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Appendix 1. PharmMapper Server.

PharmMapper server is a freely accessed web server designed to identify potential
target candidates for the given small molecules (drugs, natural products or other
newly discovered compounds with unidentified binding targets) using pharmacophore
mapping approach. PharmMapper hosts a large, in-house repertoire of pharmacophore
database (namely PharmTargetDB) annotated from all the targets information in
TargetBank, BindingDBl, DmgBank2 and potential drug target database, including
over 7000 receptor-based pharmacophore models (covering over 1500 drug targets
information). PharmMapper automatically finds the best mapping poses of the query
molecule against all the pharmacophore models in PharmTargetDB and lists the top N
best-fitted hits with appropriate target annotations, as well as respective molecule’s
aligned poses are presented.

Pharmacophore Databases Construction. PharmMapper requires a sufficient
number of available pharmacophore models describing the binding modes of known
ligands at the binding sites of protein targets. The target protein structures
co-complexed with small molecules were carefully selected from DrugBank,
BindingDB, PDBBind’ and our PDTD* databases. Only those proteins with available
3D crystal structures were selected and used for pharmacophore model extraction.

LigandScout’ was used in the process of pharmacophore model derivation. Each
ligand binding site was manually analyzed after generation of corresponding
pharmacophore model and the corresponding shape was characterized by several
excluded volumes centered at each residue of the binding pocket. All the small ligands
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with molecular weight lower than 100, such as solvents, buffers and metal cations,
and all the cofactors with molecular weight over 600, such as CoAs, polypeptides and
nucleic acids were regarded as ‘environment atoms’ instead of binding ligands. For
the proteins existing as homopolymers, only one monomer was reserved for analysis.
For the proteins determined by NMR with multiple structure models, only the first
model was selected for pharmacophore generation. As a result, we generated 7302
pharmacophore models and deposited them in PharmTargetDB.

Pharmacophore Mapping Algorithm. PharmMapper is based on semi-flexible
fitting strategy for efficiency, multiple conformers of the given ligand are necessary.
The conformational generation process can be performed either online (by in-house
conformational analysis program, Cyndi®) or offline (by uploading user-specified
conformational ensemble generated by third-party conformational analysis methods).
In addition, the ligand is assigned with a set of physico-chemical features
corresponding to the seven pharmacophore features characterized in PharmTargetDB
according to predefined topological-based atom typing rules. In the second stage, each
triplet of feature points (e.g., H-H-H, H-HBA-HBD) is enumerated and stored in a
hash table for both pharmacophore models and ligand conformers. For vector features
(HBA, HBD and A), the projected points of the feature atoms are also involved. The
three feature types of the vertexes in the triangle and the corresponding length of each
edge are encoded as the searching index in the triangle hashing table. This method is
similar to the concept of “geometric hashing” which has been widely used in
pharmacophore mapping and molecular alignment’. In the third stage, each query
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triangle from ligand is checked against the pre-computed triangle ensemble of the
target pharmacophore models in the TriHash table to verify if the features of
corresponding three vertexes are identical; meanwhile, the lengths of the triangle
edges are queried against the hash table to check whether their differences are within
the adjustable tolerance threshold. Therefore, the feature triangles can be efficiently
compared to check if they are congruent. For each pair of matched triangles, a Kabsch
algorithm8 was implemented to achieve the optimal alignment between the two
triangles. For each alignment, the fit value score is calculated to evaluate the pairwise
alignment between the ligand pose and pharmacophore model. In the last stage, all the
binding poses are ranked according to respective fit scores in descending order and
only the top one pose was reserved, which wrapped up a mapping process for one
target candidate.

To evaluate the alignments between pharmacophores and ligand conformations, a
distance-dependent score is defined. The score, which only depends on the relative
positions of each pair of feature points from the pharmacophore and ligand
respectively, is the weighted sum of point score and vector score in the form of

equations (1) and (2) as follows:

n .| [4@
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The fit score between the ligand’s point feature p and corresponding one in
pharmacophore model is normalized to the range of [0, 1], according to whether the

distance d(p)i between these two points exceeds the corresponding matching tolerance
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value T(p)i.

The point score is essentially obtained by calculating the Euclidian distances
between each pair of points with the same type, and is scaled to the range of 0 to 1
with a binomial function. The vector score, on the other hand, is the same type of
point score calibrated by the direction difference between the aligned vectors as

depicted in equation (2):
VectorScore = z w.F'(v),*cos )
i=1

Where F(v)i has the same format as F(p)i and 6 is the angle between the two vectors

from the matching pair of vector features in the ligand and pharmacophore.

The penalty score is calculated in the same way as Point Score does. It’s a
weighted sum of point scores between the heavy atoms in the ligand and the excluded
volumes in the pharmacophore as calculated with equation (1). By default, all the
weights of exclude volumes are identical if we don’t know which residues are more
flexible upon the ligand’s binding.

The final fit score is a weighted summation of PointScore and VectorScore
subtracting the penalty score. The algorithm uses default weight values for each
feature type (1.0 for both point and vector features), unless other values are provided

by the user.
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Appendix 2. DrugBank Test Set Performance.

The results of Z’-score and fit score for DrugBank test set are shown in Table S6.
It can be observed that fit score was able to correctly predict 289 of 2080, or 13.9%,
of the drug-target associations at top 1% rank stage, while Z’-score produced a higher
accuracy at the same rank stage (379/2080), agreeing with the conclusion obtained
through the previous examples that Z’-transformation performs much better than
simple fit score, particularly at early stages. Moreover, for all the 2080 drug-target
pairs, among which 1295 pairs were improved by Z’-score, while 767 pairs saw a
decrease in their rankings. This might be due to the reason that the number of valid
PharmMapper fit scores for some targets in the ligand-target matrix is not large
enough to reflect the distribution of the corresponding target in the background
database.

Detailed analysis of specific drugs further highlights the potential of Z’-score. For
example, quinolinic acid (QA, DrugBank ID DB01796) is a metabolite of tryptophan
with a possible role in neurodegenerative disorders. The crystal structure of quinolinic
acid phosphoribosyltransferase (QAPRTase) bound with QA (PDB code 1QAP)9 is
present in our pharmacophore database. With Z’-score, the ranking of QAPRTase was
improved significantly comparing with fit score (from 275 to 30).
2,4-Diamino-6-[N-(3',4',5'-Trimethoxybenzyl)-N-Methylamino]Pyrido[2,3-D]Pyrimid
ine (DB02919), another molecule in DrugBank test set, was reported to be an
inhibitor of dihydrofolate reductase (DHFR). Likewise, the protein structure of DHFR
in complex with DB02919 (PDB code IMVT)" was involved in PharmTargetDB.

S6



The ranking of DHFR was also improved a lot by Z’-score comparing with fit score

(from 204 to 13).
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Appendix 3. Targets Distribution in Background Database.

For testing the Gaussianity of target T distribution we propose to use the statistical
analysis tool Jarque-Bera test (JB test)'’. The JB test evaluates the hypothesis that the
input data vector X has a normal distribution with unspecified mean and variance
against the alternative that X does not follow a normal distribution. The test statistic

JB is defined by:

(k —3)?

JB == (s + )

Where 7 is the sample size, s and k stand for skewness and kurtosis, respectively.

The p values for the jbtest were evaluated in MATLAB using its standard
procedure “jbtest”, which is described as [h,p] = jbtest(x,alpha), where x: the sample
column vector; alpha: significance level of the hypothesis test. If the returned test
decision (#) is 1, reject hypothesis Hy, and 0 otherwise.

Histograms and normal probability plots were also used to visually measure if the
data fits a normal density function. The former plots a histogram of values in data
using the number of bins equal to the square root of the number of elements in data,
where the axis X means the Z’-scores of the specific target 7, and the axis Y means the
frequency of Z’-scores. The latter depicts the empirical cumulative distribution of the
sample data versus the theoretical cumulative distribution function of a normal
distribution. The horizontal axis plots the sorted Z’-score, and the vertical axis plots
the normal order statistic medians. If the data has a normal distribution, then the plot

appears linear. Distributions other than normal would introduce curvature in the plot.
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Table S7 shows the results of MATLAB jbtest function for the Z-scores of target 7.
As can be seen, 505 targets are normally distributed and this fact supports visual
observations (histograms and normal probability plots for individual targets can be

accessed via PharmMapper http://lilab.ecust.edu.cn/pharmmapper/download.php). For

the rest targets of PharmTargetDB, JB tests produce significantly low p values,
indicating that all of which are not normally distributed. However, although Z-scores
vector of most targets fail to satisfy the JB test, it can still reflect the distribution of
the background database to some extent (see the histograms and normal probability

plots), and thus could be used to discriminate the simple fit scores.
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Figure S1. Comparison of ROC curves of fit score and Z’-score for target

identification of S-Adenosyl-L-Homocysteine.
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Table S2. Targets identified for S-Adenosyl-L-homocysteine by Z’-score and fit score

at 0.5% FPR.

Z’-score Fit score
Rank PDB ID FPR% Rank PDB ID FPR%
3 1AQJ 0.03 4 INW7 0.05
12 INW7 0.16 16 1AQJ 0.22
18 1BOO 0.24 / / /
27 IPJT 0.36 / / /
28 IL1E 0.36 / / /

29 IMXI 0.36 / / /
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Table S3. Details of ROCE of Z’-score and fit score in target identification of the

DrugBank subset at different stages. The step size of rank was set to 0.1%.

Z'-score Fit score
Rank%

TPR% FPR%  ROCE TPR% FPR% ROCE

0.1 4.47 0.10 45.11 2.84 0.10 28.52
0.2 7.55 0.20 38.02 4.95 0.20 24.88
0.3 9.76 0.30 32.74 6.49 0.30 21.72
0.4 11.63 0.40 29.25 7.69 0.40 19.30
0.5 12.88 0.50 25.90 9.38 0.50 18.82
0.6 14.28 0.60 2391 10.38 0.60 17.36
0.7 15.48 0.70 22.21 11.35 0.70 16.26
0.8 16.54 0.80 20.76 12.26 0.80 15.37
0.9 17.50 0.90 19.52 13.08 0.90 14.57
1 18.22 1.00 18.28 13.89 1.00 13.92
2 25.19 2.00 12.63 20.72 2.00 10.37

3 29.95 2.99 10.00 26.39 3.00 8.81

4 33.13 3.99 8.29 29.66 4.00 7.42

5 36.78 4.99 7.37 32.84 5.00 6.57

6 39.33 5.99 6.56 34.86 6.00 5.81

7 41.44 6.99 5.93 38.08 7.00 5.44

8 44.33 7.99 5.55 40.96 8.00 5.12

9 46.97 8.99 5.22 42.55 9.00 4.73
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Table S4. Area under curves achieved by 7Z’-score, fit score and random way.

Rank % AUCz % AUCF % AUCz/AUC, AUCH/AUC, AUCz/AUCF
0.1 0.00 0.00 90.47 57.13 1.58
0.2 0.01 0.01 60.70 39.19 1.55
0.3 0.02 0.01 48.81 31.91 1.53
0.4 0.03 0.02 42.09 27.59 1.53
0.5 0.05 0.03 37.29 25.19 1.48
0.6 0.06 0.04 33.86 23.28 1.45
0.7 0.08 0.05 31.22 21.75 1.44
0.8 0.09 0.07 29.09 20.49 1.42
0.9 0.11 0.08 27.32 19.43 1.41

1 0.13 0.09 25.78 18.52 1.39
2 0.35 0.27 17.69 13.38 1.32
3 0.63 0.51 14.10 11.28 1.25
4 0.95 0.79 11.93 9.87 1.21
5 1.31 1.10 10.47 8.84 1.19
6 1.69 1.44 9.40 8.03 1.17
7 2.09 1.81 8.57 7.39 1.16
8 2.52 2.20 7.90 6.90 1.15
9 2.98 2.62 7.38 6.48 1.14
10 3.47 3.06 6.95 6.12 1.13
25 12.93 11.69 4.14 3.74 1.11
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50 33.80 32.07 2.71 2.57 1.05

75 57.99 56.08 2.06 1.99 1.03

100 82.99 81.08 1.66 1.62 1.02

S15



Table SS. Details and ROC curve and number of true positives of Z’-score and fit
score in target identification of the ChEMBL subset at different stages. The step size

of rank was set to 0.1%.

Z'-score Fit score
Rank%
TPR% FPR% ROCE TP TPR% FPR% ROCE TP
0.1 5.36 0.10 5395 135 4.13 0.10 41.50 104
0.2 7.27 0.20 36.49 183 5.92 0.20 29.69 149
0.3 9.21 0.30 30.82 232 7.23 0.30 24.16 182

0.4 10.41 0.40 26.09 262 8.38 0.40 21.00 211

0.5 11.40 0.50 22.85 287 9.53 0.50 19.10 240

0.6 12.51 0.60 2090 315 10.44 0.60 17.44 263

0.7 13.74 0.70 19.67 346 11.08 0.70 15.86 279

0.8 14.50 0.80 18.16 365 12.11 0.80 15.17 305

0.9 15.45 0.90 17.20 389 13.03 0.90 14.50 328

1 16.04 1.00 16.07 404 13.90 1.00 13.92 350
2 22.00 2.00 11.01 554 19.42 2.00 9.72 489
3 26.29 3.00 877 662  23.71 3.00 7.91 597
4 29.63 4.00 741 746  26.81 4.00 6.71 675
5 33.28 5.00 6.66 838  29.98 5.00 6.00 755
6 35.90 6.00 599 904 3249 6.00 542 818
7 38.17 7.00 5.46 961 34.51 7.00 4.93 869

8 40.47 8.00 5.06 1019 36.46 8.00 4.56 918
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