Aqueous Suzuki Coupling Reactions of Basic Nitrogen-Containing Substrates in the Absence of Added Base and Ligand: Observation of High Yields under Acidic Conditions

Zhao Li^{\dagger} , Carol Gelbaum † , Jason S. Fisk § , Bruce Holden § , Arvind Jaganathan § , Gregory T. Whiteker $^{\pounds}$, Pamela Pollet † , and Charles L. Liotta* $^{\dagger \ddagger}$

[†]School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Contents

1.	Results of Mercury Test	2
	Analytic Methods	
	2.1. Comparison of Reaction Yields Determined by Various Analytic Methods	
	2.2. GC-FID Chromatograms and Calibration Curves	
	2.3. Examples of ¹ H NMR Spectra for Crude Products	
	NMR Spectra	

[‡]School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

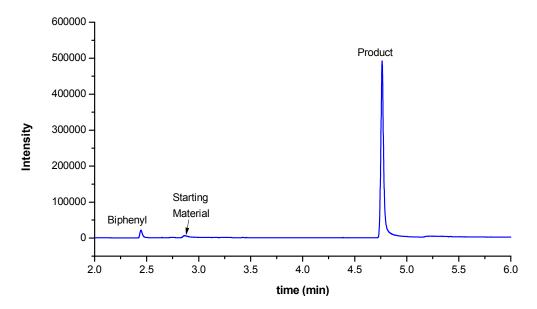
[§]The Dow Chemical Company, Midland, Michigan 48674, USA

[£]Dow AgroSciences, Indianapolis, Indiana 46268, USA

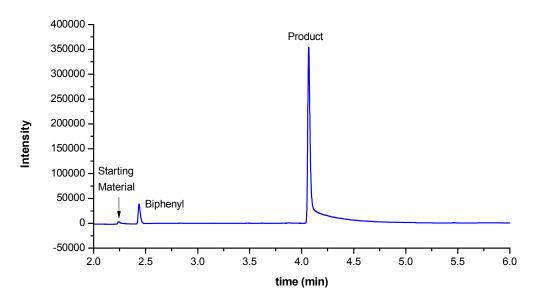
1. Results of Mercury Test

Hg (equiv) relative to Pd	GC Yield (%)	Initial pH	Final pH
0	100	6.5	2.3
20	98.1	6.3	3.6
50	72.6	6.6	5.1
150	38.5	6.5	5.0
300	40.6	6.3	5.0

Hg (equiv) relative to Pd	GC Yield (%)	Initial pH	Final pH
0	88.8	8.6	2.1
10	63.1	8.9	5.7
25	44.7	-	-
150	25.1	8.7	6.7


2. Analytic Methods

2.1. Comparison of Reaction Yields Determined by Various Analytic Methods


The isolated yields for two model reactions are consistent with the yields determined by GC and ¹H NMR. As a consequence, GC and/or ¹H NMR were employed for in-situ determination of the yields for the coupling reactions for a wide variety of aryl substrates in this work.

And Browide	And Browide Broduct	Pd(OAc) ₂	K ₃ PO ₄	Time		Yield (%)	
Aryl Bromide	Product	(equiv)	(equiv)	(h)	Isolated*	GC-FID	¹ H NMR
H₃CO- ⟨> -Br	H ₃ CO-{	5	2.1	4	75	74.1	76
H ₂ N Br	H ₂ N	2	1.0	1	100	100	100
*by column chromatographic separation.							

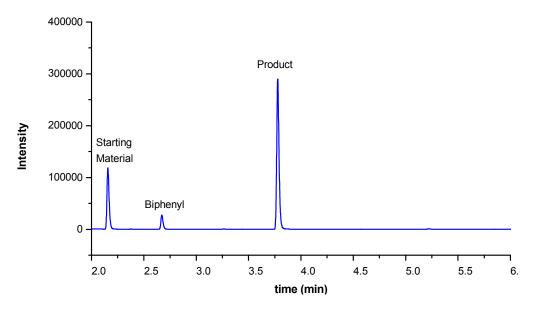

2.2. GC-FID Chromatograms and Calibration Curves

Figure S1. GC-FID chromatogram of the $Pd(OAc)_2$ (0.2 mmol) catalyzed reaction between 4-amino-2-bromopyridine (10 mmol) and $PhB(OH)_2$ (11 mmol) in water (25 mL) without added base in N_2 at 100 °C for 2 h, after workup.

Figure S2. GC-FID chromatogram of the $Pd(OAc)_2$ (0.4 mmol) catalyzed reaction between 4-bromobenzylamine (10 mmol) and $PhB(OH)_2$ (11 mmol) in water (25 mL) without added base in N_2 at 100 °C for 4 h, after workup.

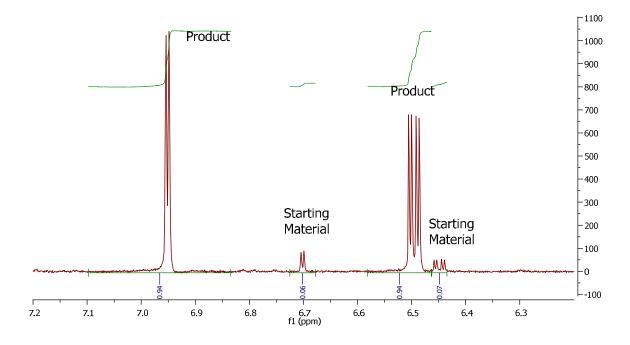
Figure S3. GC-FID chromatogram of the $Pd(OAc)_2$ (2 mmol) catalyzed reaction between 4-bromoanisole (40 mmol), $PhB(OH)_2$ (44 mmol), K_3PO_4 (40 mmol) in water (100 mL) in N_2 at 100 °C for 4 h, after workup.

Calibration curves were created from pure substrate and product standards (commercial or synthesized). Stock solutions (0.1 M, 5 or 10 mL) were made using methanol as solvent. Multiple samples of concentrations between 0.005 M and 0.05 M were then made

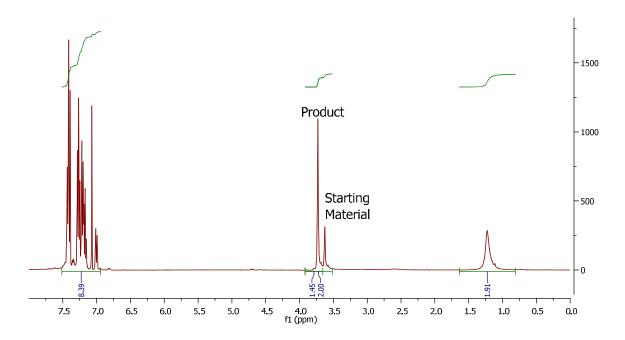
from dilution of the stock solution with methanol and analyzed by GC-FID fitted with a capillary column (30 m \times 0.32 mm \times 1.00 µm, length \times inside diameter \times film thickness). Plots of concentration versus area were created for each compound using Microsoft Excel and a trendline analysis used to provide the calibration curve and confirm that the plot followed a straight line. This procedure was exemplified by the calibration curve for 4-bromobenzylamine shown in the table below.

Br—————C	Br—CH ₂ NH ₂							
		6.05 g/mol	Т	1000000				
Stock	Mass	Volume	Concentration	800000				
Solution in MeOH	0.0936 g	5 mL	0.1006 M	600000				
				400000				
GC Sample	Concentration		Retention					
NO	(M)	Area	Time (min)	200000				
1	0.005031	63888.8	2.242	0				
2	0.01006	162146.7	2.239	0 0.01 0.02 0.03 0.04 0.05 0.06				
3	0.02012	297391.4	2.237					
4	0.03019	496825.0	2.237	y = 18169978.679 x - 40166.219				
5	0.04025	663488.7	2.237	$(R^2 = 0.993)$				
6	0.05031	909017.0	2.236	-				

List of Calibration Curves


Substrates	Source		Calibration Curve	
Ar-Br	C = Commercial S = Synthesized	Slope	Intercept	R ²
OCH ₃	С	12547136.432	0	0.999
NH ₂	С	18169978.679	-40166.219	0.993
Br_NH ₂	С	17658197.645	-34410.309	0.998
CH ₃ NH ₂	С	17929564.744	-23990.503	1.000
CH ₃	С	20446060.427	41460.156	1.000
Br CH ₃	С	22027895.288	-45605.831	0.999
Br N CH ₃	С	21443335.872	-52325.718	0.998
CH ₃ N CH ₃	S	26280220.038	33259.320	0.999

Substrates	Source		Calibration Curve	
Ar-Br	C = Commercial S = Synthesized	Slope	Intercept	R ²
N CH ₃	S	23496483.640	-33206.284	0.999
N CH ₃	S	32292410.277	-54988.486	0.999
Br CH ₃	S	37846827.485	-50367.608	1.000
CH ₃ N CH ₃ Br H ₃ C CH ₃	S	33972419.737	-65782.087	0.997
NBr	С	10368344.436	-11334.078	0.999
Br	С	10543693.686	-12130.136	1.000
NH ₂	С	12398707.527	-23492.968	0.999
NH ₂	С	9902853.230	0	1.000
H ₂ N N Br	С	12025779.559	-24524.976	0.999
Br N NH ₂	С	12690919.599	-10902.424	0.999
CH ₃	С	10994830.651	-8710.411	1.000
H ₃ C N Br	С	13939331.948	0	0.999
H ₃ CO N Br	С	12368244.282	-17543.399	1.000
CN N Br	С	13738077.730	-29482.410	0.997
NC N Br	С	13939331.948	0	0.999


	Source			
	C = Commercial S = Synthesized	Slope	Intercept	R ²
OCH ₃	С	34556455.924	0	0.999
Ph NH ₂	С	29322919.378	-93825.871	1.000

Ph_NH ₂	С	29588530.766	-51355.658	0.998
CH ₃ NH ₂	С	32629381.558	-56985.831	0.999
Ph CH ₃	С	31029708.878	-38807.821	0.999
NPh	С	25195036.522	-25881.097	0.999
Ph	С	25563000.449	-11151.367	1.000
NH ₂	С	20923221.180	0	1.000
CH ₃	С	33647221.690	-35723.356	1.000
H ₃ C N Ph	С	25195036.522	-25881.098	1.000

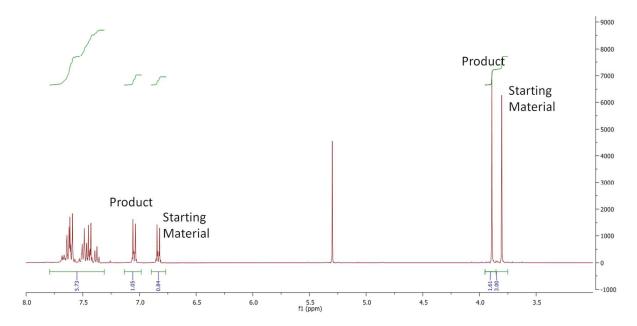
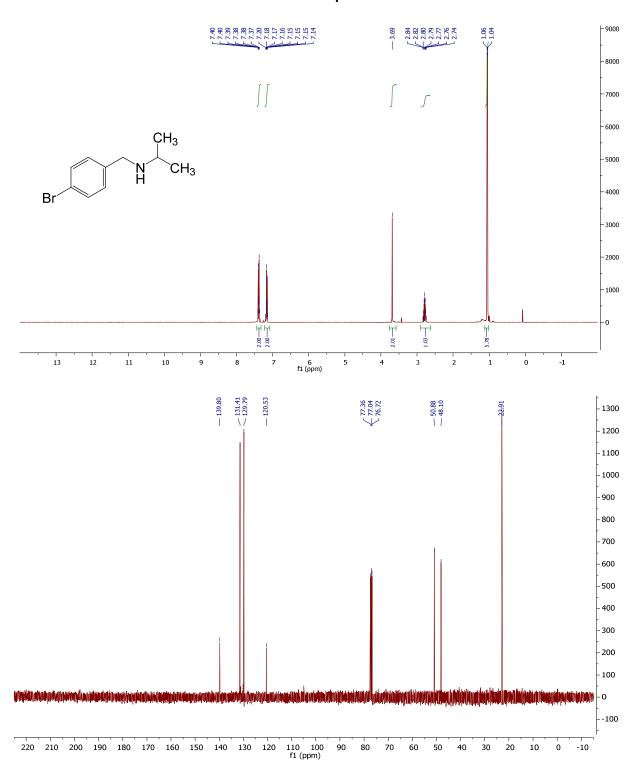

2.3. Examples of ¹H NMR Spectra for Crude Products

Figure S4. 1 H NMR (400 MHz in CDCl₃) of the Pd(OAc)₂ (0.2 mmol) catalyzed reaction between 4-amino-2-bromopyridine (10 mmol) and phenylboronic acid (11 mmol) in water (25 mL) without added base in N₂ at 100 $^{\circ}$ C for 2 h, after workup.

Figure S5. 1 H NMR (400 MHz in CDCl₃) of the Pd(OAc)₂ (0.2 mmol) catalyzed reaction between 4-bromobenzyl amine (10 mmol) and phenylboronic acid (11 mmol) in water (25 mL) without added base in N₂ at 100 $^{\circ}$ C for 4 h, after workup.


Figure S6. ¹H NMR (400 MHz in CDCl₃) of the Pd(OAc)₂ (2 mmol) catalyzed reaction between 4-bromoanisole (40 mmol), PhB(OH)₂ (44 mmol), K_3PO_4 (40 mmol) in water (100 mL) in N_2 at 100 °C for 4 h, after workup.

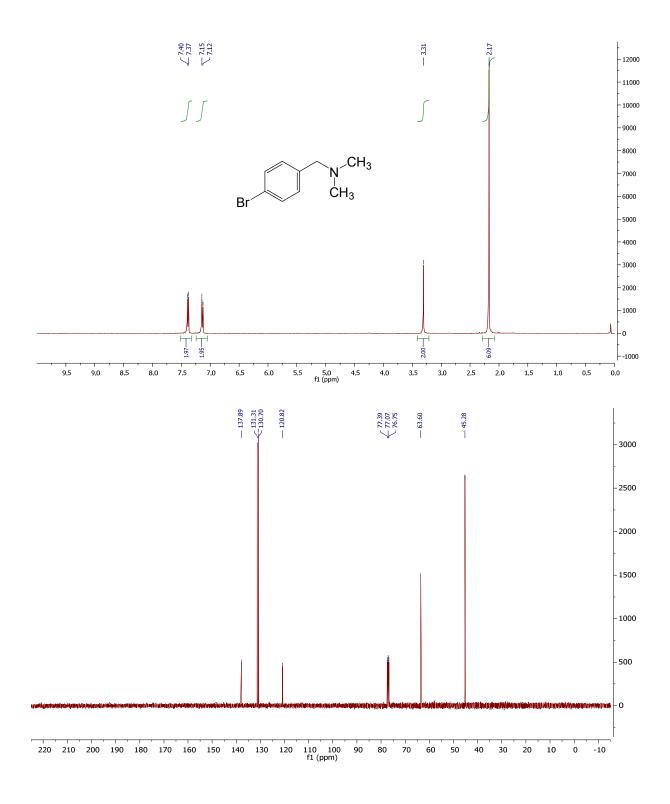
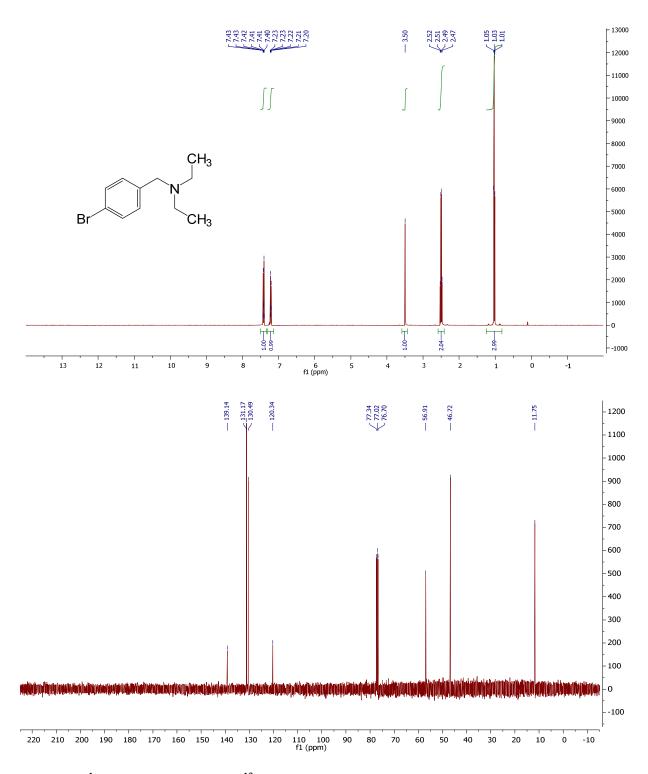
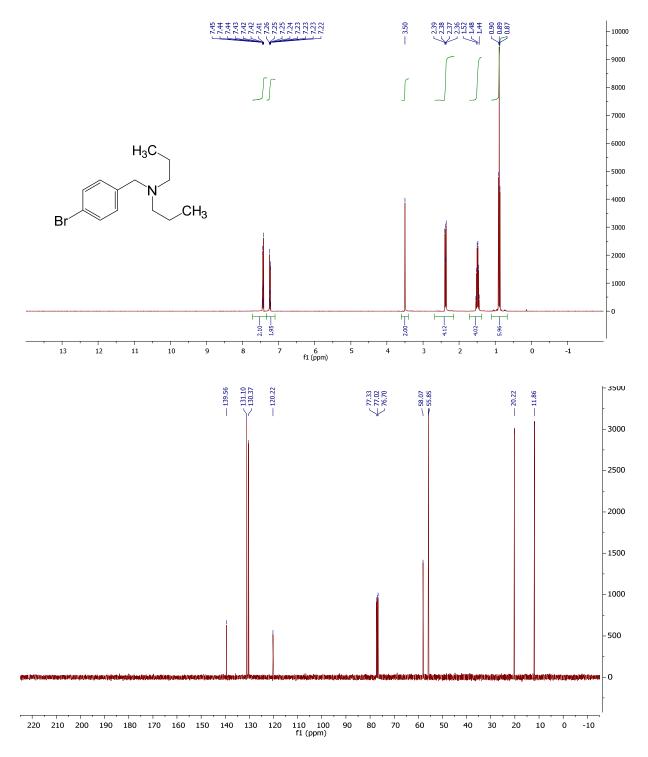
NMR spectra were used to determine amount of starting material and product in reaction mixtures after workup by comparison to standards of each compound. NMR Yields were calculated according to the following:

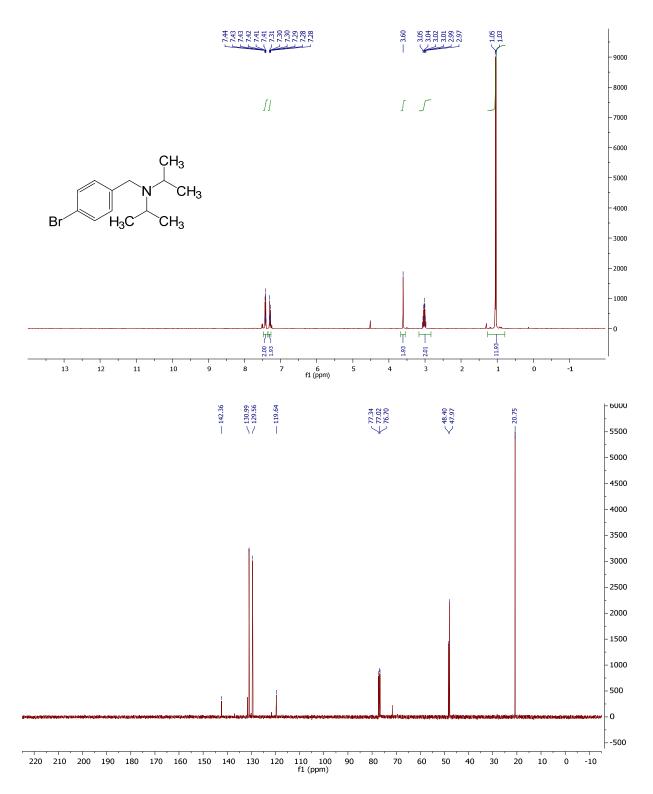
$$Yield_{NMR} = \frac{I_{prod}}{I_{SM} + I_{prod}}$$

Where I_{prod} and I_{SM} denote the area integrals of the product and substrate respectively. The chemical shifts for each product and starting material were confirmed via prepared standards and are consistent to reports in the literature.

3. NMR Spectra

Figure S7. 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of 4-bromo-*N*-isopropylbenzylamine in CDCl₃


Figure S8. 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of 4-bromo-*N*,*N*-dimethylbenzylamine in CDCl $_3$

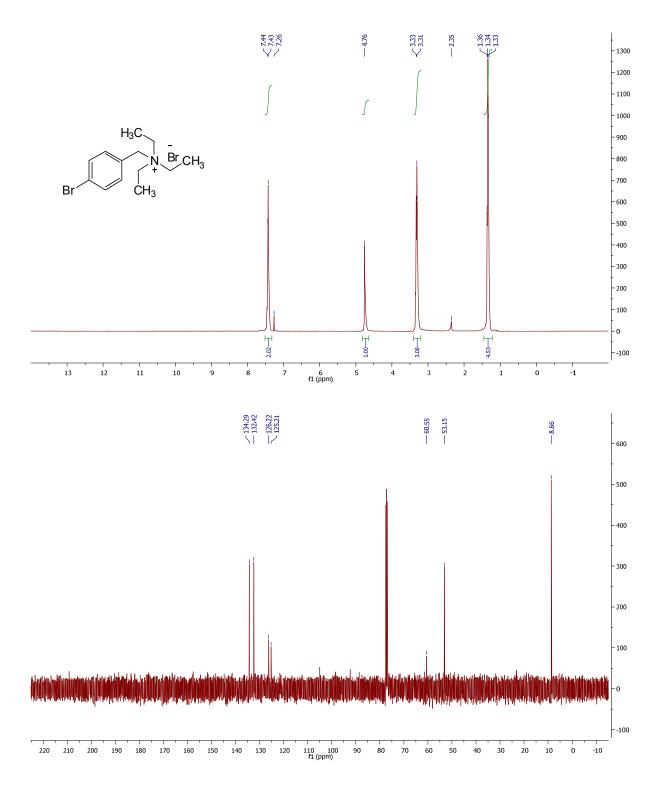

Figure S9. 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of 4-bromo-*N*,*N*-diethylbenzylamine in CDCl₃

Figure S10. 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of 4-bromo-*N*,*N*-dipropylbenzylamine in CDCl $_3$

Figure S11. 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of 4-bromo-*N*,*N*-diisopropylbenzylamine in CDCl₃

Figure S12. 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of *N*-(4-Bromobenzyl)-*N*,*N*,*N*-triethylammonium bromide in CDCl₃