

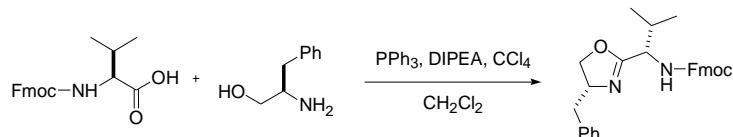
Stereochemical Diversity in Chiral Ligand Design: Discovery and Optimization of Catalysts for the Enantioselective Addition of Allylic Halides to Aldehydes

Jae-Young Lee, Jeremie J. Miller, Steven S. Hamilton, and Matthew S. Sigman*
Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-8500

Table of Contents

General Methods	S2
Purification of Reagents	S2
Synthesis of Fmoc Protected Oxazoline	S2-S3
Deprotection of the Fmoc Protected Oxazoline	S3
Ligand Synthesis	S4-S5
Ligand Optimization	S6
Catalytic Methods	S6-S7
Characterization of homoallylic alcohols	S7-S9
Enantiomeric Excess Determination (GC and HPLC traces)	S10-S19
¹ H and ¹³ CNMR Data for Ligand Synthesis	S20-S29

General Methods:


Unless otherwise noted all reactions were performed under a nitrogen atmosphere with stirring. THF was distilled from benzophenone and sodium ketyl, NEt_3 was distilled from CaH_2 before use. CrCl_2 , CrCl_3 and $\text{Mn}(0)$ (325 mesh) were purchased from commercial sources and used without further purification. Fmoc and Boc protected amino acids were obtained from commercial sources and rigorously dried by azeotroping from toluene or benzene before use. Amino alcohols were prepared by methods reported in literature.¹ DIPEA was distilled from CaH_2 before use. Flash chromatography was performed using Silica 60 (230-400 mesh.). Analytical thin layer chromatography was performed with Silica gel 60 \AA plates. All melting points are uncorrected and were recorded on an Electrothermal Melting Point apparatus. Optical rotations were recorded on Perkin Elmer Model 343 Polarimeter. IR spectra were recorded using a Mattson Satellite FTIR instrument. ^1H -NMR spectra were obtained at 300 MHz and referenced to the CHCl_3 singlet at 7.27 ppm, ^{13}C -NMR spectra were obtained at 75 MHz and referenced to the center line of the CDCl_3 triplet at 77.0 ppm. HRMS were recorded using a Finnigan MAT 95 spectrometer. GC analysis was performed using a GC equipped with a HP-Chiral permethylated β -cyclodextrin column. HPLC analysis was performed using a HPLC equipped with a chiral column (as indicated).

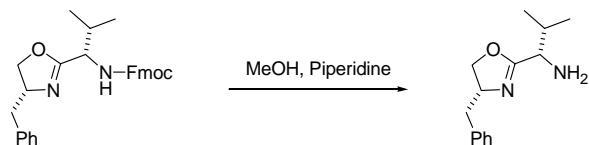
Purification of PPh_3 :

PPh_3 was purified by recrystallization from hexane after a hot filtration. The crystals are washed with hexane and repeatedly azeotroped with dry toluene followed by drying under high vacuum.

Purification of CCl_4 :

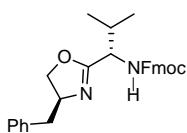
CCl_4 is stirred overnight with one fifth its volume of satd. KOH. After washing with water (3 x 20 mL), nitrogen is bubbled through for two hours. It is then percolated through a 2,4-dinitrophenylhydrazine column, distilled from CaH_2 and stored under Nitrogen.

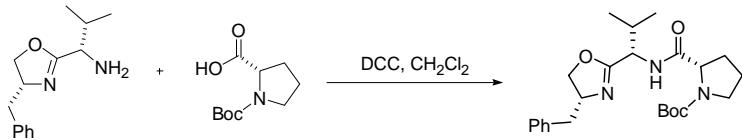
Procedure for Synthesis of Fmoc Protected Oxazoline:


Amino alcohol (377 mg, 2.49 mmol, 1 equiv.), Fmoc protected amino acid (845 mg, 2.49 mmol, 1 equiv.) and PPh_3 (1.96 g, 7.47 mmol, 3 equiv.) is added to a single neck round bottom flask fitted with a stir-bar. Reagents were dissolved in 60 mL CH_2Cl_2 followed by the addition of DIPEA (1.23 mL, 7.47 mmol, 3 equiv.) and cooled to 0 °C. CCl_4 (1.2

¹Myers, A. I.; McKenon, M. J. *J. Org. Chem.* **1993**, 58, 3568.

mL, 12.45 mmol, 5 equiv.) is added dropwise over three hours via syringe pump. During this time the flask is kept at 0 °C. When the addition is complete the reaction is allowed to warm to room temperature while stirring for 24 hours.


Toluene (60 mL) is added to the reaction flask and the content is reduced to ca. 80 mL in vacuo. Hexanes (80 mL) is then added and the flask is allowed to stand for 30 minutes. The precipitates are filtered by eluting through a pad of celite and washed with Toluene:Hexanes (3:4). The filtrate is concentrated to ca. 15 mL and loaded onto a column consisting of 125 mL of silica. 200 mL of 10% EtOAc:Hexanes was used to elute the column, followed by 33% EtOAc:Hexanes for the duration of the process. The fractions containing the desired product were collected and the solvent removed in vacuo to yield the product as a white solid (2.57 g, 70%).

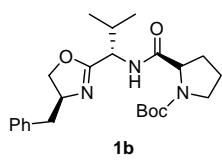


Procedure for Deprotection of the F-moc Protected Oxazoline:

In a single neck round bottom flask, the protected oxazoline (2.57 g, 5.64 mmol, 1 equiv.) was dissolved in MeOH (38 mL) and cooled to 0 °C with an ice bath. Pyridine (39 mL) was added dropwise over ca. 10 minutes and the reaction was allowed to warm to room temperature. The reaction progress was monitored by TLC. After completion, the solvent is removed in vacuo and the residue was purified by column chromatography (200 mL). The column was eluted with 33% EtOAc:Hexanes for the first 100 mL, followed by 4% MeOH:CH₂Cl₂ for the remainder. The fractions containing the desired product were collected and the solvent removed in vacuo to yield a white powder (1.1 g, 83%).

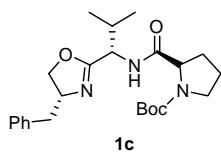
(Fmoc-Oxazoline): Yield: 70%; white powder; mp: 114.6-116.2 °C; $[\alpha]_D^{20} = -43.6^\circ$ (c = 0.25, CHCl₃); IR (KBr) 3180.1, 3066.1, 3025.7, 2988.8, 2900.4, 1684.5, 1671.7, 1539.8, 1450.5, 1286.3, 1245.4, 1036.1, 989.0, 737.8 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, *J* = 7.32 Hz, 2H), 7.63 (dd, *J* = 6.84, 3.42 Hz, 2H), 7.39 (t, *J* = 7.32 Hz, 2H), 7.34-7.18 (m, 7H), 5.29 (bs, 1H), 4.50-4.20 (m, 6H), 4.02 (t, *J* = 7.32 Hz, 1H), 3.07 (dd, *J* = 14.16, 5.86 Hz, 1H), 2.69 (dd, *J* = 13.67, 7.81 Hz, 1H), 2.15-2.04 (m, 1H), 0.95 (dd, *J* = 9.77, 6.84 Hz, 6H); ¹³C NMR {¹H} (75 MHz, CDCl₃) δ 166.7, 156.1, 143.8, 141.3, 137.6, 129.2, 128.5, 127.6, 127.0, 126.6, 125.1, 119.9, 77.2, 72.2, 66.9, 54.5, 47.2, 41.7, 31.5, 18.8, 17.6; HRMS (E.I) m/z (M)⁺ calcd. 454.2256, obsd. 454.2251.

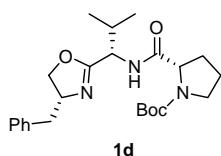



Ligand Synthesis:

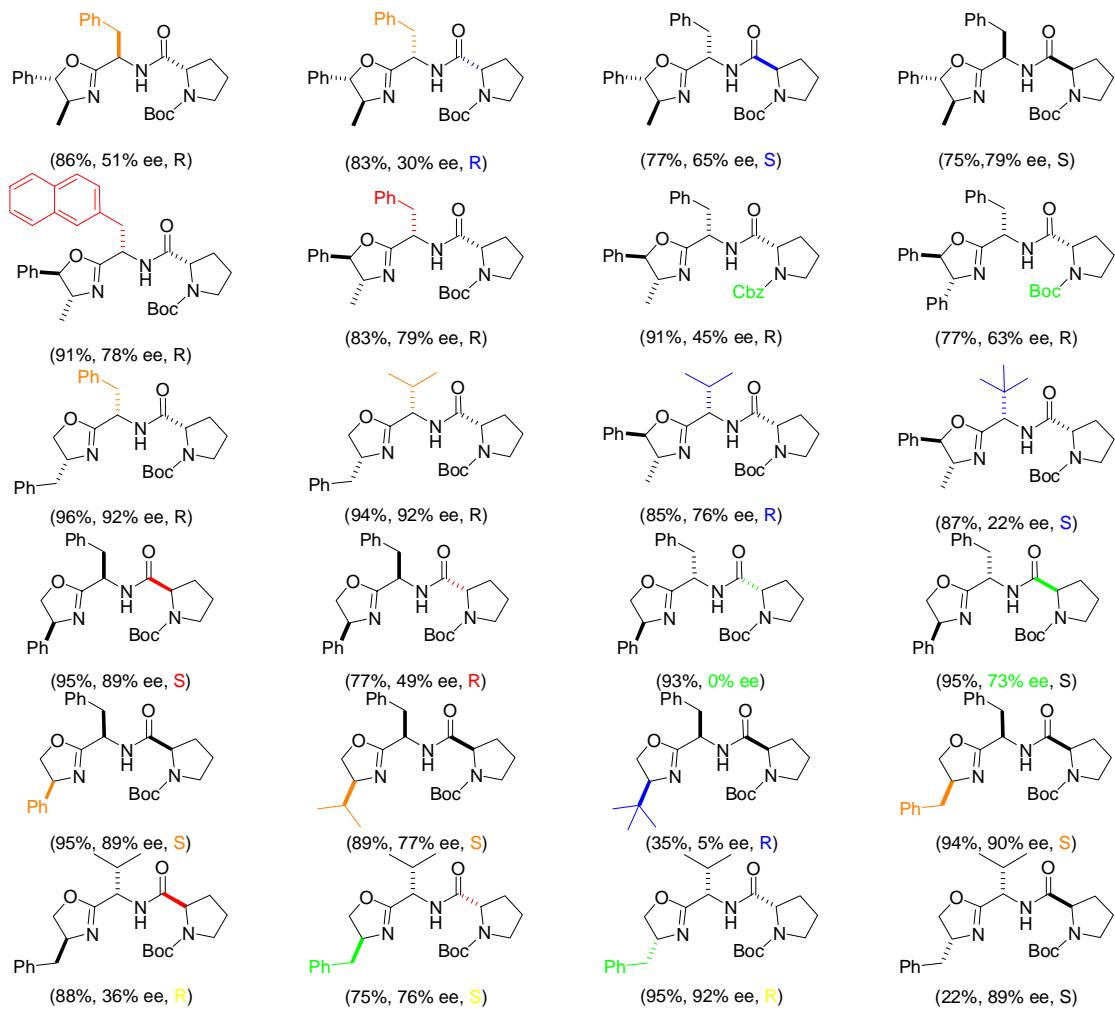
DCC was placed in a single neck round bottom flask, dissolved in 10 mL of CH_2Cl_2 , and cooled to 0 °C in an ice bath. To this was added a solution of Boc-(S)-proline (980 mg in 10 mL CH_2Cl_2 , 4.56 mmol, 1 equiv.). The resulting mixture was allowed to stir at 0 °C for 30 minutes. The oxazoline amine (1.06 g, 4.56 mmol, 1 equiv.) was dissolved in 10 mL of CH_2Cl_2 and added to the reaction flask at 0 °C. The reaction mixture is allowed to stir overnight while warming to room temperature. The solvent is removed in vacuo, EtOAc (40 ml) is added, and the solution was set aside for 20 minutes. The white precipitate is filtered off by passing the solution through a pad of celite and washing twice with EtOAc (20 mL). The filtrate is washed with 5% NaHCO_3 (2 x 20 mL) and brine (2 x 20 mL), followed by drying with Na_2SO_4 . After filtration, the solvent was removed in vacuo. The residue was purified by silica gel column chromatography, eluting with 1.5:1 EtOAc :Hexanes. The fractions containing the desired product were collected and the solvent removed in vacuo to yield a tan colored solid. The solid was dissolved in ca. 8 mL of 1:1 Et_2O :Hexanes and the Et_2O was removed in vacuo until solid began to precipitate. Et_2O was then added dropwise to redissolve the solid. The flask was then placed in a ca. 10 °C refrigerator to recrystallize the product. The mother liquor was removed by pipette and the crystals were washed with 5 mL of cold hexanes and dried in vacuo to yield white crystals (1.61 g, 82%).

Analytical Data


(1a): Yield: 77%; white powder; mp: 90.0-94.1 °C; $[\alpha]_D^{20}$ -35.6° (c 0.25, MeOH); IR (KBr) 3273.8, 3061.6, 2962.4, 2872.6, 1702.3, 1661.0, 1550.0, 1453.4, 1398.5, 1226.6, 1162.5, 982.8, 700.7 cm^{-1} ; $^1\text{H-NMR}$ (300 MHz, CDCl_3) at 70 °C δ 7.29-7.16 (m, 5H), 6.80 (bs, 1H), 4.58 (dd, J = 9.28, 4.88 Hz, 1H), 4.41-4.29 (m, 2H), 4.20 (t, J = 8.79 Hz, 1H), 3.97 (t, J = 7.32 Hz, 1H), 3.48-3.41 (m, 2H), 2.99 (dd, J = 14.16, 5.86 Hz, 1H), 2.65 (dd, J = 14.16, 7.81 Hz, 1H), 2.26-1.99 (m, 3H), 1.96-1.76 (m, 2H), 1.47 (s, 9H), 0.94 (dd, J = 14.65, 6.84 Hz, 6H); $^{13}\text{C-NMR}$ { ^1H } (75 MHz, CDCl_3) at 70 °C δ 171.9, 166.5, 155.1, 138.0, 129.2, 128.5, 126.5, 80.3, 72.3, 67.1, 61.0, 52.5, 47.1, 41.8, 31.6, 28.5, 24.0, 18.9, 17.7; HRMS (E.I) m/z (M)⁺ calcd. 429.2628, obsd. 429.2604.


(1b): Yield: 79%; white crystals; mp: 89.8-93.8 °C; $[\alpha]_D^{20}$ -90.0° (c 0.16, MeOH); IR (KBr) 3273.8, 3061.6, 2962.4, 2872.6, 1702.3, 1661.0, 1550.0, 1453.4, 1398.5, 1226.6, 1162.5, 982.8, 700.7 cm^{-1} ; $^1\text{H-NMR}$ (300 MHz, CDCl_3) at 70 °C δ 7.31-7.17 (m, 5H), 4.60 (dd, J = 8.30, 5.37 Hz, 1H), 4.43-4.30 (m, 2H), 4.18 (t, J = 8.30 Hz, 1H), 3.98 (t, J = 7.32 Hz, 1H), 3.50-3.37 (m, 2H), 3.08 (dd, J = 13.67, 5.37 Hz, 1H), 2.63 (dd, J = 13.67, 8.30 Hz, 1H), 2.37-2.21

(m, 2H), 2.19-2.04 (m, 1H), 2.02-1.82 (m, 2H), 1.48 (s, 9H), 0.92 (dd, $J = 6.84, 2.93$ Hz, 6H); ^{13}C -NMR $\{\text{H}\}$ (75 MHz, CDCl_3) at 70 °C δ 171.7, 166.2, 155.2, 137.9, 129.2, 128.5, 126.5, 80.3, 72.0, 67.2, 60.6, 52.6, 47.0, 41.7, 31.7, 28.4, 24.2, 18.8, 17.8; HRMS (E.I) m/z (M) $^+$ calcd. 429.2628, obsd. 429.2609.


(1c): Yield: 66%; white powder; mp: 118.0-126.0 °C; $[\alpha]_D^{20} +14.8^\circ$ (c 0.25, MeOH); IR (KBr) 3273.8, 3061.6, 2962.4, 2872.6, 1702.3, 1661.0, 1550.0, 1453.4, 1398.5, 1226.6, 1162.5, 982.8, 700.7 cm^{-1} ; ^1H -NMR (300 MHz, CDCl_3) at 70 °C δ 7.31-7.18 (m, 5H), 6.79 (bs, 1H), 4.59 (ddd, $J = 8.79, 4.88, 1.0$ Hz, 1H), 4.40-4.28 (m, 2H), 4.23 (t, $J = 8.30$ Hz, 1H), 3.94 (t, $J = 7.81$ Hz, 1H), 3.47-3.43 (m, 2H), 3.03 (dd, $J = 14.16, 5.86$ Hz, 1H), 2.66 (dd, $J = 14.16, 7.81$ Hz, 1H), 2.27-1.98 (m, 3H), 1.95-1.77 (m, 2H), 1.48 (s, 9H), 0.94 (dd, $J = 12.21, 6.84$ Hz, 6H); ^{13}C -NMR $\{\text{H}\}$ (75 MHz, CDCl_3) at 70 °C δ 171.9, 166.5, 155.1, 138.0, 129.3, 128.5, 126.5, 80.3, 72.4, 67.2, 61.0, 52.5, 47.1, 41.9, 31.5, 28.5, 25.0, 24.0, 18.9, 17.7; HRMS (E.I) m/z (M) $^+$ calcd. 429.2628, obsd. 429.2612.

(1d): Yield: 82%; white powder; mp: 83.3-85.8 °C; $[\alpha]_D^{20} -70^\circ$ (c 0.25, MeOH); IR (KBr) 3273.8, 3061.6, 2962.4, 2872.6, 1702.3, 1661.0, 1550.0, 1453.4, 1398.5, 1226.6, 1162.5, 982.8, 700.7 cm^{-1} ; ^1H -NMR (300 MHz, CDCl_3) at 70 °C δ 7.31-6.97 (m, 5H), 4.58 (dd, $J = 8.30, 5.37$ Hz, 1H) 4.42-4.27 (m, 2H), 4.22 (t, $J = 8.79$ Hz, 1H), 3.96 (t, $J = 7.81$ Hz, 1H), 3.49-3.42 (m, 2H), 3.09 (dd, $J = 14.16, 5.37$, 1H), 2.65 (dd, $J = 13.67, 8.30$ Hz, 1H), 2.36-2.21 (m, 2H), 2.12 (sext, $J = 13.62, 6.92$, 1H), 2.04-1.82 (m, 2H), 1.47 (s, 9H), 0.92 (dd, $J = 6.84, 1.47$ Hz, 6H); ^{13}C -NMR $\{\text{H}\}$ (75 MHz, CDCl_3) at 70 °C δ 171.8, 166.4, 155.1, 138.0, 129.3, 128.5, 126.5, 80.3, 72.2, 67.2, 60.6, 52.5, 47.0, 41.8, 31.8, 28.4, 24.2, 24.0, 18.8, 17.7; HRMS (E.I) m/z (M) $^+$ calcd. 429.2628, obsd. 429.2611.

Ligand Optimization via Method A:

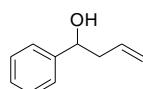
Procedure for the synthesis of homoallylic alcohols:

All homoallylic alcohols in the scope were synthesized by the following methods unless otherwise noted.

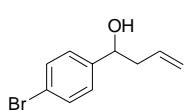
CrCl₂ Method (A):

In an inert atmosphere glove box, a 1.5 dram vial was charged with CrCl₂ (3 mg, 0.024 mmol, 0.05 equiv.), Mn⁰ 325 mesh (54 mg, 0.98 mmol, 2 equiv.), ligand (**1d**) (21 mg, 0.048 mmol, 0.1 equiv.), THF (2.4 ml) and a magnetic stir-bar. The vial is capped with a permeable Teflon lid and rapped with a strip of Teflon tape to insure an oxygen free atmosphere. The vial is then removed from the glove box and NEt₃ (7 μ l, 0.05 mmol, 0.1 equiv.) is added to the mixture via syringe. The green solution is allowed to stir for 20 min followed by the addition of allyl bromide (85 μ l, 0.98 mmol, 2 equiv.), resulting in a black-colored solution. After 30 min, benzaldehyde (50 μ l, 0.49 mmol, 1 equiv.) and

TMSCl (125 μ l, 0.98 mmol, 2 equiv.) are sequentially added via syringe. The reaction mixture is allowed to stir at room temperature for 20 h.

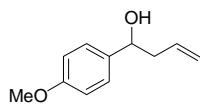

Workup: The cap is removed and the deep blue/green reaction mixture is quenched with sat. NaHCO_3 (1.5 ml). Take caution to add the solution slowly as a large amount of gas evolves. The mixture is then passed through a celite plug, using Et_2O to elute, followed by addition of TBAF (1.5 mL, 1M in THF) to deprotect the TMS protected alcohol. After 10 minutes the contents of the flask are placed in a separatory funnel and extracted with Et_2O (5 ml x 3), dried with Na_2SO_4 , and filtered. After removal of the solvent in vacuo, the light oil is loaded onto a short silica column (100 ml) and eluted with (1:9) $\text{EtOAc} : \text{Hexanes}$ ($R_f = 0.65$, 1:2 $\text{EtOAc}:\text{Hexanes}$). The product is isolated and the solvent is removed in vacuo to yield the resulting product as clear oil.

CrCl₃ Method (B):

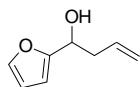

In a 1.5 dram vial was placed CrCl_3 (7.9 mg, 0.05 mmol, 0.1 equiv.), $\text{Mn}(0)$ 325 mesh (55 mg, 1.0 mmol, 2 equiv.), ligand (**1d**) (21 mg, 0.05 mmol, 0.1 equiv.) and a magnetic stir-bar. The vial is fitted with a permeable Teflon cap and placed under vacuum and refilled with house N_2 . A small strip of Teflon was used to wrap the cap to insure no air penetrates the seal. The vial is then charged with THF (2.4 ml) and allowed to stir vigorously for 2 min. at which time NEt_3 (10 μ l, 0.075 mmol, 0.15 equiv) and TMSCl (125 μ l, 1.0 mmol, 2 equiv.) were added. The reaction mixture was stirred for an additional 20 min. During this time the clear solution turned a deep purple color. Allyl bromide (85 μ l, 1.0 mmol, 2 equiv.) was added in one portion and the reaction stirred for 45 minutes. During this time, the deep purple solution turned black. After 45 minutes, benzaldehyde (51 μ l, 0.5 mmol, 1 equiv.) was added in one part to the vial. A strip of Teflon tape was used to seal the top of the cap to insure that it remained air free and the mixture was allowed to stir for 20 h. Over the course of the reaction, the solution turned to a deep blue-green color with a white precipitate. Workup is the same as in method A.

All alcohols in the scope were derived in this method unless noted in the experimental.

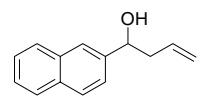
Analytical Data

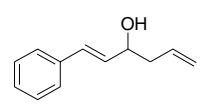


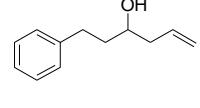
(R)-(1-Phenyl-but-3-en-1-ol); $[\alpha]_D^{20} +49.4^\circ$ (c 1.9, benzene), lit: $[\alpha]_D^{22} +56.5^\circ$ (c 1.0, benzene)²; The enantioselectivity was determined to be 94% ee by HPLC analysis (Chiralcel OD, hexane/ $i\text{-PrOH}$ = 98/2, flow rate = 1.0 mL/min): $t_{\text{major}} = 15.9$ min (R), $t_{\text{minor}} = 18.4$ min (S).

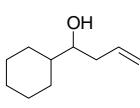


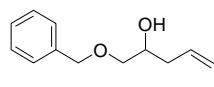
(R)-(1-(4-Bromo-phenyl)-but-3-en-1-ol); $[\alpha]_D^{20} +22.7^\circ$ (c 4.1, benzene), lit: $[\alpha]_D^{24} +23.2^\circ$ (c 1.0, benzene)²; The enantioselectivity was determined by ^{19}F NMR of the corresponding (R)-mosher ester and was calculated to be 91% ee..


² Wadamoto, M.; Ozasa, N.; Yanagisawa, A.; Yamamoto, H. *J. Org. Chem.* **2003**, 68, 5593-5601.

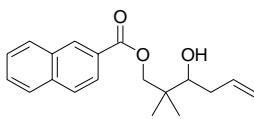

(R)-(1-(4-Methoxy-phenyl)-but-3-en-1-ol); $[\alpha]_D^{20} +30.0^\circ$ (c 6.4, benzene), lit: $[\alpha]_D^{23} +30.5^\circ$ (c 1.0, benzene)²; The enantioselectivity was determined to be 89% ee by HPLC analysis (Chiralcel OD, hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min): $t_{\text{major}} = 20.6$ min (R), $t_{\text{minor}} = 26.1$ (S).

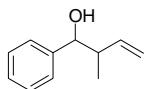

(R)-(1-Furan-2-yl-but-3-en-1-ol); $[\alpha]_D^{20} +29.4$ (c 2.2, Et₂O), lit: $[\alpha]_D^{26} +29.9^\circ$ (c 1.0, Et₂O)²; The enantioselectivity was determined to be 92% ee by HPLC analysis (Chiralcel OJ, hexane/*i*-PrOH = 98.5/1.5, flow rate = 1.0 mL/min): $t_{\text{minor}} = 16.7$ min (S), $t_{\text{major}} = 18.4$ min (R).


(R)-(1-Naphthalen-2-yl-but-3-en-1-ol); Addition of the aldehyde required a small portion of THF be used to dissolve the solid in order for it to be injected into the reaction mixture. $[\alpha]_D^{20} +25.2^\circ$ (c 0.25, MeOH), lit: $[\alpha]_D^{24} +37.5^\circ$ (c 0.99, benzene)³; The enantioselectivity was determined to be 94% ee by HPLC analysis (Chiralcel OD, hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min): $t_{\text{minor}} = 35.9$ min (S), $t_{\text{major}} = 38.4$ min (R).

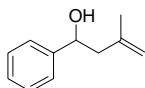

(R)-(E)-1-Phenyl-hexa-1,5-dien-3-ol); $[\alpha]_D^{20} -17.0$ (c 2.0, Et₂O), lit: $[\alpha]_D^{26} -12.3^\circ$ (c 1.0, Et₂O)²; The enantioselectivity was determined to be 88% ee by HPLC analysis (Chiralcel OD, hexane/*i*-PrOH = 98.5/1.5, flow rate = 1.5 mL/min): $t_{\text{major}} = 24.4$ min (R), $t_{\text{minor}} = 52.4$ min (S).

(S)-(1-Phenyl-hex-5-en-3-ol); $[\alpha]_D^{20} -9.6^\circ$ (c 4.2, CHCl₃), lit: $[\alpha]_D^{24} -26.4^\circ$ (c 1.0, benzene)²; The enantioselectivity was determined to be 48% ee by HPLC analysis (Chiralcel OD, hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min): $t_{\text{major}} = 19.3$ min (S), $t_{\text{minor}} = 34.5$ min (R).


(R)-(1-Cyclohexyl-but-3-en-1-ol); $[\alpha]_D^{20} +9.5$ (c 1.6, ethanol), lit: $[\alpha]_D^{25} +13.7^\circ$ (c 1.0, ethanol)²; The enantioselectivity was determined to be 88% ee by HPLC analysis of the 3,5-dinitrobenzoate derivative of the product (Chiralcel OD-H, hexane/*i*-PrOH = 95/5, flow rate = 1.0 mL/min): $t_{\text{major}} = 42.6$ min (R), $t_{\text{minor}} = 46.1$ min (S).

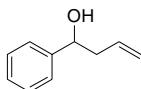

(S)-(1-Benzyl-4-phenyl-1,3-butadiene-2-ol); $[\alpha]_D^{20} +0.9$ (c 2.5, CHCl₃), lit: $[\alpha]_D^{20} +1.4^\circ$ (c 1.00, CHCl₃)⁴; The enantioselectivity was determined by ¹⁹F NMR of the corresponding (R)-mosher ester and was calculated to be 53% ee.

³ Denmark, S. E.; Wynn, T. *J. Am. Chem. Soc.* **2001**, *123*, 6199-6200.

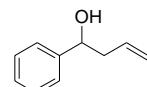
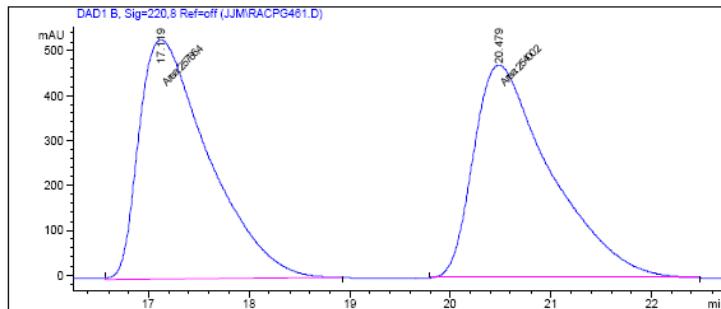

⁴ Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. *J. Am. Chem. Soc.* **2002**, *124*, 7920-7921.

(S)-Naphthalene-2-carboxylic acid 3-hydroxy-2,2-dimethyl-hex-5-enyl ester; $[\alpha]_D^{20} +10.0$ (c 0.25, CHCl₃), lit: $[\alpha]_D^{25} +11.9^\circ$ (c 0.95, CHCl₃)⁵; The enantioselectivity was determined to be 91% ee by HPLC analysis (Chiralcel OD, hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min): $t_{\text{minor}} = 21.5$ min (R); $t_{\text{major}} = 28.4$ min (S).

(2-Methyl-1-phenyl-but-3-en-1-ol); $[\alpha]_D^{20} +9.5$ (c 1.6, ethanol), lit: $[\alpha]_D^{25} +13.7^\circ$ (c 1.0, ethanol)⁶; The stereochemistry was determined via chiral GC analysis of the corresponding methyl ether (HP chiral 20% Permethylated β -cyclodextrin, method: 65 °C isotherm), T_r : 56.9 (*S,R*), 58.1 (*R,S*), 66.4 (*S,S*), 69.2 (*R,R*) min thus providing a diastereomeric ratio *anti:syn* of 71:29 and the enantiomeric ratio of (*syn*_{1*S,2R*}) : (*syn*_{1*R,2S*}) = 97.3 : 2.7 (95% ee), (*anti*_{1*S,2S*}) : (*anti*_{1*R,2R*}) = 95.5 : 4.5 (91% ee).



(R)-(3-Methyl-1-phenyl-but-3-en-1-ol); $[\alpha]_D^{20} +51.3$ (c 5.2, benzene), lit: $[\alpha]_D^{23} +55.3^\circ$ (c 1.3, benzene)⁷; The enantioselectivity was determined to be 91% ee by HPLC analysis (Chiralcel OD, hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min): $t_{\text{minor}} = 13.4$ min (S); $t_{\text{major}} = 15.9$ min (R).



⁵ Bode, J. W.; Carreira, E. M. *J. Org. Chem.* **2001**, *66*, 6410-6224.

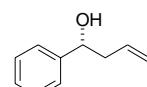
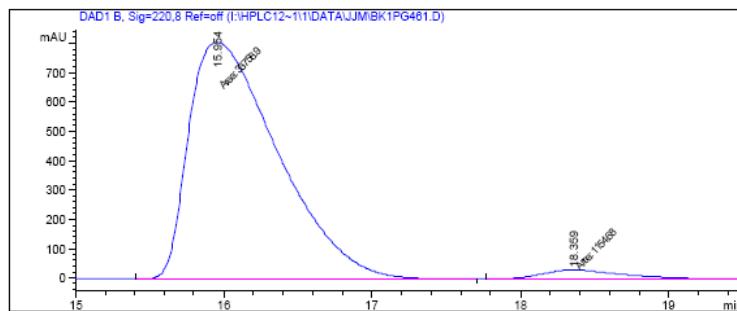
⁶ Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. *Angew. Chem. Int. Ed.* **2000**, *39*, 2327-2330.

⁷ Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto, H. *J. Am. Chem. Soc.* **1996**, *118*, 4723-4724.

HPLC Conditions: Chiralcel OD, 2% IPA/Hexanes, 1 ml/min

Racemic Product

=====
Area Percent Report
=====



Sorted By : Retention Time
Multiplier : 1.0000
Dilution : 1.0000

Signal 1: DAD1 B, Sig=220.8 Ref=off

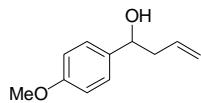
Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	17.119	1	MM	2.57664e4	534.02887	50.3579
2	20.479	1	MM	2.54002e4	474.95355	49.6421

Totals : 5.11665e4 1008.98242

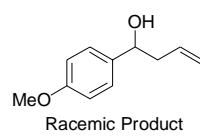
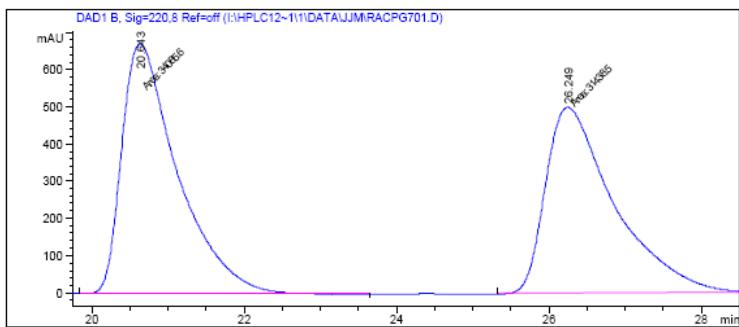
=====

Reaction Product

=====
Area Percent Report
=====


Sorted By : Retention Time
Multiplier : 1.0000
Dilution : 1.0000

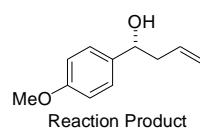
Signal 1: DAD1 B, Sig=220.8 Ref=off



Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	15.954	1	MM	3.37589e4	808.57599	96.6928
2	18.359	1	MM	1154.68042	30.86376	3.3072

Totals : 3.49136e4 839.43975

=====

HPLC Conditions: Chiralcel OD, 2% IPA/Hexanes, 1 ml/min

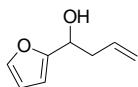

=====
Area Percent Report
=====

Sorted By : Retention Time
Multiplier : 1.0000
Dilution : 1.0000

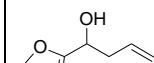
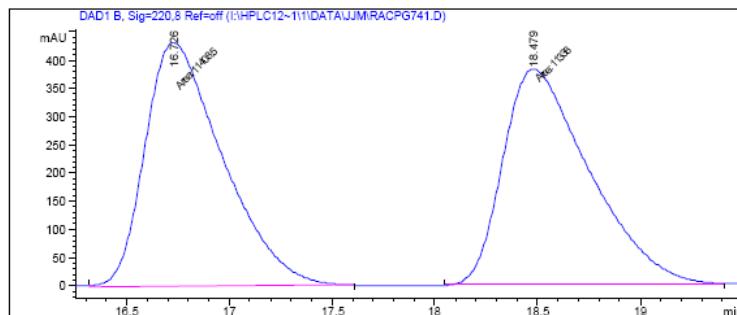
Signal 1: DAD1 B, Sig=220.8 Ref=off

Peak	RetTime	Sig	Type	Area	Height	Area
#	[min]			[mAU*s]	[mAU]	%
1	20.643	1	MM	3.40856e4	671.44659	52.0199
2	26.249	1	MM	3.14385e4	499.82336	47.9801

Totals : 6.55241e4 1171.26996


=====
Area Percent Report
=====

Sorted By : Retention Time
Multiplier : 1.0000
Dilution : 1.0000



Signal 1: DAD1 E, Sig=254.4 Ref=off

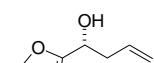
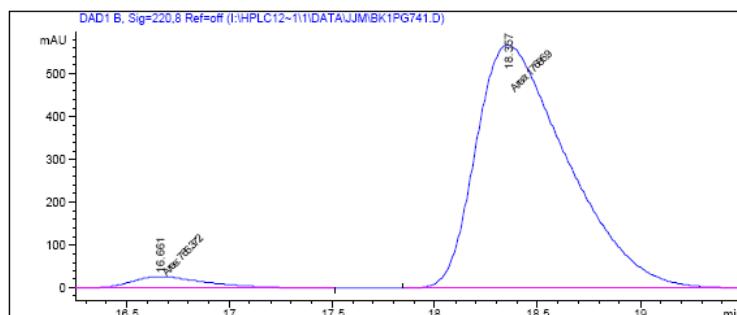
Peak	RetTime	Sig	Type	Area	Height	Area
#	[min]			[mAU*s]	[mAU]	%
1	20.569	1	MM	2297.84351	44.30569	94.6726
2	26.080	1	MM	129.30327	2.17143	5.3274

Totals : 2427.14677 46.47712

HPLC Conditions: Chiralcel OJ-H, 1.5% IPA/Hexanes, 1 ml/min

Racemic Product

=====
Area Percent Report
=====



Sorted By : Retention Time
Multiplier : 1.0000
Dilution : 1.0000

Signal 1: DAD1 B, Sig=220,8 Ref=off

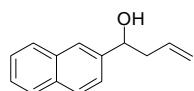
Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	16.726	1	MM	1.14085e4	432.62442	50.1550
2	18.479	1	MM	1.13380e4	383.58707	49.8450

Totals : 2.27464e4 816.21149

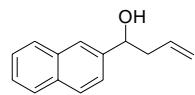
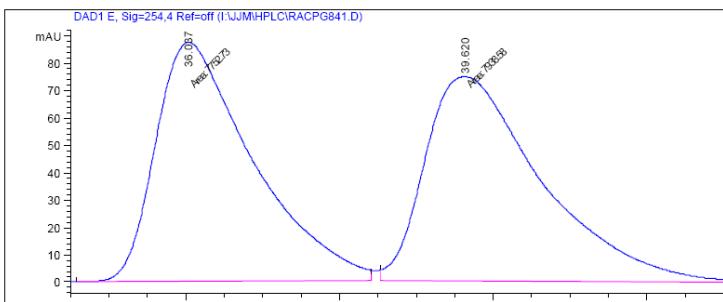
=====

Reaction Product

=====
Area Percent Report
=====


Sorted By : Retention Time
Multiplier : 1.0000
Dilution : 1.0000

Signal 1: DAD1 B, Sig=220,8 Ref=off

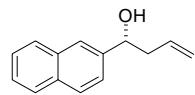
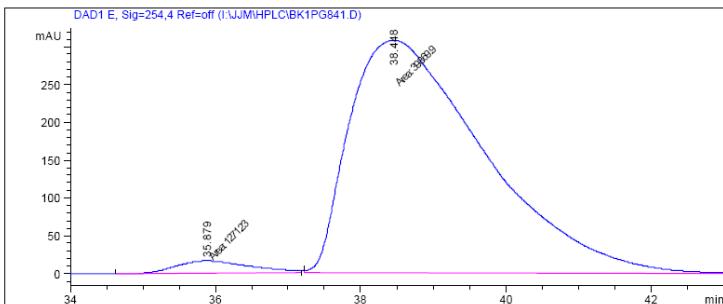


Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	16.661	1	MM	766.37231	28.42892	4.1530
2	18.357	1	MM	1.76869e4	570.56561	95.8470

Totals : 1.84533e4 598.99453

=====

HPLC Conditions: Chiralcel OD, 2% IPA/Hexanes, 1 ml/min

Racemic Product



=====
Area Percent Report
=====

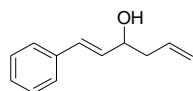
Sorted By : Retention Time
Multiplier : 1.0000
Dilution : 1.0000

Signal 1: DAD1 E, Sig=254.4 Ref=off

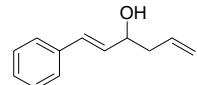
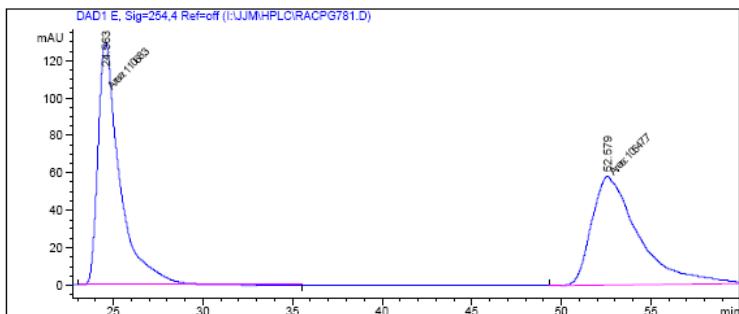
Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	36.037	1	MM	7752.73193	87.78820	49.4078
2	39.620	1	MM	7938.58154	74.94825	50.5922

Totals : 1.56913e4 162.73645

Reaction Product


=====
Area Percent Report
=====

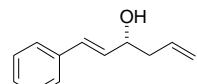
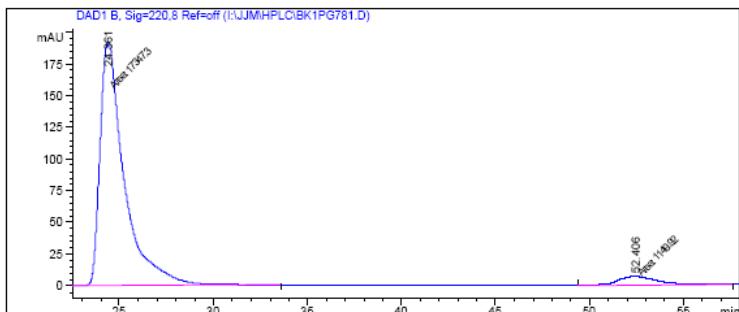
Sorted By : Retention Time
Multiplier : 1.0000
Dilution : 1.0000



Signal 1: DAD1 E, Sig=254.4 Ref=off

Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	35.879	1	MM	1271.23071	17.00602	3.0899
2	38.448	1	MM	3.98699e4	308.36526	96.9101

Totals : 4.11411e4 325.37128

HPLC Conditions: Chiralcel OD, 1.5% IPA/Hexanes, 1.5 ml/min

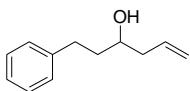


Racemic Product

Sorted By : Retention Time
 Multiplier : 1.0000
 Dilution : 1.0000

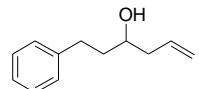
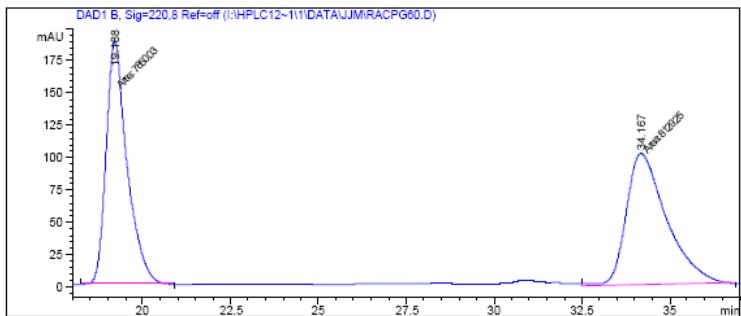
Signal 1: DAD1 E, Sig=254.4 Ref=off

Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	24.563	1	MM	1.10683e4	129.54230	50.9686
2	52.579	1	MM	1.06477e4	58.19971	49.0314

Totals : 2.17160e4 187.74200


Reaction Product

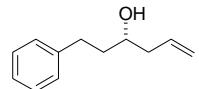
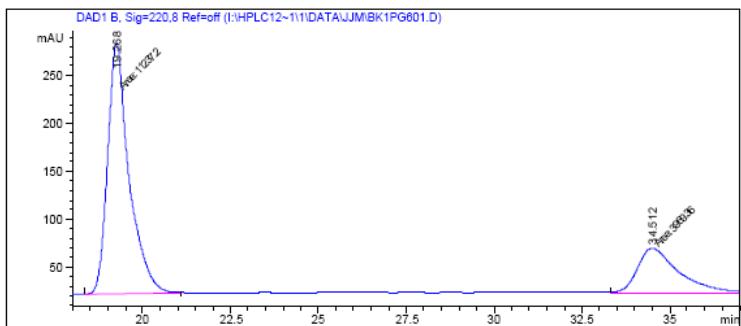
Sorted By : Retention Time
 Multiplier : 1.0000
 Dilution : 1.0000



Signal 1: DAD1 B, Sig=220.8 Ref=off

Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	24.361	1	MM	1.73473e4	192.40419	93.7833
2	52.406	1	MM	1149.92456	6.83473	6.2167

Totals : 1.84972e4 199.23892

HPLC Conditions: Chiralcel OD, 2% IPA/Hexanes, 1 ml/min

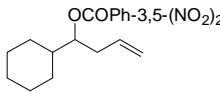


Racemic Product

Sorted By : Retention Time
 Multiplier : 1.0000
 Dilution : 1.0000

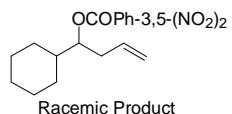
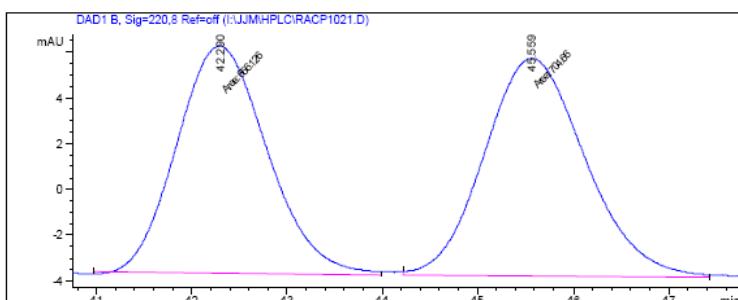
Signal 1: DAD1 B, Sig=220,8 Ref=off

Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	19.188	1	MM	7850.03467	188.35583	49.1263
2	34.167	1	MM	8129.25146	101.82943	50.8737

Totals : 1.59793e4 290.18526


Reaction Product

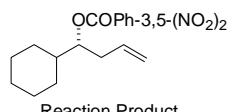
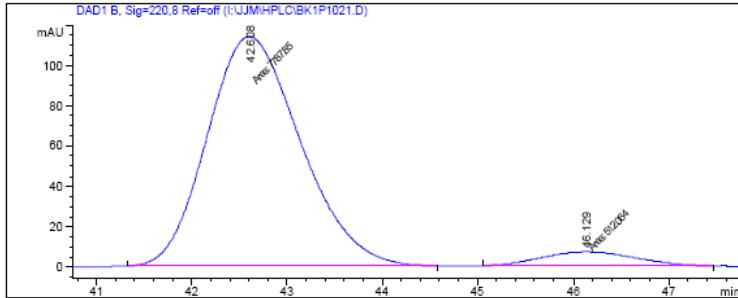
Sorted By : Retention Time
 Multiplier : 1.0000
 Dilution : 1.0000



Signal 1: DAD1 B, Sig=220,8 Ref=off

Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	19.268	1	MM	1.12372e4	262.42023	73.8971
2	34.512	1	MM	3969.36084	47.29820	26.1029

Totals : 1.52066e4 309.71843

HPLC Conditions: Chiralcel OD-H, 5% IPA/Hexanes, 1 ml/min

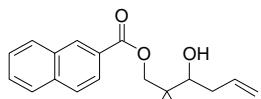


Racemic Product

Sorted By : Retention Time
 Multiplier : 1.0000
 Dilution : 1.0000

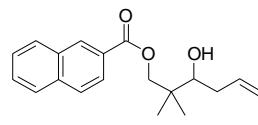
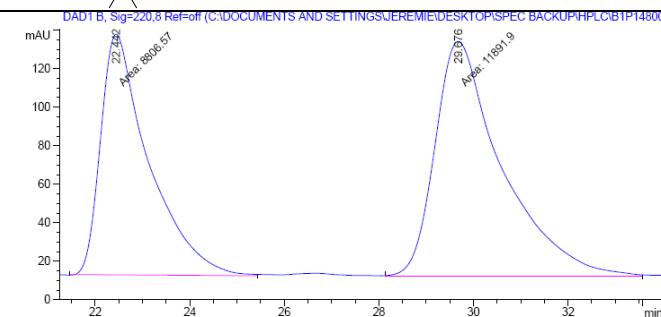
Signal 1: DAD1 B, Sig=220.8 Ref=off

Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	42.290	1	MM	656.12592	9.94324	48.2167
2	45.559	1	MM	704.65997	9.51931	51.7833

Totals : 1360.78589 19.46255


Reaction Product

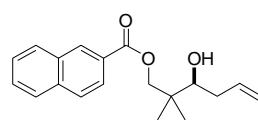
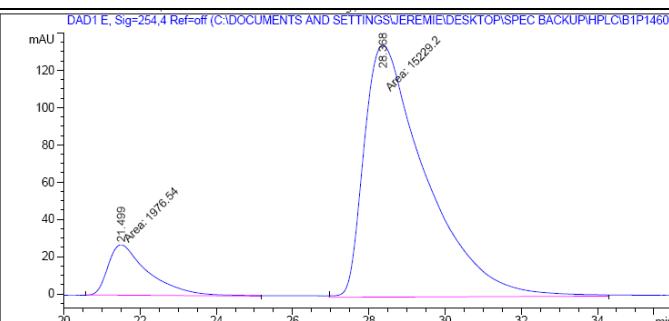
Sorted By : Retention Time
 Multiplier : 1.0000
 Dilution : 1.0000



Signal 1: DAD1 B, Sig=220.8 Ref=off

Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	42.608	1	MM	7787.85449	114.24649	93.8305
2	46.129	1	MM	512.06421	7.20011	6.1695

Totals : 8299.91870 121.44660

HPLC Conditions: Chiral OD, 2% IPA/Hexanes, 1 ml/min

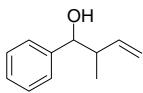


Racemic Product

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

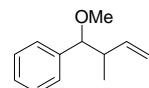
Signal 1: DAD1 B, Sig=220.8 Ref=off

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	22.442	MM	1.1752	8806.57227	124.89345	42.5471
2	29.676	MM	1.6294	1.18919e4	121.63763	57.4529

Totals : 2.06984e4 246.53108


Reaction Product

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

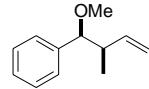
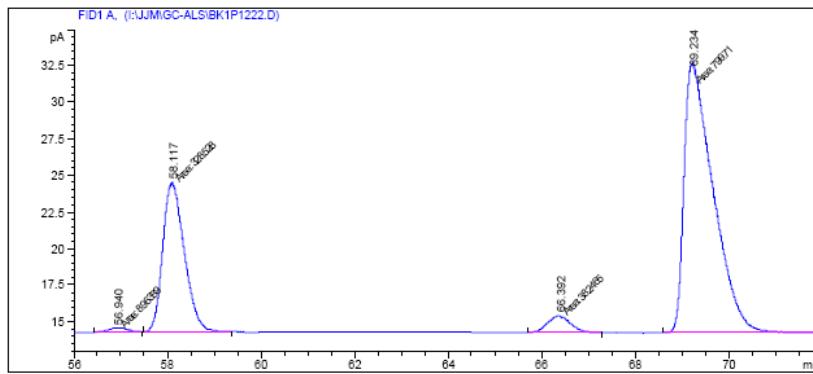


Signal 1: DAD1 E, Sig=254.4 Ref=off

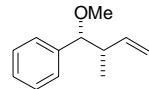
Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	21.499	MM	1.2193	1976.53967	27.01683	11.4877
2	28.368	MM	1.8798	1.52292e4	135.02512	88.5123

Totals : 1.72058e4 162.04194

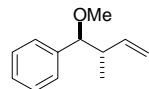
GC Conditions: HP Chiral (20% Permethylated β -cyclodextrin, 65 °C isotherm, no ramp

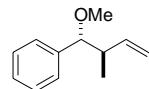


Racemic Product

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000


Signal 1: FID1 A,

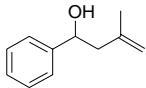
Peak #	RetTime [min]	Type	Width [min]	Area [pA*s]	Height [pA]	Area %
1	57.079	MM	0.5655	3.47714	1.02479e-1	4.36560
2	58.442	MM	0.5944	3.67251	1.02972e-1	4.61089
3	66.562	MM	0.6150	36.12446	9.79038e-1	45.35476
4	69.981	MM	0.6544	36.37455	9.26397e-1	45.66875


Totals : 79.64867 2.11089

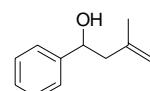
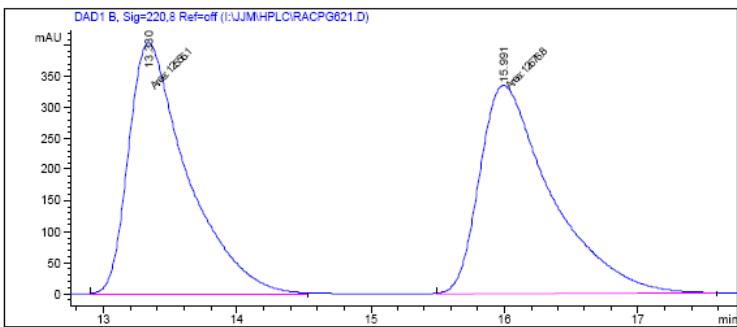

Reaction Product 56.94 min.

Reaction Product 58.12 min.

Reaction Product 66.39 min.


Reaction Product 69.23 min.

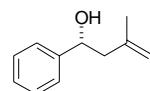
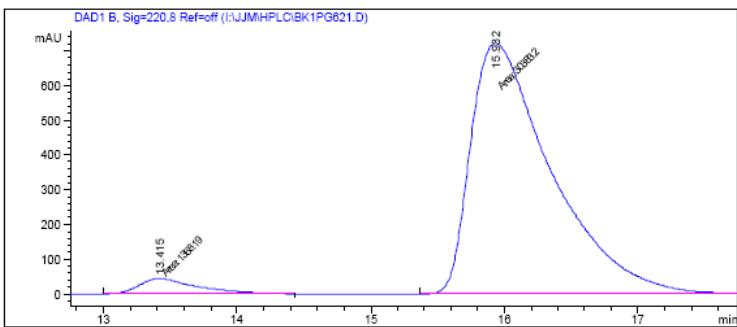
Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000



Signal 1: FID1 A,

Peak #	RetTime [min]	Type	Width [min]	Area [pA*s]	Height [pA]	Area %
1	56.940	MM	0.4763	8.96389	3.13672e-1	0.76259
2	58.117	MM	0.5336	328.52835	10.26058	27.94918
3	66.392	MM	0.5665	38.24651	1.12522	3.25378
4	69.234	MM	0.7161	799.71027	18.61213	68.03445

Totals : 1175.44902 30.31160

HPLC Conditions: Chiralcel OD, 2% IPA/Hexanes, 1 ml/min

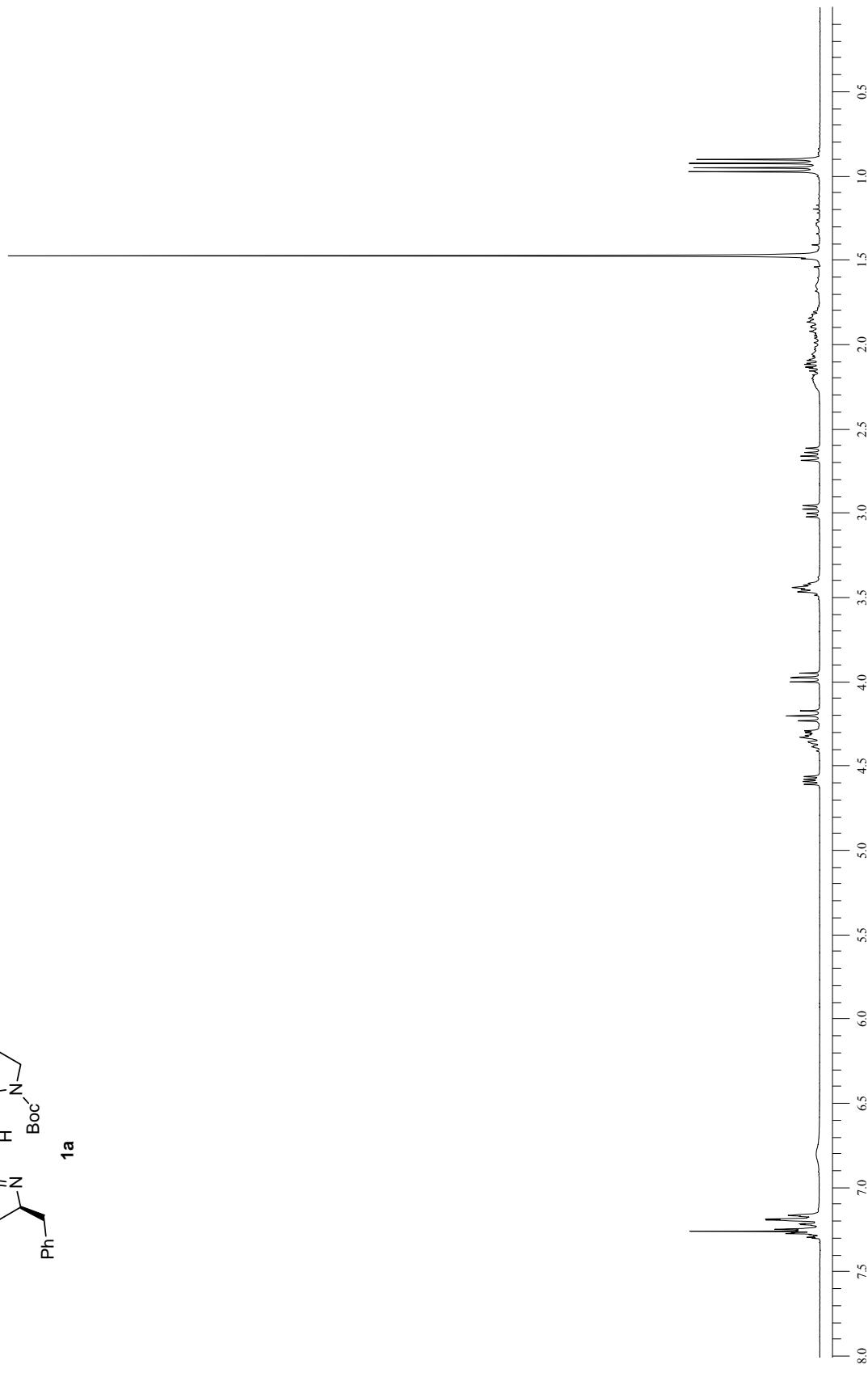
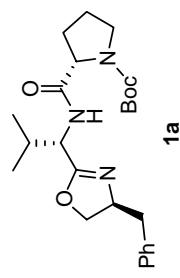


Racemic Product

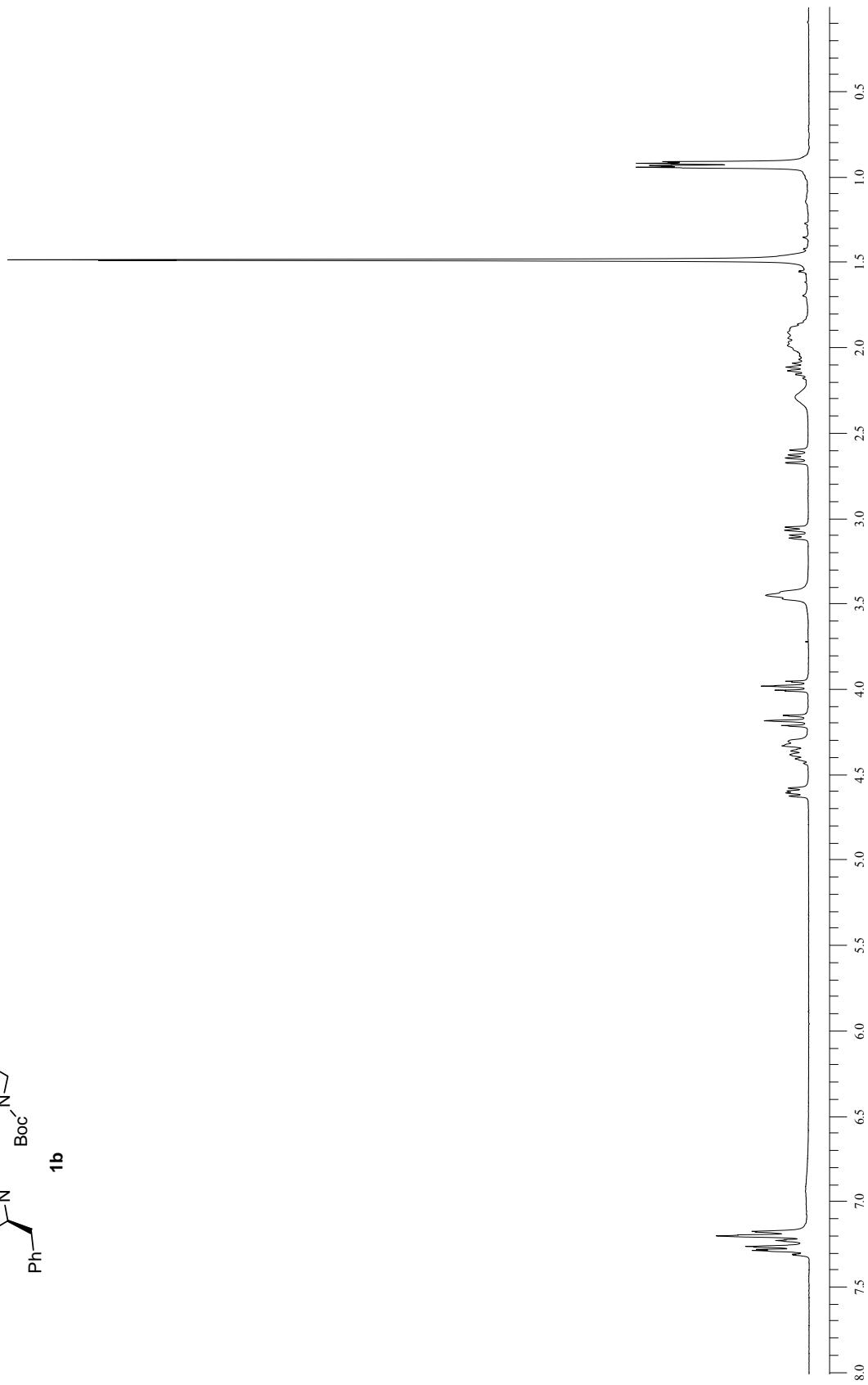
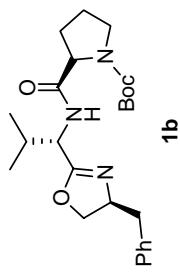
Sorted By : Retention Time
Multiplier : 1.0000
Dilution : 1.0000

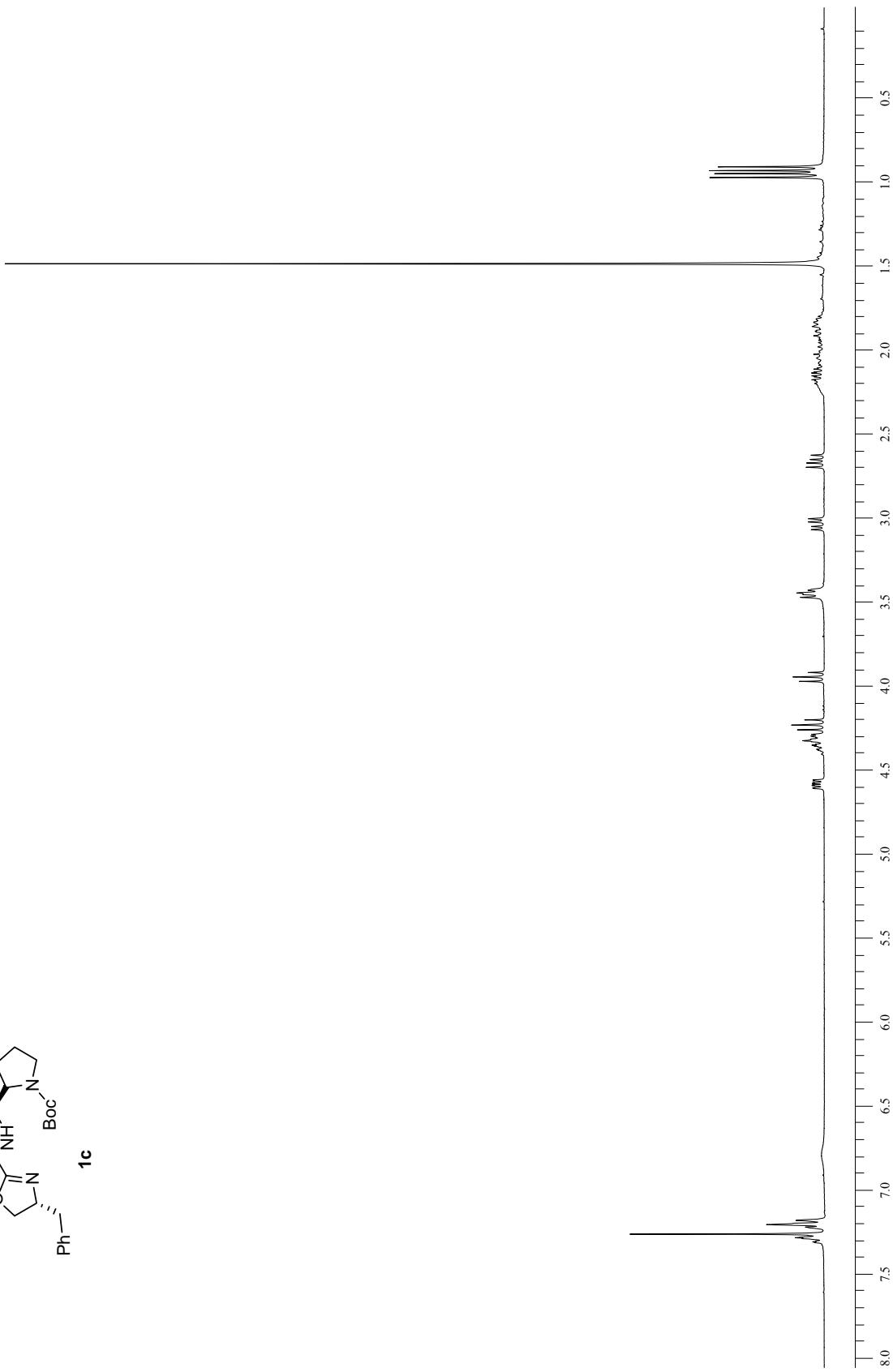
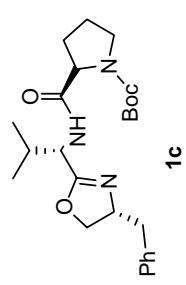
Signal 1: DAD1 B, Sig=220,8 Ref=off

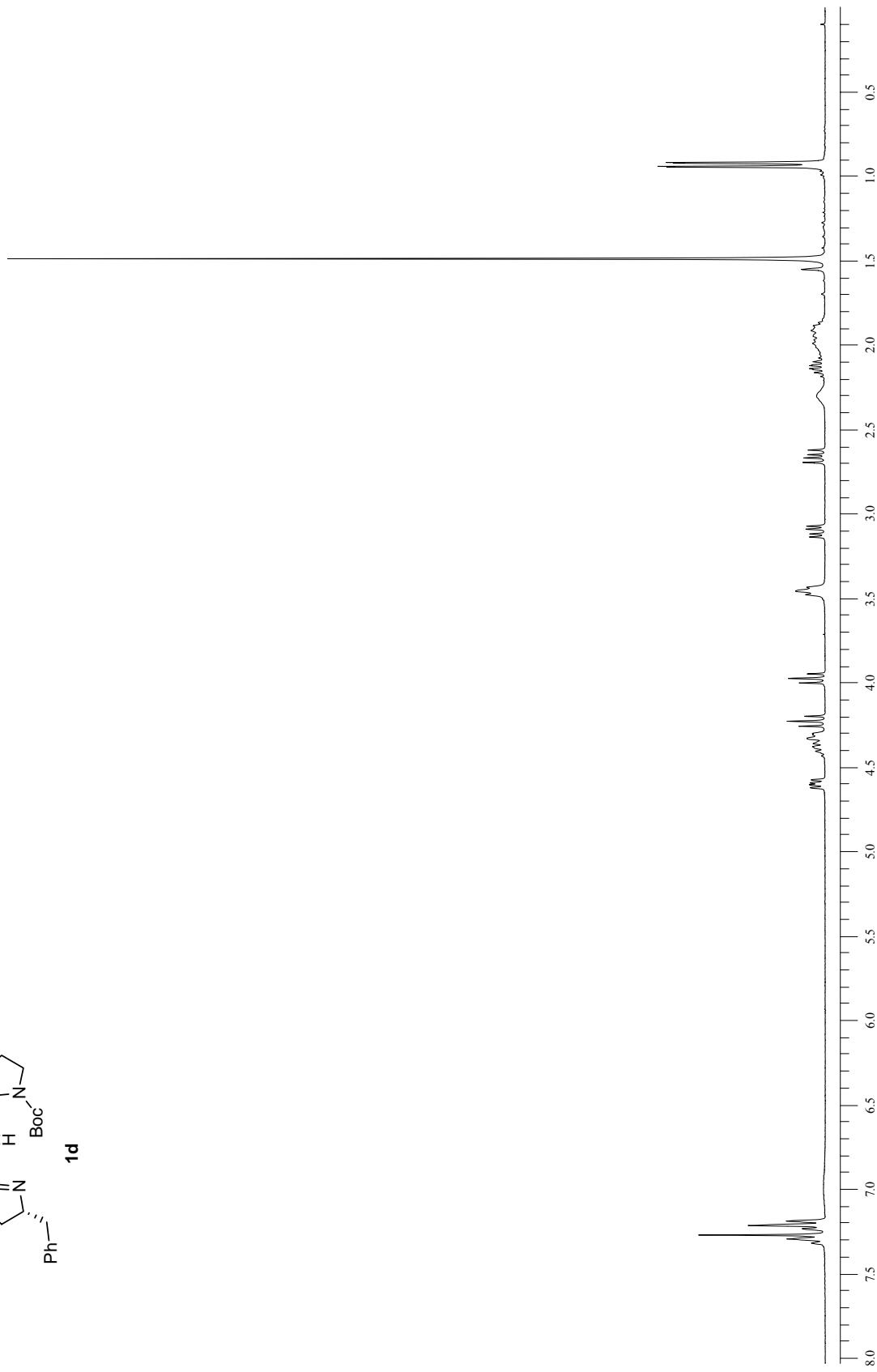
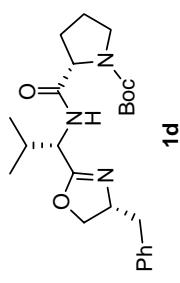
Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	13.330	1	MM	1.25551e4	406.04471	49.7587
2	15.991	1	MM	1.26768e4	336.86868	50.2413

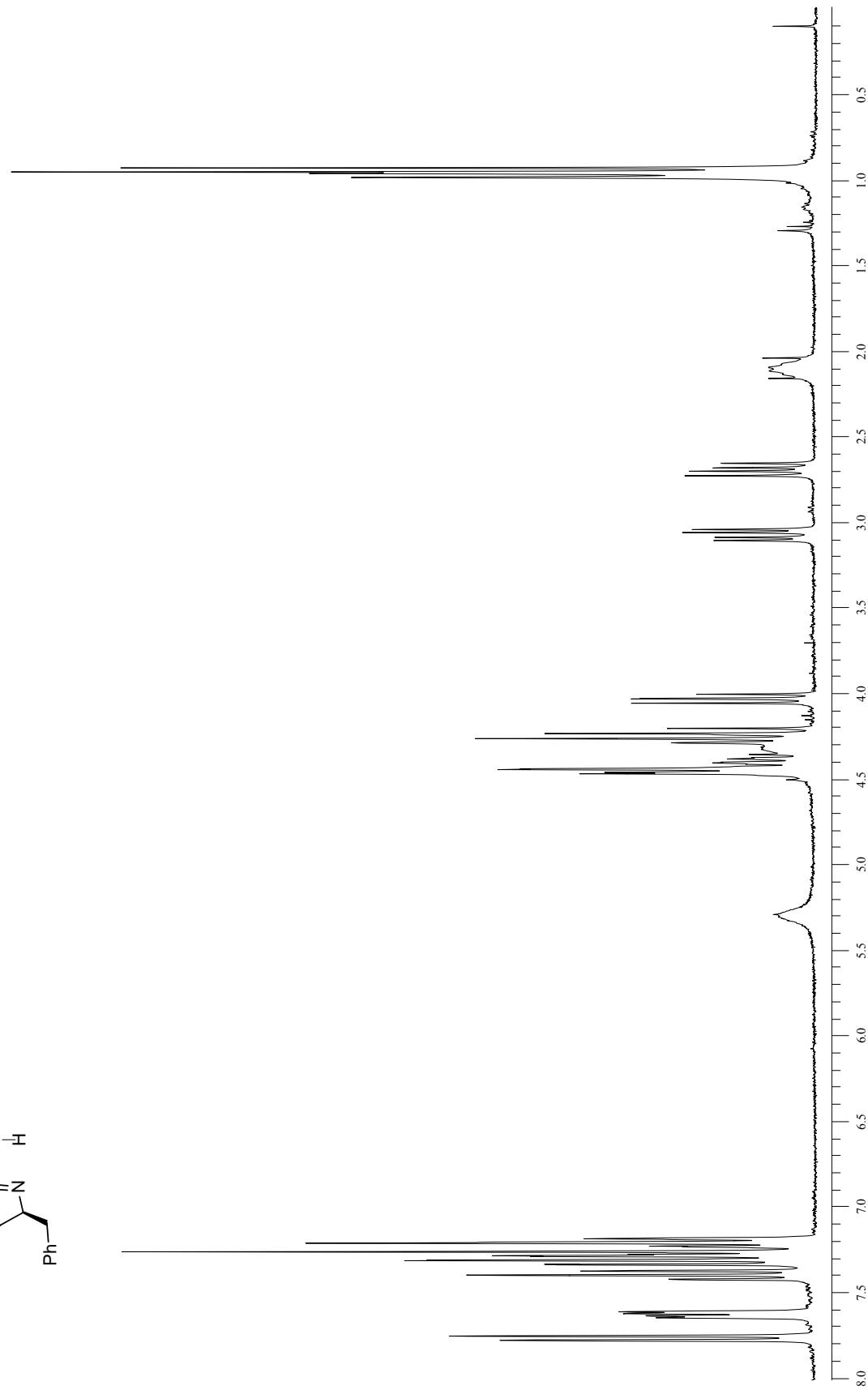
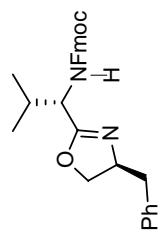
Totals : 2.52319e4 742.91339

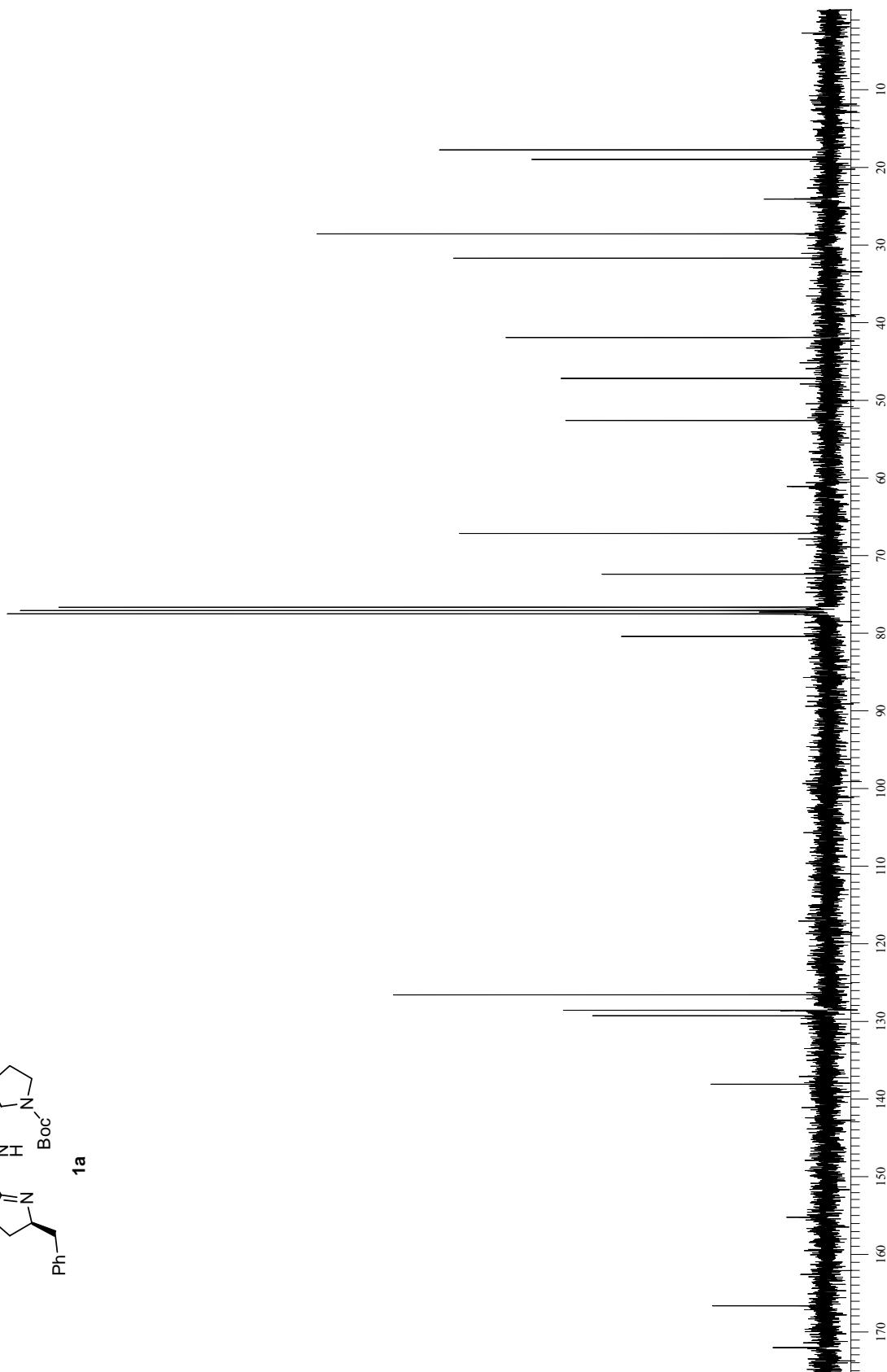
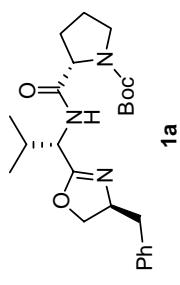


Reaction Product

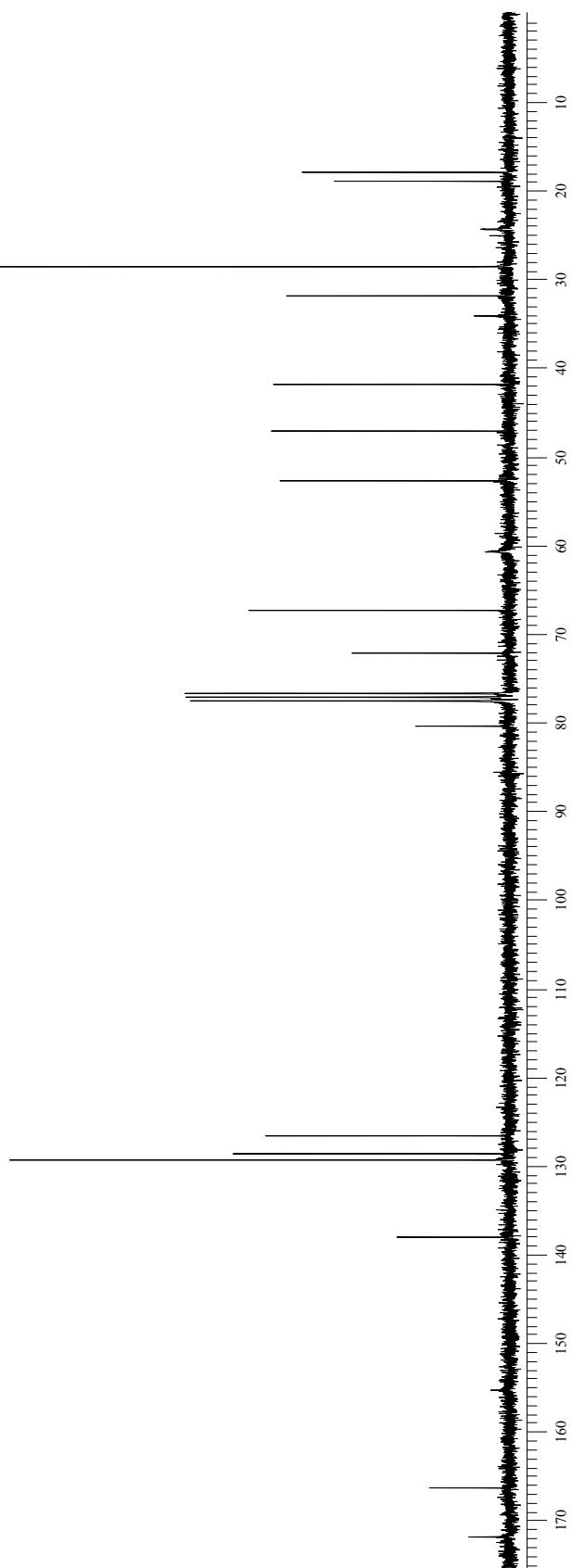
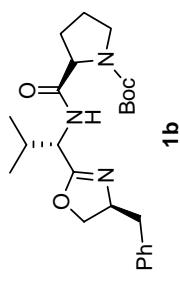


Sorted By : Retention Time
Multiplier : 1.0000
Dilution : 1.0000

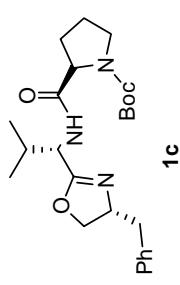


Signal 1: DAD1 B, Sig=220,8 Ref=off

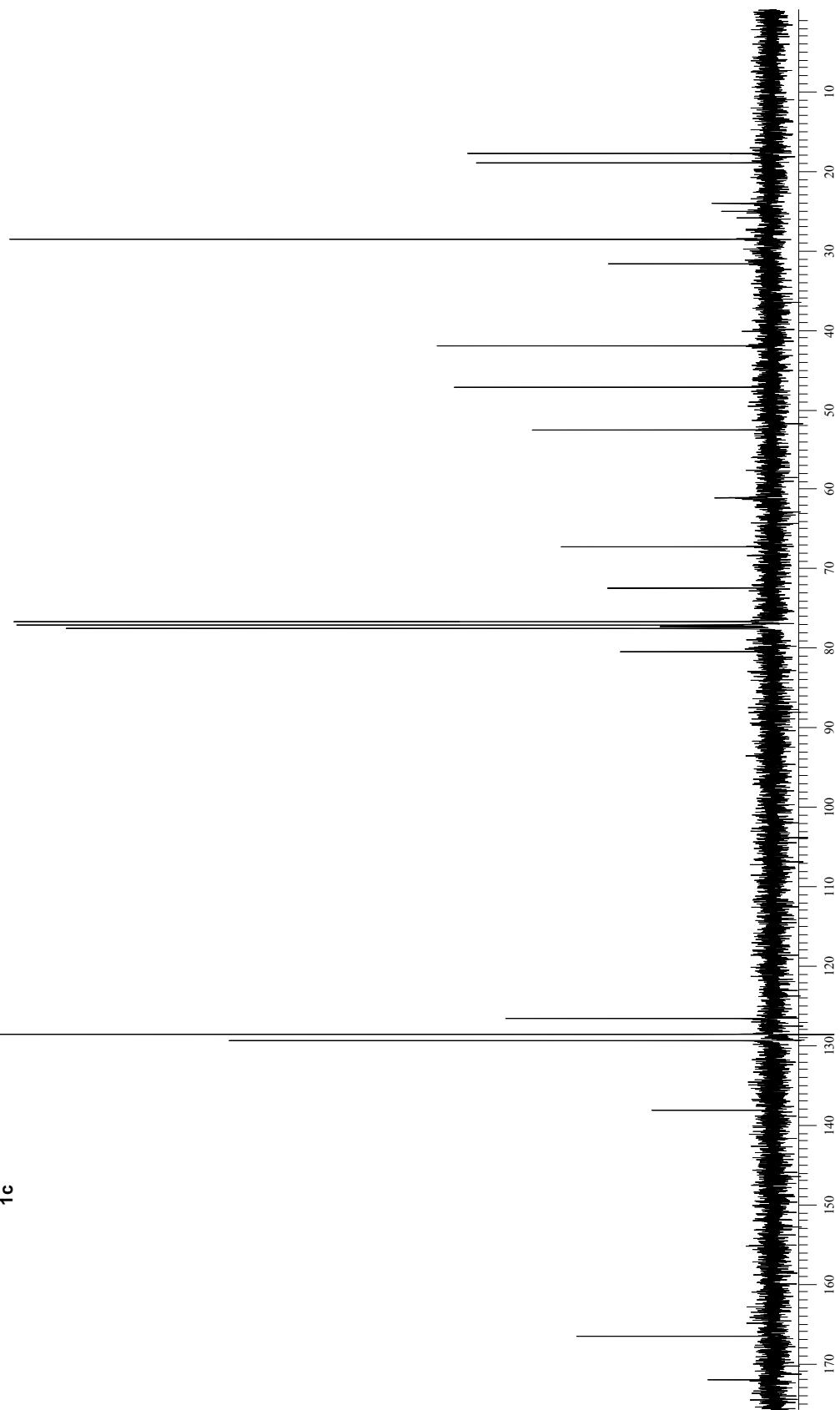


Peak #	RetTime [min]	Sig	Type	Area [mAU*s]	Height [mAU]	Area %
1	13.415	1	MM	1368.18848	44.87090	4.3091
2	15.932	1	MM	3.03832e4	722.06104	95.6909



Totals : 3.17514e4 766.93193

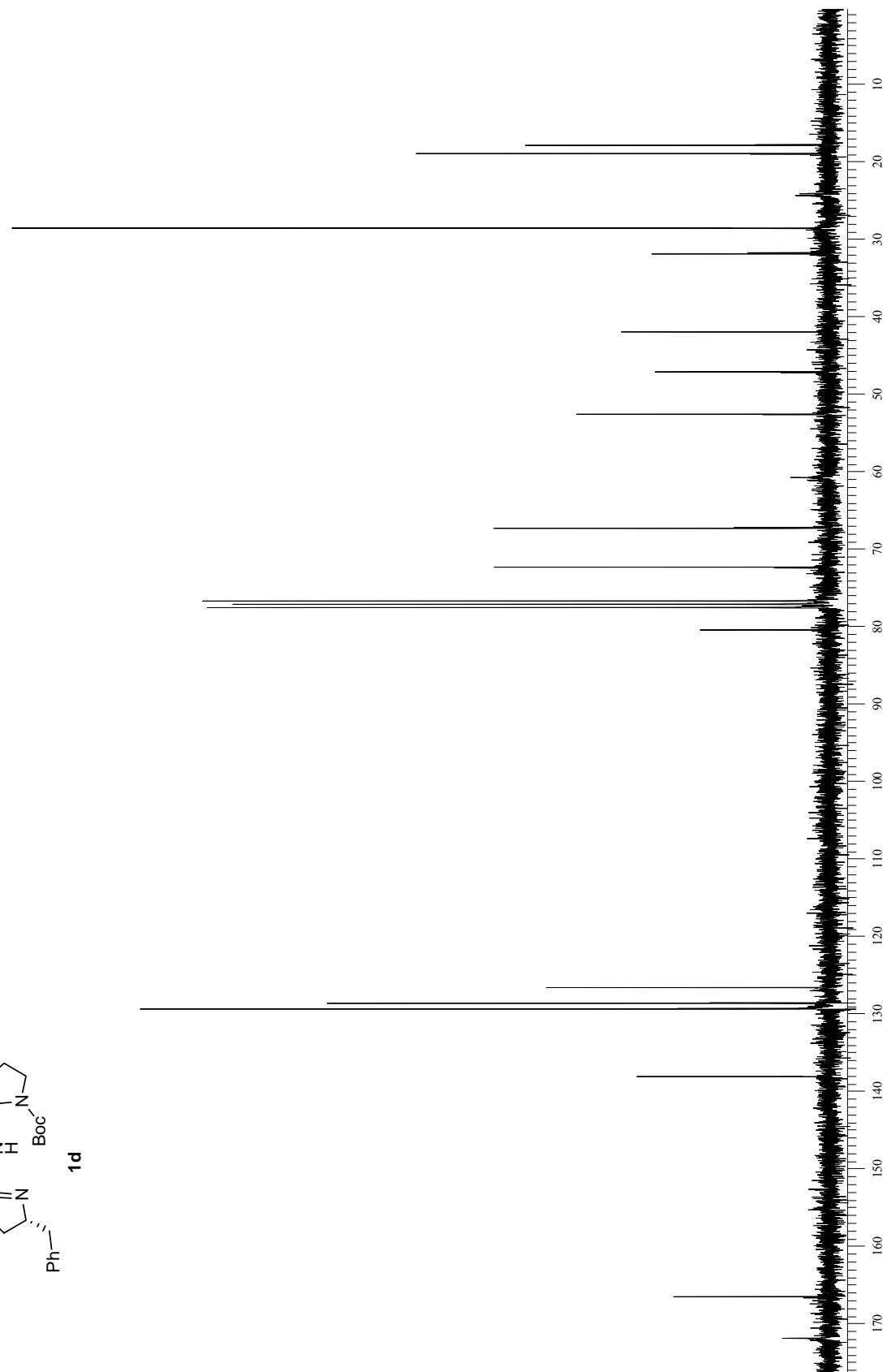



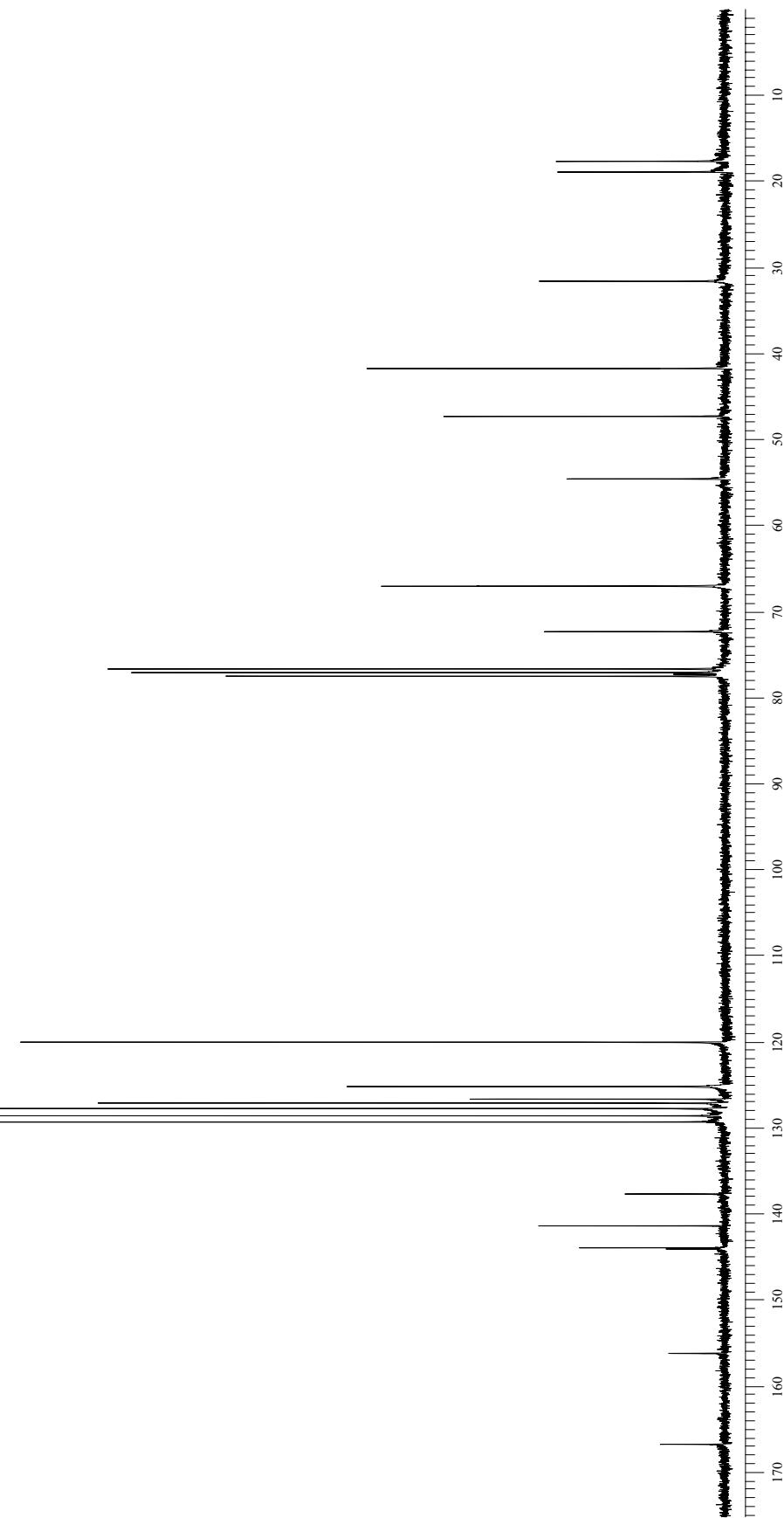
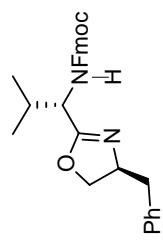













1c

1d

