

A Highly Enantioselective Route to Either Enantiomer of Both α - and β -Amino Acid Derivatives

Armando Córdova, Shin-ichi Watanabe, Fujie Tanaka, Wolfgang Notz, and Carlos F. Barbas III*

The Skaggs Institute for Chemical Biology and the Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037

Supporting Information

General. Chemicals and solvents were either purchased *puriss p.A.* from commercial suppliers or purified by standard techniques. 5-Hexenal was prepared from 5-hexenol according to Farquhar et al.¹ For thin-layer chromatography (TLC), silica gel plates Merck 60 F254 were used and compounds were visualized by irradiation with UV light and/ or by treatment with a solution of phosphomolybdic acid (25g), $\text{Ce}(\text{SO}_4)_2 \bullet \text{H}_2\text{O}$ (10g), conc. H_2SO_4 (60 mL), and H_2O (940 mL) followed by heating or by treatment with a solution of *p*-anisaldehyde (23 mL), conc. H_2SO_4 (35 mL), acetic acid (10 mL), and ethanol (900 mL) followed by heating. Flash chromatography was performed using silica gel Merck 60 (particle size 0.040-0.063 mm), ¹H NMR and ¹³C NMR spectra were recorded on Bruker AMX 300, AMX 250, AMX 500 and AMX 400 instruments. The chemical shifts are given in δ relative to TMS ($\delta = 0$ ppm). The spectra were in CDCl_3 at room temperature. High-resolution mass spectra were recorded on an Ion Spec Fourier Transform Mass Spectrometer using dihydrobenzoic acid (DHB) as the matrix. HPLC was carried out using a Hitachi organizer consisting of a D-2500 Chromato-Integrator, a L-4000 UV-Detector, and a L-6200A Intelligent Pump. Optical rotations were recorded on a Perkin Elmer 241 Polarimeter ($\lambda = 589$ nm, 1dm cell).

General procedure for the catalytic asymmetric Mannich-reaction between *N*-PMP-protected α -imino ethyl glyoxylate and aldehyde donors:

In a typical experiment, *N*-PMP-protected α -imino ethyl glyoxylate (0.5 mmol) was dissolved in anhydrous dioxane and the corresponding aldehyde donor (0.75 mmol) was added, followed by *L*-proline (5 mol%). The total volume of the reaction mixture was 5 mL. After stirring for 2-24h at room temperature, the mixture was worked up by addition of half-saturated ammonium chloride solution and extraction with ethyl acetate. The combined organic layers were dried (MgSO_4), filtered, concentrated and the residue purified by column chromatography (silica, hexanes/ethyl acetate mixtures) to afford the corresponding Mannich addition product. The ee's of all products were determined by chiral HPLC analysis.

*Ethyl (2S, 3S)-3-formyl-2-(*p*-methoxyphenylamino)-4-methyl-pentanoate (1):* ¹H NMR (250 MHz): $\delta = 1.03$ (d, 3H, $J = 6.6$ Hz, CHCH_3), 1.17 (d, 1H, $J = 6.6$ Hz, CHCH_3), 1.22 (t, 3H, OCH_2CH_3), 2.34 (m, 1H), 2.56 (m, 1H), 3.74 (s, 3H, OCH_3), 3.87 (bs, 1H, ArNHCH), 4.15 (m, 2H, OCH_2CH_3), 4.17 (bs, 1H), 6.66 (d, 2H, $J = 7.0$ Hz, ArH), 6.78 (d, 2H, $J = 7.0$ Hz, ArH), 9.78 (bs, 1H, CHCHO); ¹³C NMR (125 MHz): $\delta = 203.9$, 172.9, 153.4, 140.5, 116.0, 115.1, 61.7, 59.8, 57.3, 55.9, 26.6, 21.2, 20.0, 14.4; HPLC (Daicel

(1) Farquhar, D.; Cherif, A.; Bakina, E.; Nelson, J. A. *J. Med. Chem.* **1998**, *41*, 965.

(2) Córdova, A.; Notz, W.; Barbas III, C. F. *J. Org. Chem.* **2001**, In press.

(3) Greff, Z.; Horvath, Z.; Nyitrai, J.; Kajtar-Peredy, M.; Brlik, J. *J. Chem. Research* **1990**, *M*, 1201.

(4) Palomo, C.; Aizpuru, J. M.; Gracenea, J. J.; Garcia-Granada, S.; Perttierra, P. *Eur. J. Org. Chem.* **1998**, 2201.

Chiraldak AS, hexane/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm); t_R (major) = 8.82 min; t_R (minor) = 13.24 min; HRMS: Calcd for $C_{16}H_{23}NO_4$ ($M+Na^+$): 316.1519, found: 316.1521.

Ethyl (2S, 3S)-3-formyl-2-(p-methoxyphenylamino)-butanoate (2):

1H NMR (250 MHz) ~ 1.1:1 mixture of diastereomers, * denotes minor diastereomer, δ = 1.10 - 1.40 (m, 12H), 2.87 (m, 2H), 3.73 (bs, 3H*, 3H, OCH_3), 3.91 (bs, 1H*, 1H, $ArNHCH$), 4.16 (m, 2H*, 2H, OCH_2CH_3), 4.38 (bs, 1H*), 4.49 (bs, 1H), 6.67 (m, 2H*, 2H, ArH), 6.77 (m, 2H*, 2H, ArH), 9.72 (bs, 1H*, 1H, $CHCHO$); ^{13}C NMR (100 MHz): δ = 201.8, 201.7, 172.3, 171.7, 153.4, 153.1, 140.4, 140.1, 116.3, 115.6, 114.8, 114.7, 61.6, 61.5, 58.6, 58.4, 55.6, 55.5, 48.4, 48.1, 14.1, 14.1, 9.8, 9.0; HPLC (Daicel Chiraldak AS, hexane/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm); t_R (major) = 18.83 min; t_R (major)* = 19.99 min; t_R (minor) = 23.04 min; t_R (minor)* = 26.35 min. HRMS: Calcd for $C_{14}H_{19}NO_4$ ($M+Na^+$): 265.1309, found: 265.1316.

Ethyl (2S, 3S)-3-formyl-2-(p-methoxyphenylamino)-pentanoate (3): 1H NMR (250 MHz) ~ 1.8:1 mixture of diastereomers, *denotes minor diastereomer, δ = 1.01 (m, 3H, 2H*), 1.23 (m, 3H, 2H*), 1.65-1.68 (m, 1H, 2H*), 1.89 (m, 1H), 2.67 (m, 1H, 0.5H*), 3.67 (s, 3H, 2H*, OCH_3), 3.73 (bs, 1H, 0.5H*, $ArNHCH$), 3.95 (bs, 1H, $ArNHCH$), 4.17 (m, 2H, H*, OCH_2CH_3), 4.25 (bs, 0.5H*), 4.33 (bs, 1H), 6.65 (d, 2H, 1H*, ArH), 6.77 (d, 2H, 1H*, ArH), 9.67 (bs, 0.5H, CHO); ^{13}C NMR (100 MHz): (major diastereomer) δ = 202.8, 172.7, 153.5, 140.7, 116.3, 115.1, 61.8, 58.3, 55.9, 55.6, 18.8, 14.4, 12.3; HPLC (Daicel Chiraldak AS, hexane/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm); t_R (major) = 11.19 min; t_R (major)* = 12.84 min; t_R (minor) = 13.74 min; t_R (minor)* = 18.75 min. HRMS: Calcd for $C_{15}H_{21}NO_4$ ($M+Na^+$): 279.1465, found: 279.1467.

Ethyl (2S, 3S)-3-formyl-2-(p-methoxyphenylamino)-heptanoate (4): 1H NMR (250 MHz) ~ 3:1 mixture of diastereomers, * denotes minor diastereomer, δ = 0.8-1.0 (m, 3H, 1.5H*), 1.23 (m, 6H), 1.24-1.50 (m, 8H), 1.60 (m, 1H, 0.4H*), 1.71 (m 0.4H*), 1.85 (m, 1H), 2.71 (m, 1H, 0.5H*), 3.73 (s, 3H, 1H*, OCH_3), 3.98 (bs, 1H, 0.3H*, $ArNHCH$), 4.18 (m, 2H, 0.6H*, OCH_2CH_3), 4.26 (d, 0.3H*, J = 6.3Hz), 4.35 (d, 1H, J = 4.8 Hz), 6.65 (d, 2H, 0.6H*, ArH), 6.76 (d, 2H, 0.6H*, ArH), 9.66 (d, 0.3H*, CHO), 9.71 (d, 1H, CHO); ^{13}C NMR (major diastereomer) (100 MHz): δ = 202.9, 172.7, 153.5, 140.7, 116.3, 115.0, 61.8, 58.6, 55.9, 53.9, 29.9, 25.1, 22.9, 14.4, 14.0; HPLC (Daicel Chiraldak AS, hexane/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm); t_R (major) = 8.90 min; t_R (minor) = 11.00 min; HRMS: Calcd for $C_{17}H_{25}NO_4$ ($M+Na^+$): 307.1778, found: 307.1781.

Ethyl (2S, 3S)-3-formyl-2-(p-methoxyphenylamino)-octanoate (5): 1H NMR (400 MHz) δ = 0.89 (t, 3H, J = 4.8Hz), 1.24 (m, 3H, OCH_2CH_3), 1.31 (bs, 6H), 1.59 (m, 1H), 1.87 (m, 1H), 2.71 (m, 1H), 3.74 (s, 3H, OCH_3), 4.14 (m, 2H, OCH_2CH_3), 4.35 (bs, 1H), 6.65 (d, 2H, J = 7.3 Hz, ArH), 6.77 (d, 2H, J = 7.3 Hz, ArH), 9.71 (d, 1H, J = 1.8 Hz, CHO); ^{13}C NMR (100 MHz): δ = 203.0, 172.7, 153.6, 140.8, 116.4, 115.1, 61.8, 58.7, 55.9, 54.0, 31.9, 27.4, 25.4, 22.6, 14.4, 14.2; HPLC (Daicel Chiraldak AS, hexane/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm); t_R (major) = 7.67 min; t_R (minor) = 9.32 min; $[\alpha]_D$ = -22.1 (c = 0.7, CH_2Cl_2); HRMS: Calcd for $C_{18}H_{27}NO_4$ ($M+H^+$): 322.2013, found: 322.2021.

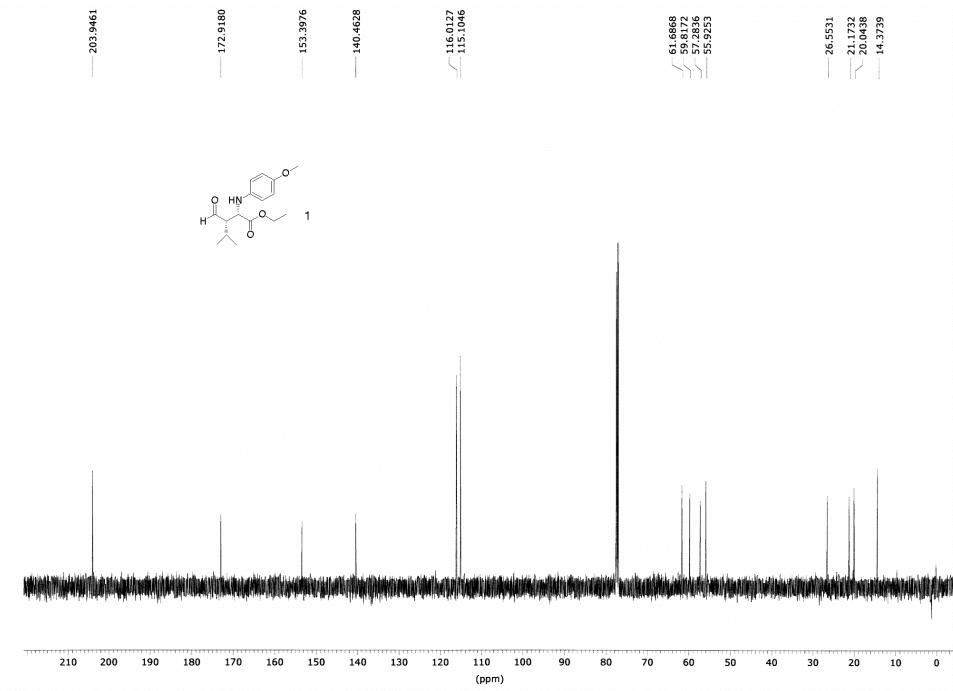
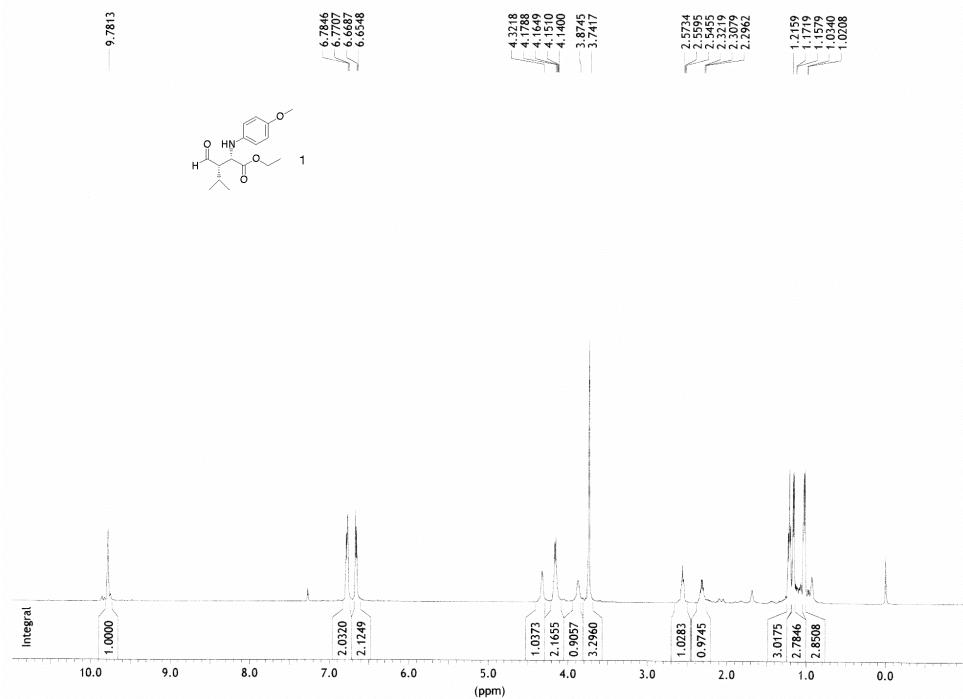
Ethyl (2S, 3S)-3-formyl-2-(p-methoxyphenylamino)-undec-5-enoate (6): 1H NMR (400 MHz) δ = 0.88 (t, 3H, CH_2CH_3), 1.2-1.4 (m, 11H), 2.00 (m, 2H), 2.39 (m, 1H), 2.42 (m, 1H), 3.73 (s, 3H, OCH_3), 4.17 (m, 2H, OCH_2CH_3), 4.35 (bs, 1H), 5.42 (m, 1H, $CH_2CH=CH$), 5.55 (m, 1H, $CH_2CH=CH$), 6.66 (d, 2H, J = 7.0 Hz, ArH), 6.78 (d, 2H, J = 7.0 Hz, ArH), 9.71 (bs, 1H, $CHCHO$); ^{13}C NMR (100 MHz): δ = 202.3, 172.3, 153.2, 140.4, 134.6, 125.2, 115.9, 114.7, 61.4, 57.6, 55.5, 53.4, 32.4, 31.3, 28.9, 28.7, 22.4, 14.04, 14.02, 13.9; HPLC (Daicel Chiraldak AS, hexane/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm); t_R (major) = 6.69 min; t_R (minor) = 7.90 min; $[\alpha]_D$ = -23.7 (c = 6.6, CH_2Cl_2); HRMS: Calcd for $C_{21}H_{31}NO_4$ ($M+Na^+$): 384.2145, found: 384.2145.

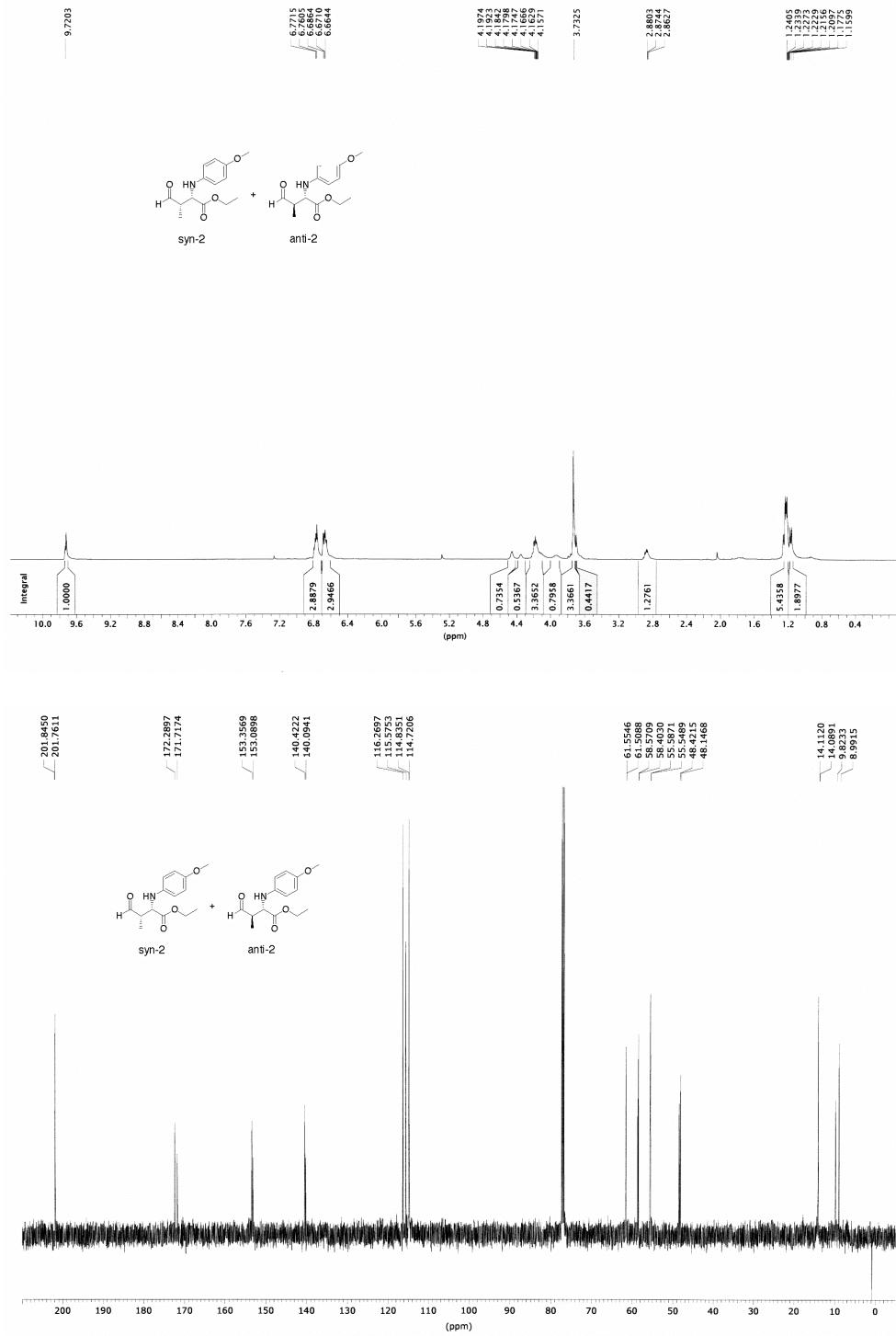
Ethyl (2S, 3S)-3-formyl-2-(p-methoxyphenylamino)-hept-6-enoate (7):

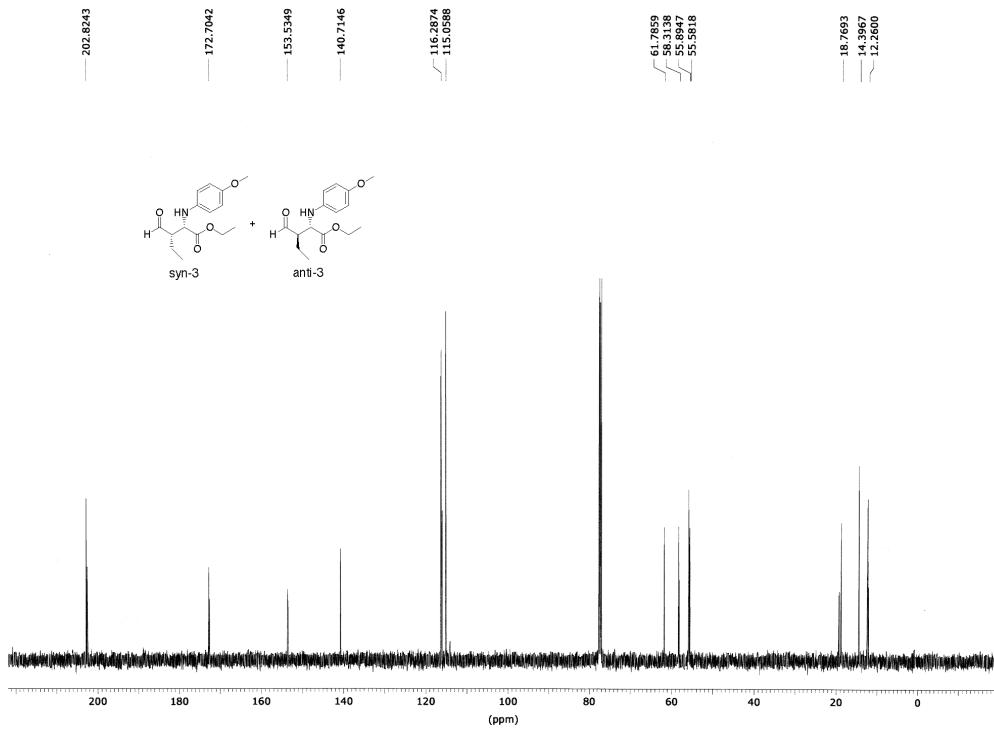
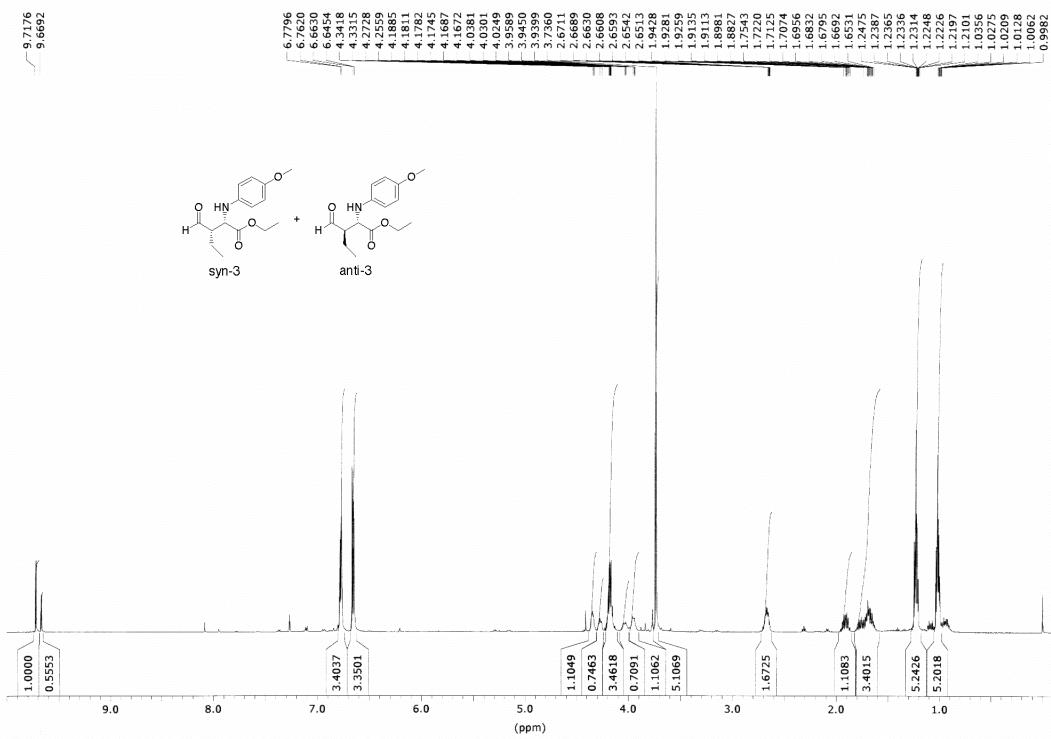
^1H NMR (400 MHz) δ = 1.24 (t, 3H, OCH_2CH_3), 1.2-1.4 (m, 11H), 1.7 (m, 1H), 1.97-2.28 (m, 4H), 2.77 (m, 1H), 3.73 (s, 3H, OCH_3), 4.17 (m, 2H, OCH_2CH_3), 4.36 (d, J = 4.4 Hz, 1H), 5.04 (m, 2H, $\text{CH}=\text{CH}_2$), 5.75 (m, 1H, $\text{CH}_2\text{CH}=\text{CH}_2$), 6.66 (d, 2H, J = 8.8 Hz, ArH), 6.78 (d, 2H, J = 8.8 Hz, ArH), 9.71 (bs, 1H, CHCHO); ^{13}C NMR (100 MHz): δ = 202.4, 172.5, 153.6, 140.6, 137.3, 116.4, 115.0, 61.8, 58.6, 55.9, 53.1, 31.6, 24.5, 14.3;

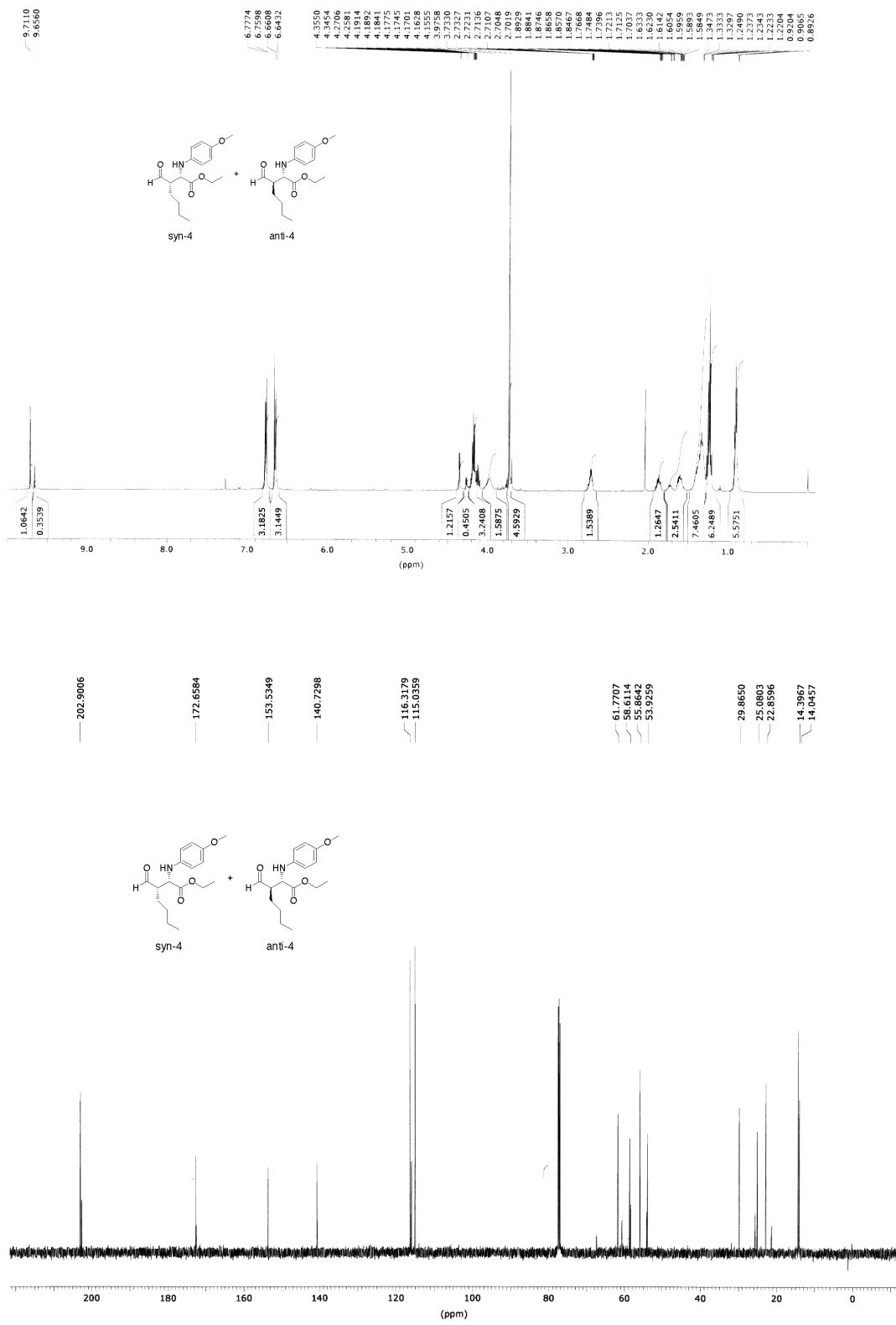
HPLC (Daicel Chiralpak AS, hexane/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm); t_{R} (major) = 9.94 min; t_{R} (minor) = 12.86 min; $[\alpha]_{\text{D}} = -14.4$ (c = 4.3, CH_2Cl_2); HRMS: Calcd for $\text{C}_{17}\text{H}_{23}\text{NO}_4$ ($\text{M}+\text{Na}^+$): 328.1519, found: 328.1525.

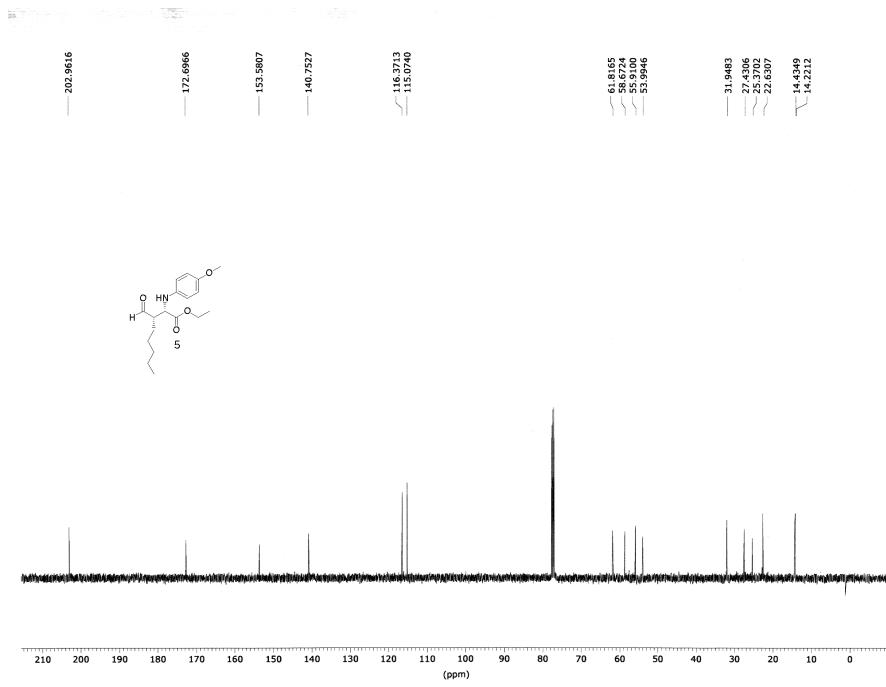
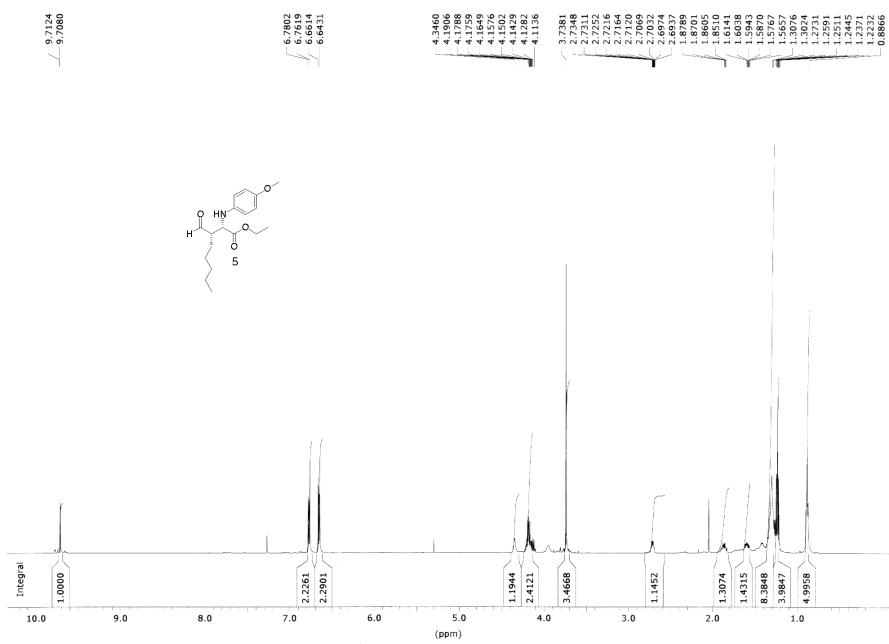
Ethyl (2S, 3S)-3-(methoxycarbonyl)-2-(p-methoxyphenylamino)-4-methyl-pentanoate (8): Crude product **1** (~1 mmol) (*vide supra*) was oxidized with NaClO_2 (6 mmol) according to ref. 2 **prior** to purification by chromatography. The corresponding acid was obtained as a slightly red solid after silica gel column chromatography (EtOAc/Hexanes=3:1) and removal of the solvent in vacuo. ^1H NMR (400 MHz) δ = 0.95 (d, 3H, J = 6.6 Hz, CHCH_3), 1.11 (d, 1H, J = 6.6 Hz, CHCH_3), 1.21 (t, 3H, OCH_2CH_3), 2.30 (m, 1H), 2.71 (m, 1H), 2.99 (s, 3H, OCH_3), 4.15 (m, 2H, OCH_2CH_3), 4.28 (bs, 1H), 6.66 (d, 2H, J = 7.0 Hz, ArH), 6.76 (d, 2H, J = 7.0 Hz, ArH); ^{13}C NMR (100 MHz): δ = 177.1, 172.7, 153.4, 140.3, 116.2, 115, 61.6, 58.0, 55.9, 54.9, 27.2, 21.3, 19.9, 14.3. The acid was dissolved in Et_2O and esterified with CH_2N_2 (3 mmol) according to standard procedures to afford methyl ester **8** as a clear oil: 0.29 g (89%); ^1H NMR (400 MHz) δ = 0.99 (d, 3H, J = 6.6 Hz, CHCH_3), 1.11 (d, 1H, J = 6.6 Hz, CHCH_3), 1.22 (t, 3H, OCH_2CH_3), 2.34 (m, 1H), 2.69 (m, 1H), 3.69 (s, 3H, OCH_3), 3.74 (s, 3H, OCH_3), 3.92 (bs, 1H, ArNHCH), 4.15 (m, 2H, OCH_2CH_3), 4.28 (bs, 1H), 6.66 (d, 2H, J = 7.0 Hz, ArH), 6.76 (d, 2H, J = 7.0 Hz, ArH); ^{13}C NMR (100 MHz): δ = 173.15, 172.8, 153.2, 140.7, 115.8, 115.1, 61.5, 57.8, 56.0, 55.4, 51.9, 27.4, 21.3, 19.8, 14.4. HPLC (Daicel Chiralpak AS, hexane/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm); t_{R} (major) = 7.00 min; t_{R} (minor) = 8.98 min; $[\alpha]_{\text{D}} = -14.4$ (c = 7.4, CH_2Cl_2); HRMS: Calcd for $\text{C}_{16}\text{H}_{25}\text{NO}_5$ ($\text{M}+\text{Na}^+$): 346.1676, found: 346.1633.



Lactam (3S,4S)-(9):


A solution of LHMDS (0.2 mmol) in THF was slowly added to a cooled (-20 °C) solution of amino acid ester **8** (0.1 mmol) in dry THF (4 mL). After stirring for 30 min at this temperature, the mixture was quenched with 1M HCl solution, extracted with EtOAc, and the combined organic layers were dried (MgSO_4), filtered, and the solvent was removed in vacuo to yield lactam **9** after flash column chromatography (hexanes:EtOAc-4:1) as clear crystals: 28 mg (96%); m. p. 83-84 °C (lit. m. p. 84 °C)³; ^1H NMR (400 MHz) δ = 0.93 (d, 3H, J = 6.6 Hz, CHCH_3), 1.21 (d, 1H, J = 6.6 Hz, CHCH_3), 1.28 (t, 3H, J = 7.0 Hz, OCH_2CH_3), 2.12 (m, 1H, $\text{CH}(\text{CH}_3)_2$), 3.28 (dd, 1H, $J_{\alpha,3} = 10.0$ Hz, $J_{2,3} = 5.9$ Hz, 3-H), 3.78 (s, 3H, OCH_3), 4.25 (m, 2H, OCH_2CH_3), 4.55 (d, 1H, $J_{3,2} = 5.9$ Hz, 2-H), 6.85 (d, J = 8.2 Hz, ArH), 7.22 (d, J = 8.2 Hz, ArH); ^{13}C NMR (100 MHz): δ = 169.3, 165.2, 156.2, 131.0, 117.7, 114.4, 61.7, 60.5, 55.5, 55.4, 26.2, 21.6, 20.5, 14.1; HPLC (Daicel Chiralpak AS, hexane/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm); t_{R} (major) = 4.75 min; t_{R} (minor) = 7.12 min; $[\alpha]_{\text{D}} = -77$ (c = 0.7, CH_2Cl_2); HRMS: Calcd for $\text{C}_{16}\text{H}_{21}\text{NO}_4$ ($\text{M}+\text{H}^+$): 292.1543, found: 292.1535.



Lactam (3S,4S)-(10):


To a solution of **9** (0.1 mmol) in dioxane: H_2O (2:1, 3mL) was added LiOH (0.8 mmol). The mixture was stirred overnight, quenched with a 1M HCl solution and extracted with EtOAc. The combined organic fractions were dried (MgSO_4), filtered and the solvent removed under reduced pressure. The crude acid was dissolved in Et_2O and esterified with CH_2N_2 (0.5 mmol) according to standard procedures to afford methyl ester **10** as a white solid: 25 mg (92%); m. p. 143-144 °C (lit. m. p. 143-145 °C)⁴; ^1H NMR (400 MHz) δ = 0.91 (d, 3H, J = 6.6 Hz, CHCH_3), 1.21 (d, 1H, J = 6.6 Hz, CHCH_3), 2.11 (m, 1H, $\text{CH}(\text{CH}_3)_2$), 3.28 (dd, 1H, $J_{\alpha,3} = 10.0$ Hz, $J_{2,3} = 5.9$ Hz, 3-H), 3.78 (s, 3H, OCH_3), 3.80 (s, 3H, OCH_3), 4.57 (d, 1H, $J_{3,2} = 5.9$ Hz, 2-H), 6.85 (d, J = 8.2 Hz, ArH), 7.22 (d, J = 8.2 Hz, ArH); ^{13}C NMR (100 MHz): δ = 169.9,



165.0, 156.3, 130.8, 117.7, 114.4, 60.6, 55.5, 55.3, 52.4, 26.2, 21.5, 20.5; HPLC (Daicel Chiralpak AS, hexane/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm); t_r (major) = 4.65 min; t_r (minor) = 6.70 min; $[\alpha]_D$ = - 95 (c = 0.5, CH_2Cl_2) (lit. $[\alpha]_D$ = - 108.7 (c = 1.0, CH_2Cl_2); HRMS: Calcd for $\text{C}_{15}\text{H}_{19}\text{NO}_4$ (M^+): 277.1309, found: 277.1314.

