Biaryl Synthesis via Direct Arylation: Establishment of an Efficient Catalyst for Intramolecular Processes

Louis-Charles Campeau, Mathieu Parisien, Melissa Leblanc & Keith Fagnou*

Center for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5 Keith.Fagnou@science.uottawa.ca

Supporting Information

General Methods. All experiments were carried out under an atmosphere of nitrogen. ¹H and ¹³C NMR were recorded in CDCl₃ solutions using a Bruker AVANCE 300 spectrometer with Me₄Si as an internal standard. High-resolution mass spectra were obtained on a Kratos Concept IIH. Infra-Red analysis was performed with a Bruker EQUINOX 55. Unless otherwise specified, all reagents and solvents were used as is from commercial sources.

Bromo ethers 7 and 15¹, 11², 3³ were prepared according to the general procedure and exhibited spectral data identical to literature values¹⁻³ Cyclization precursors 21⁴ and 19⁵ were prepared according, and exhibited spectral data identical, to literature.⁴⁻⁵

General procedure for the synthesis of bromo ethers 3, 7, 9, 11, 13, 15, 17:

To a mixture of K_2CO_3 (4.4g, 32mmol, 2eq.) and 4-chloro phenol (6.2g, 48mmol, 3eq.) was added 30mL of acetone in a 100mL round bottom flask equipped with a mechanical stir bar. To the stirring mixture was added 2-bromobenzyl bromide (4g, 16mmol, 1eq.) followed by heating to $50^{\circ}C$ overnight. The reaction mixture was then poured into a NaOH (2N) solution and extracted with ethyl acetate. The organic extracts were dried over MgSO₄, and concentrated under reduced pressure. Purification was done by flash chromatography using 15% ethyl acetate in hexanes to afford (2-Bromo phenyl)methyl 4-chlorophenyl ether 15° , as a clear oil in 90% yield (4.27g).

1-(2-Bromo-benzyloxy)-p-toluene (9)

 R_f = 0.64 on silica gel (5% EtOAc:Hexanes); IR (v_{max} /cm⁻¹) 3029 (weak), 1510, 1237, 1024, 816, 745; ¹H NMR (300MHz, CDCl₃, 293K, TMS): 2.26 (3H, s), 5.06 (2H, s), 6.85 (2H, m), 7.10 (3H, m), 7.27 (1H, td, J=8Hz & J=1Hz), 7.52 (2H, m); ¹³C NMR (75MHz, CDCl₃, 293K, TMS): 20.47, 69.37, 114.65, 122.17, 127.46, 128.78, 129.04, 129.93, 130.32, 132.49, 136.49, 156.29; HRMS calculated for $C_{14}H_{13}BrO$ (M+) 276.0163; Found: 276.0150

1-(2-Bromo-benzyloxy)-α,α,α-trifluorotoluene (13)

 $R_f = 0.62$ on silica gel (5% EtOAc:Hexanes); IR (v_{max} / cm^{-1}) 2925 (weak), 1320, 1248, 1108, 841, 750; ¹H NMR (300MHz, CDCl₃, 293K, TMS): 5.14 (2 H, s), 7.02 (2 H, d, J=9Hz), 7.17 (1 H, t, J=8Hz), 7.31 (1 H, d, J=7Hz), 7.52 (4 H, m);

 ^{13}C NMR (75MHz, CDCl3, 293K, TMS): 69.51, 114.85, 122.39, 123.34 (q, J = 33 Hz), 124.28 (q, J = 271 Hz), 126.98 (q, J = 31 Hz), 127.68, 128.87, 129.56, 132.77, 135.46. 160.82; HRMS calculated for $C_{14}H_{11}\text{BrF}_3\text{O}$ (M+) 329.9853; Found: 329.9867

1-(2-Bromo-benzyloxy)-naphthalene (17)

 R_f = 0.55 on silica gel (5% EtOAc:Hexanes); IR (v_{max} /cm⁻¹) 3053 (weak), 1364, 1246, 1096, 758; ¹H NMR (300MHz, CDCl₃, 293K, TMS): 5.33 (2H, s), 6.89 (1H, d, J=8Hz), 7.24 (1H, d, J=3Hz), 7.38 (2H, m), 7.49 (3H, m), 7.62 (1H, d, J=8Hz), 7.69 (1H, d, J=8Hz), 7.82 (1H, m), 8.38 (1H, m); ¹³C NMR (75MHz, CDCl₃, 293K, TMS): 69.46, 105.35, 120.75, 122.25, 125.34, 125.66, 125.83, 126.49, 127.53, 127.60, 128.72, 129.21, 132.64, 134.56, 136.38, 154.03; HRMS calculated for $C_{17}H_{13}BrO$ (M+) 312.0046; Found: 312.0150

1-Bromo-2-(2-phenoxy-ethyl)-benzene (23)

 R_f = 0.50 on silica gel (5% EtOAc:Hexanes); IR (v_{max} /cm⁻¹) 2938 (weak), 1240, 1036, 747; ¹H NMR (300MHz, CDCl₃, 293K, TMS): 3.22 (2H, t, J=7Hz), 4.17 (2H, t, J=7Hz), 6.91 (3H, m), 7.08 (1H, m), 7.26 (4H, m), 7.53 (1H, dd, J=9Hz & 1Hz); ¹³C NMR (75MHz, CDCl₃, 293K, TMS): 35.99, 66.59, 114.47, 120.72, 124.63, 127.45, 128.26, 129.42, 131.29, 123.80, 137.49, 158.60; HRMS calculated for $C_{14}H_{13}BrO$ (M+) 276.0135; Found: 276.0150

6*H*-benzo[*c*]chromenes 8¹ and 16¹, 10¹, 4³ were prepared according to the general procedure and exhibited spectral data identical to literature values.^{1, 3} Cyclization product 22⁶ and 20⁵ as well as by product 5³ exhibited spectral data identical to literature values.^{3, 4, 6}

General procedure for cyclization:

To a mixture of *crushed* K₂CO₃ (169mg, 1.22mmol) and bromo ether **15** (169mg, 0.61mmol) under nitrogen atmosphere was added 3mL of *N,N*-Dimethylacetamide (DMA) in a 10mL round bottom flask equipped with a mechanical stir bar. To the stirring reaction mixture was added 50µL of a Pd(OAc)₂ and Ligand⁷ stock solution containing 7mg/mL Pd(OAc)₂ and 36mg/mL Ligand⁷. (Similar results are obtained if the palladium and ligand are weighed out exactly and placed in the reaction mixture prior to addition the solvent). The reaction mixture is then heated overnight at 125°C. After the reaction was judged complete by TLC or GC/MS analysis, the heat source was removed and the reaction mixture was allowed to cool. The crude mixture was then loaded onto a silica gel flash chromatography column 10% ethyl acetate in hexanes as the eluent to afford 2-Chloro-6*H*-benzo[*c*]chromene **16**¹ in 92% yield (110mg).

4-Methyl-6*H*-benzo[*c*]chromene (12)

 R_f = 0.43 on silica gel (5% EtOAc:Hexanes); IR (v_{max} /cm⁻¹) 2921 (weak), 1421, 1249, 1195, 1020, 752; ¹NMR (300MHz, CDCl₃, 293K, TMS): 2.26 (3H, s), 5.08 (2H, s), 6.93 (1H, t, J=7Hz), 7.09 (2H, t, J=7Hz), 7.23 (1H, t, J=7Hz), 7.32 (1H, t, J=3Hz), 7.55 (1H, d, J=8Hz), 7.64 (1H, d, J=8Hz); ¹³C NMR (75MHz, CDCl₃,

293K, TMS): 15.93, 68.33, 120.93, 121.41, 122.18, 122.41, 124.48, 126.64, 127.40, 128.32, 130.46, 130.77, 131.37, 152.91; HRMS calculated for $C_{14}H_{12}O$ (M+) 196.0869; Found: 196.0888

2-Trifluoromethyl-6*H*-benzo[*c*]chromene (14)

 R_f = 0.43 on silica gel (5% EtOAc:Hexanes); IR (v_{max} /cm⁻¹) 2850 (weak), 1315, 1250, 1112, 752 1 NMR (300MHz, CDCl₃, 293K, TMS): 5.12 (2H, s), 7.01 (1H, d, J=8Hz), 7.11 (1H, m), 7.33 (2H, m), 7.44 (1H, m), 7.66 (1H, d, J=7Hz), 7.93 (1H, s); 13 C NMR (75MHz, CDCl₃, 293K, TMS): 68.50, 117.84, 120.61 (q, J=4Hz), 122.17, 123.07, 124.32 (q, J=33Hz), 124.46 (q, J=272Hz), 124.77, 126.30 (q, J=4Hz), 128.56, 128.73, 130.98, 157.22; HRMS calculated for $C_{14}H_9F_3O$ (M+) 250.0601; Found: 250.0605

6H-Dibenzo[c,h]chromene (18)

 R_f = 0.47 on silica gel (5% EtOAc:Hexanes); IR (v_{max} /cm⁻¹) 2870 (weak), 1395, 1351, 1096, 758; ¹NMR (300MHz, CDCl₃, 293K, TMS): 5.23 (2H, s), 7.11 (1H, d, J=7Hz), 7.22 (1H, t, J=2Hz), 7.33 (1H, t, J=3Hz), 7.45 (3H, m), 7.65 (1H, d, J=3Hz), 7.75 (2H, m), 8.25 (1H, m); ¹³C NMR (75MHz, CDCl₃, 293K, TMS): 68.73, 117.07, 120.90, 121.48, 121.85, 122.19, 124.52, 125.28, 125.71, 126.55, 127.29, 127.57, 128.45, 130.56, 130.62, 134.29, 150.23; HRMS calculated for $C_{17}H_{12}O$ (M+) 232.0871; Found: 232.0888

Dibenzoxapine (24)

 $R_f = 0.36$ on silica gel (5% EtOAc:Hexanes); IR (v_{max} /cm⁻¹) 2870 (weak), 1309, 1252, 1030, 758; ; ¹NMR (300MHz, CDCl₃, 293K, TMS): 2.82 (2H, t, J=6Hz), 4.57 (2H, t, J=6Hz), 7.14 (1H, d, J=8Hz), 7.29 (4H, m), 7.41 (3H, m); ¹³C NMR (75MHz, CDCl₃, 293K, TMS): 33.39, 78.42, 122.31, 124.55, 127.35, 127.71, 128.03, 128.13, 129.02, 129.21, 135.24, 137.37, 138.86, 154.33; HRMS calculated for $C_{14}H_{12}O$ (M+) 196.0893; Found: 196.0888

(1,1'-Biphenyl-2-yl)di(4-trifluoromethylphenyl)phosphine (27)

 $R_f = 0.52$ on silica gel (5% EtOAc:Hexanes); IR (v_{max} /cm⁻¹) 2922 (medium), 2860, 1610, 1318, 1107, 1064, 1011, 825, 748, 700; ¹H NMR (300MHz, CDCl₃, 293K, TMS): 7.01-7.06 (1H, m), 7.15-7.19 (2H, m), 7.28-7.47 (10H, m), 7.53-7.57 (4H, m); ¹³C NMR (75MHz, CDCl₃, 293K, TMS): Complex peak patterns due to fluorine and phosphorous coupling; 118.59, 122.20, 125.14, 125.18, 125.23, 125.27, 125.32, 125.36, 125.48, 125.55, 125.81, 127.55, 127.63, 127.81, 127.84, 129.42, 129.59, 129.65, 129.78, 129.80, 130.17, 130.41, 130.48, 130.60, 131.03, 131.46, 133.67, 133.83, 134.04, 134.10, 134.22, 134.30, 134.39, 134.47, 141.19, 141.28, 141.92, 142.13, 148.50, 148.89; ¹⁹F NMR (282.2MHz, CDCl₃, 293K, TFA): 12.86; ³¹P NMR (121.4MHz, CDCl₃, 293K, HMPA): -13.50; HRMS calculated for $C_{26}H_{17}PF_6$ (M+) 474.0972; Found: 474.0943; MP: 137-138°C (Hex)

Intramolecular Kinetic Isotope Effect Experiment

$$\frac{\text{Pd}(\text{OAc})_2}{\text{Ligand}} + \frac{\text{Pd}(\text{OAc})_2}{\text{K}_2\text{CO}_3, \text{DMA}}$$

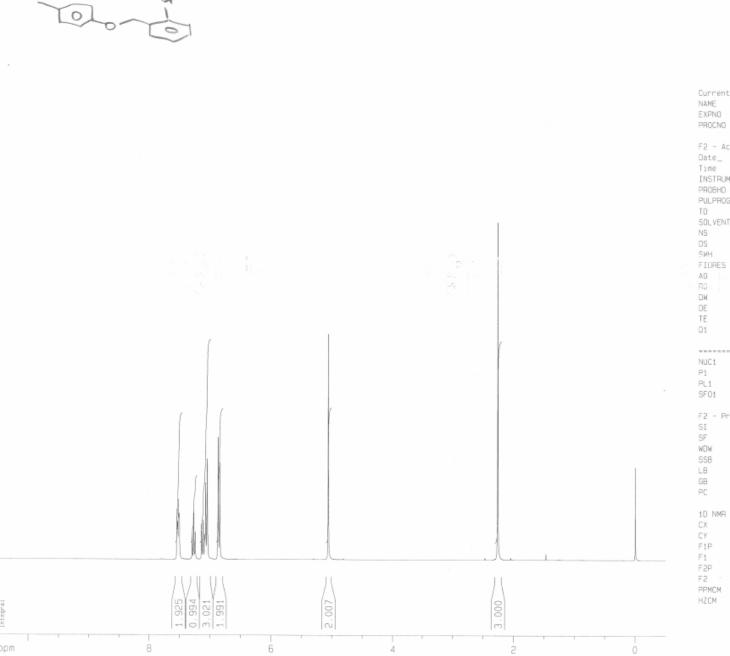
(2-bromobenzyloxy)-2-d-benzene (A)

 R_f = 0.64 on silica gel (5% EtOAc:Hexanes); IR (v_{max} /cm⁻¹) 3030 (weak), 1515, 1240, 1028, 819, 735; ¹H NMR (300MHz, CDCl₃, 293K, TMS): 5.14 (2H, s), 6.98 (2H, m), 7.18 (1H, td, J=7.6 et J=1.6), 7.31 (3H, m), 7.57 (2H, m); ¹³C NMR (75MHz, CDCl₃, 293K, TMS): 69.27, 114.87, 121.16, 122.23, 127.56, 128.84, 129.18, 129.43, 129.53, 132.59, 136.33, 158.36; HRMS calculated for $C_{10}H_{13}DBrO$ (M+) 263.0055; Found 263.0066;

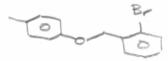
Crude NMR of the experiment shown at the end of experimental data.

¹ Bowman, R., Mann, E., Parr, J., *J. Chem. Soc., Perkin Trans. 1,* **2000**, 2991-2999

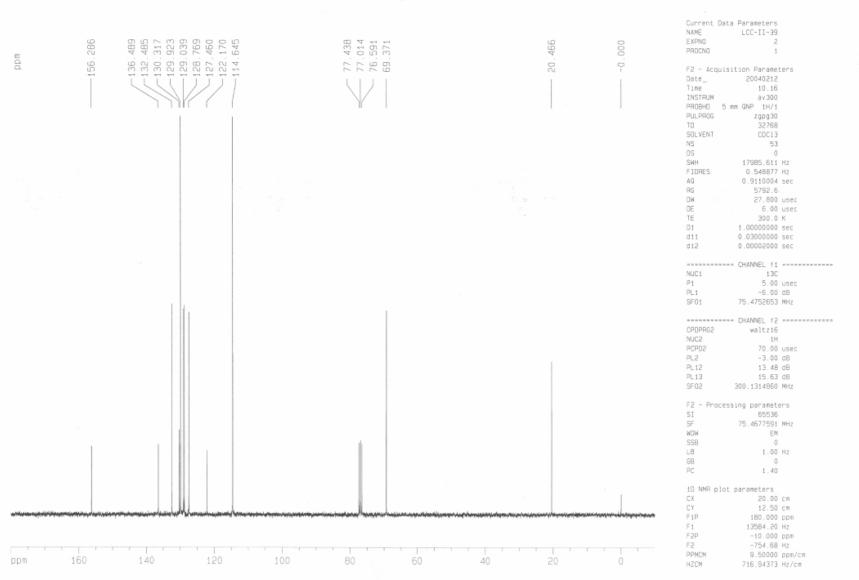
² Rossi, R., Carpita, A., Pazzi, P., Mannina, L., Valensin, D. *Tetrahedron*, **1999**, *55*, 11343-11364

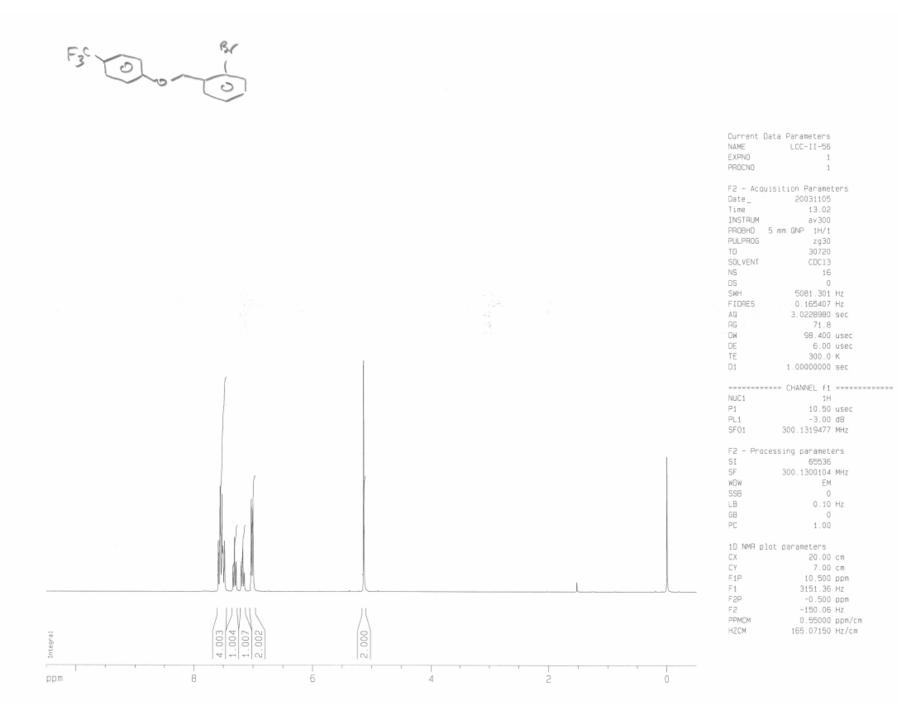

³ Ames, D.E., Opalko, A., *Tetrahedron*, **1984**, 40, 1919-1925

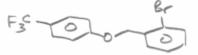
⁴ Parham, W.E., Jones, L.D., Sayed, Y.A., *J. Org. Chem.* **1976**, *41*,1184

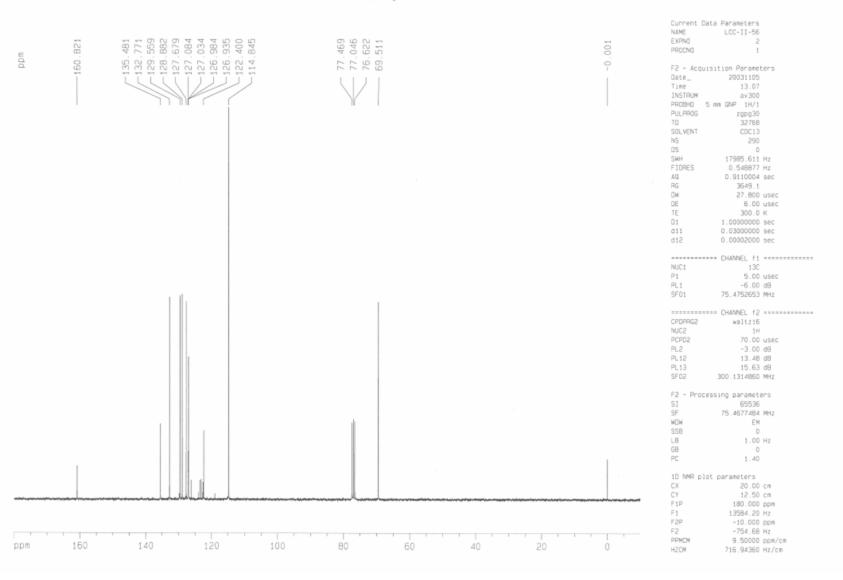

⁵ Harayama, T., Akiyama, T., Akamatsu, H., Kazuko., Abe, H., Takeuchi, Y., *Synthesis*, **2001**, 3, 444-450

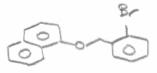
⁶ Cas No : 776-35-2

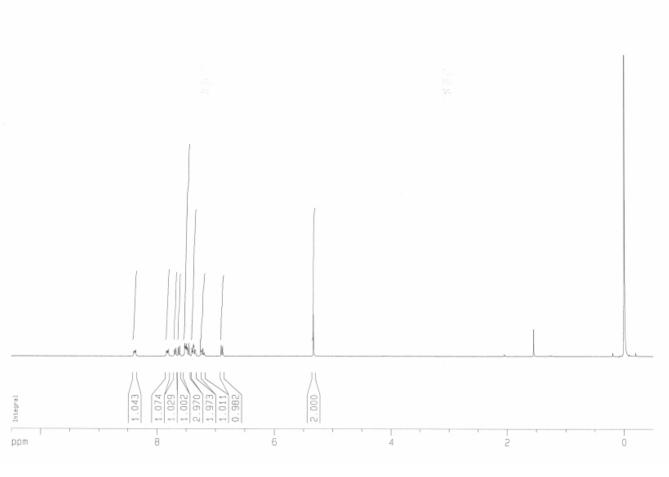

⁷ 2-(Diphenylphosphino)-2'-(N,N-dimethyl-amino)byphenyl is the ligand used for all cyclization reactions

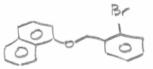


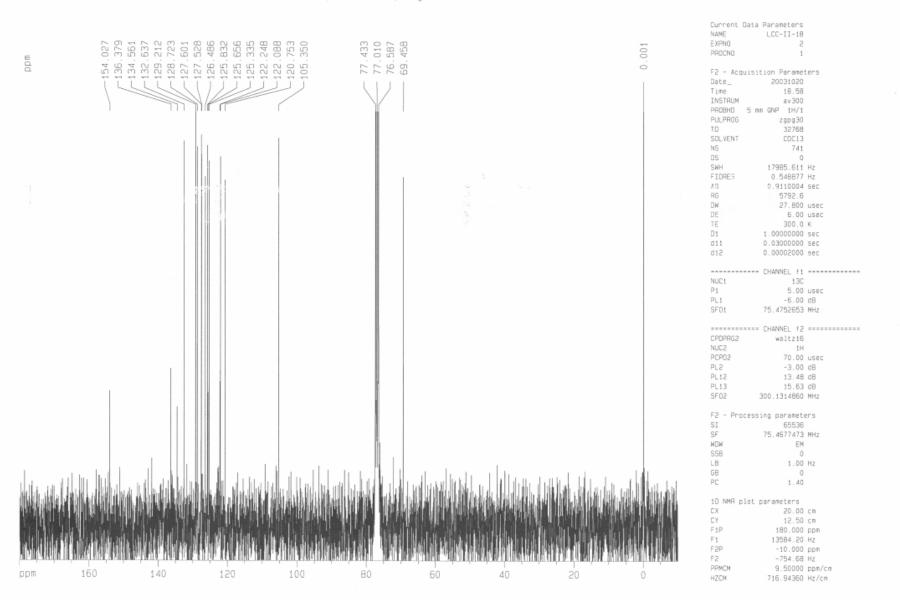

Current Data Parameters NAME LCC-II-39 PROCNO F2 - Acquisition Parameters Date_ 20040212 10.13 INSTRUM av300 PROBHD 5 mm GNP 1H/1 PULPROG zg30 TD 30720 SOLVENT CDC13 16 0 5081.301 Hz 0.165407 Hz 3.0228980 sec 45.3 98.400 usec 6.00 usec 300.0 K 1.00000000 sec ----- CHANNEL f1 -----NUC1 1H 10.50 usec -3.00 dB 300.1319477 MHz F2 - Processing parameters 65536 300.1300290 MHz EM 0 0.10 Hz 0 1.00 10 NMR plot parameters 20.00 cm 10.00 cm 10.500 ppm 3151.37 Hz -0.500 ppm -150.06 Hz 0.55000 ppm/cm 165.07152 Hz/cm


13C with proton decoupling

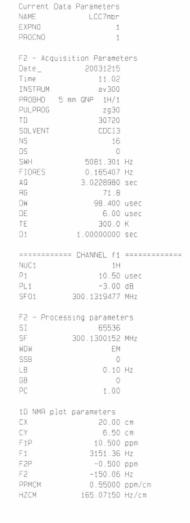


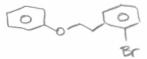



13C with proton decoupling

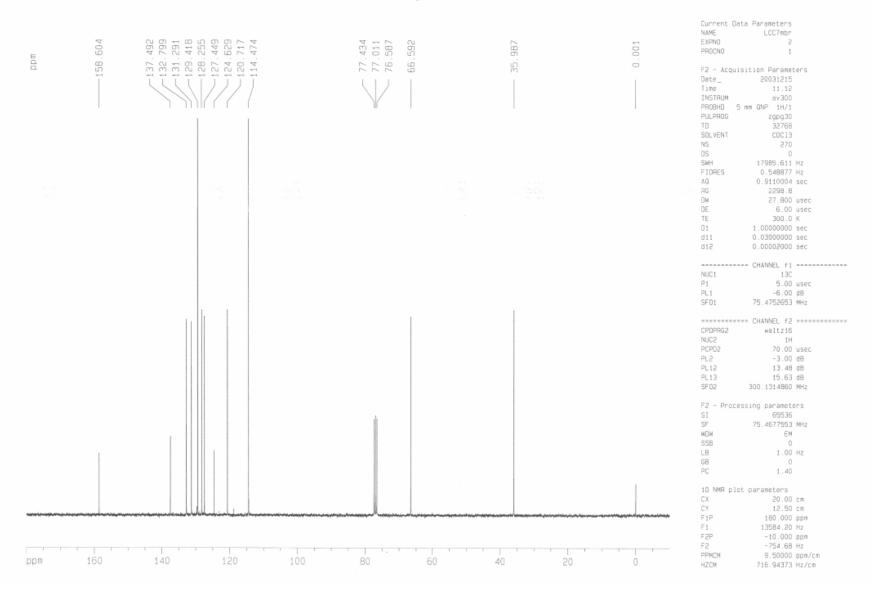


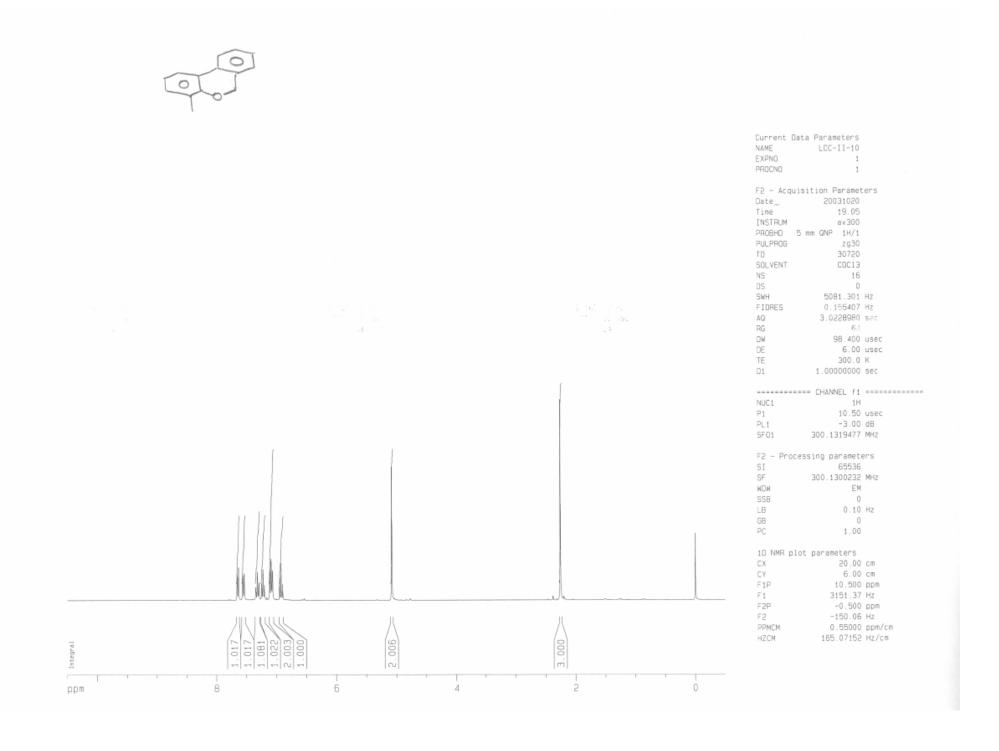


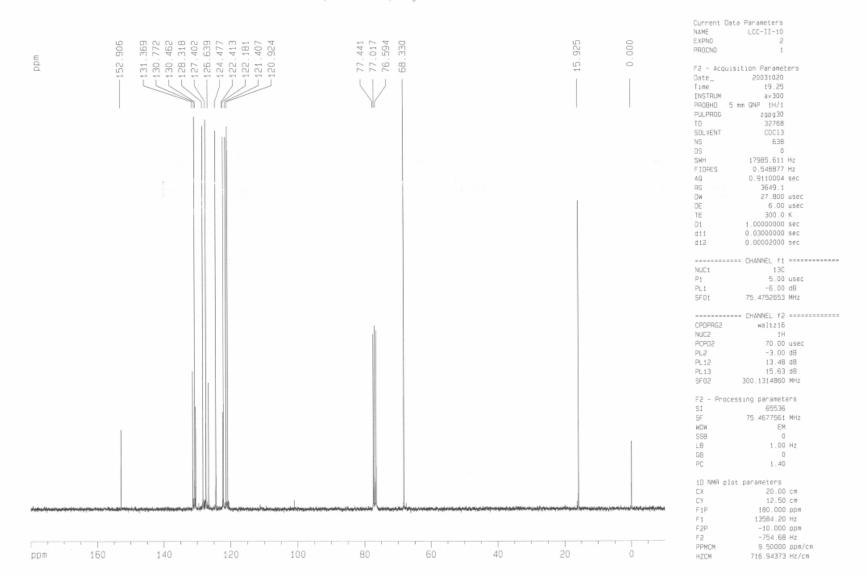

Current Data	Parameters			
NAME	LCC-II-1B			
EXPNO	1			
PROCNO	1			
F2 - Acquisi	F2 - Acquisition Parameters			
Date_	20031020			
Time	18.34			
INSTRUM	av300			
PROBHO 5 r	m GNP 1H/1			
PULPROG	zg30			
TD	30720			
SOLVENT	CDC13			
NS	16			
DS	0			
SWH	5081.301	Hz		
FIORES	0.165407			
AG.	3.0228980			
RG	406.4			
DW	98.400			
DE	6.00			
TE	300.0			
D1	1.00000000			
51	1.00000000	300		
	CHANNEL f1			
NUC1	1H			
P1	10.50	usec		
PL1	-3.00			
SF01	300.1319477			
0.01				
F2 - Process	sing paramet	ers		
SI	65536			
SF	300.1299952	MHz		
MDM	EM			
SSB	0			
LB	0.10	H7		
GB	0.10	116		
PC	1.00			
	1.00			
10 NMR plot	narameters			
CX	20.00	cm		
CY	20.00			
F1P	10.500			
F1	3151.36			
F2P				
	-0.500			
F2	-150.06			
PPMCM	0.55000			
HZCM	165.07150	mz/cm		

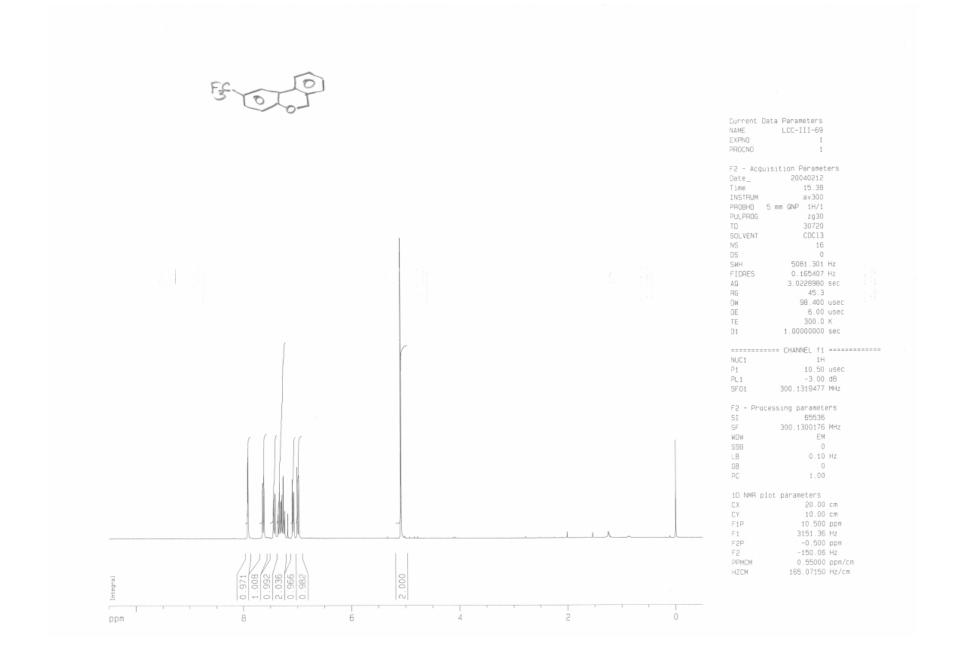


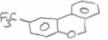
13C with proton decoupling

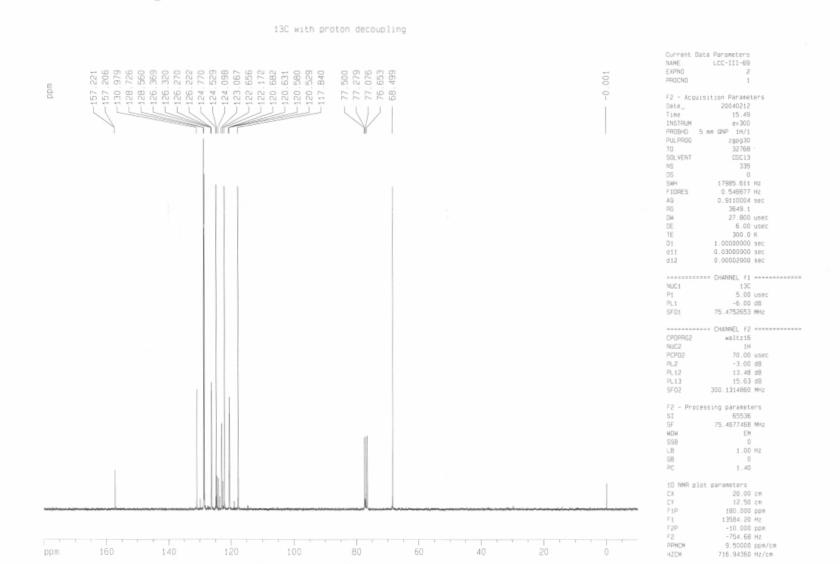


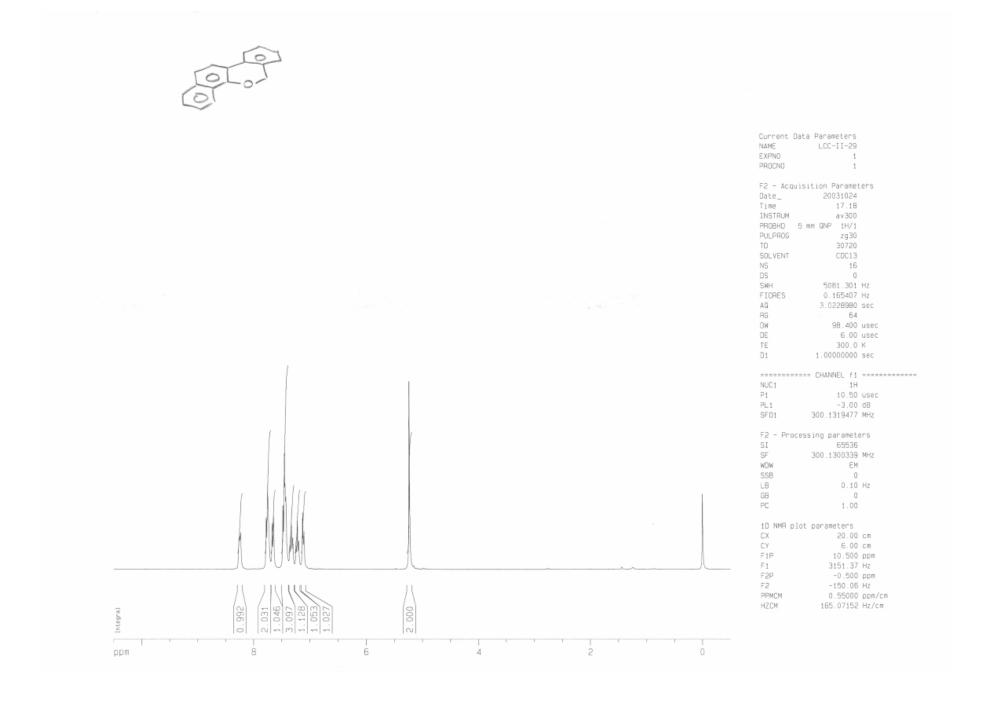


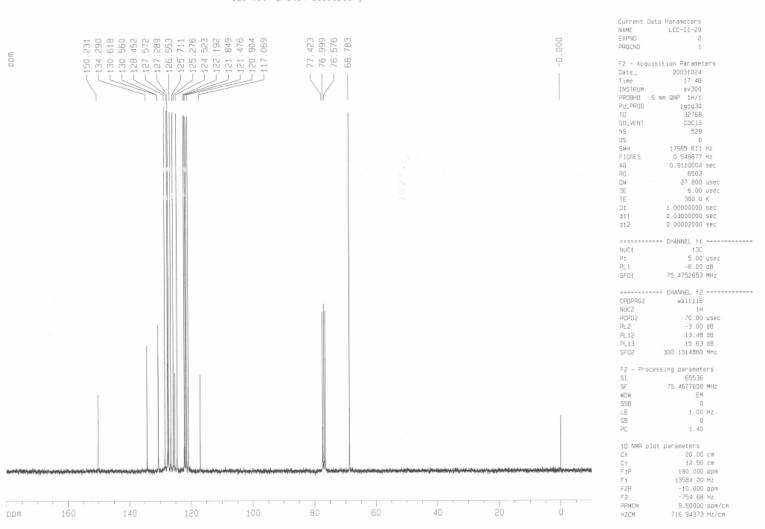

13C with proton decoupling

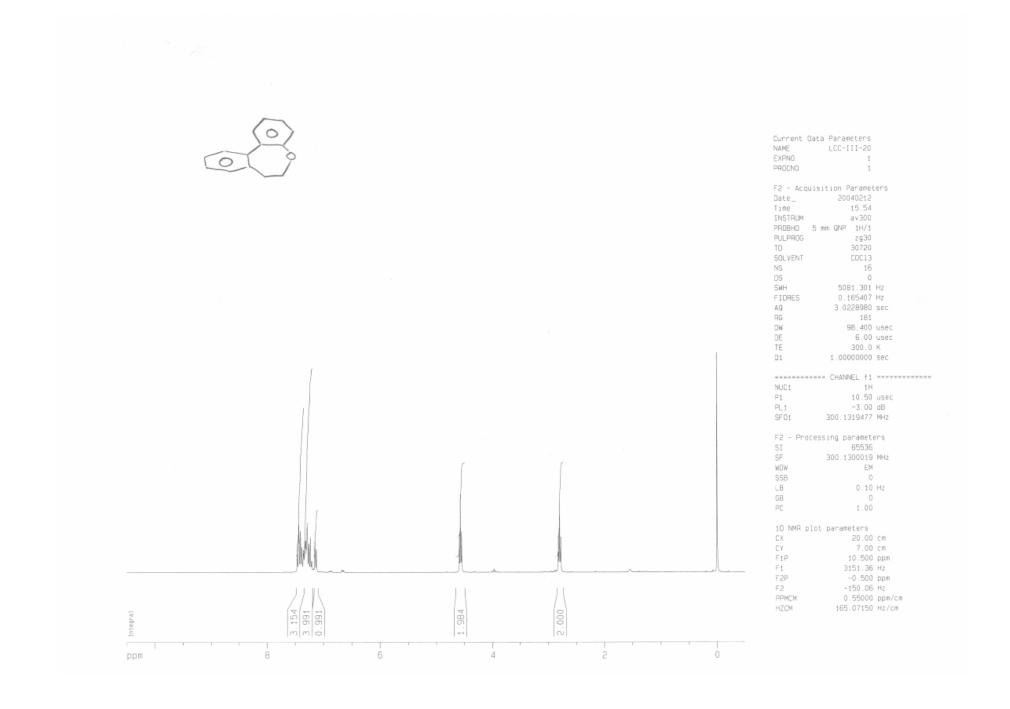


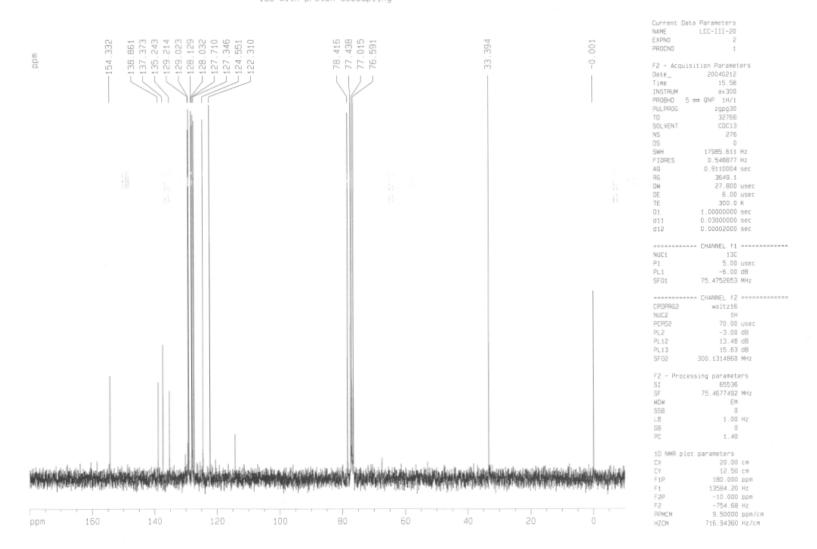


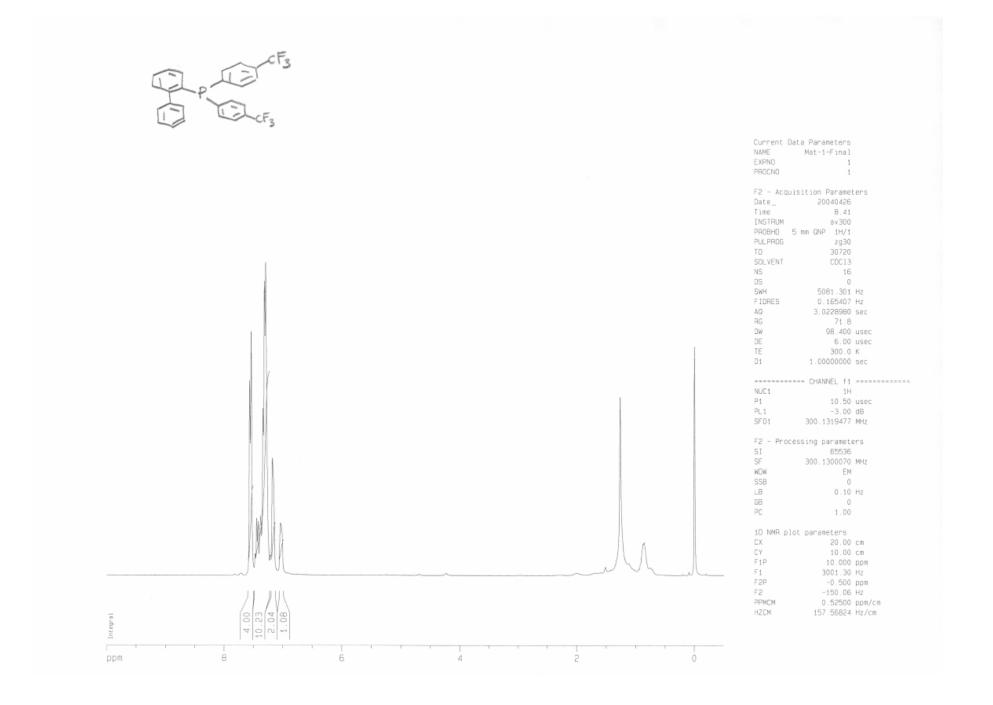


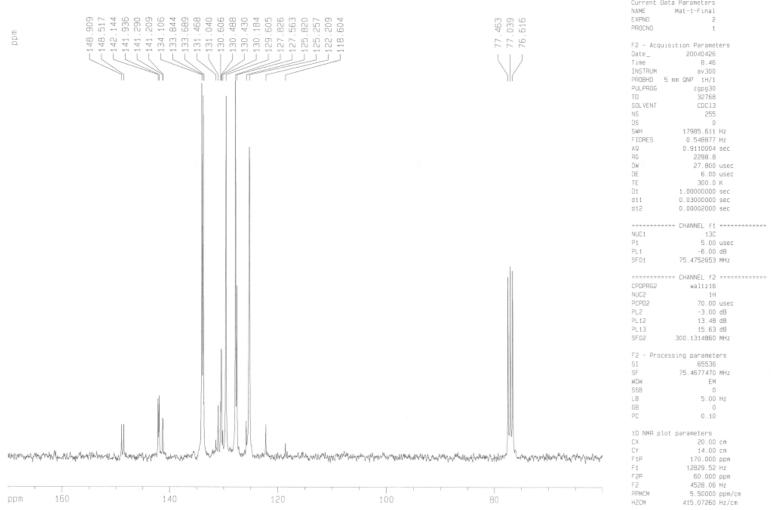

13C with proton decoupling



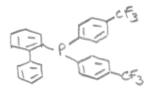


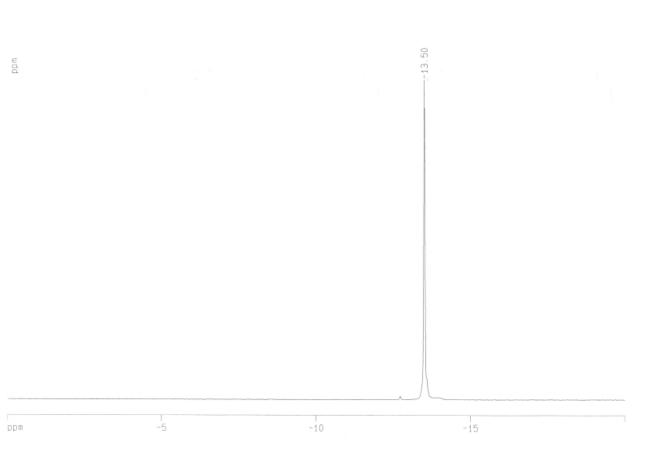

13C with proton decoupling

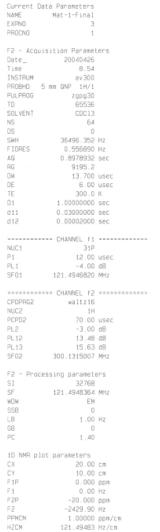


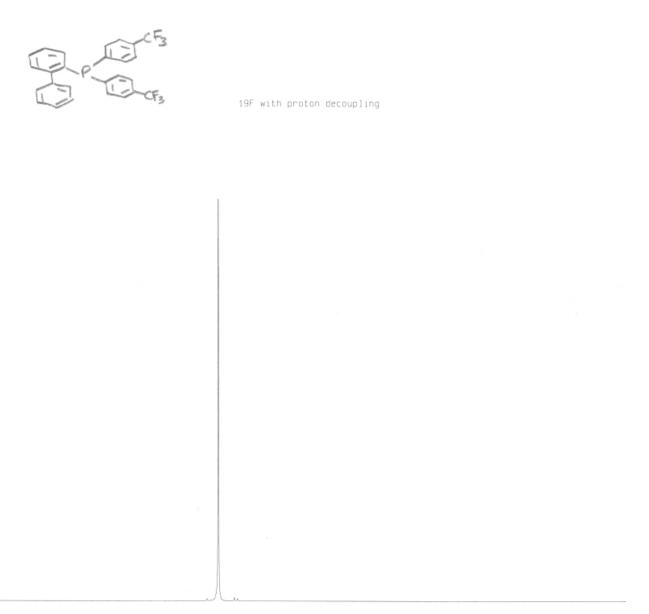


13C with proton decoupling

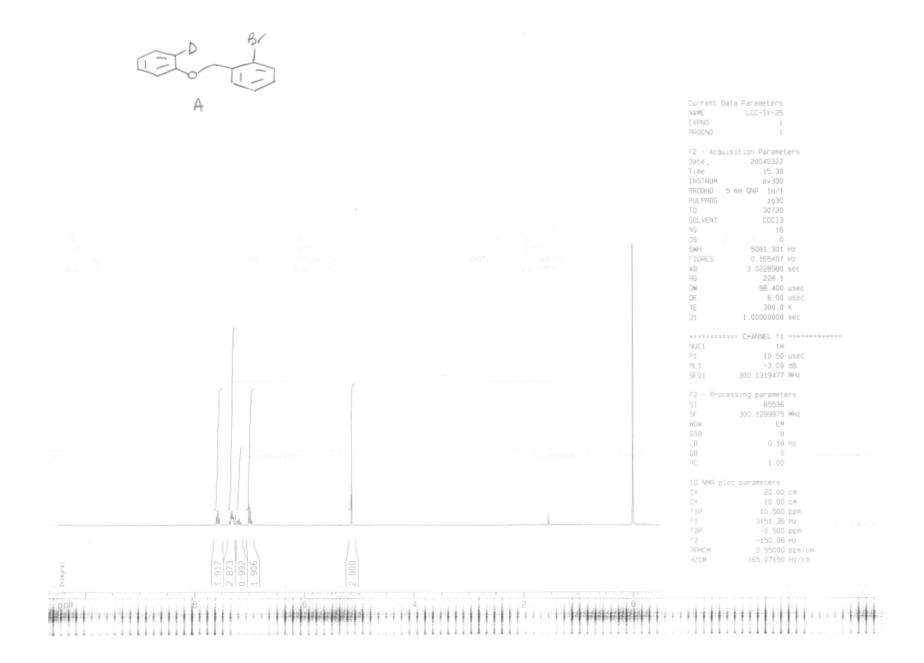


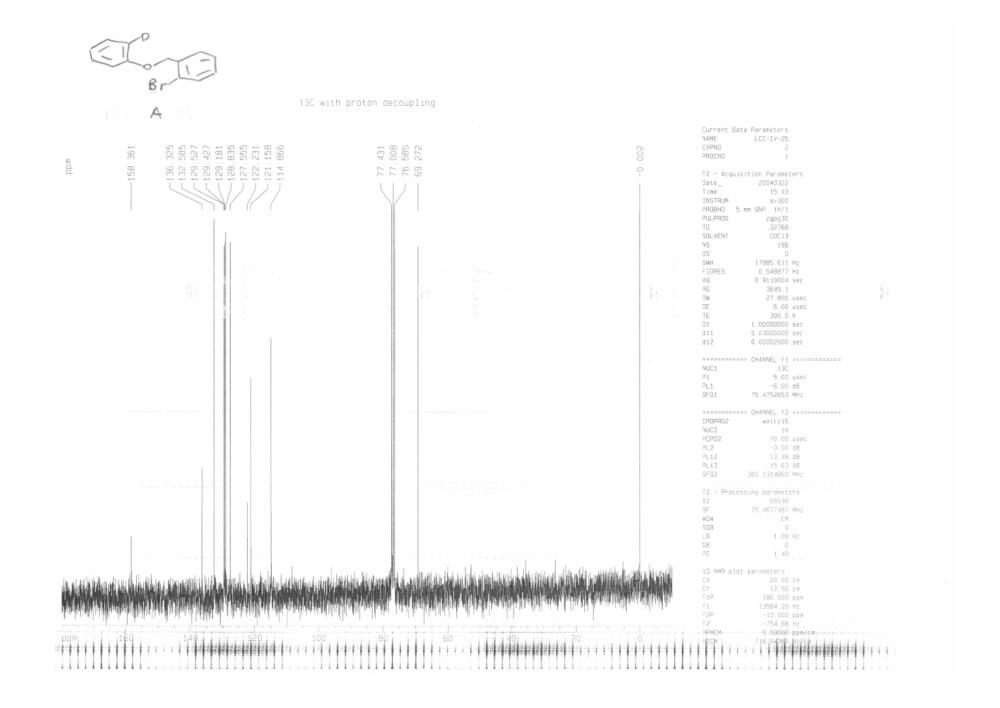


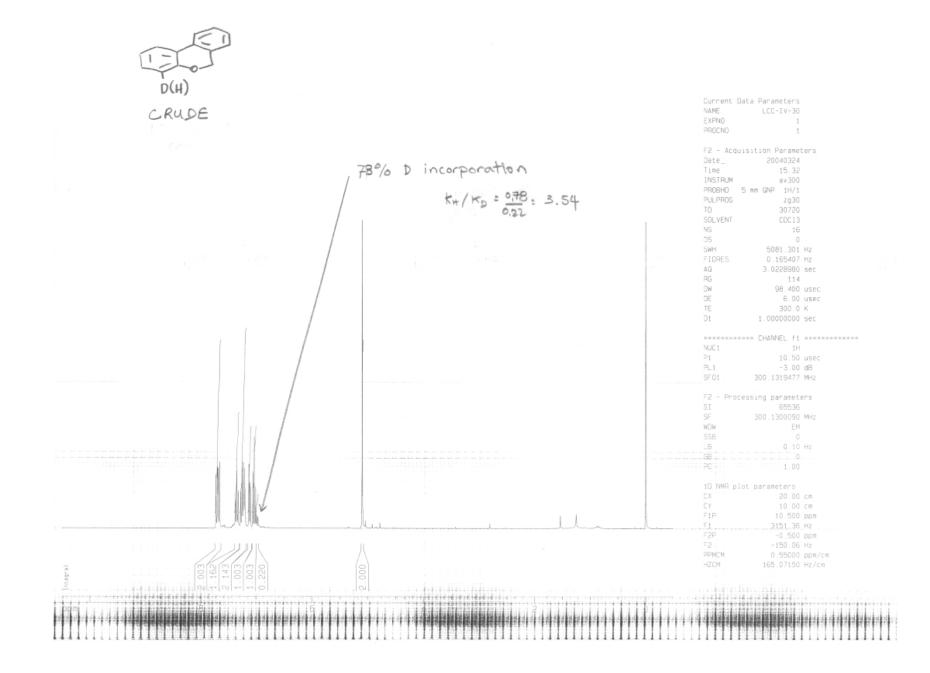

13C with proton decoupling



Current	Data Parameters	
	Mat-1-Final	
EXPNO	. 2	
PROCNO	1	
1100110		
F2 - Acq	uisition Paramet	ters
Date_	20040426	
Time	8.46	
INSTRUM	av300	
	5 nm GNP 1H/1	
PULPROG		
TD	32768	
SOLVENT	CDC13	
NS	255	
DS DS	0	
SWH	17985.611	Un
FIORES	0.548877	
AG	0.9110004	
RG	2298.8	
DW	27.800	
DE	6.00	
TE	300.0	
D1	1.00000000	sec
dii	0.03000000	sec
d12	0.0002000	sec
	CHANNEL f1	
NUC1	130	
P1	5.00	
PL1	-6.00	dB
SF01	75.4752653	MHz
	==== CHANNEL f2	
CPOPAG2		
NUC2	1H	
PCP02	70.00	usec
PL2	-3.00	dB
PL12	13.48	dB
PL13	15.63	dB
SF02	300.1314860	MHz
	cessing paramete	
SI	65536	
SF	75.4677470	MHz
MDM	EM	
SSB	0	
LB	5.00	HZ
GB	0	
PC	0.10	
	lot parameters	
CX	20.00	cm
CY	14.00	CIII
F1P	170.000	ppm
F1 -	12829.52	Hz
F2P	60.000	
F2	4528.06	Hz
PPMCM	5.50000	








```
Current Data Parameters
NAME Mat-1-Final
EXPNO
             5
PROCNO
F2 - Acquisition Parameters
Date_
           20040426
Time
             9.00
INSTRUM
             av300
PROBHO 5 mm QNP 1H/1
PULPROG
             zg
TD
             32768
SOLVENT
             CDC13
NS
            16
DS
              0
SWH
           75179.281 Hz
FIDRES
           2.294290 Hz
AQ
          0.2179824 sec
RG
             362
             6.651 usec
DW
DE
             9.50 usec
TE
             300.0 K
D1
         1.00000000 sec
----- CHANNEL f1 -----
NUC1
            19F
P1
              7.90 usec
PL1
            -3.00 dB
SF01
         282.3540472 MHz
F2 - Processing parameters
SI
           65536
         282.3829598 MHz
MON
            EM
SSB
               0
LB
              2.00 Hz
GB.
              0
              1.00
1D NMR plot parameters
CX
             20.00 cm
CY
             13.50 cm
F1P
             20.000 ppm
F1
            5647.66 Hz
F2P
             0.000 ppm
F2
             0.00 Hz
PPMCM
            1.00000 ppm/cm
           282.38297 Hz/cm
```