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Appendix 1. PharmMapper Server. 

PharmMapper server is a freely accessed web server designed to identify potential 

target candidates for the given small molecules (drugs, natural products or other 

newly discovered compounds with unidentified binding targets) using pharmacophore 

mapping approach. PharmMapper hosts a large, in-house repertoire of pharmacophore 

database (namely PharmTargetDB) annotated from all the targets information in 

TargetBank, BindingDB
1
, DrugBank

2
 and potential drug target database, including 

over 7000 receptor-based pharmacophore models (covering over 1500 drug targets 

information). PharmMapper automatically finds the best mapping poses of the query 

molecule against all the pharmacophore models in PharmTargetDB and lists the top N 

best-fitted hits with appropriate target annotations, as well as respective molecule’s 

aligned poses are presented. 

Pharmacophore Databases Construction. PharmMapper requires a sufficient 

number of available pharmacophore models describing the binding modes of known 

ligands at the binding sites of protein targets. The target protein structures 

co-complexed with small molecules were carefully selected from DrugBank, 

BindingDB, PDBBind
3
 and our PDTD

4
 databases. Only those proteins with available 

3D crystal structures were selected and used for pharmacophore model extraction. 

LigandScout
5
 was used in the process of pharmacophore model derivation. Each 

ligand binding site was manually analyzed after generation of corresponding 

pharmacophore model and the corresponding shape was characterized by several 

excluded volumes centered at each residue of the binding pocket. All the small ligands 
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with molecular weight lower than 100, such as solvents, buffers and metal cations, 

and all the cofactors with molecular weight over 600, such as CoAs, polypeptides and 

nucleic acids were regarded as ‘environment atoms’ instead of binding ligands. For 

the proteins existing as homopolymers, only one monomer was reserved for analysis. 

For the proteins determined by NMR with multiple structure models, only the first 

model was selected for pharmacophore generation. As a result, we generated 7302 

pharmacophore models and deposited them in PharmTargetDB. 

Pharmacophore Mapping Algorithm. PharmMapper is based on semi-flexible 

fitting strategy for efficiency, multiple conformers of the given ligand are necessary. 

The conformational generation process can be performed either online (by in-house 

conformational analysis program, Cyndi
6
) or offline (by uploading user-specified 

conformational ensemble generated by third-party conformational analysis methods). 

In addition, the ligand is assigned with a set of physico-chemical features 

corresponding to the seven pharmacophore features characterized in PharmTargetDB 

according to predefined topological-based atom typing rules. In the second stage, each 

triplet of feature points (e.g., H-H-H, H-HBA-HBD) is enumerated and stored in a 

hash table for both pharmacophore models and ligand conformers. For vector features 

(HBA, HBD and A), the projected points of the feature atoms are also involved. The 

three feature types of the vertexes in the triangle and the corresponding length of each 

edge are encoded as the searching index in the triangle hashing table. This method is 

similar to the concept of “geometric hashing” which has been widely used in 

pharmacophore mapping and molecular alignment
7
. In the third stage, each query 
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triangle from ligand is checked against the pre-computed triangle ensemble of the 

target pharmacophore models in the TriHash table to verify if the features of 

corresponding three vertexes are identical; meanwhile, the lengths of the triangle 

edges are queried against the hash table to check whether their differences are within 

the adjustable tolerance threshold. Therefore, the feature triangles can be efficiently 

compared to check if they are congruent. For each pair of matched triangles, a Kabsch 

algorithm
8
 was implemented to achieve the optimal alignment between the two 

triangles. For each alignment, the fit value score is calculated to evaluate the pairwise 

alignment between the ligand pose and pharmacophore model. In the last stage, all the 

binding poses are ranked according to respective fit scores in descending order and 

only the top one pose was reserved, which wrapped up a mapping process for one 

target candidate. 

To evaluate the alignments between pharmacophores and ligand conformations, a 

distance-dependent score is defined. The score, which only depends on the relative 

positions of each pair of feature points from the pharmacophore and ligand 

respectively, is the weighted sum of point score and vector score in the form of 

equations (1) and (2) as follows: 
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The fit score between the ligand’s point feature p and corresponding one in 

pharmacophore model is normalized to the range of [0, 1], according to whether the 

distance d(p)i between these two points exceeds the corresponding matching tolerance 
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value T(p)i.  

The point score is essentially obtained by calculating the Euclidian distances 

between each pair of points with the same type, and is scaled to the range of 0 to 1 

with a binomial function. The vector score, on the other hand, is the same type of 

point score calibrated by the direction difference between the aligned vectors as 

depicted in equation (2): 

1

VectorScore ( ) cos
n

i i
i

w F v θ
=

= ∗∑                     (2) 

Where F(v)i has the same format as F(p)i and θ is the angle between the two vectors 

from the matching pair of vector features in the ligand and pharmacophore. 

The penalty score is calculated in the same way as Point Score does. It’s a 

weighted sum of point scores between the heavy atoms in the ligand and the excluded 

volumes in the pharmacophore as calculated with equation (1). By default, all the 

weights of exclude volumes are identical if we don’t know which residues are more 

flexible upon the ligand’s binding. 

The final fit score is a weighted summation of PointScore and VectorScore 

subtracting the penalty score. The algorithm uses default weight values for each 

feature type (1.0 for both point and vector features), unless other values are provided 

by the user. 

  



S6 

 

Appendix 2. DrugBank Test Set Performance. 

The results of Z’-score and fit score for DrugBank test set are shown in Table S6. 

It can be observed that fit score was able to correctly predict 289 of 2080, or 13.9%, 

of the drug-target associations at top 1% rank stage, while Z’-score produced a higher 

accuracy at the same rank stage (379/2080), agreeing with the conclusion obtained 

through the previous examples that Z’-transformation performs much better than 

simple fit score, particularly at early stages. Moreover, for all the 2080 drug-target 

pairs, among which 1295 pairs were improved by Z’-score, while 767 pairs saw a 

decrease in their rankings. This might be due to the reason that the number of valid 

PharmMapper fit scores for some targets in the ligand-target matrix is not large 

enough to reflect the distribution of the corresponding target in the background 

database. 

Detailed analysis of specific drugs further highlights the potential of Z’-score. For 

example, quinolinic acid (QA, DrugBank ID DB01796) is a metabolite of tryptophan 

with a possible role in neurodegenerative disorders. The crystal structure of quinolinic 

acid phosphoribosyltransferase (QAPRTase) bound with QA (PDB code 1QAP)
9
 is 

present in our pharmacophore database. With Z’-score, the ranking of QAPRTase was 

improved significantly comparing with fit score (from 275 to 30). 

2,4-Diamino-6-[N-(3',4',5'-Trimethoxybenzyl)-N-Methylamino]Pyrido[2,3-D]Pyrimid

ine (DB02919), another molecule in DrugBank test set, was reported to be an 

inhibitor of dihydrofolate reductase (DHFR). Likewise, the protein structure of DHFR 

in complex with DB02919 (PDB code 1MVT)
10

 was involved in PharmTargetDB. 
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The ranking of DHFR was also improved a lot by Z’-score comparing with fit score 

(from 204 to 13). 

 

  



S8 

 

Appendix 3. Targets Distribution in Background Database. 

For testing the Gaussianity of target T distribution we propose to use the statistical 

analysis tool Jarque-Bera test (JB test)
11

. The JB test evaluates the hypothesis that the 

input data vector X has a normal distribution with unspecified mean and variance 

against the alternative that X does not follow a normal distribution. The test statistic 

JB is defined by: 

JB =
�

6
(�� +

(
 − 3)�

4
) 

Where n is the sample size, s and k stand for skewness and kurtosis, respectively. 

The p values for the jbtest were evaluated in MATLAB using its standard 

procedure “jbtest”, which is described as [h,p] = jbtest(x,alpha), where x: the sample 

column vector; alpha: significance level of the hypothesis test. If the returned test 

decision (h) is 1, reject hypothesis H0, and 0 otherwise.  

Histograms and normal probability plots were also used to visually measure if the 

data fits a normal density function. The former plots a histogram of values in data 

using the number of bins equal to the square root of the number of elements in data, 

where the axis X means the Z’-scores of the specific target T, and the axis Y means the 

frequency of Z’-scores. The latter depicts the empirical cumulative distribution of the 

sample data versus the theoretical cumulative distribution function of a normal 

distribution. The horizontal axis plots the sorted Z’-score, and the vertical axis plots 

the normal order statistic medians. If the data has a normal distribution, then the plot 

appears linear. Distributions other than normal would introduce curvature in the plot. 
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Table S7 shows the results of MATLAB jbtest function for the Z-scores of target T. 

As can be seen, 505 targets are normally distributed and this fact supports visual 

observations (histograms and normal probability plots for individual targets can be 

accessed via PharmMapper http://lilab.ecust.edu.cn/pharmmapper/download.php). For 

the rest targets of PharmTargetDB, JB tests produce significantly low p values, 

indicating that all of which are not normally distributed. However, although Z-scores 

vector of most targets fail to satisfy the JB test, it can still reflect the distribution of 

the background database to some extent (see the histograms and normal probability 

plots), and thus could be used to discriminate the simple fit scores.  
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Figure S1. Comparison of ROC curves of fit score and Z’-score for target 

identification of S-Adenosyl-L-Homocysteine. 

  



S11 

 

Table S2. Targets identified for S-Adenosyl-L-homocysteine by Z’-score and fit score 

at 0.5% FPR. 

Z’-score Fit score 

Rank PDB ID FPR% Rank PDB ID FPR% 

3 1AQJ 0.03 4 1NW7 0.05 

12 1NW7 0.16 16 1AQJ 0.22 

18 1BOO 0.24 / / / 

27 1PJT 0.36 / / / 

28 1L1E 0.36 / / / 

29 1MXI 0.36 / / / 
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Table S3. Details of ROCE of Z’-score and fit score in target identification of the 

DrugBank subset at different stages. The step size of rank was set to 0.1%. 

Rank% 

Z'-score Fit score 

TPR% FPR% ROCE TPR% FPR% ROCE 

0.1 4.47  0.10  45.11  2.84  0.10  28.52  

0.2 7.55  0.20  38.02  4.95  0.20  24.88  

0.3 9.76  0.30  32.74  6.49  0.30  21.72  

0.4 11.63  0.40  29.25  7.69  0.40  19.30  

0.5 12.88  0.50  25.90  9.38  0.50  18.82  

0.6 14.28  0.60  23.91  10.38  0.60  17.36  

0.7 15.48  0.70  22.21  11.35  0.70  16.26  

0.8 16.54  0.80  20.76  12.26  0.80  15.37  

0.9 17.50  0.90  19.52  13.08  0.90  14.57  

1 18.22  1.00  18.28  13.89  1.00  13.92  

2 25.19  2.00  12.63  20.72  2.00  10.37  

3 29.95  2.99  10.00  26.39  3.00  8.81  

4 33.13  3.99  8.29  29.66  4.00  7.42  

5 36.78  4.99  7.37  32.84  5.00  6.57  

6 39.33  5.99  6.56  34.86  6.00  5.81  

7 41.44  6.99  5.93  38.08  7.00  5.44  

8 44.33  7.99  5.55  40.96  8.00  5.12  

9 46.97  8.99  5.22  42.55  9.00  4.73  
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10 49.90  9.99  4.99  44.38  10.00  4.44  

25 73.46  24.99  2.94  69.04  25.01  2.76  

50 90.82  49.99  1.82  90.10  50.03  1.80  

75 98.61  75.00  1.31  98.46  75.05  1.31  

100 100.00  99.00  1.01  100.00  99.08  1.01  
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Table S4. Area under curves achieved by Z’-score, fit score and random way.  

Rank % AUCZ' % AUCF % AUCZ'/AUCr AUCF/AUCr AUCZ'/AUCF 

0.1 0.00  0.00  90.47  57.13  1.58  

0.2 0.01  0.01  60.70  39.19  1.55  

0.3 0.02  0.01  48.81  31.91  1.53  

0.4 0.03  0.02  42.09  27.59  1.53  

0.5 0.05  0.03  37.29  25.19  1.48  

0.6 0.06  0.04  33.86  23.28  1.45  

0.7 0.08  0.05  31.22  21.75  1.44  

0.8 0.09  0.07  29.09  20.49  1.42  

0.9 0.11  0.08  27.32  19.43  1.41  

1 0.13  0.09  25.78  18.52  1.39  

2 0.35  0.27  17.69  13.38  1.32  

3 0.63  0.51  14.10  11.28  1.25  

4 0.95  0.79  11.93  9.87  1.21  

5 1.31  1.10  10.47  8.84  1.19  

6 1.69  1.44  9.40  8.03  1.17  

7 2.09  1.81  8.57  7.39  1.16  

8 2.52  2.20  7.90  6.90  1.15  

9 2.98  2.62  7.38  6.48  1.14  

10 3.47  3.06  6.95  6.12  1.13  

25 12.93  11.69  4.14  3.74  1.11  
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50 33.80  32.07  2.71  2.57  1.05  

75 57.99  56.08  2.06  1.99  1.03  

100 82.99  81.08  1.66  1.62  1.02  
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Table S5. Details and ROC curve and number of true positives of Z’-score and fit 

score in target identification of the ChEMBL subset at different stages. The step size 

of rank was set to 0.1%. 

Rank% 

Z'-score Fit score 

TPR% FPR% ROCE TP TPR% FPR% ROCE TP 

0.1 5.36  0.10  53.95 135 4.13  0.10  41.50 104 

0.2 7.27  0.20  36.49 183 5.92  0.20  29.69 149 

0.3 9.21  0.30  30.82 232 7.23  0.30  24.16 182 

0.4 10.41  0.40  26.09 262 8.38  0.40  21.00 211 

0.5 11.40  0.50  22.85 287 9.53  0.50  19.10 240 

0.6 12.51  0.60  20.90 315 10.44  0.60  17.44 263 

0.7 13.74  0.70  19.67 346 11.08  0.70  15.86 279 

0.8 14.50  0.80  18.16 365 12.11  0.80  15.17 305 

0.9 15.45  0.90  17.20 389 13.03  0.90  14.50 328 

1 16.04  1.00  16.07 404 13.90  1.00  13.92 350 

2 22.00  2.00  11.01 554 19.42  2.00  9.72 489 

3 26.29  3.00  8.77 662 23.71  3.00  7.91 597 

4 29.63  4.00  7.41 746 26.81  4.00  6.71 675 

5 33.28  5.00  6.66 838 29.98  5.00  6.00 755 

6 35.90  6.00  5.99 904 32.49  6.00  5.42 818 

7 38.17  7.00  5.46 961 34.51  7.00  4.93 869 

8 40.47  8.00  5.06 1019 36.46  8.00  4.56 918 
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9 42.89  9.00  4.77 1080 39.08  9.00 4.34 984 

10 45.47  10.00 4.55 1145 40.91  10.00 4.09 1030 

25 68.23  24.99 2.73 1718 64.85  25.00 2.59 1633 

50 89.56  50.00 1.79 2255 87.49  50.00 1.75 2203 

75 99.56  75.00 1.33 2507 99.17  75.00 1.32 2497 

100 100.00  100.00  1.00 2518 100.00  100.00  1.00 2518 
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