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Table S1. Provenance and Purity af the IL Used in This Study.

Sample CAS Origin Purity
[Comim][PF¢] 155371-19-0 IoLiTec GmbH 99%
[C4mim][PF] 174501-64 -5 IoLiTec GmbH 99%
[Cemim][PF¢] 304680-35-1 IoLiTec GmbH 99%
[Csmim][PF¢] 304680-36-2 IoLiTec GmbH 99%

[

Cmim][PFg] 362043-46-7 IoLiTec GmbH  98%
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Table S2. The Results of the Temperature Dependence of Frequency Shift Velocity dfdt of the QCM
for [C,mim][PF¢] and Vaporization Enthalpies A®H’,(7) Determination.

gry0
Run  T/K  10°p‘'w/Pa  T'/K R wdp”) AjHy (T)
kJ-mol !
[Comim][PFe]

In(plu/p®) = =52 =22 (1 - 1) - 7 (% ~1—1In (Tlo)) Ty=4352K
456.79 224 0.002189  -165.6 1283
451.80 153 0.002213  -168.8 128.7
446.81 105 0.002238  -171.9 129.0
441.84 71 0.002263  -175.2 129.4

1 43682 47 0.002289  -178.6 129.8
431.85 31 0.002316  -181.9 130.2
426.85 20 0.002343  -185.6 130.5
42185 13 0.002370  -189.2 130.9
416.85 8.3 0.002399  -193.0 131.3
45434 185 0.002201  -167.2 128.5
45031 136 0.002221  -169.7 128.8
44431 85 0.002251  -173.6 129.2

, 43929 57 0.002276  -177.0 129.6
43432 38 0.002302  -180.4 130.0
42933 25 0.002329  -183.8 130.3
42434 17 0.002357  -187.3 130.7
41934 11 0.002385  -190.9 131.1
41405 6.5 0.002415  -195.0 131.5

[C4mim][PF¢]

In(pi/p°) = — 78;87 - 137:95 (% - Tio) - % (% —1—1In (Tlo)), Tp=425.7K
44743 148 0.002235  -169.0 135.5
44243 98 0.002260  -172.5 135.9
437.44 64 0.002286  -176.0 136.2
43245 41 0.002312  -179.6 136.6

| 4747 27 0.002339  -183.3 137.0
42250 17 0.002367  -187.1 137.3
41753 11 0.002395  -191.0 137.7
41253 6.6 0.002424  -194.9 138.1
407.54 4.0 0.002454  -199.0 138.4
402.56 2.4 0.002484  -203.2 138.8
44991 183 0.002223  -167.3 135.3
44492 120 0.002248  -170.8 135.7
439.94 79 0.002273  -174.3 136.0
43493 51 0.002299  -177.8 136.4

, 42994 33 0.002326  -181.5 136.8
42495 21 0.002353  -185.1 137.2
419.97 13 0.002381  -189.1 137.5
41498 82 0.002410  -193.1 137.9
409.99 5.0 0.002439  -197.2 138.3

405.01 3.2 0.002469 -200.9 138.6




[Cemim][PF¢]

In(pi/p?) = -2 - 22 (1) -2 (2 —1-1n (Tlo)) Ty=430.7K
452.44 185 0.002210 -167.2 138.3
447.44 121 0.002235 -170.7 138.7
44243 79 0.002260 -174.3 139.1
437.44 51 0.002286 -177.8 139.5
432.45 33 0.002312 -181.6 139.9
427.46 21 0.002339 -185.4 140.3
422.46 13 0.002367 -189.1 140.7
417.48 8.3 0.002395 -193.0 141.1
41250 5.0 0.002424 -197.2 141.5
407.51 3.1 0.002454 -201.2 141.9
454.94 229 0.002198 -165.4 138.1
44993 151 0.002223 -168.9 138.5
44492 99 0.002248 -172.4 138.9
43991 64 0.002273 -176.0 139.3
43490 41 0.002299 -179.7 139.7
429.88 26 0.002326 -183.5 140.1
42487 16 0.002354 -187.3 140.5
419.84 10 0.002382 -191.3 140.9
414.84 229 0.002411 -165.4 141.3
409.85 151 0.002440 -168.9 141.7

Inpia/p) =~ S22 - M5 (L 1) (2 g () 1p- 4337k
458.06 182 0.002183 -167.3 142.2
453.03 118 0.002207 -170.9 142.7
448.00 77 0.002232 -174.5 143.1
44296 50 0.002258 -178.1 143.5
43793 32 0.002283 -181.8 143.9
43290 20 0.002310 -185.6 144.4
427.87 13 0.002337 -189.5 144.8
422.84 8.0 0.002365 -193.3 145.2
417.82 4.7 0.002393 -197.7 145.6
41279 2.8 0.002423 -201.9 146.1
455.54 146 0.002195 -169.1 142.4
450.51 95 0.002220 -172.8 142.9
445.47 60 0.002245 -176.5 143.3
440.45 40 0.002270 -180.0 143.7
43542 25 0.002297 -183.7 144.1
430.39 16 0.002323 -187.5 144.6
42537 10 0.002351 -191.2 145.0
420.34 6.3 0.002379 -195.3 145.4
41531 3.6 0.002408 -199.9 145.9
410.29 2.2 0.002437 -203.9 146.3

[C1omim][PF]
Inpia/p) =~ 257 - M5 (1) 2% g (7)), 1o- 4363 K




458.07 115 0.002183 -171.1 146.5
453.09 74 0.002207 -174.8 147.0
448.10 48 0.002232 -178.5 147.4
443.08 30 0.002257 -182.2 147.9
438.08 19 0.002283 -186.0 148.4
433.07 12 0.002309 -189.9 148.8
428.06 7.3 0.002336 -194.0 149.3
423.05 4.6 0.002364 -197.9 149.8
418.04 2.6 0.002392 -202.6 150.2
413.03 1.6 0.002421 -206.6 150.7
460.61 140 0.002171 -169.5 146.3
455.58 90 0.002195 -173.1 146.7
450.58 59 0.002219 -176.7 147.2
445.58 38 0.002244 -180.3 147.7
440.58 24 0.002270 -184.1 148.1
435.57 15 0.002296 -187.9 148.6
430.57 9.5 0.002323 -191.9 149.1
425.56 5.8 0.002350 -196.0 149.5
420.56 3.5 0.002378 -200.2 150.0
415.55 2.1 0.002406 -204.4 150.4
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Table S3. The Volumetric Properties of [C,mim][PFs] Used for A°C,’, Calculations.

o ;-I;nol'l) Crm(D), 104V, 10° oy, w, 10,  G-Cy A Ref
J-K ' mol™! m’-mol! K'! m-s’! Pa’ T'K"' mol?!
[C,mim][PFg] 1.80 5.94 3.95 56.9 -74 !
(256.13) >
353K 289
[Cymim][PFy] 408.7 2.080 6.056 ’
(284.18) 1421 N
2.078 6.054 1442 >
1441 6
2.079 1442 !
2.078 6.242 1443 §
2.078 6.294 1443 ’
2.078 6.294 1443 10
2.080 1444 1
2.078 6.247 1442 12
2.090 1
2.077 5.928 14
2.089 5.905 15
2.078 e
2.082 6.182 17
2.078 6.203 18
2.080 6.278 19
2.077 6.357 20
2.078 6.178 2
2.080 6.308 2
2.079 6.324 »
2.078 5.943 24
2.078 »
2.081 6.159 26
2.078 6.225 7
2.080 6.313 28
2.092 6.638 2
2.077 30
2.078 6.170 i
2.084 5.497 32
2.078 6.225 3
2.078 5.960 34
average 408.7 2.080 6.145 1443 4.088 57.3 74
[Cemim][PFy] 1424 s
(312.24) 1424 ’
1424 10
424 3
2.405 9.510 14
2.414 36
2.414 6.385 37
2.414 ’
2411 7.073 3%
2.414 6.416 10
2.414 6.211 39
2.419 5.890 0
2.419 6.184 o
2.414 5.987 2
2.415 6.165 !
2.413 6.493 34
average 424 2.414 6.303 1424 4.419 64.7 81
[Csmim][PFq] 8
(340.29) 2.754 6.234  1407.8
2.754 6.234 1408 ’
2.754 6.234 1408 10

4.856
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(312.8K)

2.748 6.946 4.880 38

2.757 6.073 4.887 40

2.780 5.484 15

2.751 6.221 3

2.758 5.668 4.858 4

2771 10.12 14

2.779 6.150 13

2.751 6.396 !

2.751 4

2.756 »

2.746 46

2.751 6.477 34

average 2.755 6.248 1408 4.681 68.5 -85

[Clé);lggl 3] Ell;Fé] 3.132 6.530 5.240 76.0 -93 Estimated®

® the isothermal compressibility was evaluated according to ref *

, molecular volume and thermal

expansion were linearly extrapolated according to experimental data from ref **,
b [Comim][PF] have fusion temperature of 332.8 K and the lowest temperature at which liquid
density is available is 353.15 K. Therefore, the evaluated heat capacity difference for [Comim][PFs]

corresponds to this temperature (7= 353.15 K).

TABLE S4 Comparison of Molar Enthalpies of Vaporization for [C,mim][PFs] Family
Derived from QCM Method and Results of Predictive Scheme of Deyko ez al.

IL APHO (298 K)*  APHS(298 K)°
kJ-mol™ kJ-mol™!

[Comim][PFs] 140.0 + 2.8 160
[C4mim][PF] 146.5+2.6 157
[Cemim][PF] 150.8 +2.7 161
[Csmim][PFs] 154.9+2.8 169
[Ciomim][PFs] 161.4+2.8 -

* This work

> Ref 48



S7

Table S5. The Results of the Temperature Dependence of Frequency Shift Velocity df/dt of
the QCM at different T for [Ciomim][NTf,;] Determination.

| T/K dfidt/Hz's' | | T/K dfidt/ Hz's" | | T/K dfidt/Hz's" |

Tocm = 303.15 K (Ref 22) 41220  0.2048 382.82  0.009677
407.33 0.1307 407.33 0.1264 377.82  0.005511
402.25 0.07788 402.25 0.07660 372.82  0.003117
397.30  0.04669 397.30  0.04660 Toem =323.15K
39231 0.02762 392.31 0.02759 403.06  0.08435
387.30  0.01598 42230  0.5249 398.09  0.04985
41237  0.2083 417.19  0.3298 393.08  0.02951
41736  0.3315 41220  0.2042 388.05 0.01693
42230  0.5207 407.17  0.1259 383.14  0.009741
42735 0.8153 402.25 0.07705 378.07  0.005599
42230  0.5307 397.30  0.04643 373.13 0.003189
41736  0.3324 39231 0.02740 Toow = 343.15 K
41237  0.2055 387.30  0.01579 403.06  0.08159
407.33 0.1277 382.26  0.009400 397.93 0.04954
402.25 0.07758 Tocm = 306.15 K 392.93 0.02882
397.30  0.04606 402.94  0.08397 387.90  0.01649
39231 0.02759 397.89  0.04971 383.00  0.009563
42230  0.5258 392.86  0.02870 377.93 0.005480

417.19 0.3301 387.83 0.01677 373.00 0.003175
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Table S6. The Value of K” Constant Evaluated from the Frequency Change Rates and Vapor

Pressures of ILs.

Compound 10K/ Tocm / K References
Pa'S'kgm-Hz'l .K-1/2.m01-1/2
[C1C,im][NT£] 7.363 323.15 950
[C,Ciim][NTH] 11.34 303.15 312
[C3C,im][NTH] 11.18 303.15 o149
[C4C1im][NTH] 8.886 303.15 o1 53
[C5Cim][NTH] 7.132 303.15 o149
[CeCiim][NTH] 8.071 303.15 o133
[C7Cim][NTH] 6.817 303.15 o149
[CsCiim][NTH] 7.532 303.15 o153
[C1oCiim][NTEH]  13.90 303.15 o153
[C1oCiim][NTEH]  12.27 306.15 3! this work
[C1oC1im][NTf,]  11.59 323.15 3! this work
[C1oCiim][NTEH]  12.72 343.15 3! this work
[C1,Ciim][NTH]  7.494 303.15 3153
[CoPy][NTH] 8.059 303.15 %3
[C5Py][NTH£,] 6.370 303.15 4%
[C4Py][NT£] 7.896 303.15 %3
[C,Coim][NTH] 9.020 313.15 26
[C4C4im][NTH] 11.24 313.15 26
[CoCoim][NTH] 11.80 313.15 36

Average 9.5+1.1




Table S7. The Solution Calorimetry Results.

m/ mmol'kg'1 AsolH / kJ-mol™!
LiPFg (cr)

0.0185 -21.87

0.0474 -23.55

0.0298 -21.28

mean value -22.23+1.9

[Comim][PFs] (cr)

0.00684 46.36
0.00992 45.85
0.00740 45.54
0.01411 45.82
0.00887 46.45

mean value 46.00 £ 0.7
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Table S8. G3MP2 Total Energies at 0 K and Enthalpies at 298.15 K (in Hartree) of the
Molecules Studied in This Work

G3MP2
Compounds o Thos
[Comim][PFg] -1283.874044  -1283.856483
[Csmim][PFs] -1323.109917  -1323.090904
[C4mim][PFq] -1362.345172  -1362.324749

DLPNO-CCSD(T) calculations.

Geometry optimization of [C,mim][PFs] was carried out at B3LYP/def2-TZVP level of theory57'58
with D3 dispersion correction® and Becky-Jonson damping.®® The same level of theory was used
while computing the spectral properties of the molecules. The initial geometry of the close ion pair
was taken from the results of quantum chemical study.®’

Total energies for all reaction participants were obtain from DLPNO-CCSD(T) method.®* It has to
be noted that the total energies have to be extrapolated to complete basis set (CBS),” to minimize
basis set incompleteness error (BSIE). We used the direct extrapolation, where two single point
calculations DLPNO-CCSD(T) with def2-TZVPP and def2-QZVPP basis sets were performed.58
Subsequently Hartree—Fock and correlation energies were extrapolated to CBS.” Thermal
correction was calculated at rigid rotator, harmonic oscillator approximation. All computations were
carried out by using ORCA 3.0.2 package.®* Results of DFT calculations are listed in Table S9.
Enthalpies of formation were calculated using isodesmic reactions R1-R7. The total energies, ZPVE
and thermal corrections, as well as the enthalpies of formation for reaction participants can be found
in Table S10.

Table S9. The Computed Enthalpies of Formation for [Cmim][PF¢] in the ideal Gas Phase,
kJ-mol ™.

4 Reaction A¢Hp (8)
R1 1-methyl-imidazole + C,H;sCl + HF + PF5 = [C,mim][PF¢] + HCI -1916.9
R2 I-methyl-imidazole + C,;HsBr + HF + PF5 = [Comim][PF¢] + HBr -1919.4
R3 I-methyl-imidazole + C,;H4 + HF + PF5 = [Comim][PF¢] -1922.7
R4 10 C,Hg + 2 NH; + HF + PF5 = [Comim][PF¢] + 14 CHy -1907.9
R5 1-methyl-imidazole + C,F¢ + PH3; + 2 CH4 = [Comim][PF¢] + C,Hsg -1923.5

o,0,0-Trifluorotoluene + NoHy + PH3 + 2 H, =
R6 = [Comim][PFg] + Benzene + C,Hy -1908.8
R7 a,a,0-Trifluorotoluene + 2 NHj3 + PH3= [C,mim][PF¢] + Benzene + C;H,  -1906.6

Average value -1915.1
Max absolute deviation from the experimental value 8.9




Table S10. DLPNO-CCSD(T) Calculation of the Enthalpy of Formation in the Ideal Gas
State for [Comim][PF]

Compound Eiot (DLPNO- ZPVE / AEBHC, ) APy, Ref.
CCSD(T)/CBS) Hartree Hartree
/ Hartree
[Comim][PFs]  -1284.215917 0.18937777 0.01692281
1-methyl- -265.1878677 0.09868266 0.0062762 1257+1.1  ©
imidazole
PFs -840.0586287 0.01685823  0.00629413 -15933+1.3
C,HsCl -538.8907179 0.06609793  0.00505754 -107.53 66
C,HsBr -2651.802376 0.06555812  0.00518868 -61.92 66
HCI -460.3812509 0.00668729  0.00330467 9230+0.04 ©°
HBr -2573.289607 0.00596257 0.0033047 36.28+0.38 °°
HF -100.3940024 0.0092883  0.00330466 -272.55 66
C,Hy -78.47522598 0.05096598 0.00397964 52.47+033 %
CH,4 -40.45888678 0.04452669 0.00381313 -74.81+033 ©°
C,Hs -79.71365038 0.07434774  0.00448048 -84.73+0.50 ©°°
NH; -56.50552157 0.03414853 0.00381525 46.19+0.29 ©°
PH; -342.7196479 0.02384987 0.00385363 544+1.67 %
N,H4 -111.7587839 0.05323249 0.00418121 95.27+0.42
C,Fs -674.8392266 0.02903141 0.00763643 21344 £5 66
C¢Hg -231.9085784 0.10005518 0.00535819 82.9+0.9 66
C,H, -77.22172974 0.02539188 0.00363424 226.73+0.8
0L, 0L, 0l -568.7381751 0.10470475 0.00797571 -587.7+12  °7¢8
Trifluorotoluene
H, -1.174678204 0.01007058  0.00330466 0




12

4
o
Az_ O
” o
) o +Z
— 8
o o %
& 0 8 e ° ° 5 8
§ o o ° R o o
~ o +
S T
~§ +
- .o
S o
4 F o
+
O
6 | | |
2.3 24 2.5 2.6 2.7

100K/ T

Figure S1. Temperature dependence of deviation of the experimental frequency change rates at
different temperatures of the QCM sensor for [Ciomim][NTf;]:

O - results at 7=303.15K;>*> O - results at 7=306.15 K; + results at 7= 323.15 K; O results at
T'=343.15K.
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Figure S2. The IR spectra for [C,mim][PF¢] during enthalpy of vaporization investigation with
QCM method
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Figure S3. The IR spectra for [Csmim][PF¢] during enthalpy of vaporization investigation with
QCM method
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Figure S4. The IR spectra for [Cemim][PF¢] during enthalpy of vaporization investigation with
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Figure S7. Conformation of [C,mim][PF¢] with minimal energy.
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