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Table S1. Provenance and Purity af the IL Used in This Study.  

Sample CAS Origin Purity 

[C2mim][PF6] 155371-19-0 IoLiTec GmbH 

IoLiTec GmbH 

IoLiTec GmbH 

IoLiTec GmbH 

IoLiTec GmbH 

99% 

[C4mim][PF6] 174501-64 -5 99% 

[C6mim][PF6] 304680-35-1 99% 

[C8mim][PF6] 304680-36-2 99% 

[C10mim][PF6] 362043-46-7 98% 

 

  



 S2

Table S2. The Results of the Temperature Dependence of Frequency Shift Velocity df/dt of the QCM 

for [Cnmim][PF6] and Vaporization Enthalpies ∆∆∆∆l
g
H

o
m(T) Determination. 

 

Run T / K 106
·p

*
sat / Pa T

-1 / K-1 R·ln(p*
sat/p

o) 
∆l

g�m
o ���

kJ·mol-1  

[C2mim][PF6]  

ln��sat
∗ �o⁄ � = − ��
��

� − 
�����
� �
� − 


��� − ��
� ���� − 1 − ln ��

����, T0 = 435.2 K 

1 

456.79 224 0.002189 -165.6 128.3 
451.80 153 0.002213 -168.8 128.7 
446.81 105 0.002238 -171.9 129.0 
441.84 71 0.002263 -175.2 129.4 
436.82 47 0.002289 -178.6 129.8 
431.85 31 0.002316 -181.9 130.2 
426.85 20 0.002343 -185.6 130.5 
421.85 13 0.002370 -189.2 130.9 
416.85 8.3 0.002399 -193.0 131.3 

2 
 

454.34 185 0.002201 -167.2 128.5 
450.31 136 0.002221 -169.7 128.8 
444.31 85 0.002251 -173.6 129.2 
439.29 57 0.002276 -177.0 129.6 
434.32 38 0.002302 -180.4 130.0 
429.33 25 0.002329 -183.8 130.3 
424.34 17 0.002357 -187.3 130.7 
419.34 11 0.002385 -190.9 131.1 
414.05 6.5 0.002415 -195.0 131.5 

[C4mim][PF6] 

ln��sat
∗ �o⁄ � = − �����

� − 
�����
� �
� − 


��� − ��
� ���� − 1 − ln ��

����, T0 = 425.7 K 

1 

447.43 148 0.002235 -169.0 135.5 
442.43 98 0.002260 -172.5 135.9 
437.44 64 0.002286 -176.0 136.2 
432.45 41 0.002312 -179.6 136.6 
427.47 27 0.002339 -183.3 137.0 
422.50 17 0.002367 -187.1 137.3 
417.53 11 0.002395 -191.0 137.7 
412.53 6.6 0.002424 -194.9 138.1 
407.54 4.0 0.002454 -199.0 138.4 
402.56 2.4 0.002484 -203.2 138.8 

2 

449.91 183 0.002223 -167.3 135.3 
444.92 120 0.002248 -170.8 135.7 
439.94 79 0.002273 -174.3 136.0 
434.93 51 0.002299 -177.8 136.4 
429.94 33 0.002326 -181.5 136.8 
424.95 21 0.002353 -185.1 137.2 
419.97 13 0.002381 -189.1 137.5 
414.98 8.2 0.002410 -193.1 137.9 
409.99 5.0 0.002439 -197.2 138.3 
405.01 3.2 0.002469 -200.9 138.6 
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[C6mim][PF6] 

ln��sat
∗ �o⁄ � = − �����

� − 
�����
� �
� − 


��� − �

� ���� − 1 − ln ��

����, T0 = 430.7 K 

1 

452.44 185 0.002210 -167.2 138.3 
447.44 121 0.002235 -170.7 138.7 
442.43 79 0.002260 -174.3 139.1 
437.44 51 0.002286 -177.8 139.5 
432.45 33 0.002312 -181.6 139.9 
427.46 21 0.002339 -185.4 140.3 
422.46 13 0.002367 -189.1 140.7 
417.48 8.3 0.002395 -193.0 141.1 
412.50 5.0 0.002424 -197.2 141.5 
407.51 3.1 0.002454 -201.2 141.9 

2 

454.94 229 0.002198 -165.4 138.1 
449.93 151 0.002223 -168.9 138.5 
444.92 99 0.002248 -172.4 138.9 
439.91 64 0.002273 -176.0 139.3 
434.90 41 0.002299 -179.7 139.7 
429.88 26 0.002326 -183.5 140.1 
424.87 16 0.002354 -187.3 140.5 
419.84 10 0.002382 -191.3 140.9 
414.84 229 0.002411 -165.4 141.3 
409.85 151 0.002440 -168.9 141.7 

[C8mim][PF6] 

ln��sat
∗ �o⁄ � = − ���
�

� − 
�����
� �
� − 


��� − ��
� ���� − 1 − ln ��

����, T0 = 433.7 K 

1 

458.06 182 0.002183 -167.3 142.2 
453.03 118 0.002207 -170.9 142.7 
448.00 77 0.002232 -174.5 143.1 
442.96 50 0.002258 -178.1 143.5 
437.93 32 0.002283 -181.8 143.9 
432.90 20 0.002310 -185.6 144.4 
427.87 13 0.002337 -189.5 144.8 
422.84 8.0 0.002365 -193.3 145.2 
417.82 4.7 0.002393 -197.7 145.6 
412.79 2.8 0.002423 -201.9 146.1 

2 

455.54 146 0.002195 -169.1 142.4 
450.51 95 0.002220 -172.8 142.9 
445.47 60 0.002245 -176.5 143.3 
440.45 40 0.002270 -180.0 143.7 
435.42 25 0.002297 -183.7 144.1 
430.39 16 0.002323 -187.5 144.6 
425.37 10 0.002351 -191.2 145.0 
420.34 6.3 0.002379 -195.3 145.4 
415.31 3.6 0.002408 -199.9 145.9 
410.29 2.2 0.002437 -203.9 146.3 

[C10mim][PF6] 

ln��sat
∗ �o⁄ � = − �
���

� − 
���
�
� �
� − 


��� − ��
� ���� − 1 − ln ��

����, T0 = 436.3 K 
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1 

458.07 115 0.002183 -171.1 146.5 
453.09 74 0.002207 -174.8 147.0 
448.10 48 0.002232 -178.5 147.4 
443.08 30 0.002257 -182.2 147.9 
438.08 19 0.002283 -186.0 148.4 
433.07 12 0.002309 -189.9 148.8 
428.06 7.3 0.002336 -194.0 149.3 
423.05 4.6 0.002364 -197.9 149.8 
418.04 2.6 0.002392 -202.6 150.2 
413.03 1.6 0.002421 -206.6 150.7 

2 

460.61 140 0.002171 -169.5 146.3 
455.58 90 0.002195 -173.1 146.7 
450.58 59 0.002219 -176.7 147.2 
445.58 38 0.002244 -180.3 147.7 
440.58 24 0.002270 -184.1 148.1 
435.57 15 0.002296 -187.9 148.6 
430.57 9.5 0.002323 -191.9 149.1 
425.56 5.8 0.002350 -196.0 149.5 
420.56 3.5 0.002378 -200.2 150.0 
415.55 2.1 0.002406 -204.4 150.4 
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Table S3. The Volumetric Properties of [Cnmim][PF6] Used for ∆∆∆∆l
g
Cp

o
m Calculations. 

IL  
(M, g·mol-1) 

CP
o

m(l), 104
Vm, 104

αT, W, 1010
κT, CP-CV ∆l

gCp
o
m Ref 

 J·K-1·mol-1
 m3·mol-1 K-1 m·s-1

 Pa-1 J·K-1·mol-1  
[C2mim][PF6] 

(256.13) 
353 K 

 1.80 5.94  3.95 56.9 -74 
1 

289       2 

[C4mim][PF6] 
(284.18) 

408.7 2.080 6.056     3 
   1421    4 

  2.078 6.054 1442    5 
    1441    6 
  2.079  1442    7 
  2.078 6.242 1443    8 
  2.078 6.294 1443    9 
  2.078 6.294 1443    10 
  2.080  1444    11 
  2.078 6.247 1442    12 
  2.090      13 
  2.077 5.928     14 
  2.089 5.905     15 
  2.078      16 
  2.082 6.182     17 
  2.078 6.203     18 
  2.080 6.278     19 
  2.077 6.357     20 
  2.078 6.178     21 
  2.080 6.308     22 
  2.079 6.324     23 
  2.078 5.943     24 
  2.078      25 
  2.081 6.159     26 
  2.078 6.225     27 
  2.080 6.313     28 
  2.092 6.638     29 
  2.077      30 
  2.078 6.170     31 
  2.084 5.497     32 
  2.078 6.225     33 
  2.078 5.960     34 

average 408.7 2.080 6.145 1443 4.088 57.3 -74  
[C6mim][PF6] 

(312.24) 
   1424    8 
   1424    9 

    1424    10 
 424       35 
  2.405 9.510     14 
  2.414      36 
  2.414 6.385     37 
  2.414      9 
  2.411 7.073     38 
  2.414 6.416     10 
  2.414 6.211     39 
  2.419 5.890     40 
  2.419 6.184     41 
  2.414 5.987     42 
  2.415 6.165     1 
  2.413 6.493     34 

average 424 2.414 6.303 1424 4.419 64.7 -81  
[C8mim][PF6] 

(340.29) 
 2.754 6.234 1407.8    8 

  2.754 6.234 1408    9 
  2.754 6.234 1408    10 
     4.856   1 
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(312.8K) 
  2.748 6.946  4.880   38 
  2.757 6.073  4.887   40 
  2.780 5.484     15 
  2.751 6.221     43 
  2.758 5.668  4.858   41 
  2.771 10.12     14 
  2.779 6.150     15 
  2.751 6.396     1 
  2.751      44 
  2.756      45 
  2.746      46 
  2.751 6.477     34 

average  2.755 6.248 1408 4.681 68.5 -85  
[C10mim][PF6] 

(368.34) 
 3.132 6.530  5.240 76.0 -93 Estimateda 

a the isothermal compressibility was evaluated according to ref 47, molecular volume and thermal 
expansion were linearly extrapolated according to experimental data from ref 34. 
b [C2mim][PF6] have fusion temperature of 332.8 K and the lowest temperature at which liquid 
density is available is 353.15 K. Therefore, the evaluated heat capacity difference for [C2mim][PF6] 
corresponds to this temperature (T = 353.15 K).  
 

 

TABLE S4 Comparison of Molar Enthalpies of Vaporization for [Cnmim][PF6] Family 

Derived from QCM Method and Results of Predictive Scheme of Deyko et al. 

IL ∆lg�mo (298 K)a ∆lg�mo (298 K)b
 

 kJ⋅mol-1 kJ⋅mol-1 

[C2mim][PF6] 140.0 ± 2.8 160 

[C4mim][PF6] 146.5 ± 2.6 157 

[C6mim][PF6] 150.8 ± 2.7 161 

[C8mim][PF6] 154.9 ± 2.8 169 

[C10mim][PF6] 161.4 ± 2.8 - 
a This work 
b Ref 48 

  



 S7

Table S5. The Results of the Temperature Dependence of Frequency Shift Velocity df/dt of 

the QCM at different T for [C10mim][NTf2] Determination. 
T / K df/dt / Hz·s-1 

TQCM = 303.15 K (Ref 22) 
407.33 0.1307 
402.25 0.07788 
397.30 0.04669 
392.31 0.02762 
387.30 0.01598 
412.37 0.2083 
417.36 0.3315 
422.30 0.5207 
427.35 0.8153 
422.30 0.5307 
417.36 0.3324 
412.37 0.2055 
407.33 0.1277 
402.25 0.07758 
397.30 0.04606 
392.31 0.02759 
422.30 0.5258 
417.19 0.3301 

T / K df/dt / Hz·s-1 
412.20 0.2048 
407.33 0.1264 
402.25 0.07660 
397.30 0.04660 
392.31 0.02759 
422.30 0.5249 
417.19 0.3298 
412.20 0.2042 
407.17 0.1259 
402.25 0.07705 
397.30 0.04643 
392.31 0.02740 
387.30 0.01579 
382.26 0.009400 
TQCM = 306.15 K 
402.94 0.08397 
397.89 0.04971 
392.86 0.02870 
387.83 0.01677 

T / K df/dt / Hz·s-1 
382.82 0.009677 
377.82 0.005511 
372.82 0.003117 
TQCM = 323.15 K 
403.06 0.08435 
398.09 0.04985 
393.08 0.02951 
388.05 0.01693 
383.14 0.009741 
378.07 0.005599 
373.13 0.003189 
TQCM = 343.15 K 
403.06 0.08159 
397.93 0.04954 
392.93 0.02882 
387.90 0.01649 
383.00 0.009563 
377.93 0.005480 
373.00 0.003175 
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Table S6. The Value of K´ Constant Evaluated from the Frequency Change Rates and Vapor 

Pressures of ILs. 

Compound 106
·K´ /  

Pa·s·kg1/2·Hz-1·K-1/2·mol-1/2  

TQCM / K References 

[C1C1im][NTf2] 7.363 323.15 49,50 

[C2C1im][NTf2] 11.34 303.15 51, 52 

[C3C1im][NTf2] 11.18 303.15 51, 49 

[C4C1im][NTf2] 8.886 303.15 51, 53 

[C5C1im][NTf2] 7.132 303.15 51, 49 

[C6C1im][NTf2] 8.071 303.15 51, 53 

[C7C1im][NTf2] 6.817 303.15 51, 49 

[C8C1im][NTf2] 7.532 303.15 51, 53 

[C10C1im][NTf2] 13.90 303.15 51, 53 

[C10C1im][NTf2] 12.27 306.15 51, this work 

[C10C1im][NTf2] 11.59 323.15 51, this work 

[C10C1im][NTf2] 12.72 343.15 51, this work 

[C12C1im][NTf2] 7.494 303.15 51, 53 

[C2Py][NTf2] 8.059 303.15 54, 55 

[C3Py][NTf2] 6.370 303.15 54, 55 

[C4Py][NTf2] 7.896 303.15 54, 55 

[C2C2im][NTf2] 9.020 313.15 56 

[C4C4im][NTf2] 11.24 313.15 56 

[C6C6im][NTf2] 11.80 313.15 56 

Average 9.5 ± 1.1   
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Table S7. The Solution Calorimetry Results. 

m / mmol·kg-1 ∆solnH / kJ·mol-1 

LiPF6 (cr) 

0.0185 -21.87 

0.0474 -23.55 

0.0298 -21.28 

mean value -22.23 ± 1.9 

[C2mim][PF6] (cr) 

0.00684 46.36 

0.00992 45.85 

0.00740 45.54 

0.01411 45.82 

0.00887 46.45 

mean value 46.00 ± 0.7 
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Table S8. G3MP2 Total Energies at 0 K and Enthalpies at 298.15 K (in Hartree) of the 

Molecules Studied in This Work 

Compounds 
G3MP2 

E0 H298 
[C2mim][PF6] -1283.874044 -1283.856483 
[C3mim][PF6] -1323.109917 -1323.090904 
[C4mim][PF6] -1362.345172 -1362.324749 

 

 

DLPNO-CCSD(T) calculations. 
Geometry optimization of [C2mim][PF6] was carried out at B3LYP/def2-TZVP level of theory57-58 
with D3 dispersion correction59 and Becky-Jonson damping.60 The same level of theory was used 
while computing the spectral properties of the molecules. The initial geometry of the close ion pair 
was taken from the results of quantum chemical study.61 
Total energies for all reaction participants were obtain from DLPNO-CCSD(T) method.62 It has to 
be noted that the total energies have to be extrapolated to complete basis set (CBS),63 to minimize 
basis set incompleteness error (BSIE). We used the direct extrapolation, where two single point 
calculations DLPNO-CCSD(T) with def2-TZVPP and def2-QZVPP basis sets were performed.58 
Subsequently Hartree—Fock and correlation energies were extrapolated to CBS.63 Thermal 
correction was calculated at rigid rotator, harmonic oscillator approximation. All computations were 
carried out by using ORCA 3.0.2 package.64 Results of DFT calculations are listed in Table S9. 
Enthalpies of formation were calculated using isodesmic reactions R1-R7. The total energies, ZPVE 
and thermal corrections, as well as the enthalpies of formation for reaction participants can be found 
in Table S10. 
 
Table S9. The Computed Enthalpies of Formation for [C2mim][PF6] in the ideal Gas Phase, 

kJ·mol
-1

. 

# Reaction ∆f�mo �g� 
R1 1-methyl-imidazole + C2H5Cl + HF + PF5 = [C2mim][PF6] + HCl -1916.9 
R2 1-methyl-imidazole + C2H5Br + HF + PF5 = [C2mim][PF6] + HBr -1919.4 
R3 1-methyl-imidazole + C2H4 + HF + PF5 = [C2mim][PF6] -1922.7 
R4 10 C2H6 + 2 NH3 + HF + PF5 = [C2mim][PF6] + 14 CH4 -1907.9 
R5 1-methyl-imidazole + C2F6 + PH3 + 2 CH4 = [C2mim][PF6] + C2H6 -1923.5 

R6 
α,α,α-Trifluorotoluene + N2H4 + PH3 + 2 H2 = 

= [C2mim][PF6] + Benzene + C2H4 
-1908.8 

R7 α,α,α-Trifluorotoluene + 2 NH3 + PH3= [C2mim][PF6] + Benzene + C2H2 -1906.6 
Average value -1915.1 
Max absolute deviation from the experimental value 8.9 
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Table S10. DLPNO-CCSD(T) Calculation of the Enthalpy of Formation in the Ideal Gas 

State for [C2mim][PF6] 

Compound Etot (DLPNO-
CCSD(T)/CBS) 

/ Hartree 

ZPVE / 
Hartree 

∆0
298.15

H
o
m / 

Hartree 
∆fH

o
m Ref. 

[C2mim][PF6] -1284.215917 0.18937777 0.01692281   
1-methyl-
imidazole 

-265.1878677 0.09868266 0.0062762 125.7 ± 1.1 65 

PF5 -840.0586287 0.01685823 0.00629413 -1593.3 ± 1.3 66 

C2H5Cl -538.8907179 0.06609793 0.00505754 -107.53 66 

C2H5Br -2651.802376 0.06555812 0.00518868 -61.92 66 

HCl -460.3812509 0.00668729 0.00330467 -92.30 ± 0.04 66 

HBr -2573.289607 0.00596257 0.0033047 -36.28 ± 0.38 66 

HF -100.3940024 0.0092883 0.00330466 -272.55 66 

C2H4 -78.47522598 0.05096598 0.00397964 52.47 ± 0.33 66 

CH4 -40.45888678 0.04452669 0.00381313 -74.81 ± 0.33 66 

C2H6 -79.71365038 0.07434774 0.00448048 -84.73 ± 0.50 66 

NH3 -56.50552157 0.03414853 0.00381525 -46.19 ± 0.29 66 

PH3 -342.7196479 0.02384987 0.00385363 5.44 ± 1.67 66 

N2H4 -111.7587839 0.05323249 0.00418121 95.27 ± 0.42 66 

C2F6 -674.8392266 0.02903141 0.00763643 -1344 ± 5 66 

C6H6 -231.9085784 0.10005518 0.00535819 82.9 ± 0.9 66 

C2H2 -77.22172974 0.02539188 0.00363424 226.73 ± 0.8 66 

α,α,α-
Trifluorotoluene 

-568.7381751 0.10470475 0.00797571 -587.7 ± 1.2 67-68 

H2 -1.174678204 0.01007058 0.00330466 0  
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Figure S1. Temperature dependence of deviation of the experimental frequency change rates at 

different temperatures of the QCM sensor for [C10mim][NTf2]: 

  - results at T = 303.15 K;53  - results at T = 306.15 K; + results at T = 323.15 K;  results at 

T = 343.15 K. 
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Figure S2. The IR spectra for [C2mim][PF6] during enthalpy of vaporization investigation with 
QCM method 
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Figure S3. The IR spectra for [C4mim][PF6] during enthalpy of vaporization investigation with 
QCM method 
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Figure S4. The IR spectra for [C6mim][PF6] during enthalpy of vaporization investigation with 
QCM method 



 16

 
Figure S5. The IR spectra for [C8mim][PF6] during enthalpy of vaporization investigation with 
QCM method 
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Figure S6. The IR spectra for [C10mim][PF6] during enthalpy of vaporization investigation with 
QCM –method  
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Figure S7. Conformation of [C2mim][PF6] with minimal energy. 
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