Supporting Information

On-resonance Fluorescence, Resonance Rayleigh Scattering, and Ratiometric Resonance Synchronous Spectroscopy of Molecular- and Quantum Dot-Fluorophores

Kumudu Siriwardana,[†] Charles B. Nettles II,[†] Buddhini C.N. Vithanage,[†] Yadong Zhou,[§] Shengli Zou,^{§,*} and Dongmao Zhang^{†,*}

† Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States

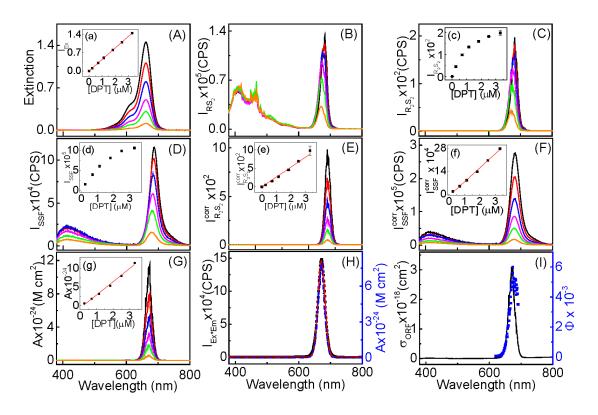
§ Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States

*Corresponding author: Email: <u>Dongmao@chemistry.msstate.edu</u>, <u>Shengli.zou@ucf.edu</u>

Fax: 662-325-1618 (Zhang), 407-823-2252 (Zou)

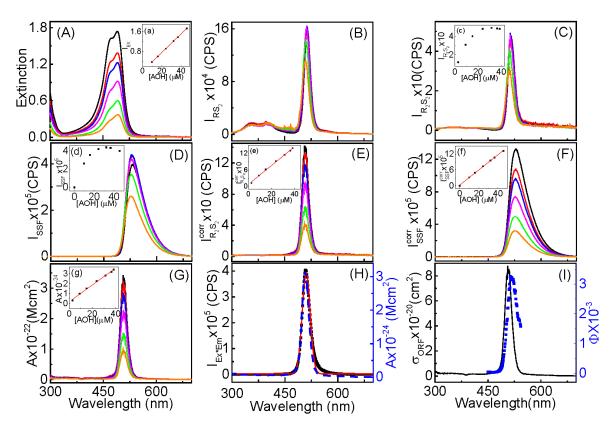
Contents S1. Materials and Instruments	Page S3
S2. Excitation wavelength and emission wavelength ranges of the fluorophores	
S3. Experimental data obtained with molecular fluorophore 3,3'-dipropylthiadicarbocyanin iodine (DPT)	
S4. Experimental data obtained with molecular fluorophore acridine orange hemi(zinc chlosalt (AOH)	
S5. Experimental data obtained with molecular fluorophore harmane	S7
S6. Experimental data obtained with molecular fluorophore harmine	S8
S7. Experimental data obtained with molecular fluorophore norharmane	S9
S8. Experimental data obtained with molecular fluorophore zinc phthalocyanine (ZPC)	S10
S9. Experimental data obtained with molecular fluorophore cresyl violet perchlorate (CVP) S 11
S10. Experimental data obtained with molecular fluorophore 9,10-Diphenylanthracene (DI	PA)S12
S11. Experimental data obtained with molecular fluorophore Eosin Y	S13
S12. Experimental data obtained with nanoparticle fluorophore QD490	S14
S13. Experimental data obtained with nanoparticle fluorophore QD525	S15
S14. Experimental data obtained with nanoparticle fluorophore QD575	S16
S15. Experimental data obtained with nanoparticle fluorophore QD665	S17
S16. Experimental data obtained with nanoparticle fluorophore QD617	S18
S17. Curve-fitting of the QD RRS cross-sections	S19
S18. Determination of wavelength bandwidth of the instrument response peak function	S20

S1. Materials and Instruments

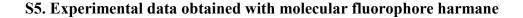

All molecular fluorophores, organic solvents, and the toluene-soluble QDs (product #753823-1KT, λ_{em} 490-665 nm) were purchased from Sigma-Aldrich and used as received. The watersoluble QD617 (product # CZW-0-1) was acquired from NN-Labs Nanopure water (18 M Ω cm) was used in aqueous solution preparation. All UV-vis spectra were acquired using a Thermo Scientific Evolution 300 UV-vis spectrophotometer with 1 nm resolution. The resonance synchronous and Stokes-shifted fluorescence spectra were acquired using a Horiba Jobin Yvon fluoromax-4-spectrofluorometer. The diameter of the water-soluble quantum dot (QD617) was 10 nm and all the toluene-soluble QDs were 6 nm in diameter.

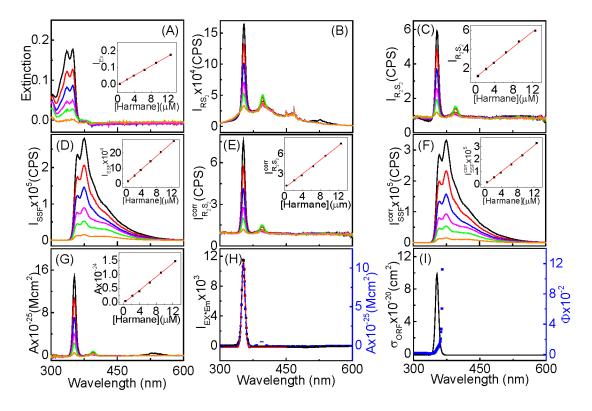
S2. Excitation wavelength and emission wavelength ranges of the fluorophores

Fluorophore	Excitation wavelength	Emission wavelength range
	(nm)	(nm)
QD490	240	250-440
	410	420-800
QD525	240	250-440
	450	460-800
QD575	290	300-520
	490	500-800
QD630	320	350-410
	560	570-800
QD665	320	350-610
	580	590-800
QD617	320	350-610
	400	410-800
ANT	290	300-490
	450	460-800
DPT	290	300-500
	490	500-800
АОН	280	290-510
	490	500-800
R6G	290	300-530
	500	510-800
FITC	215	220-420
	400	405-795
ZPC	290	300-450
	410	420-800
CVP	290	300-550
	500	510-800
Harmane	290	300-550
	500	510-800
Harmine	290	300-550
	540	550-800
Norharmane	290	300-550
	530	540-800
DPA	290	300-550
	530	540-800
Eosin Y	290	300-480
	450	460-800

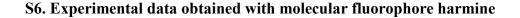

Table S1. Excitation and emission wavelengths of fluorophores.

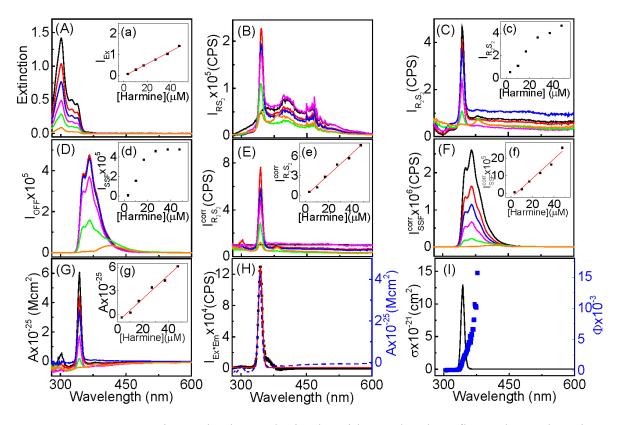
S3. Experimental data obtained with molecular fluorophore 3,3'dipropylthiadicarbocyanine iodine (DPT)




Figure S1. Experimental data obtained with molecular fluorophore DPT. Concentrationdependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired R_2 spectra, (C) asacquired R_2S_2 spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R_2S_2 spectra, (F) IFEcorrected SSF spectra, (G) R_2S_2 activity spectra, (H) Comparison of a representative (dash blue line) ORF activity spectrum, (black dots) the multiplication product spectrum of UV-vis excitation and emission spectrum, and (solid red line) the Gaussian curve fitted spectrum. (I) (Black line) ORF cross-section and (blue square) quantum yield as a function of wavelength. The inset in plots (A), (C), (D), (E), (F), and (G) are spectral peak intensity as DPT concentration.

S4. Experimental data obtained with molecular fluorophore acridine orange hemi(zinc chloride) salt (AOH)




Figure S2. Experimental data obtained with molecular fluorophore AOH. Concentrationdependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired RS_2 spectra, (C) asacquired R_2S_2 spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R_2S_2 spectra, (F) IFE-corrected SSF spectra, (G) R_2S_2 activity spectra, (H) Comparison of a representative (dash blue line) ORF activity spectrum, (black dots) the multiplication product spectrum of UV-vis excitation and emission spectrum, and the (solid red line) Gaussian curve fitted spectrum. (I) ORF cross-section and quantum yield (blue square) as a function of wavelength. The inset in plots (A), (C), (D), (E), (F), and (G) are spectral peak intensity as AOH concentration.

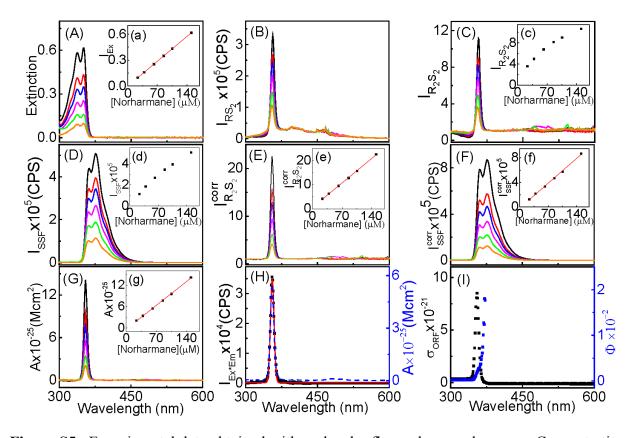


Figure S3. Experimental data obtained with molecular fluorophore harmane. Concentrationdependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired R_2S_2 spectra, (C) asacquired R_2S_2 spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R_2S_2 spectra, (F) IFEcorrected SSF spectra, (G) R_2S_2 activity spectra, (H) Comparison of a representative ORF activity spectrum (dash blue line), the multiplication product spectrum (black dots) of UV-vis excitation and emission spectrum, and the Gaussian curve fitted spectrum (solid red line). (I) ORF cross-section and quantum yield (blue square) as a function of wavelength. The inset in plots (A), (C), (D), (E), (F), and (G) are spectral peak intensity as harmane concentration

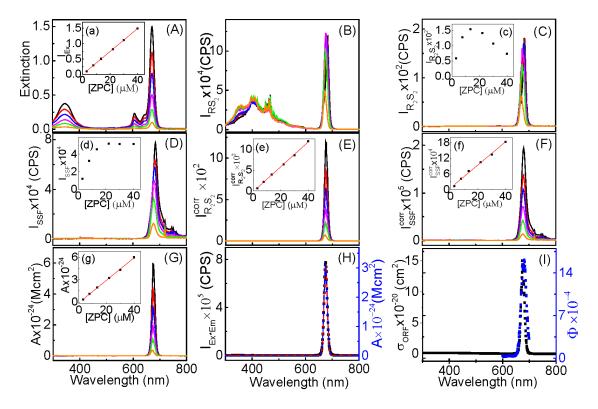
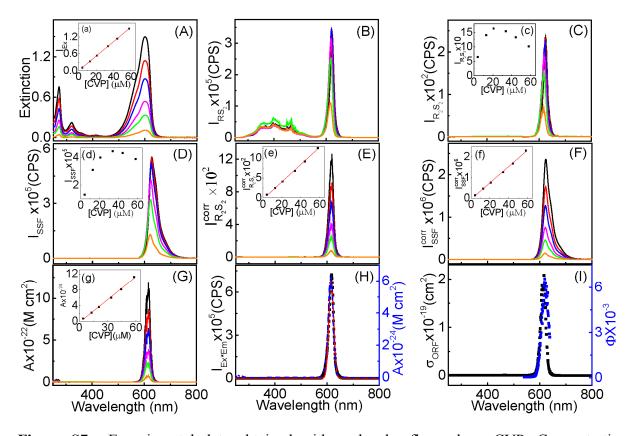
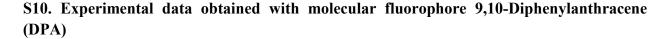
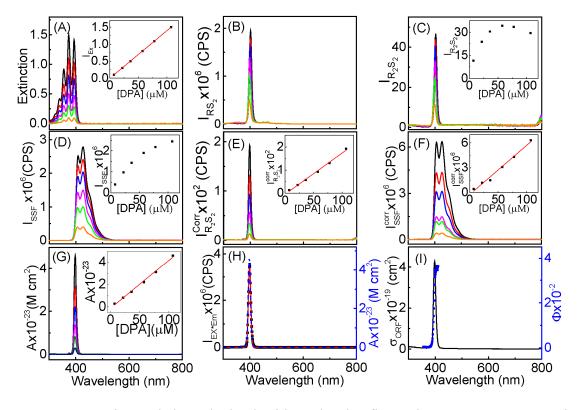


Figure S4. Experimental data obtained with molecular fluorophore harmine. Concentration-dependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired RS_2 spectra, (C) as-acquired R_2S_2 spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R_2S_2 spectra, (F) IFE-corrected SSF spectra, (G) R_2S_2 activity spectra, (H) Comparison of a representative ORF activity spectrum (dash blue line), the multiplication product spectrum (black dots) of UV-vis excitation and emission spectrum, and the Gaussian curve fitted spectrum (solid red line). (I) ORF cross-section and quantum yield (blue square) as a function of wavelength. The inset in plots (A), (C), (D), (E), (F), and (G) are spectral peak intensity as harmine concentration

S7. Experimental data obtained with molecular fluorophore norharmane


Figure S5. Experimental data obtained with molecular fluorophore norharmane. Concentrationdependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired R_2 spectra, (C) asacquired R_2S_2 spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R_2S_2 spectra, (F) IFEcorrected SSF spectra, (G) R_2S_2 activity spectra, (H) Comparison of a representative ORF activity spectrum (dash blue line), the multiplication product spectrum (black dots) of UV-vis excitation and emission spectrum, and the Gaussian curve fitted spectrum (solid red line). (I) ORF cross-section and quantum yield (blue square) as a function of wavelength. The inset in plots (A), (C), (D), (E), (F), and (G) are spectral peak intensity as norharmane concentration


S8. Experimental data obtained with molecular fluorophore zinc phthalocyanine (ZPC)


Figure S6. Experimental data obtained with molecular fluorophore ZPC. Concentrationdependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired RS₂ spectra, (C) asacquired R₂S₂ spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R₂S₂ spectra, (F) IFEcorrected SSF spectra, (G) R₂S₂ activity spectra, (H) Comparison of a representative ORF activity spectrum (dash blue line), the multiplication product spectrum (black dots) of UV-vis excitation and emission spectrum, and the Gaussian curve fitted spectrum (solid red line). (I) ORF cross-section and quantum yield (blue square) as a function of wavelength. The inset in plots (A), (C), (D), (E), (F), and (G) are spectral peak intensity as ZPC concentration

S9. Experimental data obtained with molecular fluorophore cresyl violet perchlorate (CVP)

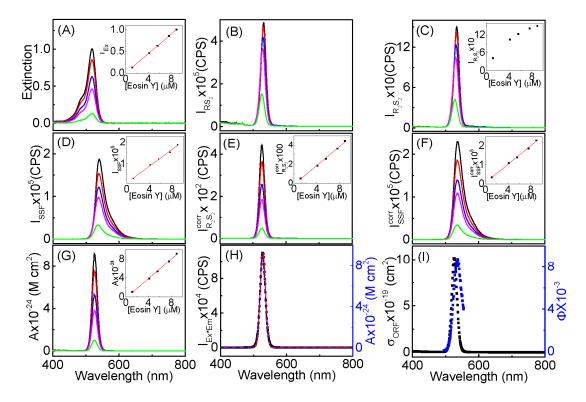


Figure S7. Experimental data obtained with molecular fluorophore CVP. Concentrationdependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired R_2S_2 spectra, (C) asacquired R_2S_2 spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R_2S_2 spectra, (F) IFEcorrected SSF spectra, (G) R_2S_2 activity spectra, (H) Comparison of a representative ORF activity spectrum (dash blue line), the multiplication product spectrum (black dots) of UV-vis excitation and emission spectrum, and the Gaussian curve fitted spectrum (solid red line). (I) ORF cross-section and quantum yield (blue square) as a function of wavelength. The inset in plots (A), (C), (D), (E), (F), and (G) are spectral peak intensity as CVP concentration

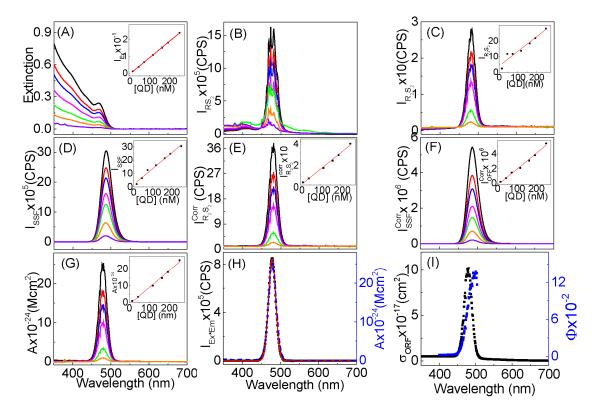


Figure S8. Experimental data obtained with molecular fluorophore DPA. Concentrationdependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired R_2S_2 spectra, (C) asacquired R_2S_2 spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R_2S_2 spectra, (F) IFEcorrected SSF spectra, (G) R_2S_2 activity spectra, (H) Comparison of a representative ORF activity spectrum (dash blue line), the multiplication product spectrum (black dots) of UV-vis excitation and emission spectrum, and the Gaussian curve fitted spectrum (solid red line). (I) ORF cross-section and quantum yield (blue square) as a function of wavelength. The inset in plots (A), (C), (D), (E), (F), and (G) are spectral peak intensity as DPA concentration

S11. Experimental data obtained with molecular fluorophore Eosin Y

Figure S9. Experimental data obtained with molecular fluorophore Eosin Y. Concentrationdependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired R_2S_2 spectra, (C) asacquired R_2S_2 spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R_2S_2 spectra, (F) IFEcorrected SSF spectra, (G) R_2S_2 activity spectra, (H) Comparison of a representative ORF activity spectrum (dash blue line), the multiplication product spectrum (black dots) of UV-vis excitation and emission spectrum, and the Gaussian curve fitted spectrum (solid red line). (I) ORF cross-section and quantum yield (blue square) as a function of wavelength. The inset in plots (A), (C), (D), (E), (F), and (G) are spectral peak intensity as Eosin Y concentration

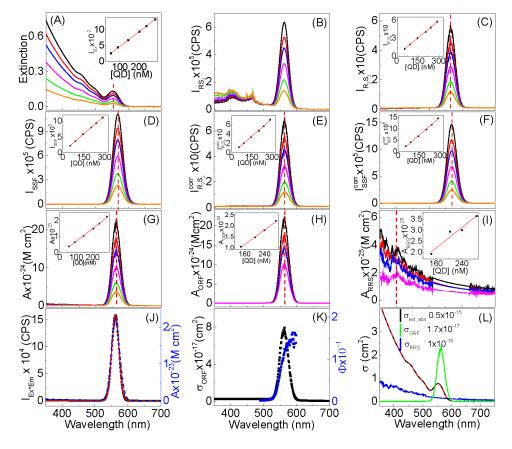

S12. Experimental data obtained with nanoparticle-fluorophore QD490

Figure S10. Experimental data obtained with QD490 fluorophore. Concentration-dependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired RS₂ spectra, (C) as-acquired R₂S₂ spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R₂S₂ spectra, (F) IFE-corrected SSF spectra, (G) R₂S₂ activity spectra, (H) comparison of an example ORF activity spectrum, the scaled multiplication product spectrum of UV-vis excitation and emission spectrum, and the Gaussian curve fitted spectrum. (I) ORF cross-section and quantum yield as a function of wavelength. The inset in plots (A), (C), (D), (E), (F), and (G) are spectral peak intensity as QD490 concentration.

1.0 (A) (C) (B) ا_{Rss}x10⁵(CPS) در ۲۵ 20 2 |_{R2S2} x10(CPS) Extinction 5.0 ×10 100200 [QD] (nM) 0 100 200 [QD] (nM) I_{SSF} x10⁶ (CPS) 0 0 6 0 (D) I^{Corr} x10(CPS) δ² δ δ 9 9 (E) (F) ^{corr}x10⁶ (CPS) <u>२</u>2 Issex10⁶ 5 ď 0 100 200 [QD] (nM) 100 200 [QD] (nM) 100 200 [QD](nM) L_{Ex^{tEm}}x10⁵(CPS) (H) 0 0 2 (G) (l) $\sigma_{ORF} x 10^{-17} (cm^2)$ Ax10⁻²⁴(M cm²) 0 01 Ax10⁻²³(M cm²) Φ**x10**⁻¹ 100 200 [QD](nM) 0 0 0 0 n 400 500 600 700 Wavelength (nm) 400 500 600 Wavelength (nm) 400 500 600 Wavelength (nm) 700 700

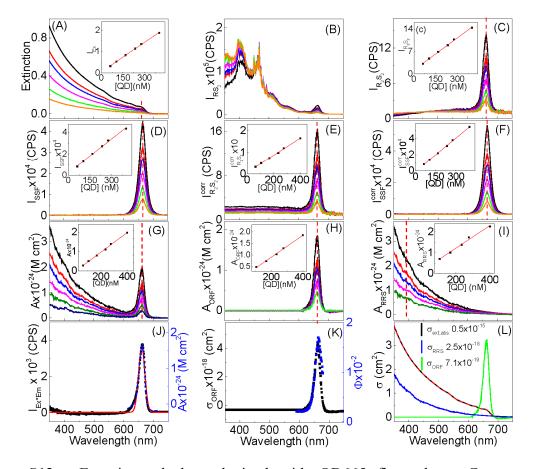

S13. Experimental data obtained with nanoparticle-fluorophore QD525

Figure S11. Experimental data obtained with QD525 fluorophore. Concentration-dependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired RS₂ spectra, (C) as-acquired R₂S₂ spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R₂S₂ spectra, (F) IFE-corrected SSF spectra, (G) R₂S₂ activity spectra, (H) comparison of an example ORF activity spectrum, the scaled multiplication product spectrum of UV-vis excitation and emission spectrum, and the Gaussian curve fitted spectrum. (I) ORF cross-section and quantum yield as a function of wavelength. The inset in plots (A), (C), (D), (E), (F), and (G) are spectral peak intensity as QD525 concentration.

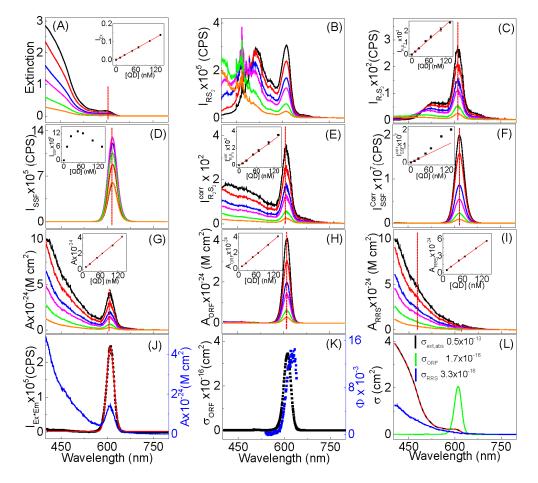
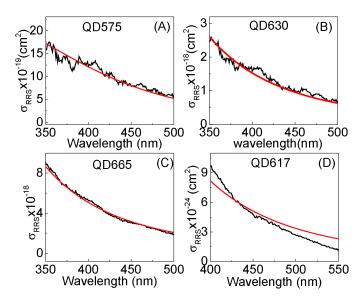

S14. Experimental data obtained with nanoparticle-fluorophore QD575

Figure S12. Experimental data obtained with QD575 fluorophore. Concentration-dependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired RS₂ spectra, (C) as-acquired R₂S₂ spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R₂S₂ spectra, (F) IFE-corrected SSF spectra, (G) R₂S₂ activity spectra, (H) ORF activity spectra, (I) RRS activity spectra. The spectral intensities above 550 nm were extrapolated through curve-fitting the measured data from 350 nm to 550 nm using $\sigma_{Sca}=a/\lambda^4$. The insets in (A), (C), (D), (E), (F), (G), (H), and (I) are the spectral peak intensities at the wavelengths shown in red dash line as a function of fluorophore concentration. (J) Comparison of an example (blue dash line) ORF activity spectrum, (black square) the scaled multiplication product spectrum of UV-vis excitation and emission spectrum, and (red solid line) the Gaussian curve fitted spectrum. (K) (black square) ORF cross-section and (blue square) quantum yield as a function of wavelength. (L) The (black) QD575 UV-vis extinction, (red) absorption, (blue) RRS scattering, and (green) on resonance emission cross-sections, the bar in blue and green are for QD the RRS scattering and ORF emission cross-sections, respectively.

S15. Experimental data obtained with nanoparticle-fluorophore QD665


Figure S13. Experimental data obtained with QD665 fluorophore. Concentrationdependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired RS₂ spectra, (C) asacquired R_2S_2 spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R_2S_2 spectra, (F) IFE-corrected SSF spectra, (G) R_2S_2 activity spectra, (H) ORF activity spectra, (I) RRS activity spectra. The spectral intensities above 550 nm were extrapolated through curvefitting the measured data from 350 nm to 550 nm using $\sigma_{Sca}=a/\lambda^4$. The insets in (A), (C), (D), (E), (F), (G), (H), and (I) are the spectral peak intensities at the wavelengths shown in red dash line as a function of fluorophore concentration. (J) Comparison of an example (blue dash line) ORF activity spectrum, (black square) the scaled multiplication product spectrum of UV-vis excitation and emission spectrum, and (red solid line) the Gaussian curve fitted spectrum. (K) (black square) ORF cross-section and (blue square) quantum yield as a function of wavelength. (L) The (black) QD665 UV-vis extinction, (red) absorption, (blue) RRS scattering, and (green) on resonance emission cross-section spectrum. The bar in black is the scale for QD UV-vis extinction and absorption crosssections, the bar in blue and green are for QD the RRS scattering and ORF emission crosssections, respectively.

S16. Experimental data obtained with nanoparticle-fluorophore QD617

Figure S14. Experimental data obtained with QD617 fluorophore. Concentration-dependent (A) fluorophore UV-vis extinction spectra, (B) as-acquired RS₂ spectra, (C) as-acquired R₂S₂ spectra, (D) as-acquired SSF spectra, (E) IFE-corrected R₂S₂ spectra, (F) IFE-corrected SSF spectra, (G) R₂S₂ activity spectra, (H) ORF activity spectra, (I) RRS activity spectra. The insets in (A), (C), (D), (E), (F), (G), (H), and (I) are the spectral peak intensities at the wavelengths shown in red dash line as a function of fluorophore concentration. (J) Comparison of an example (blue dash line) ORF activity spectrum, (black square) the scaled multiplication product spectrum of UV-vis excitation and emission spectrum, and (red solid line) the Gaussian curve fitted spectrum. (K) (black square) ORF cross-section and (blue square) quantum yield as a function of wavelength. (L) The (black) QD617 UV-vis extinction, (red) absorption, (blue) RRS scattering, and (green) on resonance emission cross-sections, the bar in blue and green are for QD the RRS scattering and ORF emission cross-sections, respectively.

S17. Curve-fitting of the QD RRS cross-sections

Figure S15. (Black) calculated and (red) fitted RRS cross section (σ_{RRS}) values as a function of wavelength obtained with (A) QD575, (B) QD630, (C) QD665, and (D) QD617. The function for the curve-fitting is $\sigma_{Sca}=a/\lambda^4$. The large derivation between the experimental and fitted RRS cross-sections for QD617 indicates that only can the RRS for QD575, QD630, and QD665 be approximated with the function of $\sigma_{Sca}=a/\lambda^4$ as discussed in the main text.

S18 Determination of wavelength bandwidth of the instrument response peak function

The bandwidth of the instrument response function is related to the slit widths of the excitation and emission monochromators and the wavelength-dependence of the detector response. The bandwidth of the instrument response function was determined by measuring the Rayleigh scattering bandwidth of the 100 nm polystyrene beads by keeping the excitation wavelength at 500 nm but the detection wavelength from 475 nm to 525 nm with wavelength increment of 1 nm. The slit widths of excitation and emission monochromators were both set to be 1 nm, which are the same as that used in the fluorophore SSF and R_2S_2 spectral acquisition. The FWHM of the instrument response is 1.7 nm as shown in Figure S16 through the Gaussian curve-fitting.

Figure S16. Determination of the bandwidth of the instrument response by measuring the Rayleigh scattering bandwidth of the 100 nm polystyrene beads. The excitation wavelength was kept at 500 nm but the detection wavelength varies from 475 nm to 525 nm with a wavelength increment of 1 nm. The black curve is the experimental data and the red line is obtained by fitting the experimental data with a Gaussian function. The FWHM of the fitting function is 1.7 nm.