$369.0976, Found: 369.0975; $[\alpha]_{\mathrm{D}}^{27.9}=-41.02(c=1$, CHCl_{3}).

(S)-Ethyl 4-(3-methoxy-3-oxo-2-(picolinamido)propyl)-3,5-dimethylbenzoate 19c. Compound 19c (15 mg) was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.79$ $(\mathrm{m}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=7.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3 H) ${ }^{13}{ }^{13} \mathrm{C}$ NR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,166.8,164.0,149.2,148.3,138.6,137.4$, 137.4, 129.3, 128.7, 126.5, 122.4, 60.9, 52.5, 51.7, 33.3, 20.2, 14.4; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$385.1758, Found: 385.1754; $[\alpha]_{\mathrm{D}}^{27.4}=-45.50(c=1$, CHCl_{3}).
4. Scaling up the dimethylation and synthesis of (S)-N-Boc-2,6-dimethyltyrosine A mixture of $7(20.7 \mathrm{~g}, 50 \mathrm{mmol})$, $\mathrm{MeI}(15.6 \mathrm{~mL}, 250 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.56 \mathrm{~g}, 2.5$
$\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(20.7 \mathrm{~g}, 150 \mathrm{mmol})$ and toluene (200 mL) in a pressure-resistant glass bottle was heated at $120{ }^{\circ} \mathrm{C}$ with vigorous stirring for 24 h . The reaction mixture was cooled to room temperature, and diluted with ethyl acetate and filtered through diatomaceous earth. The filtrate was concentrated in vacuo and the residue was purified by column chromatography on silica gel (eluting with 20:1 to 12:1 petroleum ether/ethyl acetate) to give $\mathbf{8}(19.9 \mathrm{~g}, 90 \%)$ as a white solid.

(S)-N-Boc-2,6-Dimethyltyrosine. The product $\mathbf{8}(8.85 \mathrm{~g}, 20 \mathrm{mmol})$ was added to a 250 mL jacketed reactor containing water (28 mL) to give a slurry. Hydrochloric acid $(12 \mathrm{~N}, 28 \mathrm{~mL}, 340 \mathrm{mmol})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 24 h . The cooled solution was concentrated in vacuo to give crude product, which was used directly for the next step.

To a suspension of the above crude product in water $(40 \mathrm{~mL})$ and dioxane $(80 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added 1 N NaOH to adjust pH to $9 \sim 10$. After that di-tert-butyl dicarbonate ($4.3 \mathrm{~g}, 22 \mathrm{mmol}$) was added and the mixture was stirred for 4 h at ambient temperature. The dioxane was removed in vacuo, the aqueous phase was cooled to 0 ${ }^{\circ} \mathrm{C}$, and the pH was adjusted to 1.4 using $\mathrm{HCl}(1 \mathrm{~N})$. After the mixture was extracted with ethyl acetate, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel ((eluting with 4:1 to 5:2 petroleum ether/ethyl acetate) to give the product $\mathbf{6}$ (5.75 $\mathrm{g}, 93 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, d_{6}$-DMSO) δ (for major rotamer) 8.92 (s, 1H), 7.07 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.37 (s, 2H), 3.99-3.95 (m, 1H), 2.93 (dd, $J=14,6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=14.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 1.32$ and $1.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, d_{6}$-DMSO) δ (for major rotamer) 173.9, 155.3, 155.1, 137.8, 125.2, 114.8, $78.0,53.9,30.7,28.2,20.1 ;[\alpha]_{\mathrm{D}}^{24.5}=-10.46(c=1, \mathrm{MeOH}) ; 99.3 \%$ ee

5. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum

(

$9+1 \cdot 0$

$68+9$
$09 Z^{\circ} L$
ย8E. 27
S6E. 2
$66 \varepsilon^{\circ} \angle$

E6LL
$60^{\circ} 8$
$660{ }^{-}$
$6 \mathrm{tc} \mathrm{C}_{8}$
tGS8V

$8 t 60^{-}$

38を 6LIE七ย1＇ε GSI．ε $691 \cdot \varepsilon$

699°－

	90が
$\begin{aligned} & \varepsilon \forall 6^{\circ} t \\ & 8 G 6^{\circ} \downarrow \end{aligned}$	80が
$\checkmark \angle 6 \dagger^{\prime}$	
¢8\％${ }^{\text {ch }}$	$18 L 2$
099＇9	96L 2
LLC＇9	66L L
9LS9	218L
$0+9$	G18L
St9 9	
8 ± 69	
S96 97	
ع6E 27	9018
$96 \mathcal{E}^{\circ} 2$	でし 8
$66 \varepsilon^{\prime} \angle$	
96L 2	
$66 \angle 2$	
9018	$0 ¢ \pm 8$
てZ1．8	$\angle 9+8$
1EG8	IEG\％
てES 8	乙¢G＇8
$0 t 98$	0tGi8
2tc． 8	7tcis

\qquad $8+6 \cdot t$
$8 G 6 \circ t$
$t \angle 6 . t-1$

09G＇9 1 $\angle 99$ 9259 St9＇9 876.9 \＆68． 968＇L $66 \varepsilon 2$ 962 9018 で18権 2tcis

（

カャレ응

96ε 乙－
$9 \varepsilon て \subset$
૬૬Z ε
$\downarrow 69^{\circ} \varepsilon-$

98811
000 OL
60\％9Zし
18.2 LL
ャレ゚8てし
6 ± 6 ¢
L6\％ 6 L－
てで0¢1
89＇LEL－
97 8とし
69＊9ヶレ－
Gl゙6tl
\＆0t¢L－

$81+791-$

10 10 $21-$

$0 \varepsilon 81$
$\angle \mathrm{COZ}$
08 GZ とかてと

10021－
9くGZし－
98.8 にし
9くでてい
90 切して
OSTVl
とs $2 \downarrow 1$
$60^{\circ} \mathrm{tG} l^{\prime}$
09Z91－
ャ9でてー

$\varepsilon \triangleright L 9$
七9 $2 \cdot 9$ 866.9 610%
をいして EELLL
$09 Z \angle$
$100^{\circ} \varepsilon$
810ε ZSO＇ $0 \angle 0$ 年 $780^{\circ} \varepsilon$ SOL．ε家㻢 Z9力 $6 \angle ナ$ と 967 － ع69＇

\section*{6とがも $\dagger 80$ を
 9らV
 てんも゙も
 く9L゙
 ع8L＇ | |
| :---: |
| 808 |
 $818{ }^{\circ}$
 }

\qquad
て\＆゙ャー
$67^{\circ} 81$
91.02 L1．OZ
1602 G6．0Z
LLGZ
ザしくー
09 9t 0867 Gカモら

$91^{\circ} \angle L$
$8 t^{\circ} L L$

s910－

$100^{\circ} \varepsilon$
$270^{\circ} \varepsilon$
$\angle 20^{\circ} \varepsilon$
$\angle E O$ 最 8GO＇ $190^{\circ} \mathrm{E}$ $180^{\circ} \varepsilon$ <60 \＆ 15た 89＊ G8t ${ }^{\circ}$ 629 ๕
6LE゙ \dagger
S6E＇\dagger
てしが
68t9－

15

78.92
$91 \cdot L L=$
$8+\angle L$

986レー
ャレらとし－

9788と－

เ0゙ちらレー
$8 \varepsilon て 91$ LS＇Z91

くでてんしー

\qquad
t91 O^{-}
9960

996 －
$\langle+0 \varepsilon\rangle$
290°
089 ๕－
てゅ6 \＆－

9とし＇9
LSLOV

2969
88.9

sZL゙く厂
Stl닌
$092<$

$\angle \varepsilon^{\prime} \nabla^{-}$
$89{ }^{\circ}-$
9で81-
$\varepsilon L \varsigma \mathcal{L}^{-}$
$G \rightarrow \angle \varepsilon-$
LE'ZG
$G E \varepsilon G$
96 $29-$
7892
$91 \cdot L L$

20.0 Gl
$78^{\circ}+G l^{\prime}$
L9'Z91
$96^{\circ} \mathrm{LL}-$

$\downarrow \mathcal{E} \downarrow^{-}$
L9 6－
とで81
$9 Z 0 Z^{\prime}$
七L゙Gて
てでてと
\＆8． 19
$1 \varepsilon \mathcal{S}^{-}$
$1629-$
$\left.\begin{array}{l}+8.92 \\ 91 . L L \\ 85 \angle L\end{array}\right]$
166レレー
カ89そし－
Lで8\＆レー
$96.6 \mathfrak{t} \downarrow-$
$86.8 \varsigma-$
LS＇Z91－
88てんしー

0000-

$t 78$ L	$\angle Z 8<$
GG1.8	W8 ${ }^{\circ} \mathrm{L}$
SLl 87	E98 ${ }^{\prime}$
cos 8	
七G¢ 8	
c9sis	

SIO－
$09^{\circ} \angle \varepsilon^{-}$
8がてら
$G L \varepsilon \varsigma^{\prime}$
1402
t8 92
$912 L$
$8+14$
（

SlO^{-}
8 ガキレー
レー8と－
Z9てG
9ع钅
LO 19－
$+8.94$
$91 \circ L L J$
$8+し L$
0siてZし
S99Zし St゙6で G6．6Z1
$6 \mathrm{G} \angle \mathrm{LL}-$ 8 がしっしー 98.8 h
$00+91-$ 85＊99 89니ー
 sl6tl－

1692
91：＜
じくL

9989－ $\left.\begin{array}{l}790^{\circ} \angle \\ 180^{\circ} L^{2}\end{array}\right\}$

6 （ containing a mixture of two amide rotamers）

$\left.\begin{array}{l}\angle \triangleright 6 \varepsilon \\ \neg 96 \varepsilon \\ 8 \angle 6 \cdot- \\ \downarrow 66 \varepsilon\end{array}\right]$
$6168-$
$\{$ F－98 I
$\frac{1}{0.0}$
$0 \quad 0.5 \quad 0.0$

$-\stackrel{1}{-1}$
－
－
$4.0 \quad 3.5$ fl（ppm）

ㅍ

$$
\begin{aligned}
& \angle \forall L ' Z \\
& \forall 9 L^{\circ} Z \\
& G \angle L Z
\end{aligned}
$$

0 O6＇乙
とした 196°

Racemic and optically active $\mathbf{8}$ were analyzed with HPLC [ODH ($0.46 * 25 \mathrm{~cm}$, 5um) column, hexane/ isopropanol $=70: 30,0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$) to determine retention time and enantiomeric excesses. 8, ee $=99.7 \%$.

6672 WXN-1+87-1A ODH 732140.7			
Sample Name:	WXN-1+87-1A ODH 732140.7	Injection Volume:	3.0
Vial Number:	RD3	Channel:	UV_VIS_1
Sample Type:	unknown	Wavelength:	214
Control Program:	WXL-2014	Bandwidth:	n.a.
Quantif. Method:	WXL	Dilution Factor:	1.0000
Recording Time:	$2016 / 3 / 2312: 51$	Sample Weight:	1.0000
Run Time (min):	22.51	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height min		Area		Rel.Area
	mAU	mAU*min	Amount	Type			
1	5.71	n.a.	171.635	25.537	49.83	n.a.	BM
2	6.17	n.a.	145.430	25.715	50.17	n.a.	MB
Total:			317.066	51.253	100.00	0.000	

6674 WXN-1+68-1A ODH 732140.7

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* ${ }^{\text {min }}$	Rel.Area \%	Amount	Type
1	5.71	n.a.	386.126	59.012	99.85	п.a.	M *
2	6.43	n.a.	0.380	0.088	0.15	n.a.	MB*
「otal:			386.506	59.100	100.00	0.000	

Racemic and optically active 6 were analyzed with HPLC(Sino-Chiral AD ($0.46 * 25 \mathrm{~cm}, 5 \mathrm{um}$) column, $\mathrm{CO}_{2} / \mathrm{MeOH}=80 / 20(\mathrm{~V} / \mathrm{V} \%), 1.0 \mathrm{~mL} / \mathrm{min}$, UV 214 nm , $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=40^{\circ} \mathrm{C}$, background press: 2000 psi) to determine retention time and enantiomeric excesses. 6, ee $=99.34 \%$.

SAMPLE INFORMATION			
Sample Name:	dmt-boct-sad82141200040	Acquired By:	System
Sample Type:		Date Acquired:	2016/7/8 12:21:08 CST
Vial:	1.E.5	Acc. Method Set:	chiral_isocratic
Injection:	1	Date Processed:	2016/7/12 10:16:48 CST
Injection Volume:	5.00 ul	Processing Method	1 1
Run Time:	135.0 Minutes	Channel Name:	PDA Ch1 214 nm@1.2 nm
Sample Set Name	20160623	Proc. Chnl. Descr.	PDA Ch1 214 nm@1.2 nm

Peak Results

	RT	Ares	Height	\% Area
1	9.383	1748856	96160	47.27
2	10.198	1960949	97685	5273

SAMPLE INFORMATION

Sample Name: wxn-2-94 sad82141200040
Sample Type:
Vial:
1:E,6
Injection:
1
Injection Volume: 5.00 ul
Run Time: \quad 35.0 Minutes
Sample Set Name 20160623

Acquired By
Date Acquired
Acq. Method Set
Date Processed
Processing Method 1
Channel Nam
Proc. Chnl. Descr:

System
2016/7/8 14:23:45 CST
chiral_isocratic
2016/7/12 10:15:44 CST

Proc. Chn Descr PDA Ch1 214 nm 1.2 nm

Peak Results

	RT	Area	Height	\% Area
1	9.564	24462	1756	0.33
2	10.024	7407790	343232	99.67

