

Chem. Mater., 1996, 8(8), 1592-1593, DOI:10.1021/cm9601493

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Cm9601493 5/9/96

Silsesquioxanes as Synthetic Platforms. III. Photocurable, Liquid Epoxides as Inorganic/Organic Hybrid Precursors

Alan Sellinger and Richard M. Laine*

Department of Materials Science and Engineering, Chemistry and the Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109-2136

Supporting Information

Experimental

All reactions were performed under N_2 atmosphere. Toluene was distilled from sodium benzophenone ketyl. (HMe₂SiOSiO_{1.5})₈, (Q₈M₈^H) and (HSiO_{1.5})₈, (T₈^H) were synthesized from known procedures (see below).^{1,2,3} Platinumdivinyltetramethyldisiloxane [Pt(dvs)] (Karstedt's catalysts) was purchased from United Chemical Technologies and used as a 2.0 mmol solution in xylene. The triarylsulfonium hexafluorophosphate cationic photoinitiator (Cyracure 313) was purchased from Union Carbide as a 50% solution in propylene carbonate. All other chemicals were used as received.

Octa(dimethylsiloxy)silsesquioxane (Q₈M₈^H) from Si(OCH₂CH₂O)₂, Si(eg)₂

Si(eg)₂ (1.0 g and $\approx 80\%$ pure)³ is added to a solution containing 2.0 M tetramethylammonium hydroxide (2.7 mL) (TMAH) in methanol (prepared from TMAH•5 H₂O), water (0.5 mL), and methanol (1.7 mL). The final solution should be 1.0 M in "Si", 1:1 molar ratio "Si": "N", and 10:1 molar ratio of water: "Si". The mixture is stirred overnight until clear. ²⁹Si-NMR of this solution reveals one peak at -99.4 ppm indicating formation of the 'octaanion cube'. This solution (3 mL) is added to an addition funnel and is slowly added to an ice cooled stirring solution of hexane (11 mL) and HMe₂SiCl (4 mL). After the addition is complete, the mixture is allowed to come to room temperature with a total stirring

time of one hour. The layers are separated, and the aqueous layer is washed with hexane (3 X 10 mL) and the total hexane portion volume is reduced to yield a white solid. The solid is washed with cold methanol (≈ 10 mL) and dried under vacuum to yield 0.55 g of octa(dimethylsiloxy)silsesquioxane (80% yield). ¹H NMR (360 MHz, CDCl₃, 25°C) δ Si-H 4.73 (septet, J 2.77 Hz, 8H), (CH₃)₂SiH 0.22 (d, J 2.72 Hz, 48.2H). ¹³C NMR (90 MHz, CHCl₃, 25°C) δ (CH₃)₂SiH 0.05. ²⁹Si NMR (71.5 MHz, CHCl₃, 25°C) δ (CH₃)₂SiH -1.4, SiOSi(CH₃)₂H -107.1. Mass spectra (chemical ionization, NH₃): m/z = 1034 (Q₈M₈^H+ NH₃), 100% intensity.

Preparation of tetra(dimethylsiloxypropylglycidylether) silsesquioxane, Q₈M₄^HM₄^E

Q₈M₈^H (0.50 g, 0.49 mmol) was added to a 25 mL schlenk flask equipped with a magnetic stir bar and condenser. The flask was evacuated and refilled with N₂ gas 3 times at 50°C. Toluene (5 mL) was added and the solution was stirred for ≈ 5 min. AGE (0.23 mL, 1.96 mmol) was added to the solution followed by 5 drops of 2.0 mmol Pt(dvs). The reaction was stirred for 4 hrs at 50°C, cooled and dry activated charcoal was added.. After 10 min. of stirring, the mixture was filtered through a 0.45 μm Teflon membrane into a vial and stored as ≈ 10 wt. % clear solution. Removal of solvents affords an opaque viscous liquid soluble in common solvents. Yield: 0.68 g (94%). ¹H NMR (360 MHz, CDCl₃, 25°C) δ Si-H 4.72 (septet, J 2.77 Hz, 4H), (epoxy) CH₂O(CH₂)₃ diastereotopic 3.72, 3.66 (dd, J 3.17 Hz, 4.3H) (Due to peak overlap, all resonances between 3.5 and 3.3 are integrated as one peak, 13.6H) 3.45, 3.41 (dd, J 2.74 Hz), SiCH₂CH₂CH₂CH₂O 3.43 (m), OCH₂CH (epoxy) 3.14 (m, 3.7H), CH₂ (epoxy) diastereotopic 2.79 (dd, J 4.97 Hz, 3.9H), 2.59 (dd, J 2.67 Hz, 4H), SiCH₂CH₂CH₂CH₂O 1.64 (m, 8H), SiCH₂CH₂CH₂O 0.61 (m, 8.3H), (CH₃)₂SiH 0.25 (d, J 2.72 Hz, 24H), (CH₃)₂SiCH₂ 0.15 (s, 26H); ¹³C NMR (90 MHz, CHCl₃, 25°C) δ SiCH₂CH₂CH₂O 74.1, 73.9, (epoxy) CH₂O(CH₂)₃ 71.4, OCH₂CH (epoxy) 50.7, CH₂ (epoxy) 44.2, SiCH₂CH₂CH₂CH₂O 22.9, SiCH₂CH₂CH₂O 13.5, (CH₃)₂SiH -0.05, (CH₃)₂SiCH₂ -0.60; ²⁹Si NMR (71.5 MHz, CHCl₃, 25°C) δ

 $(CH_3)_2SiCH_2$ 13.9, $(CH_3)_2SiH$ -1.1, $SiOSi(CH_3)_2H$ -107.8, $SiOSi(CH_3)_2CH_2$ -108.1. Size exclusion chromatography (SEC) polystyrene standards, THF solvent, toluene reference; Mn = 1260, Mw = 1290, PDI = 1.02, calc. MW = 1475 g/mol. FTIR (neat film, cm⁻¹) 3035, 2962, 2934, 2874 (m, C-H str.); 2142 (m, Si-H str.); 1257 (s, C-O-C str.); 1095 (vs, Si-O str.); 902 (s, C-O-C bend).

Preparation of octa(dimethylsiloxypropylglycidylether)silsesquioxane, Q₈M₈^E

 $Q_8M_8^{\ H}$ (0.40 g, 0.39 mmol) was added to a 25 mL schlenk flask equipped with a magnetic stir bar and condenser. The flask was evacuated and refilled with N₂ gas 3 times at 50°C. Toluene (5 mL) was added and the solution was stirred for ≈ 5 min. AGE (0.46 mL, 3.89 mmol) was added to the solution followed by 5 drops of 2.0 mmol Pt(dvs). The reaction was stirred for 12 hrs at 50°C, cooled and dry activated charcoal was added.. After 10 min. of stirring, the mixture was filtered through a 0.45 µm Teflon membrane into a vial and stored as ≈ 10 wt. % clear solution. Removal of the solvents affords an opaque viscous liquid soluble in common solvents. Yield: 0.78 g (92%). ¹H NMR (360 MHz, CDCl₃, 25°C) δ CH₂O(CH₂)₃ diastereotopic 3.72, 3.66 (dd, J 3.17 Hz, 8H) (Due to peak overlap, all resonances between 3.5 and 3.3 are integrated as one peak, 24.7H) 3.45, 3.41 (dd, J 2.74 Hz), SiCH₂CH₂C 3.43 (m), OCH₂CH (epoxy) 3.14 (m, 8.1H), CH₂ (epoxy) diastereotopic 2.79 (dd, J 4.97 Hz, 7.9H) 2.59 (dd, J 2.67 Hz, 7.9H), SiCH₂CH₂CH₂O 1.64 (m, 16.4H), SiCH₂CH₂CH₂O 0.61 (m, 15H), (CH₃)₂SiCH₂ 0.15 (s, 48H); ¹³C NMR (90 MHz, CHCl₃, 25°C) δ SiCH₂CH₂CH₂O 74.0, (epoxy) CH2O(CH2)3 71.4, OCH2CH (epoxy) 50.8, CH2 (epoxy) 44.2, SiCH2CH2CH2O 23.1, SiCH₂CH₂CH₂O 13.6, (CH₃)₂SiCH₂ -0.45; ²⁹Si NMR (71.5 MHz, CHCl₃, 25°C) δ (CH₃)₂SiCH₂ 13.8, SiOSi(CH₃)₂CH₂ -108.1. Size exclusion chromatography (SEC) polystyrene standards, THF solvent, toluene reference; Mn = 1480, Mw = 1500, PDI = 1.02, calc. MW = 1931 g/mol. FTIR (neat film, cm⁻¹) 3040, 2958, 2939, 2870 (m, C-H str.); 1262 (s, C-O-C str.); 1085 (vs, Si-O str.); 908 (s, C-O-C bend).

Preparation of tetra(propylglycidylether) silsesquioxane, T₄^HT₄^E

T₈^H (0.48 g, 1.13 mmol) was added to a 25 mL schlenk flask equipped with a magnetic stir bar and condenser. The flask was evacuated and refilled with N2 gas 3 times at 80°C. Experiments to study the α-addition product were conducted using toluene, toluene containing triphenylphosphine (4/1 PPh₂/Pt) and 1/1 toluene/n-butylether solvent systems. Toluene (2 mL) and n-butylether (2 mL) were added and the solution was stirred for ≈ 5 min. AGE (0.23 mL, 1.94 mmol) was added to the solution followed by 5 drops of 2.0 mmol Pt(dvs). The reaction was stirred for 12 hrs at 80°C, cooled and dry activated charcoal was added. After 10 min. of stirring, the mixture was filtered through a 0.45 um Teflon membrane into a vial and stored as ≈ 10 wt. % clear solution. Removal of the solvents affords an opaque viscous liquid soluble in common solvents. Yield: 0.67 g (95%). ¹H NMR (360 MHz, CDCl₃, 25°C) δ (data reported here for α -isomer content of 35%) Si-H 4.18 (m, 4H), (Due to peak overlap, all resonances between 3.75 and 3.30 are integrated as one peak, 14.4H) (epoxy) CH₂O(CH₂)₃ diastereotopic 3.71, 3.67 (dd, J 2.72 Hz) 3.45, 3.41 (m), SiCH₂CH₂CH₂O and SiCH(CH₃)CH₂O 3.5-3.3 (m), OCH₂CH (epoxy) 3.12 (m, 3.4H), CH₂ (epoxy) diastereotopic 2.80 (m, 3.5H), 2.61 (m, 3.6H), SiCH₂CH₂O 1.72 (m, 4.7H), SiCH(CH₃)CH₂O 1.32 (m, 1.6H), SiCH(CH₃)CH₂O (dd, J 7.72 Hz, 3.8H), note that this should be a dt but the presence of several oligomers broadens the resultant peaks, SiCH₂CH₂CH₂CH₂O 0.72 (m, 4.9H); ¹³C NMR (90 MHz, CHCl₃, 25°C) δ SiCH₂CH₂CH₂CH₂O 73.1. SiCH(CH₃)CH₂O 72.7, (epoxy) CH₂O(CH₂)₃Si 71.3, (epoxy) CH₂O(CH₂)CHCH₃Si 71.0, OCH₂CH (epoxy) 50.8, <u>C</u>H₂ (epoxy) 44.3, SiCH₂CH₂CH₂O 22.7, Si<u>C</u>H(CH₃)CH₂O 19.2, SiCH(<u>C</u>H₃)CH₂O 11.3, SiCH₂CH₂CH₂CH₂O 8.2, 7.7; ²⁹Si NMR (71.5 MHz, CHCl₃, 25°C) δ SiCH₂CH₂CH₂O -65.2, SiCH(CH₃)CH₂O -67.5, SiH -83.7, SiH -85.8 (T_{10-n} HT_n E). Size exclusion chromatography (SEC) polystyrene standards, THF solvent, toluene reference; Mn = 780, Mw = 890, PDI = 1.14, calc. MW =

881 g/mol. FTIR (neat film, cm⁻¹) 3030, 2966, 2932, 2875 (m, C-H str.); 2259 (m, Si-H str.); 1200 (s, C-O-C str.); 1108 (vs, Si-O str.); 887 (s, C-O-C bend).

Preparation of septa(propylglycidylether) silsesquioxane, T₁^HT₇^E

T₈^H (0.48 g, 1.13 mmol) was added to a 25 mL schlenk flask equipped with a magnetic stir bar and condenser. The flask was evacuated and refilled with N2 gas 3 times at 80°C. Experiments to study the α-addition product were conducted using toluene, toluene containing triphenylphosphine [4 equiv. with respect to Pt(dvs)] and toluene/n-butylether solvent systems. Toluene (6 mL) were added and the solution was stirred for ≈ 5 min. AGE (1.6 mL, 13.5 mmol, 12 equiv.) was added to the solution followed by 5 drops of 2.0 mmol Pt(dvs). The reaction was stirred for 24 hrs at 100°C, cooled and dry activated charcoal was added. After 10 min. of stirring, the mixture was filtered through a 0.45 µm Teflon membrane into a vial and stored as ≈ 10 wt. % clear solution. Removal of the solvents affords an opaque viscous liquid soluble in common solvents. Yield: 1.45 g (96%). ¹H NMR (360 MHz, CDCl₃, 25°C) δ (data reported here for α -isomer content of 10%) Si-H 4.14 (m, 1.2H), (Due to peak overlap, all resonances between 3.71 and 3.37 are integrated as one peak, 29.6H) (epoxy) CH2O(CH2)3 diastereotopic 3.72, 3.68 (dd, J 2.81 Hz) 3.46, 3.42 (m), SiCH₂CH₂CH₂O and SiCH(CH₃)CH₂O 3.5-3.3 (m), OCH₂CH (epoxy) 3.14 (m, 7.2H), CH₂ (epoxy) diastereotopic 2.79 (m, 7.2H), 2.61 (m, 7.1H), SiCH₂CH₂CH₂O 1.67 (m, 15.5H), SiCH(CH₃)CH₂O 1.30 (m, 0.8H), SiCH(CH₃)CH₂O 1.07 (m, 2.7H), SiCH₂CH₂CH₂O 0.66 (m, 14H); ¹³C NMR (90 MHz, CHCl₃, 25°C) δ SiCH₂CH₂CH₂O 73.4, SiCH(CH₃)CH₂O 72.8, (epoxy) CH₂O(CH₂)₃Si 71.4, OCH₂CH (epoxy) 50.8, CH₂ (epoxy) 44.3, SiCH₂CH₂CH₂O 22.9, SiCH(CH₃)CH₂O 19.3, SiCH(CH₃)CH₂O 11.3, SiCH₂CH₂CH₂CH₂O 8.1, 7.9; ²⁹Si NMR (71.5 MHz, CHCl₃, 25°C) δ <u>Si</u>CH₂CH₂CH₂O -66.2, SiCH(CH₃)CH₂O -68.2, SiH -83.7, $\underline{\text{Si}}\text{H}$ -85.6 ($T_{10\text{-n}}^{\text{H}}T_{n}^{\text{E}}$). FTIR (neat film, cm⁻¹) 3044, 2962, 2934, 2874 (m, C-H str.); 2260 (w, Si-H str.); 1210 (s, C-O-C str.); 1102 (vs, Si-O str.); 885 (s, C-O-C bend).

References

- a. Agaskar, P. A. Inorg. Chem. 1991, 30, 2707. b. Agaskar, P. A. Colloids and Surfaces
 1992, 63, 131. c. Agaskar, P. A. Synth. React. Inorg. Met.-Org. Chem. 1990, 20, 483. d.
 Agaskar, P. A. J. Am. Chem. Soc. 1989, 111, 6858.
- 2. a. Hasegawa, I.; Motojima, S. J. Organomet. Chem. 1992, 441, 373. b. Hasegawa, I. J. of Sol-Gel Sci. and Tech., 1994, 2, 127.
- 3. Laine, R. M. in Applications of Organometallic Chemistry in the Prepartion and Processing of Advanced Materials; Harrod, J. F.; Laine, R. M., Eds.; Kluwer Academic Publishers: Boston, 1995; Vol. 297, 69.

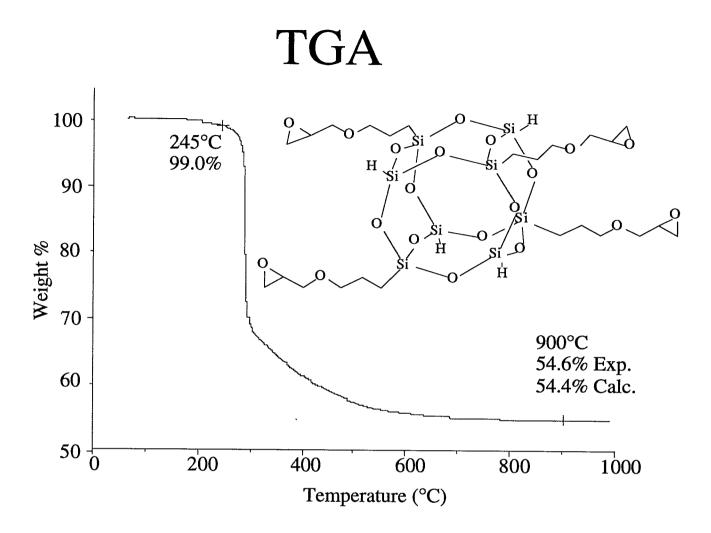


Figure 1- TGA trace for tetra(propylglycidylether)silsesquioxane, $T_4^H T_4^E$

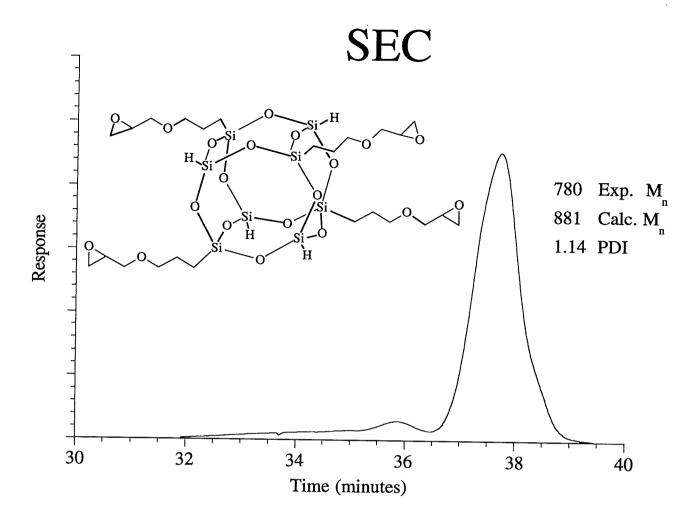


Figure 2- SEC trace for tetra(propylglycidylether)silsesquioxane, T₄^HT₄^E



Figure 3- TGA trace for octa(propylglycidylether)silsesquioxane, T₁^HT₇^E

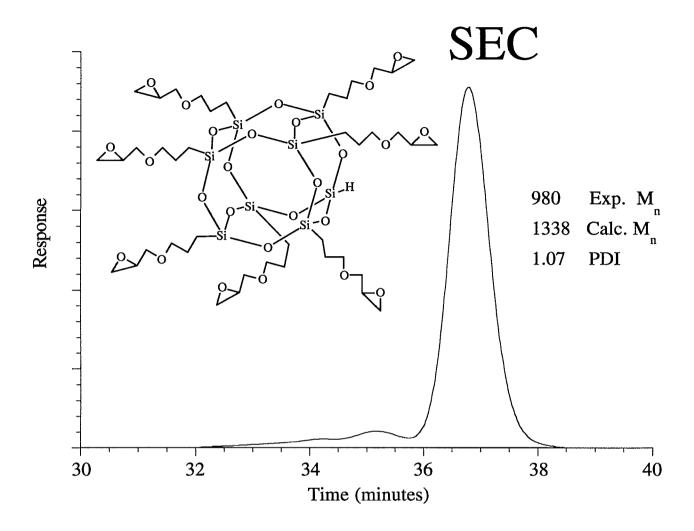
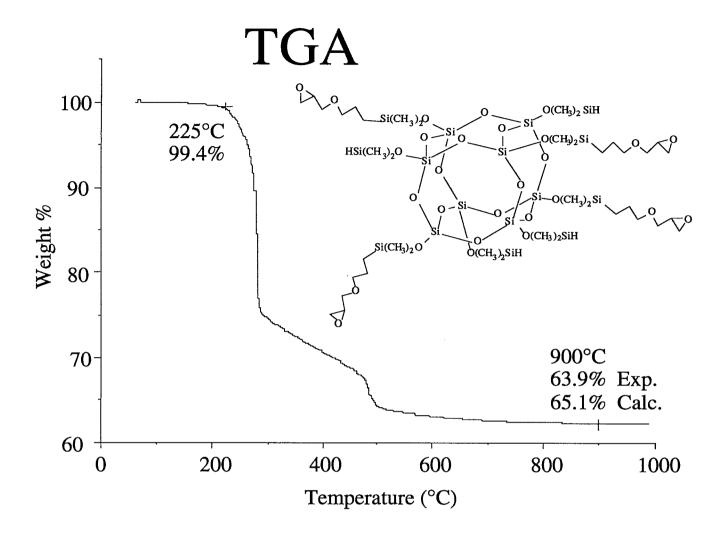
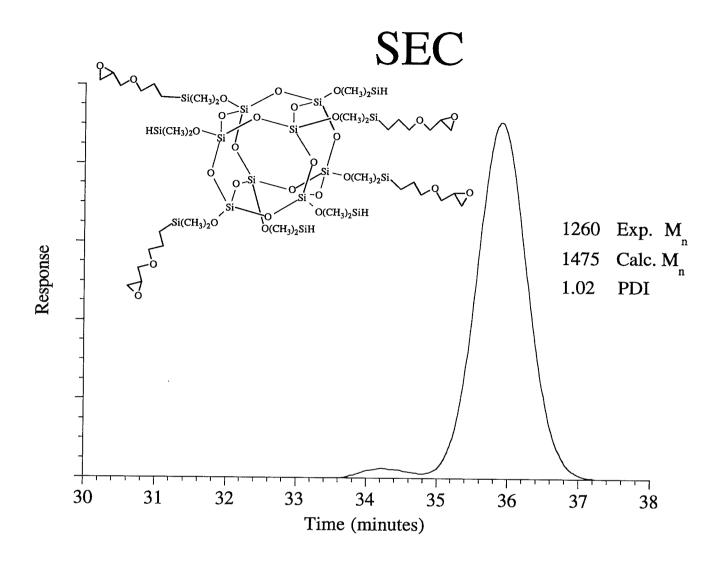




Figure 4- SEC trace for octa(propylglycidylether)silsesquioxane, $T_1^H T_7^E$

 $\textbf{Figure 5-} \ TGA \ trace \ for \ tetra(dimethylsiloxypropylglycidylether) silses quioxane, \ Q_8{M_4}^H{M_4}^E$

 $\textbf{Figure 6-} \textbf{ SEC trace for tetra} (dimethylsiloxypropylglycidylether) silsesquioxane, Q_8 \textbf{M}_4{}^H \textbf{M}_4{}^E$

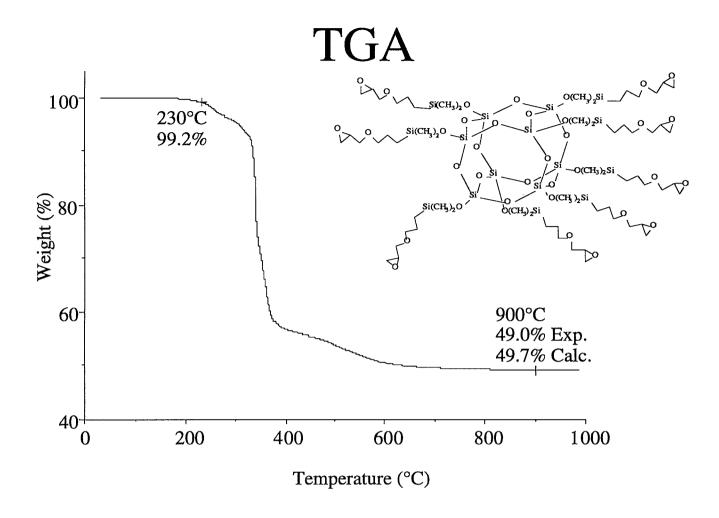
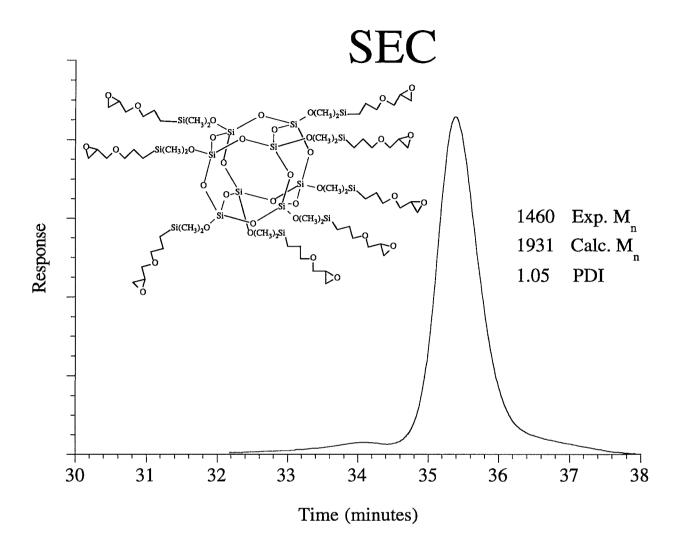



Figure 7- TGA trace for octa(dimethylsiloxypropylglycidylether)silsesquioxane, Q₈M₈^E

 $\textbf{Figure 8-} \textbf{SEC} \textbf{ trace for octa} (dimethylsiloxypropylglycidylether) silses quioxane, \textbf{Q}_{8}\textbf{M}_{8}^{\textbf{E}}$