SUPPORTING INFORMATION

Battling Btk Mutants With Noncovalent Inhibitors That Overcome Cys481 and Thr474 Mutations

Adam R. Johnson,**,† Pawan Bir Kohli,† Arna Katewa,‡ Emily Gogol,‡ Lisa D. Belmont,§ Regina Choy,§ Elicia Penuel,# Luciana Burton,# Charles Eigenbrot,¶ Christine Yu,¶ Daniel F. Ortwine,∥ Krista Bowman,¶ Yvonne Franke,¶ Christine Tam,¶ Alberto Estevez,¶ Kyle Mortara,¶ Jiansheng Wu,¶ Hong Li,¶ May Lin,¶ Philippe Bergeron,% James J. Crawford,% and Wendy B. Young %

[†]Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California 94080

[‡]Discovery Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080

[§]Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080 [#]Biomarker Development, Genentech, 1 DNA Way, South San Francisco, California 94080

[¶]Protein Chemistry and Structural Biology, Genentech, 1 DNA Way, South San Francisco, California 94080

Computational Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080

[%]Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080

^{*} Correspondence: johnsa26@gene.com

METHODS

Btk proteins. Purified recombinant human full-length catalytically active WT Btk protein that had been expressed in baculovirus-infected insect cells was obtained from Carna Biosciences and used as supplied. Mutant Btk proteins (C481S, C481R, T474I and T474M) were generated at Genentech by standard molecular biology techniques, expressed in baculovirus-infected insect cells, and purified. The Btk gene (Ala2–Ser659) was subcloned into a modified pAcGP67A vector (BD Biosciences) behind the polyhedron promoter with an N-terminal His-tag and a C-terminal His-tag, respectively, for expression in insect cells. Individual point mutations were introduced by site-directed mutagenesis using standard QuikChange protocols (Agilent Technologies). The integrity of all expression constructs was confirmed by DNA sequencing. Transfer vectors were co-transfected with BestBac linearized viral DNA (Expression Systems, LLC) into Spodoptera frugiperda 9 (Sf9) cells using Cellfectin (Invitrogen) to produce recombinant baculovirus. The virus was amplified twice to prepare the stock used for protein expression. Btk mutant C481S was expressed in Sf9 cells and all other mutant Btk proteins were expressed in *Trichoplusia ni* pro cells. Shake flasks (5 L; Thompson Instrument Company) were inoculated with 2 L of Sf9 or T. ni pro cells (Expression Systems, LLC) at 1E6 cells/mL in serum-free ESF921 medium (Expression Systems, LLC). The cells were grown at 27 °C and 120 rpm to a density of 2E6 cells/mL and infected with the appropriate virus at a ratio of virus/culture of 2.5 mL/L (v/v) for Sf9 cells and 5 mL/L (v/v) for T. ni pro cells. After 2 or 3 days post-infection for Sf9 or T. ni pro cell cultures, respectively, cells expressing protein were harvested by centrifugation at 4000g for 15 min and frozen at -80 °C until purification. A common protocol was used to purify the His-tagged Btk proteins. Cells were lysed in 50 mM Tris-HCl buffer (pH 8.5), containing 150 mM NaCl, 20 mM imidazole, 1 mM TCEP, and Complete EDTAfree protease inhibitor (Roche) by stirring at 4 °C for 1 hr. The lysate was subjected to ultracentrifugation at 40000g for 1 hr. The supernatant fluid was filtered and then loaded onto a 3-mL Ni²⁺-charged NTA column (Qiagen NiNTA superflow) that had been equilibrated in Buffer A [20 mM Tris-HCl buffer (pH 8.5), 300 mM NaCl, 20 mM imidazole, and 0.5 mM TCEP]. The bound protein was eluted in Buffer A containing 250 mM imidazole (instead of 20 mM). The eluted protein was concentrated and then further

purified by size exclusion chromatography on a 120-mL Superdex 200 16/60 column (GE Healthcare) that had been equilibrated with 20 mM Tris-HCl buffer (pH 8.5), containing 200 mM NaCl, 10% glycerol, and 0.5 mM TCEP. The eluted protein fractions were analyzed by SDS-PAGE and pooled to provide protein preparations that were frozen.

Inhibitors. Inhibitors **1a** and **2** were obtained commercially. Compounds **3a** and **3c** were synthesized as described (1) and **4** was prepared as published (2). Inhibitors **5–9** were synthesized as reported previously (3,4), while **1b** and **3b** were prepared as shown below.

Synthesis of **1b**:

1-[(3R)-3-[4-amino-3-(4-phenoxyphenyl)-pyrazolo[3,4-d]pyrimidin-1-yl]-1-piperidyl]propan-1-one

A mixture of 1-[(3*R*)-3-[4-amino-3-(4-phenoxyphenyl) pyrazolo[3,4-d]pyrimidin-1-yl]-1-piperidyl]prop-2-en-1-one (**1a**) (75 mg, 0.17 mmol) and palladium, 10% on Carbon (0.017 mmol, 18 mg) was suspended in a mixture of ethyl acetate (1 mL) and methanol (2 mL). The mixture was vacuum purged for 2 min and the atmosphere was replaced with H₂. The mixture was stirred under hydrogen at room temperature overnight then filtered through Celite, and the filtrand washed with DCM. The filtrate was concentrated under reduced pressure and the residue was purified by reverse-phase prep-HPLC to afford the title compound as a white solid (70.2 mg, 93%). MS-ESI: [M+H]⁺ 443.2

¹H NMR (400 MHz, DMSO-d6) δ 8.26 (d, J = 9.1 Hz, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.48–7.39 (m, 2H), 7.23–7.09 (m, 5H), 4.86–4.40 (m, 2H), 4.32–3.45 (m, 2H), 3.11 (q, J

= 11.0 Hz, 1H), 2.37 (s, 2H), 2.27–2.20 (m, 2H), 2.20–2.05 (m, 1H), 1.95–1.75 (m, 1H), 1.73–1.41 (m, 1H), 1.02–0.95 (m, 3H).

Synthesis of **3b**:

(R) - 6 - amino - 7 - (4 - phenoxyphenyl) - 9 - (1 - propionylpyrrolidin - 3 - yl) - 7 H - purin - 8 (9 H) - one one

To a solution of (R)-6-amino-7-(4-phenoxyphenyl)-9-(pyrrolidin-3-yl)-7H-purin-8(9H)-one hydrochloride (I) (47.8 mg, 0.123 mmol) in DCM (2 mL) cooled at -10 °C was added Et₃N (37.2 mg, 0.369 mmol). After stirring for 10 min, a solution of propionyl chloride (13.6 mg, 0.147 mmol) in DCM (1 mL) was added and the reaction mixture was stirred at -10 °C for 1 h. It was then concentrated under reduced pressure and the residue was purified by reverse-phase prep-HPLC to afford the title compound as a white solid (22.4 mg, 41%, 2 steps). MS-ESI: [M+H]⁺ 445.3

¹H NMR (500 MHz, CDCl₃) δ 8.26 (d, J = 12.0 Hz, 1H), 7.45–7.40 (m, 4H), 7.23–7.22 (m, 1H), 7.16–7.11 (m, 4H), 5.30–5.20 (m, 1H), 4.53–4.51 (m, 2H), 4.22–4.08 (m, 1H), 4.00–3.79 (m, 2H), 3.58–3.50 (m, 1H), 3.01–2.81 (m, 1H), 2.38–2.31 (m, 3H), 1.21–1.11 (m, 3H).

Btk kinase activity assay and inhibitor testing. We measured Btk-catalyzed tyrosine phosphorylation of a synthetic peptide (5-FAM-EEPLYWSFPAKKK-NH₂; ProfilerPro® FL-Peptide 22; Product 760366; PerkinElmer) using a LabChip 3000® microfluidic mobility shift instrument (PerkinElmer) in the in vitro biochemical assay. For determination of the apparent $K_{\rm m}$ for ATP, reaction mixtures contained 50 mM

HEPES buffer (pH 7.5), 10 mM MgCl₂, 0.01% Triton X-100, 1 mM dithiothreitol, 1 μM FL-Peptide 22, 0–500 µM ATP, and 1 or 2 nM total Btk protein. For the low activity C481R, the total kinase concentration was increased to 30 nM to achieve 10–20% conversion of peptide substrate to phospho-peptide product. For the inhibition studies, reaction mixtures contained the same components as above, but the ATP concentration was fixed at 45 μ M near the $K_{\rm m}$ for WT, and the reactions contained a titration of up to 10,000 nM test article in a final concentration of 0.5% (v/v) DMSO. In each titration, the test article was tested in duplicate at 12 concentrations. Blank reactions contained ATP, peptide, and DMSO, but no Btk or test article, whereas uninhibited control reactions contained ATP, peptide, Btk, and DMSO, but no test article. For both the $K_{\rm m}$ experiments and the inhibition experiments, kinase reactions were incubated for 30 min at room temperature (22–23 °C) in a final volume of 20 µL per well in 384-well plates. Ten microliters of Btk plus peptide mixture were added to 10 µL of a mixture of ATP and test article (or vehicle) to initiate the reactions. Duplicate inhibitor titrations were used to generate each IC₅₀. Reactions were stopped by adding 10 μL of 0.25 M EDTA (pH 8.0) to each well. In each reaction, the residual FL-Peptide 22 substrate (S) and the phospho-peptide product (P) generated were separated and quantified using the LabChip 3000. Electrophoretic separation of molecules of product from molecules of substrate was achieved using downstream and upstream voltages of -500 and -2250 V, respectively, at an operating pressure of -1 psi. The 5-FAM group present on both the substrate and product peptides was excited at 488 nm; the fluorescence at 530 nm was detected and the peak heights were reported. The extent (or percent) of conversion of substrate to product was calculated from the corresponding peak heights in the electropherogram using HTS Well Analyzer software, version 5.2 (PerkinElmer) and the following equation

% conversion =
$$\frac{P}{S+P} \times 100$$

where P and S represent the peak heights of the product and substrate, respectively. After any baseline signal from blank wells containing no Btk was subtracted from the signal of all test wells, the % conversion data were converted to % of Control. The % conversion

observed in uninhibited control reaction wells containing Btk and DMSO vehicle was defined as 100% of Control while blank wells with no Btk were defined as 0% of Control. The % of Control data were plotted against the log of the inhibitor concentration and fit by non-linear regression using Prism v5.0 (GraphPad software) to the variable slope 4-parameter sigmoidal inhibition equation to determine IC₅₀.

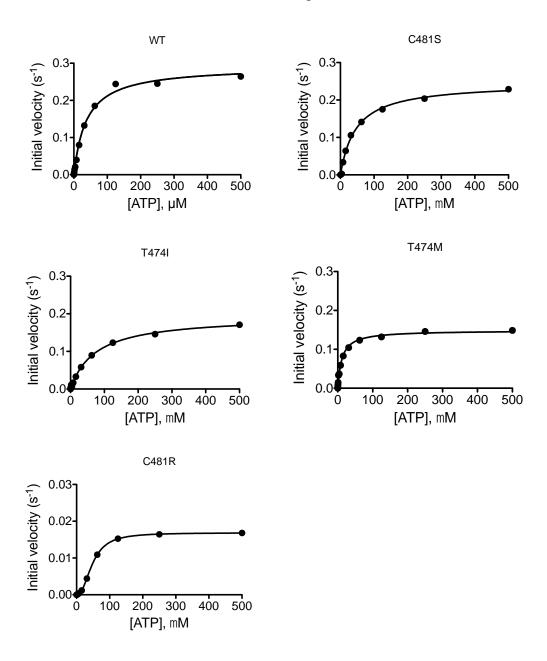
Protein expression and purification for crystallography. Codon optimized DNA encoding residues Gly393–Glu657 of Btk followed by a TEV cleavage site and a His₆-tag at the C-terminus was cloned into a pBacgus-1 transfer vector (Novagen). Amplified virus was used to express protein in Sf9 cells over 72 hr. Cells were suspended in 50 mM CHES buffer (pH 9.0) containing 250 mM NaCl, 0.25% NP-40, 1 mM TCEP, 10 mM imidazole, and a cocktail of protease inhibitors and then lysed using a microfluidizer. The resultant lysate was clarified by centrifugation at 40,000 rpm for 1 hr. The supernatant fluid was incubated with Ni-NTA superflow beads (QIAGEN) and the slurry was poured into a gravity fed Econo column. The column was washed with 10 column volumes of 20 mM CHES buffer (pH 9.0) containing 200 mM NaCl, 1 mM TCEP, and 20 mM imidazole and then eluted with buffer containing 300 mM imidazole. The eluent was incubated overnight at 4 °C with TEV protease to cleave the C-terminal His₆ tags while being buffer-exchanged via dialysis into 20 mM Tris-HCl buffer (pH 8.5) containing 200 mM NaCl, and 1 mM TCEP. The cleaved, dialyzed sample was loaded onto a second Ni-NTA column to remove non-cleaved protein, and the flow through was further purified by gel filtration on a Superdex 75 column (GE Healthcare) that had been equilibrated in 20 mM Tris-HCl buffer (pH 8.5) containing 100 mM NaCl, and 0.5 mM TCEP. Purified Btk was then concentrated to ~10 mg/mL.

Crystallization, data collection and refinement of Btk/Compound 9. The purified Btk at ~10 mg/mL was incubated at 4 °C for 2 hr with a 2-fold molar excess of 9. Crystals were grown at 13 °C by vapor diffusion in hanging drops containing equal volumes of protein and reservoir solution [6% PEG 10,000 in 100 mM citrate buffer (pH 5.5) containing 100 mM Li₂SO₄]. Larger crystals were obtained by streak seeding. Crystals were cryoprotected in reservoir solution supplemented with 25% glycerol. Diffraction data were collected at APS beamline 21-IDF (LS-CAT) and reduced using HKL2000 (5)

and elements of the CCP4 suite (6) in a hexagonal space group. Initial phases were available from a high-resolution isomorphous Btk structure (3OCS) in the PDB (7). Model building was performed using Coot (8) and refinement employed both Refmac5 (9) and phenix.refine (10). Metrics characterizing the data and final model appear in Table S1. The X-ray co-crystal structural data set has been deposited in the PDB as accession ID code 5KUP.

Protein-inhibitor structure modeling. A model of **1a** covalently bound to the Btk active site was built using the X-ray crystal structure of Btk bound to a related inhibitor analog (PDB 4YHF) (*11*). A model of **6** in the Btk binding site was built using the co-crystal structure of Btk with **9** from the present work (PDB: 5KUP). Models were constructed using the MOE software v2016.10 (www.chemcorp.com) and ligands were minimized in the active site using default parameter settings. The H3 selectivity pocket was depicted using the Molecular Surface function within MOE v2015.10 to contour the surfaces of Btk residues within 3.5 Å of any atom of the fluorophenyl ring of **9** and its *t*-butyl substituent. Specifically, residues Gln412, Phe413, Gln421, His519, Asp521, Asn526, Leu542, Ser543, and Tyr551 were used to create the surface.

Human whole blood assay of CD69 expression. Heparinized whole blood (100 μL) from healthy human volunteers was dispensed into 96-well square top/tapered V-bottom deep-well plates and incubated for 1 h at 37 °C with an 11-point titration (3-fold serial dilutions) of inhibitor starting at a top concentration of 4.76 μM or DMSO vehicle in duplicate. Blood was then stimulated 18 h in the presence of 50 μg/mL of goat anti-IgM F(ab')₂ (SouthernBiotech). After the incubation, B cells were stained with anti-mouse CD19 PerCP (BD Biosciences, clone SJ25C1), anti-mouse CD27 FITC (BD Biosciences, clone L128) and anti-mouse CD69 PE (BD Biosciences, clone FN50) or Isotype IgG1 PE antibodies for 30 min at room temperature followed by RBC lysis using 1X BD lysis buffer. Cells were washed with FACS buffer and fixed with 2% paraformaldehyde. Samples were acquired on BD LSRII and analyzed using BD FACSDiva software. B cells were gated as CD19⁺CD27⁻ and B-cell activation was assessed based on CD69 PE mean fluorescence intensity (MFI). CD69 MFI was plotted vs. the logarithm of the


inhibitor concentration and the MFI data were fit by non-linear regression using Prism v5.0 to the variable slope 4-parameter sigmoidal inhibition equation to determine the IC₅₀. Each compound was tested in duplicate with blood from at least 3 different donors.

Cellular assay of Btk phosphorylation. Rabbit anti-α-tubulin (mAb) (2125; Cell Signaling Technology, Inc.), rabbit anti-pY223-Btk mAb (Epitomics), rabbit anti-Btk (26560002, Novus Biologicals) were commercially available. HEK293T cells were transfected with plasmid encoding either WT or C481S mutant Btk with a C-terminal 6-His tag. Transfected cells were treated with vehicle (DMSO) or 1 µM inhibitor in vehicle for 5 h and stimulated for 5 min at room temperature with 10 µg/mL goat F(ab')₂ antihuman IgM-LE/AF (2022-14, SouthernBiotech) followed by a wash with cold PBS to terminate the stimulation. The cell pellet was lysed in cold RIPA buffer (R0278, Sigma-Aldrich) containing protease inhibitors (11697498001, Sigma-Aldrich) and phosphatase inhibitors 1 and 2 (P5726 and P0044, Sigma-Aldrich). Protein extracts were lysed 30 min at 4 °C, then centrifuged at 10,000g for 10 min at 4 °C. Protein concentrations were measured by the Pierce BCA Protein Assay Kit (23227, Thermo Scientific) using bovine serum albumin for the standard curve. For WESTM automated western blotting, all reagents and samples were prepared and used according to manufacturer's user guide [Wes-Rabbit Master Kit (12–230 kD) (PS-MK01, Protein Simple)]. Briefly, 0.5 µg of total cellular protein lysate was mixed with 5x fluorescent master mix containing SDS, DTT, and three biotin-labeled protein standards with molecular weights of 1, 29 and 180 kD, and incubated for 5 min at 95 °C. The treated samples, biotin-labeled molecular weight ladder, blocking reagent, wash buffer, primary antibodies, secondary antibodies, and chemiluminescent substrate were dispensed into designated wells in the 25-well sample plate provided. The plate was loaded into the WES instrument and automated separation capillary electrophoresis and immunodetection was performed using default settings. Data analysis was performed using the WES Compass v2.5.11 Software. Statistical analysis of significance between groups was done by unpaired t-test of significance at 95% confidence interval with Prism v5.0 (GraphPad Software).

Table S1. Data collection and refinement statistics for the human Btk(393–657)/Compound **9** co-crystal structure

	Compound 9					
Data collection & reduction						
X-ray source	APS 21-ID-F					
Wavelength (Å)	0.9787					
Resolution range (Å)	35.47–1.39 (1.44–1.39)					
Space group	P6 ₁					
Unit cell edges (Å)	108.373 108.373 42.453					
Unit cell angles (°)	90 90 120					
Total reflections	465465					
Unique reflections	56763 (5544)					
Multiplicity	8.2 (7.7)					
Completeness (%)	98.47 (97.02)					
Mean I/sigma(I)	28.0 (2.6)					
Wilson B-factor (Å ²)	14.42					
R-symm	0.075 (0.897)					
Refinement						
Reflections used for R-free	2919					
R-work	0.165 (0.237)					
R-free	0.177 (0.242)					
Number of non-H atoms	2654					
macromolecules	2266					
ligands	69					
water	319					
Protein residues	265					
RMS(bonds) (Å)	0.006					
RMS(angles) (°)	1.17					
Ramachandran favored (%)	97					
Average B-factor (Å ²)	19.8					
macromolecules	18.0					
ligands	22.2					
solvent	31.9					

Figure S1. Steady state kinetics Michaelis-Menten plots of the Btk enzyme forms used in this work. Data from a single titration for each enzyme are shown. Note that the ordinate scale for C481R is one-tenth that of the other plots.

Figure S2. Kinase selectivity of the Btk inhibitors. ATP concentrations used were either at the apparent $K_{\rm m}$ ($K_{\rm m}$ app) or as listed (μ M) in the column [ATP]; NA (not applicable) denotes competitive binding assays that contained no ATP. The % Inhibition by 1 μ M inhibitor is shown. The color scheme is the same as used in Figure 4a. NT, Not Tested.

Kinsse [AFP] 1a 1b 2 3a 3c 4 5 6 7 8 9 ADDITION 1a 1b 2 3a 3c 4 5 6 7 8 9 ADDITION 1a 1a 1b 2 3a 3c 4 5 6 7 7 8 9 ADDITION 1a 1a 1a 1a 1a 1a 1a 1		% Inhibition by Inhibitor											
ACVPRIB NA DP NA DP 1	Kinase	[ATP]	1a	1b	2	3a				6	7	8	9
ACVRZB NA 2	Abl	Km app									2		
AKT1													
AKTZ													
ALKZ NA ARKS Kmapp 19 19 19 19 19 19 19 19 19													
ARKS													
ASK1 NA 5 2 6 4 6 2 2 2 1 5 8 3 3 Aurora A Km app 45 24 5 99 -1 4 5 9 21 -2 1 7 7 Aurora B Km app 18 15 57 1 -1 5 3 3 5 3 -2 -1 Aurora B Km app 18 15 57 1 -1 5 3 3 5 3 -2 -1 Aurora B Km app 9 5 5 13 -5 7 9 9 3 0 4 6 -4 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ARK5												
Autoral B Km app 18 15 57 11 -1 5 3 3 5 3 -2 11 Abd Km App 9 5 113 -5 -9 3 0 4 6 4 1 0 3 B-Raf NA 59 51 6 27 24 28 0 4 1 1 0 3 BMPRTA NA 69 5 51 6 6 27 24 28 0 0 4 1 0 0 3 BMPRTA NA 69 5 51 6 6 27 24 28 0 0 4 1 0 0 3 BMPRTA NA 69 5 51 6 6 27 24 28 0 0 4 1 0 0 3 BMPRTA NA 69 6 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ASK1												
AND MATERIAL SET 19 STATE STAT	Aurora_A	Km app			59	-1		5	9	21			7
BART NA S9 S9 S1	Aurora_B		_								-		
BINK N NA													
SMPRIA													
Bink Km app													
BRK	Bmx				99								
BTK	Brk		100										
CAMINI 100													
CAMKI delta													
CamKII, alpha Km app -2 -2 -4 5 2 -2 -1 1 9 -7 1 CamKII Km app 8 13 12 4 10 6 -3 9 -5 2 10 9 CamKIV Km app 8 10 -2 2 -5 4 11 6 -3 115 8 CAMKKI NA -12 -8 2 -2 -5 4 11 6 -3 115 8 CAMKKI NA -1 -3 8 2 -2 2 4 4 3 0 6 CORKI/cyclink Km app 6 1 6 5 7 6 6 2 6 7 7 CORKI/cyclink Km app 6 1 6 5 7 6 6 2 6 7 5 CORKS/p26 Km app 2 -1 0 -3 -3 -3 7 2 6 0 3 4 CORKS/p26 Km app 2 2 1 0 -3 -3 -3 7 2 6 0 3 4 CORKS/p26 Km app 2 2 1 0 -3 -3 -3 7 2 6 0 3 4 CORKS/p26 Km app 2 2 1 0 -3 -3 -3 7 2 6 0 3 4 CORKS/p26 Km app 2 2 1 0 -3 -3 -3 7 2 6 0 3 4 CORKS/p26 Km app 2 2 1 3 -6 16 -9 -7 5 6 -1 CORKS/p26 Km app 2 2 0 -2 -2 7 -5 -6 15 -8 4 CORKS/p26 Km app 2 2 0 -7 -7 -4 6 6 -1 -2 4 CORKS/p26 Km app 2 2 0 -7 -7 -4 6 6 -1 -2 4 CORKS/p26 Km app 2 2 0 -7 -7 -4 6 6 -1 -2 4 CORKS/p26 Km app 2 -1 1 2 -1 1 1 2 -1 1 1 2 -1 CORKS/p26 Km app 2 -1 1 2 -1 1 1 2 -1 1 1 2 -1 1 1 1 -1 -													
CAMKI beta Km app B 10 -2 2 -5 4 10 6 -3 15 8 AMKKI NA -12 -8 2 -2 6 -7 -9 -6 -11 -7 -7 CAMKKI NA -12 -8 2 -2 -6 -7 -9 -6 -6 -1 -7 -7 -7 CAMKKI NA -12 -8 2 -2 -6 -7 -9 -6 -6 -1 -7 -7 -7 CAMKKI NA -12 -8 -8 -2 -2 -6 -7 -9 -6 -6 -1 -7 -7 -7 -7 -7 -7 -7 -7 -7													
CamKIV Km app 8	CaMKII_beta												
CAMKK2 NA -1 -1 -3 -8 -2 -2 -2 -4 -4 -3 -3 -6 -6 CDK1cyclinB	CamKIV	Km app	8	10		2	-5	4	11	6	-3		8
CDKI/cyclinB Km app 6	CAMKK1												
CDKZ/cyclinA Km app 2													
CDKS/D25													
CDKT/cyclinH Km app													
CDKB/cyclinC NA 114 12 15 114 10 19 19 -5 2 17 -4 7 CDKB/cyclinT Km app 1 -7 -3 -2 -1 30 -12 CHK1 Km app 2 2 0 -7 -7 -4 6 6 -1 -2 4 CKI, alpha1 Km app 2 -1 1 1 1 2 -1 1 1 1 2 -1 1 1 1 2 -1 1 1 1 2 -1 1 1 1 2 -1 1 1 1 2 -1 1 1 1 1 2 -1 1 1 1 1 2 -1 1 1 1 1 2 -1 1 1 1 1 2 -1 1 1 1 1 2 -1 1 1 1 1 2 -1 1 1 1 1 1 -1 -	CDK7/cyclinH												
CHK1	CDK8/cyclinC												
CHK2 Km app 12 9 6 -4 -2 3 2 5 3 8 -1 CK1 alpha Km app 2 -1 1 2 -1 1 1 1 2 -13 5 -2 CK1 deta Km app 8 7 -2 4 1 7 6 5 -2 10 5 CK1 epsilon1 Km app 32 37 -3 17 10 3 5 2 1 3 1 CK1 gamma Km app 33 37 -3 17 10 3 5 2 1 3 1 CK1 gamma Km app 3-3 1 -4 1 1 -4 -20 -5 -1 -14 11 CK1 gamma Km app 2 -1 1 7 1 1 11 -1 -1 8 7 CK2 alpha Km app 2 8 7 15 4 -2 -1 6 7 6 5 CLK1 Km app -4 3 3 3 2 3 -1 4 1 -2 1 CLK2 Km app -4 3 3 3 2 3 -1 4 1 -2 1 CLK3 Km app -5 5 0 3 1 2 6 1 0 6 3 CLK4 Km app -5 5 0 3 1 2 6 1 0 6 3 CLK4 NA 6 5 49 6 8 7 5 2 1 5 3 COL 100 30 18 25 16 5 9 18 8 8 11 8 CSF1R Km app 55 58 24 3 2 -4 3 16 -5 -2 -1 CSK Km app 7 5 -1 -2 2 1 2 -5 7 -1 2 3 DAPK1 Km app 7 5 -1 -2 2 1 2 -5 7 -1 2 3 DDR1 NA 2 2 5 4 -1 3 3 -1 5 5 6 DVRK1 Km app 11 10 2 9 7 -1 3 11 3 7 3 DDR1 NA -2 2 5 -3 -1 -3 3 -1 5 5 6 DVRK1 Km app 4 5 -3 -1 -2 1 2 -5 7 -1 2 3 DDR1 NA -3 -14 1 -1 -1 -1 -1 -1 -1													
CKI_alpha1					-								
CK1 delta													
CKI gesilon1 Km app 32 37 -3 17 10 3 5 2 1 3 1 1 4 1 1 1 4 20 5 1 1 1 1 1 1 1 4 20 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
CKY_alpha1	CK1_epsilon1		32	37	-3	17	10				1		1
CK2 alpha1	CK1_gamma1												
CLK1													
CLK2 Km app -2 -2 35 -7 -6 3 -6 6 6 1 -2 CLK3 Km app 5 5 0 3 1 2 6 1 0 6 3 CLK4 NA 6 5 49 6 8 7 5 2 1 5 3 Cot 100 30 18 25 16 5 9 18 8 8 11 8 CSF1R Km app 55 58 24 3 2 -4 3 16 -5 -2 -1 1 8 11 8 8 11 8 8 11 8 7 6 18 -2 -1 1 8 -2 -1 -1 2 -1 -2 1 -2 1 -2 1 -2 1 -2 1 -7 -6													
CLK3 Km app 5 5 0 3 1 2 6 1 0 6 3 CLK4 NA 6 5 49 6 8 7 5 2 1 5 3 Cot 100 30 18 25 16 5 9 18 8 8 11 8 CSFIR Km app 55 58 24 3 2 -4 3 16 -5 -2 -1 CSK Km app 95 58 24 3 2 -4 3 16 -5 -2 -1 DAPK1 Km app 7 5 -1 -2 1 2 5 7 -1 2 3 DCAMK12 Km app 7 5 -1 -2 1 2 5 7 -1 2 3 DMCK NA -8 -14 <													
CLK4 NA 6 5 49 6 8 7 5 2 1 5 3 Cot 100 30 18 25 16 5 9 18 8 8 11 8 CSF1R Km app 55 58 24 3 2 -4 3 16 -5 -2 -1 CSK Km app 98 97 11 63 48 8 9 11 5 8 7 CSK Km app 7 5 -1 -2 1 2 -5 7 -1 2 3 DDAPK1 NA 2 2 2 5 4 -1 3 -3 -1 5 5 6 DDMPK NA -8 -14 1 -1 -6 -1 -3 8 -3 -10 1 DNA-PK Km app 11 10 2 9 7 -1 3 11 3 7 3 DRAK1 NA 4 1 56 1 7 6 5 2 2 5 5 6 DYRK1A Km app 4 5 -3 -1 -2 9 7 2 2 2 10 DYRK3 Km app 4 5 -3 -1 -2 9 7 2 2 2 10 CYKK3 Km app 1 11 10 2 9 7 7 -1 3 11 3 7 3 EFF-2K Km app -1 0 -1 4 0 2 -2 2 3 -1 0 10 DYRK4 Km app -1 0 -1 4 0 2 -2 2 3 -1 0 -1 0 -1 6 EFF-2K Km app 28 -3 3 9 5 8 7 -3 4 5 3 -1 0 11 EFF-170M,L858R) Km app 26 4 52 -1 -2 6 0 6 8 6 0 0 6 8 6 0 0 0 0 0 0 0 0 0 0	CLK3										_		
CSF1R Km app 55 58 24 3 2 -4 3 16 -5 -2 -1 CSK Km app 97 11 63 48 8 9 11 5 8 7 DAPK1 Km app 27 22 0 7 4 7 21 -7 6 18 -20 DCAMKL2 Km app 7 5 -1 -2 1 2 -5 7 -1 2 3 DDR1 NA 2 2 5 4 -1 3 -3 -1 5 5 6 DMPK NA -8 -14 1 -1 -6 -1 -3 8 -3 -10 1 DNAFKI Km app 11 10 2 9 7 -1 3 11 3 7 3 DYRK3 Km app 4 -2 <th< th=""><th>CLK4</th><th>NA</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th><th>3</th></th<>	CLK4	NA									1		3
CSK Km app 98 97 11 63 48 8 9 11 5 8 7 DAPKI Km app 27 22 0 7 4 7 21 -7 6 18 -20 DCAMKL2 Km app 7 5 -1 -2 1 2 -5 7 -1 2 3 DDR1 NA 2 2 5 4 -1 3 -3 -1 5 5 6 DMPK NA -8 -14 1 -1 -6 -1 -3 8 -3 -10 1 DNA-PK Km app 11 10 2 9 7 -1 3 11 3 7 3 DRAGKI NA 4 1 56 1 7 6 5 2 5 5 6 DYRK1A Km app 4 5 3	Cot												
DAPK1 Km app 27 22 0 7 4 7 21 -7 6 18 -20 DCAMKL2 Km app 7 5 -1 -2 1 2 -5 7 -1 2 3 DDR1 NA 2 2 5 4 -1 3 -3 -1 5 5 6 DMPK NA -8 -14 1 -1 -6 -1 -3 8 -3 -10 1 DNA-PK Km app 11 10 2 9 7 -1 3 11 3 7 3 DRAK1 NA 4 1 56 1 7 6 5 2 5 5 6 6 DWRK1A Km app 4 -2 5 -3 -1 -2 9 7 2 -2 10 10 10 10 10 10													
DCAMKL2 Km app 7 5 -1 -2 1 2 -5 7 -1 2 3 DDR1 NA 2 2 5 4 -1 3 -3 -1 5 5 6 DMPK NA -8 -14 1 -1 -6 -1 -3 -1 5 5 6 DNA-PK Km app 11 10 2 9 7 -1 3 11 3 7 3 DRAK1 NA 4 1 56 1 7 6 5 2 5 5 6 6 DTRKIA Km app 4 5 -3 -1 -2 9 7 2 -2 10 10 DYRKIA Km app 4 -2 5 -3 -4 0 4 4 4 0 1 BEF-2K Km app -3 3													
DDR1 NA 2 2 5 4 -1 3 -3 -1 5 5 6 DMPK NA -8 -14 1 -1 -6 -1 -3 8 -3 -10 1 DNA-PK Km app 11 10 2 9 7 -1 3 11 3 7 3 DRAK1 NA 4 1 56 1 7 6 5 2 5 5 6 DYRK1A Km app 4 5 -3 -1 -2 9 7 2 -2 10 10 DYRK3 Km app 4 -2 5 -3 -1 -2 9 7 2 -2 10 10 DYRK3 Km app 4 -2 5 -3 -4 0 4 4 4 0 1 BYRK3 Km app -3	DCAMKL2												
DNA-PK Km app 11 10 2 9 7 -1 3 11 3 7 3 DRAK1 NA 4 1 56 1 7 6 5 2 5 5 6 DYRK1A Km app 4 5 -3 -1 -2 9 7 2 -2 10 10 DYRK3 Km app 4 -2 5 -3 -4 0 4 4 4 0 1 DYRK4 Km app -1 0 -1 4 0 2 -2 3 -1 0 -1 eEF-2K Km app -3 3 9 5 8 7 -3 4 5 3 9 EGFR Km app 89 20 34 72 -2 -1 -3 4 5 3 9 EGFR Km app 30 31 <th>DDR1</th> <th></th> <th>2</th> <th></th> <th>5</th> <th></th> <th>-1</th> <th></th> <th></th> <th>-1</th> <th>5</th> <th></th> <th>6</th>	DDR1		2		5		-1			-1	5		6
DRAK1 NA 4 1 56 1 7 6 5 2 5 5 6 DYRK1A Km app 4 5 -3 -1 -2 9 7 2 -2 10 10 DYRK3 Km app 4 -2 5 -3 -4 0 4 4 4 0 1 DYRK4 Km app -1 0 -1 4 0 2 -2 3 -1 0 -1 eEF-2K Km app -3 3 9 5 8 7 -3 4 5 3 9 EGFR Km app -3 3 9 5 8 7 -3 4 5 3 9 EGFR (T790M,L858R) Km app 26 4 52 -1 -2 6 0 6 8 6 0 EghA3 NA 12 13	DMPK												
DYRK1A Km app 4 5 -3 -1 -2 9 7 2 -2 10 10 DYRK3 Km app 4 -2 5 -3 -4 0 4 4 4 0 1 DYRK4 Km app -1 0 -1 4 0 2 -2 3 -1 0 -1 eEF-2K Km app -3 3 9 5 8 7 -3 4 5 3 9 EGFR Km app 89 20 34 72 -2 -1 -3 4 5 3 9 EGFR(T790M,L858R) Km app 26 4 52 -1 -2 6 0 6 8 6 0 EghA1 Km app 30 31 19 11 5 9 4 6 1 6 2 EphA3 NA 18													
DYRK3 Km app 4 -2 5 -3 -4 0 4 4 4 0 1 DYRK4 Km app -1 0 -1 4 0 2 -2 3 -1 0 -1 eEF-2K Km app -3 3 9 5 8 7 -3 4 5 3 9 EGFR Km app 89 20 34 72 -2 -1 -3 4 5 3 9 EGFR(1790M,L858R) Km app 26 4 52 -1 -2 6 0 6 8 6 0 EghA1 Km app 30 31 19 11 5 9 4 6 1 6 2 EphA3 NA 18 14 21 4 0 3 5 6 4 9 13 EphB1 Km app 7													
DYRK4 Km app -1 0 -1 4 0 2 -2 3 -1 0 -1 eEF-2K Km app -3 3 9 5 8 7 -3 4 5 3 9 EGFR Km app 89 20 34 72 -2 -1 -3 4 5 3 9 EGFR(T790M,L858R) Km app 26 4 52 -1 -2 6 0 6 8 6 0 EphA1 Km app 30 31 19 11 5 9 4 6 1 6 2 EphA3 NA 12 13 5 10 2 2 6 -3 2 9 5 EphA3 NA 18 14 21 4 0 3 5 6 4 9 13 EphA3 Km app 48 <	DYRK3												
eEF-2K Km app -3 3 9 5 8 7 -3 4 5 3 9 EGFR Km app 89 20 34 72 -2 -1 -3 4 3 -8 -2 EGFR(T790M,L858R) Km app 26 4 52 -1 -2 6 0 6 8 6 0 EphA1 Km app 30 31 19 11 5 9 4 6 1 6 2 EphA3 NA 12 13 5 10 2 2 6 -3 2 9 5 EphA3 NA 18 14 21 4 0 3 5 6 4 9 13 EphA3 Km app 48 41 0 7 2 5 1 2 -4 -8 3 EphA8 Km app 3 <	DYRK4												
EGFR(T790M,L858R) Km app 26 4 52 -1 -2 6 0 6 8 6 0 EphA1 Km app 30 31 19 11 5 9 4 6 1 6 2 EphA3 NA 12 13 5 10 2 2 6 -3 2 9 5 EphA7 NA 18 14 21 4 0 3 5 6 4 9 13 EphA8 Km app 48 41 0 7 2 5 1 2 -4 -8 3 EphB1 Km app 7 9 8 2 0 2 -1 6 1 5 1 EphB3 Km app 3 2 -1 3 -1 3 1 0 -2 1 3 ErbB2 Km app 93 36<	eEF-2K	Km app											
EphA1 Km app 30 31 19 11 5 9 4 6 1 6 2 EphA3 NA 12 13 5 10 2 2 6 -3 2 9 5 EphA7 NA 18 14 21 4 0 3 5 6 4 9 13 EphA8 Km app 48 41 0 7 2 5 1 2 -4 -8 3 EphB1 Km app 7 9 8 2 0 2 -1 6 1 5 1 EphB3 Km app 3 2 -1 3 -1 3 1 0 -2 1 3 ErbB2 Km app 91 50 6 56 7 36 6 3 -7 7 -1 ErbB4 Km app 93 86	EGFR												
EphA3 NA 12 13 5 10 2 2 6 -3 2 9 5 EphA7 NA 18 14 21 4 0 3 5 6 4 9 13 EphA8 Km app 48 41 0 7 2 5 1 2 -4 -8 3 EphB1 Km app 7 9 8 2 0 2 -1 6 1 5 1 EphB3 Km app 3 2 -1 3 -1 3 1 0 -2 1 3 ErbB2 Km app 91 50 6 56 7 36 6 3 -7 7 -1 ErbB4 Km app 93 86 76 101 28 93 2 25 0 3 3 ErbB4 Km app 11 8													
EphA7 NA 18 14 21 4 0 3 5 6 4 9 13 EphA8 Km app 48 41 0 7 2 5 1 2 -4 -8 3 EphB1 Km app 7 9 8 2 0 2 -1 6 1 5 1 EphB3 Km app 3 2 -1 3 -1 3 1 0 -2 1 3 ErbB2 Km app 91 50 6 56 7 36 6 3 -7 7 -1 ErbB4 Km app 93 86 76 101 28 93 2 25 0 3 3 ERK2 Km app 11 8 8 6 5 3 7 4 8 4 2 FAK Km app 5 -5													
EphA8 Km app 48 41 0 7 2 5 1 2 -4 -8 3 EphB1 Km app 7 9 8 2 0 2 -1 6 1 5 1 EphB3 Km app 3 2 -1 3 -1 3 1 0 -2 1 3 ErbB2 Km app 91 50 6 56 7 36 6 3 -7 7 -1 ErbB4 Km app 93 86 76 101 28 93 2 25 0 3 3 ERK2 Km app 11 8 8 6 5 3 7 4 8 4 2 FAK Km app 5 -5 25 8 4 2 1 2 2 -3 10 FGFR1 Km app 53 52													
EphB1 Km app 7 9 8 2 0 2 -1 6 1 5 1 EphB3 Km app 3 2 -1 3 -1 3 1 0 -2 1 3 ErbB2 Km app 91 50 6 56 7 36 6 3 -7 7 -1 ErbB4 Km app 93 86 76 101 28 93 2 25 0 3 3 ERK2 Km app 11 8 8 6 5 3 7 4 8 4 2 FAK Km app -3 4 14 -7 -4 -3 3 4 4 3 11 Fes Km app 53 52 16 5 1 0 9 1 11 3 5 FGFR3 Km app 31 29	EphA8			41									
ErbB2 Km app 91 50 6 56 7 36 6 3 -7 7 -1 ErbB4 Km app 93 86 76 101 28 93 2 25 0 3 3 ERK2 Km app 11 8 8 6 5 3 7 4 8 4 2 FAK Km app -3 4 14 -7 -4 -3 3 4 4 3 11 Fess Km app 5 -5 25 8 4 2 1 2 2 -3 10 FGFR1 Km app 53 52 16 5 1 0 9 1 11 3 5 FGFR3 Km app 31 29 16 10 6 -4 10 0 27 4 -1	EphB1	Km app	7	9	8	2	0	2	-1	6		5	1
ErbB4 Km app 93 86 76 101 28 93 2 25 0 3 3 ERK2 Km app 11 8 8 6 5 3 7 4 8 4 2 FAK Km app -3 4 14 -7 -4 -3 3 4 4 3 11 Fes Km app 5 -5 25 8 4 2 1 2 2 -3 10 FGFR1 Km app 53 52 16 5 1 0 9 1 11 3 5 FGFR3 Km app 31 29 16 10 6 -4 10 0 27 4 -1	EphB3												
ERK2 Km app 11 8 8 6 5 3 7 4 8 4 2 FAK Km app -3 4 14 -7 -4 -3 3 4 4 3 11 Fes Km app 5 -5 25 8 4 2 1 2 2 -3 10 FGFR1 Km app 53 52 16 5 1 0 9 1 11 3 5 FGFR3 Km app 31 29 16 10 6 -4 10 0 27 4 -1	ErbB2												
FAK Km app -3 4 14 -7 -4 -3 3 4 4 3 11 Fes Km app 5 -5 25 8 4 2 1 2 2 -3 10 FGFR1 Km app 53 52 16 5 1 0 9 1 111 3 5 FGFR3 Km app 31 29 16 10 6 -4 10 0 27 4 -1													-
Fes Km app 5 -5 25 8 4 2 1 2 2 -3 10 FGFR1 Km app 53 52 16 5 1 0 9 1 11 3 5 FGFR3 Km app 31 29 16 10 6 -4 10 0 27 4 -1	FAK												
FGFR1 Km app 53 52 16 5 1 0 9 1 11 3 5 FGFR3 Km app 31 29 16 10 6 -4 10 0 27 4 -1	Fes												
FGFR3 Km app 31 29 16 10 6 -4 10 0 27 4 -1	FGFR1												
FGFR4 Km app 22 19 4 9 1 -1 11 4 18 -1 6	FGFR3	Km app	31			10						4	
	FGFR4	Km app	22	19	4	9	1	-1	11	4	18	-1	6

						0/ Inhii	bition by In	hibitor				
Kinase	[ATP]	1a	1b	2	3a	3c	4	5	6	7	8	9
Fgr	Km app	103	102	40	81	73	30	78	76	66	45	38
FĬt1	Km app	22	19	8	3	2	4	1	2	3	6	1
Flt3	Km app	86	85	61	14	12	7	13	16	1	7	9
Flt4	Km app	69	73	51	7	3	8	16	12	6	15	10
Frk GRK2	Km app	88	82	8	20 -1	10 0	36	15 -4	10 -3	5 1	-1	11
GRK3	Km app Km app	-5 -5	-1 4	-2	-1	-3	-3 -2	3	-3 -2	-3	0	10
GRK5	Km app	-1	2	-5	-4	-4	-7	-3	-2	-1	-1	-1
GRK6	Km app	1	5	-1	4	-1	0	8	-1	-2	9	3
GSK3_alpha	Km app	15	8	1	4	-1	2	4	4	2	7	6
GSK3_beta	Km app	-1	0	6	-6	-7	2	-2	4	4	2	9
Hck	Km app	98	94	31	NT	31	3	48	8	15	14	10
HIPK1 HIPK2	Km app	3	3	-1 1	1 2	-1 2	-3 1	3	-1 0	-3 -3	0 4	0
HIPK4	Km app Km app	5	3	9	2	3	-2	7	7	6	9	4
Hyl	Km app	-1	0	-1	2	5	2	-1	-6	1	-2	-4
IGF1R	Km app	8	10	11	-2	-2	-3	0	1	7	8	-2
IKK_alpha	Km app	-16	2	1	-2	0	7	6	-2	0	2	3
IKK_beta	Km app	13	1	5	2	-2	5	-2	7	1	4	1
IKK_epsilon InsR	Km app	9	2 6	1 12	2	-6 4	-2 3	0	-4 6	2 10	0	-2 -1
IRAK1	Km app Km app	1	-1	51	-3	-3	-8	-5	8	10	3	-1 -5
IRAK4	Km app	14	12	8	6	2	7	10	10	4	10	7
IRR	Km app	14	16	0	7	-12	2	9	-5	2	5	-2
ITK	Km app	81	0	19	13	-5	2	2	22	3	6	-2
JAK1	Km app	-2	-10	23	-8	-9	0	1	14	2	-18	9
JAK2	Km app	1 00	-4	56	-6 -4	-12	5	-7	13	-3	-9 -2	5
JAK3 JNK1 alpha1	Km app NA	80 9	5 8	89 67	-4 5	-7 -2	-3 11	-1 11	3 16	-8 2	-2 10	3
JNK2	NA NA	5	5	47	0	2	-1	3	0	-2	3	4
JNK3	NA	5	5	57	6	-1	7	6	14	3	6	4
KDR	Km app	66	60	49	9	8	4	15	8	13	8	3
KHS1	Km app	17	34	3	-9	-15	10	14	19	8	21	18
Kit	Km app	18	21	0	-5	-6	-8	9	23	0	7	-6
Lck LIMK1	Km app NA	98 41	100 34	23 20	82 14	74 1	33 34	64 9	43 16	26 -2	22 13	22
LRRK2	Km app	-3	1	48	60	-1	-2	-5	0	22	19	9
LTK	Km app	6	7	8	1	-3	-7	2	-2	-5	6	5
Lyn	Km app	97	97	18	38	31	8	33	13	12	23	19
MAP4K4	Km app	12	5	18	9	6	5	20	18	-18	13	20
MAPKAPK2 MAPKAPK3	Km app	8	-3	-5	-2 -3	-3 -8	9	7 -7	3 6	-2	-3	5 10
MARK1	Km app Km app	9	6	-2	1	1	1	10	5	1	5	11
MARK3	Km app	7	6	2	-3	-5	-6	3	-1	0	7	13
MEK1	NA	40	31	3	15	7	1	2	-3	0	-1	2
MEK3	NA	6	3	9	-2	0	-1	-5	1	2	-3	5
MEKK2	NA Vm ann	35	37	20	0	-5	1	2	-1	7	-1	7
MELK Mer	Km app Km app	-1 31	-10 42	6 5	-2 -3	0 -4	9	3 6	10 3	5 -4	13 7	2
Met	Km app	12	8	4	5	5	-1	5	1	-2	4	9
Mink1	Km app	21	11	7	27	10	-3	12	9	15	12	23
MKK6	NA	-1	-4	7	5	10	-1	2	10	0	-3	4
MKNK1	Km app	10	1	-3	3	-1	5	2	3	0	6	1
MKNK2 MLK1	NA Km app	18 2	24 0	23 45	-9	-8	-3	-3 2	0	-2 0	5 -1	5 8
MLK2	NA NA	10	9	37	6	0	-3 -1	4	2	4	-3	1
MRCK_alpha	Km app	3	2	1	-5	0	-3	-4	11	0	13	1
MSK1	Km app	1	-1	9	-2	0	1	3	3	6	4	10
MSSK1	Km app	3	1	-4	5	2	-1	5	2	-3	2	5
MST1 MST2	Km app	22	21 24	14	-1 -7	-7	-3	7	3 6	3	-13 12	-1 17
MST3	Km app Km app	16 14	17	3	9	7	-3 15	6	8	-5 3	-10	4
MST4	Km app	16	21	-12	2	-8	5	8	3	-11	5	2
mTOR	Km app	28	25	7	1	4	4	0	5	-4	-1	5
MuSK	Km app	-12	-1	6	0	-7	10	-9	40	-1	-2	7
MYLK(smMLCK)	NA	-3	-2	4	2	10	-1	-3	1	-5	6	1
MYLK3(caMLCK) NEK1	NA Km app	<u>6</u> -6	10 -2	6	-13	9	-1 6	10 6	-5	-2	5 2	10 3
NEK4	Km app	-6 4	3	12	0	3	4	1	-5 7	6	1	6
NEK6	Km app	5	11	8	1	-2	19	10	4	7	10	9
NEK9	Km app	2	8	12	-4	-2	-6	1	-10	5	2	0
NLK	NA	5	9	-1	2	1	3	3	1	-2	0	10
p38_alpha(direct)	Km app	6	10	7	-3	0	9	12	4	1	11	3
p38_beta	Km app	8 14	12	8 10	4	3	5 6	9	2	4 10	8 5	8
p38_delta p38_gamma	Km app Km app	14 2	5 2	10 5	8	4	5	8 5	1 8	10 6	4	-1
p70S6K	Km app	<u>-1</u>	13	7	-10	5	-6	12	6	0	10	4
F . 300.1	1 upp											

		% Inhibition by Inhibitor										
Kinase	[ATP]	1a	1b	2	3a	3c	4	5	6	7	8	9
PAK1	Km app	9	4	-4	-2	0	-2	4	3	4	71	6
PAK3	Km app	19	16	10	3	0	12	2	6	7	0	39
PAK4	Km app	6	6	9	1	-2	-1	16	9	2	2	10
PAK6	Km app	2	1	-9	11	6	3	1	-8	-2	-2	-7
PASK	Km app	1 50	4	6	-4	-7	2	0	10	2	1	-4
PDGFR_alpha PDK1(direct)	Km app	50	49	19 7	0 4	0	10	0	-4 -2	-9	-4 5	-2 8
PhK_gamma1	Km app Km app	3	5 11	3	-2	1	11	3	5	3	2	-2
PhK_gamma2	Km app	4	0	-1	-3	-4	2	6	3	1	3	-3
PI3K-A	Km app	5	6	3	-12	-15	9	2	32	6	1	1
PI3K-G	Km app	-9	-3	-20	-1	0	3	8	5	-28	5	8
PIM1	Km app	12	13	5	-9	-6	2	13	5	6	23	5
PKA	Km app	4	3	-1	3	1	-1	1	-1	-2	-5	1
PKC_alpha	Km app	7	1	7	0	-2	3	-9	14	-2	3	14
PKC_beta1	Km app	18	11	11	5	4	-9	5	12	4	5	6
PKC_delta	Km app	5	-18	-7	2	-4	9	-2	13	-6	7	11
PKC_epsilon PKC eta	Km app	7	9 5	7	4	6	13 12	-3	6	6	2 4	-16 4
PKC_eta PKC_theta	Km app Km app	8	4	9	-5	6	-5	8	13	2	2	17
PKC zeta	Km app	11	6	3	8	1	15	10	-4	5	10	6
PKD1	Km app	11	9	11	6	0	4	5	6	5	4	1
PKG1_alpha	Km app	4	2	3	-1	-2	1	3	-1	4	2	2
PLK1	Km app	7	4	12	3	1	7	1	5	2	0	-5
PLK2	Km app	3	11	7	-11	-11	0	1	-3	-1	11	8
PLK3	Km app	16	-8	-5	-16	-19	2	3	9	-17	14	7
PRAK PRK1	Km app Km app	1 11	10	-1 8	2	1 2	1 1	-3 13	-1 -9	-1 5	8	-2 -2
PRKAA1	Km app	6	10	7	-13	-12	1	-1	5	5	2	8
PrKX	Km app	4	6	4	6	2	3	8	4	8	1	5
RAF1(Y340D,Y341D)	NA	56	47	10	3	5	47	6	0	2	6	5
Ret	Km app	87	84	65	13	11	21	12	15	12	11	4
RIPK2	NA	99	100	3	73	54	60	1	1	0	4	-1
ROCK1	Km app	5	5	1	-5	-9	-2	3	0	-5	-4	-4
ROCK2 Ron	Km app Km app	-1 4	19 -6	-8 5	-3 -2	-3 3	4	16	10 4	-7 -2	6	2 4
Ros	Km app	-1	-10	48	1	2	9	3	12	2	-15	-2
Rse	Km app	7	6	13	3	1	-1	1	2	3	-4	5
RSK1	Km app	5	5	9	-1	-2	2	4	-2	4	4	-1
RSK2	Km app	-7	-7	6	-4	-1	-2	-13	3	2	-15	16
RSK3	Km app	7	6	15	9	2	3	1	3	1	7	2
SGK1	Km app	4	3	13	-5	-5 -2	1	5	4	1	3	-1
SGK2 SGK3	Km app Km app	-1 -1	-1	-4 0	3 2	0	1 5	4	3 5	-3 -4	3	1 4
SIK2	Km app	0	6	9	3	1	4	6	5	3	2	-1
SLK	NA	6	12	9	2	0	1	11	6	0	10	1
SPHK1	Km app	9	6	-4	-16	-16	4	5	9	-1	1	22
Src	Km app	98	97	56	49	35	18	83	68	65	57	45
Srm	Km app	105	95	6	29	12	17	12	4	0	6	8
SRPK1	Km app	3	4	0	3	0	-2	0	7	0	2	0
STK16 STK33	NA NA	2 14	12	96 39	-3	-19 3	6	-5 -4	0	2 4	-3	-2
Syk	Km app	2	-1	35	-1	-3	5	1	2	0	1	6
TAK1-TAB1	NA	2	0	18	0	9	-4	1	-2	4	1	7
TAO1	Km app	-1	-2	8	-1	-1	8	4	1	7	-1	-1
TBK1	Km app	8	4	13	0	0	5	6	2	5	1	8
TEC TGFBR1	NA NA	100	90	92	91	86	71	37	12	19 5	20	12
Tie2	Km app	32 57	33 45	27 6	5 6	5 1	<u>3</u>	-1 8	10	-6	7 5	6 13
TNK2	NA NA	86	81	26	19	9	5	11	13	4	13	4
TrkA	Km app	24	23	34	16	17	14	17	9	28	22	8
TrkB	Km app	11	9	20	-2	-4	10	7	2	3	3	5
TSSK1	Km app	4	5	6	2	1	3	-3	5	4	6	4
TTK	NA	10	11	49	12	5	-3	6	3	4	7	3
TXK	Km app	93	76 1	95	89	66	31	3	22	10	11	6
TYK2	Vm			28	-1	-2	-6	7 8	3 4	3 2	5	1 8
WFF1	Km app	2		56								
WEE1 WNK2	NA	1	1	56 4	5 14	2					33	
WNK2	NA NA	1 10	1 9	4	5 14 74	1	8	1 54	1	3	-2 14	5 19
	NA	1	1		14	1 65 5		1			-2	5
WNK2 Yes YSK1 ZAK	NA NA Km app Km app	1 10 99 6 27	1 9 100 7 7	4 20 2 2	14 74 -12 1	1 65 5 2	8 22 -3 4	1 54 4 1	1 36 1 0	3 39 -3 4	-2 14 -2 0	5 19 -8 1
WNK2 Yes YSK1	NA NA Km app Km app	1 10 99 6	1 9 100 7	4 20 2	14 74 -12	1 65 5	8 22 -3	1 54 4	1 36 1	3 39 -3	-2 14 -2	5 19 -8

Figure S3. a) Close up view of the Btk H3 pocket showing the amino acid residues that line the binding site of inhibitor **9**. b) Sequence alignment of Btk versus kinases that were inhibited by inhibitors **5–9** (see Figure S2), and/or kinases that have been reported to form an H3 pocket (ref. *44* of main text). Residue numbers are from the Btk sequence.

b

	H355iteResidue®Number®and®dentity													
Kinase	412	412 413 519 521 526 539 542 543 546												
ВТК	Gln	Phe	His	Asp	Asn	Asp	Leu	Ser	Val	Tyr				
SRC	Cys	Phe	His	Asp	Asn	Asp	Leu	Ala	lle	Tyr				
FGR	Cys	Phe	His	Asp	Asn	Asp	Leu	Ala	lle	Tyr				
BMX	Gln	Phe	His	Asp	Asn	Asp	Met	Thr	Val	Tyr				
ITK	Gln	Phe	His	Asp	Asn	Asp	Met	Thr	Val	Tyr				
НСК	Gln	Phe	His	Asp	Asn	Asp	Leu	Ala	lle	Tyr				

REFERENCES

- 1. Yamamoto, S., and Yoshizawa, T. (2011) Purinone derivative, PCT Int. Appl. WO 2011/152351 A1.
- 2. Barf, T. A., Jans, C. G. J. M., Man, D. P. A., Oubrie, A. A., Raaijmakers, H. C. A., Rewinkel, J. B. M., Sterrenburg, J.-G., and Wijkmans, J. C. H. M. (2013) 4-Imidazopyridazin-1-yl-benzamides and 4-imidazotriazin-1-yl-benzamides as Btk inhibitors, PCT Int. Appl. WO 2013/010868 A1.
- 3. Crawford, J. J., Ortwine, D. F., Wei, B., and Young, W. B. (2013) Heteroaryl pyridone and aza-pyridone compounds as inhibitors of Btk activity. PCT Int. Appl. WO 2013/067274.
- 4. Crawford, J. J., Ortwine, D. F., Wei, B., and Young, W. B. (2013) 8-Fluorophthalazin-1(2H)-one compounds as inhibitors of Btk activity. PCT Int. Appl. WO 2013/067264.
- 5. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode, *Methods Enzymol.* 276, 307–326.
- 6. Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A., and Wilson, K. S. (2011) Overview of the CCP4 suite and current developments, *Acta Crystallogr.*, *Sect. D: Biol. Crystallogr.* 67, 235–242.
- 7. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The Protein Data Bank, *Nucleic Acids Res.* 28, 235–242.
- 8. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot, *Acta Crystallogr.*, *Sect. D: Biol. Crystallogr.* 66, 486–501.
- 9. Murshudov, G. N., Skubak, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F., and Vagin, A. A. (2011) REFMAC5 for the refinement of macromolecular structures, *Acta Crystallogr.*, *Sect. D: Biol. Crystallogr.* 67, 355–367.
- 10. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based

system for macromolecular structure solution, *Acta Crystallogr., Sect. D: Biol. Crystallogr.* 66, 213–221.

11. Paavilainen, V. O., McFarland, J. M., and Taunton, J. (2015) Bruton's tyrosine kinase in complex with a t-butyl cyanoacrylamide inhibitor, PDB 4YHF.