Synthesis of Polycyclic Aromatics and Heteroaromatics via Electrophilic Cyclization

Tuanli Yao, Marino A. Campo and Richard C. Larock*

Department of Chemistry, Iowa State University, Ames, Iowa 50011

	Page
General	S2-S2
Preparation of 2-(arylethynyl)biphenyls	S2-S7
Electrophilic cyclization of 2-(arylethynyl)biphenyls by ICl	S7-S12
Electrophilic cyclization of 2-(arylethynyl) biphenyls by I_2	S12-S12
Electrophilic cyclization of 2-(arylethynyl)biphenyls by NBS	S12-S13
Electrophilic cyclization of 2-(arylethynyl)biphenyls by PhSeCl	S14-S15
References	S16-S16
Copies of ¹ H and ¹³ C NMR spectra	S17-S60

Supporting Information

General. ¹H and ¹³C NMR spectra were recorded at 300 and 75 MHz. Thin-layer chromatography was performed using commercially prepared 60-mesh silica gel plates (Whatman K6F), and visualization was effected with short wavelength UV light (254 nm) and a basic KMnO₄ solution [3 g of KMnO₄ + 20 g of K₂CO₃ + 5 mL of NaOH (5%) + 300 mL of H₂O]. All melting points are uncorrected. All reagents were used directly as commercially obtained unless otherwise noted. Compounds **1**, **2**, **6-17**, **32-37**, and **49-56** were reported in our earlier communication. ¹

General procedure for preparation of the 2-(arylethynyl)biphenyls. To a solution of the corresponding aryl iodide (1.0 mmol) and the terminal alkyne (1.2 mmol, 1.2 equiv) in Et₃N (4 mL), were added PdCl₂(PPh₃)₂ (14 mg, 2 mol %) and CuI (2 mg, 1 mol %). The resulting mixture was then heated under an N₂ atmosphere at 55 °C for 3 h. The mixture was allowed to cool to room temperature, and the ammonium salt was removed by filtration. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel to afford the corresponding product.

2-Phenylethynyl-4-nitrobiphenyl (**18**). 2-Iodo-4-nitrobiphenyl and phenylacetylene were employed. Purification by flash chromatography (10:1 hexane/EtOAc) afforded 254 mg (85%) of the product as a yellow solid: mp 129-130 °C; ¹H NMR (CDCl₃) δ 7.31-

S2

7.38 (m, 5H), 7.48-7.55 (m, 3H), 7.58 (d, J = 8.7 Hz, 1H), 7.67-7.71 (m, 2H), 8.21 (dd, J = 8.7, 2.4 Hz, 1H), 8.50 (d, J = 2.4 Hz, 1H); ¹³C NMR (CDCl₃) δ 87.4, 94.7, 122.6, 123.2, 123.5, 128.0, 128.5, 128.7, 129.1, 129.2, 129.4, 130.6, 131.8, 138.7, 147.0, 150.0; IR (neat, cm⁻¹) 3630, 1514, 1343; HRMS Calcd for C₂₀H₁₃NO₂: 299.0946. Found: 299.0950.

2-(Cyclohex-1-en-1ylethynyl)biphenyl (20). 2-Iodobiphenyl and 1-

ethynylcyclohexene were employed. Purification by flash chromatography (40:1 hexane/EtOAc) afforded 146 mg (70%) of the product as a clear liquid: 1 H NMR (CDCl₃) δ 1.53-1.65 (m, 4H), 2.07-2.13 (m, 4H), 6.03-6.06 (m, 1H), 7.26-7.47 (m, 6H), 7.53-7.57 (m, 1H), 7.62-7.66 (m, 2H); 13 C NMR (CDCl₃) δ 21.8, 22.5, 26.0, 29.0, 86.9, 94.4, 121.2, 122.3, 127.2, 127.5, 128.0, 128.2, 129.59, 129.61, 133.0, 135.1, 140.9, 143.7; IR (neat, cm⁻¹) 3059, 3023, 2931, 2199, 1475; HRMS Calcd for $C_{20}H_{18}$: 258.1409. Found: 258.1412.

[3-(Biphenyl-2-yl)prop-2-ynyl](trimethyl)silane (26). 2-Iodobiphenyl and prop-2-ynyl(trimethyl)silane were employed. Purification by flash chromatography (30:1

hexane/EtOAc) afforded 128 mg (49%) of the product as a clear liquid: 1 H NMR (CDCl₃) δ 0.00 (s, 9H), 1.59 (s, 2H), 7.24-7.34 (m, 4H), 7.37-7.41 (m, 2H), 7.48-7.51 (m, 1H), 7.54-7.58 (m, 2H); 13 C NMR (CDCl₃) δ -1.9, 8.3, 78.9, 91.5, 123.2, 126.9, 127.1, 127.2, 127.9, 129.3, 129.5, 133.2, 141.2, 143.4; IR (neat, cm⁻¹) 3060, 2955, 2205, 1476, 1249; HRMS Calcd for $C_{18}H_{20}Si$: 264.1334. Found: 264.1339.

1-Phenyl-2-(phenylethynyl)naphthalene (**28).** 2-Iodo-1-phenylnaphthalene and phenylacetylene were employed. Purification by flash chromatography (40:1 hexane/EtOAc) afforded 301 mg (99%) of the product as a yellow oil: ¹H NMR (CDCl₃) δ 7.16-7.21 (m, 2H), 7.23-7.27 (m, 3H), 7.38-7.44 (m, 1H), 7.47-7.55 (m, 5H), 7.65-7.70 (m, 2H), 7.82-7.89 (m, 2H); ¹³C NMR (CDCl₃) δ 90.2, 93.4, 120.4, 123.7, 126.6, 126.7, 126.9, 127.68, 127.7, 128.18, 128.22, 128.23, 128.4, 128.6, 130.9, 131.6, 132.4, 133.4,

139.2, 143.3; IR (neat, cm⁻¹) 3056, 1950, 1598, 1505, 1490; HRMS Calcd for C₂₄H₁₆:

304.1252. Found: 304.1257.

2-[(4-Methoxyphenyl)ethynyl]-1-phenylnaphthalene (30). 2-Iodo-1-phenylnaphthalene and *p*-methoxyphenyl acetylene were employed. Purification by flash

chromatography (20:1 hexane/EtOAc) afforded 276 mg (82%) of the product as a white solid: mp 109-111 °C; ¹H NMR (CDCl₃) δ 3.81 (s, 3H), 6.82 (dd, J = 2.1, 6.9 Hz, 2H), 7.17 (dd, J = 2.1, 6.9 Hz, 2H), 7.34-7.57 (m, 7H), 7.68-7.74 (m, 2H), 7.84-7.92 (m, 2H); ¹³C NMR (CDCl₃) δ 55.4, 88.9, 93.5, 114.1, 115.7, 120.7, 126.4, 126.6, 126.8, 127.60, 127.62, 128.1, 128.2, 128.4, 130.9, 132.4, 133.0, 133.1, 139.3, 142.8, 159.7; IR (neat, cm⁻¹) 3055, 2956, 2836, 2207, 1605, 1511; HRMS Calcd for $C_{25}H_{18}O$: 334.1358. Found: 334.1365.

3-[2-(Phenylethynyl)phenyl]-benzothiophene (**40**). To a solution of 2-bromophenyl phenyl acetylene (1.5 mmol, 386 mg) and 1-benzothien-3-ylboronic acid (320 mg, 1.2 equiv) in 7.5 mL of DME were added Pd(dba)₂ (43.2 mg, 5 mol %), PPh₃ (39 mg, 10 mol %) and CsF (456 mg, 2.0 equiv). The resulting mixture was heated under an N₂ atmosphere at 100 °C for 24 h. The mixture was cooled to room temperature and diluted with 70 mL of ether, washed with 25 mL of satd NaCl, dried (MgSO₄) and filtered. The solvent was evaporated under reduced pressure and the residue was chromatographed using 50:1 hexane/EtOAc to afford 145 mg (31%) of the product as a yellow oil: ¹H NMR (CDCl₃) δ 7.02-7.08 (m, 2H), 7.18-7.24 (m, 3H), 7.36-7.48 (m, 4H), 7.52-7.56 (m, 1H), 7.63 (s, 1H), 7.70-7.74 (m, 1H), 7.76-7.80 (m, 1H), 7.94-7.98 (m, 1H); ¹³C NMR (CDCl₃) δ 89.3, 93.3, 122.9, 123.3, 123.4, 123.8, 124.3, 124.5, 125.6, 127.8, 128.3,

S5

128.4, 128.5, 130.3, 131.5, 132.9, 136.5, 138.3, 138.7, 140.2; IR (neat, cm⁻¹) 3057, 1597, 1492, 1441; HRMS Calcd for C₂₂H₁₄S: 310.0816. Found: 310.0821.

3'-Methoxy-2-(phenylethynyl)biphenyl (43). This alkyne was prepared from 2-(phenylethynyl)phenylboronic acid and 3-iodoanisole by following the same procedure as compound **40** at 80 °C. 2-(Phenylethynyl)phenylboronic acid (133 mg, 0.6 mmol), 1-methoxy-3-iodobenzene (126 mg, 0.9 equiv), Pd(dba)₂ (14.4 mg, 0.05 equiv), PPh₃ (13 mg, 0.1 equiv), CsF (182 mg, 2.0 equiv) and DME (2.5 mL) afforded, after purification by flash column chromatography (silica gel, 20:1 hexane/EtOAc), 76 mg (50%) of the indicated compound **43** as a light yellow oil: ¹H NMR (CDCl₃) δ 3.86 (s, 3H), 6.97-7.00 (m, 1H), 7.26-7.33 (m, 5H), 7.36-7.49 (m, 6H), 7.67-7.71 (m, 1H); ¹³C NMR (CDCl₃) δ 55.5, 89.6, 92.7, 113.7, 115.0, 121.8, 122.2, 123.7, 127.4, 128.4, 128.5, 128.8, 129.2, 129.7, 131.7, 133.2, 142.2, 144.0, 159.4; IR (neat, cm⁻¹) 3058, 3023, 2955, 2936, 2833, 1599, 1581, 1490; HRMS Calcd for C₂₁H₁₆O: 284.1201. Found: 284.1206.

3-[2-(Phenylethynyl)phenyl]thiophene (**46**). This alkyne was prepared from 2-bromophenyl phenyl acetylene and 3-thiopheneboronic acid by following the same

procedure as compound **40** at 90 °C. 1-Bromo-2-(phenylethynyl)benzene (257 mg, 1 mmol), 3-thiopheneboronic acid (154 mg, 1.2 equiv), Pd(dba)₂ (24 mg, 0.05 equiv), PPh₃ (22 mg, 0.1 equiv), CsF (304 mg, 2.0 equiv) and DME (4 mL) afforded, after purification by flash column chromatography (silica gel, 20:1 hexane/EtOAc), 235 mg (90%) of the indicated compound **46** as a light yellow oil: 1 H NMR (CDCl₃) δ 7.26-7.39 (m, 6H), 7.42-7.44 (m, 2H), 7.48-7.50 (m, 1H), 7.53 (dd, J = 0.9, 3.9 Hz, 1H), 7.61-7.64 (m, 1H), 7.70 (dd, J = 0.9, 2.1 Hz, 1H); 13 C NMR (CDCl₃) δ 89.7, 92.7, 121.2, 123.5, 123.7, 124.8, 127.0, 128.3, 128.4, 128.6, 128.7, 129.1, 131.5, 133.3, 138.2, 141.0; IR (neat, cm⁻¹) 3103, 3058, 3028, 1597, 1492, 1442; HRMS Calcd for $C_{18}H_{12}S$: 260.0660. Found: 260.0663.

General procedure for the electrophilic cyclization of 2-(arylethynyl)biphenyls by ICl. To a solution of 2-(arylethynyl)biphenyl (0.30 mmol) in CH₂Cl₂ (3 mL) under N₂ was added ICl (1.2 equiv) in CH₂Cl₂ (0.5 mL) at -78 °C. The reaction mixture was stirred at -78 °C for 1 h unless otherwise indicated. The reaction mixture was then diluted with diethyl ether (50 mL), washed with 25 mL of satd aq Na₂S₂O₃, dried (MgSO₄), and filtered. The solvent was evaporated under reduced pressure and the product was purified by chromatography on a silica gel column.

19

10-Iodo-2-nitro-9-phenylphenanthrene (**19**). Purification by flash chromatography (7:1 hexane/EtOAc) afforded 112 mg (88%) of the product as a yellow solid: mp 182-183 °C; ¹H NMR (CDCl₃) δ 7.25-7.30 (m, 2H), 7.44-7.62 (m, 5H), 7.75 (dt, J = 1.2, 7.8

Hz, 1H), 8.45 (td, J = 2.7, 9.0 Hz, 1H), 8.73 (d, J = 8.4 Hz, 1H), 8.81 (dd, J = 3.3, 9.3 Hz, 1H), 9.42 (t, J = 2.7 Hz, 1H); ¹³C NMR (CDCl₃) δ 105.5, 121.3, 123.8, 124.7, 128.3, 128.5, 128.9, 129.28, 129.33, 129.4, 129.8, 131.1, 132.9, 133.8, 134.8, 144.8, 147.2, 148.0; IR (neat, cm⁻¹) 3080, 3059, 3025, 1577, 1515, 1345; HRMS Calcd for C₂₀H₁₂INO₂: 424.9913. Found: 424.9921.

9-(Cyclohex-1-en-1-yl)-10-iodophenanthrene (21). Purification by flash

chromatography (50:1 hexane/EtOAc) afforded 79 mg (70%) of the product as a colorless oil: 1 H NMR (CDCl₃) δ 1.85-2.01 (m, 4H), 2.19-2.26 (m, 1H), 3.35-2.48 (m, 3H), 5.71-5.74 (m, 1H), 7.54-7.60 (m, 1H), 7.62-7.70 (m, 3H), 8.06 (dd, J = 0.9, 8.1 Hz, 1H), 8.41-8.46 (m, 1H), 8.61-8.64 (m, 1H), 8.69 (d, J = 8.7 Hz, 1H); 13 C NMR (CDCl₃) δ 22.3, 23.2, 25.7, 29.5, 105.4, 122.8, 123.0, 127.2, 127.28, 127.33, 128.0, 128.2, 129.2, 130.5, 130.7, 131.4, 132.8, 134.5, 142.4, 147.2; IR (neat, cm⁻¹) 3067, 3025, 2926, 1562, 1482, 1445; HRMS Calcd for $C_{20}H_{17}I$: 384.0375. Found: 384.0380.

[(10-Iodo-9-phenanthryl)methyl](trimethyl)silane (27). Purification by flash chromatography (50:1 hexane/EtOAc) afforded 54 mg (50%) of the product as a white

solid: mp 70-72 °C; ¹H NMR (CDCl₃) δ 0.11 (s, 9H), 3.24 (s, 2H), 7.56-7.71 (m, 4H), 8.09 (dd, J = 0.8, 8.1 Hz, 1H), 8.39-8.42 (m, 1H), 8.58-8.62 (m, 1H), 8.70-8.73 (m, 1H); ¹³C NMR (CDCl₃) δ 0.00, 31.1, 106.0, 122.2, 122.9, 125.9, 126.54, 126.57, 126.64, 127.5, 129.2, 130.1, 130.7, 133.0, 134.2, 141.8; IR (neat, cm⁻¹) 3068, 2951, 1562, 1485, 1445; HRMS Calcd for C₁₈H₁₉ISi: 390.0301. Found: 390.0310.

6-Iodo-5-phenylbenzo[c]**phenanthrene** (**29**). Purification by flash chromatography (3:1 hexane/CH₂Cl₂) afforded 61 mg (48%) of the product as a white solid: mp 159-160 °C; ¹H NMR (CDCl₃) δ 7.32-7.36 (m, 2H), 7.44-7.47 (m, 1H), 7.52-7.60 (m, 4H), 7.62-7.70 (m, 3H), 7.95 (d, J = 9.0 Hz, 1H), 8.03-8.07 (m, 1H), 8.43 (m, J = 9.0 Hz, 1H), 9.04 (d, J = 8.1 Hz, 2H); ¹³C NMR (CDCl₃) δ 106.4, 126.4, 126.6, 126.7, 126.8, 128.1, 128.3, 128.4, 128.6, 128.67, 128.71, 128.8, 129.0, 129.6, 130.1, 130.3, 131.2, 132.2, 133.4, 133.8, 145.2, 145.4; IR (neat, cm⁻¹) 3057, 1599, 1503, 1488; HRMS Calcd for C₂₄H₁₅I: 430.0219. Found: 430.0228.

5-(4-Methoxyphenyl)-6-iodobenzo[c]**phenanthrene** (**31).** Purification by flash chromatography (20:1 hexane/ EtOAc) afforded 134 mg (97%) of the product as a green solid: mp 186-187 °C; ¹H NMR (CDCl₃) δ 3.94 (s, 3H), 7.10 (d, J = 4.5 Hz, 2H), 7.23-

7.26 (m, 2H), 7.42-7.47 (m, 1H), 7.57-7.69 (m, 4H), 7.94 (d, J = 9.0 Hz, 1H), 8.02-8.06 (m, 1H), 8.42 (d, J = 9.0 Hz, 1H), 9.01-9.05 (m, 2H); ¹³C NMR (CDCl₃) δ 55.6, 107.3, 114.1, 126.4, 126.6, 126.7, 126.8, 128.41, 128.44, 128.61, 128.64, 128.8, 129.0, 129.7, 130.2, 131.3, 131.5, 132.4, 133.75, 133.80, 138.0, 145.0, 159.4; IR (neat, cm⁻¹) 3065, 2961, 2838, 1607, 1510, 1247; HRMS Calcd for $C_{25}H_{17}IO$: 460.0324. Found: 460.0334.

9-Iodo-3-methoxy-10-phenylphenanthrene (44). Purification by flash

chromatography (30:1 hexane/ EtOAc) afforded 83 mg (66%) of the product as a white solid: mp 136-138 °C; ¹H NMR (CDCl₃) δ 4.02 (s, 3H), 7.05 (dd, J = 2.5, 9.3 Hz, 1H), 7.26-7.35 (m, 3H), 7.51-7.58 (m, 3H), 7.68-7.71 (m, 2H), 8.09 (d, J = 2.4 Hz, 1H), 8.43-8.47 (m, 1H), 8.59-8.62 (m, 1H); ¹³C NMR (CDCl₃) δ 55.7, 103.3, 104.3, 117.0, 122.9, 127.3, 127.5, 128.0, 128.4, 128.7, 130.2, 130.4, 130.5, 132.0, 133.0, 134.9, 145.3, 145.7, 158.9; IR (neat, cm⁻¹) 3056, 3025, 2957, 2933, 2834, 1613, 1576, 1519; HRMS Calcd for $C_{21}H_{15}IO$: 410.0168. Found: 410.0175.

9-Iodo-1-methoxy-10-phenylphenanthrene (**45**). Purification by flash chromatography (30:1 hexane/ EtOAc) afforded 26 mg (20%) of the product as a light

yellow oil: ¹H NMR (CDCl₃) δ 3.34 (s, 3H), 6.94 (d, J = 7.8 Hz, 1H), 7.18-7.21 (m, 2H), 7.37-7.46 (m, 3H), 7.58-7.69 (m, 3H), 8.38 (d, J = 8.4 Hz, 1H), 8.48-8.52 (m, 1H), 8.64-8.67 (m, 1H); ¹³C NMR (CDCl₃) δ 56.2, 109.5, 110.0, 115.8, 123.4, 123.5, 126.5, 127.4, 127.6, 128.0, 128.5, 129.0, 130.4, 132.7, 133.0, 135.3, 142.9, 151.1, 156.6; IR (neat, cm⁻¹) 3056, 3021, 2929, 1601, 1575, 1455; HRMS Calcd for C₂₁H₁₅IO: 410.0168. Found: 410.0172.

5-Iodo-4-phenylnaphtho[2,1-*b***]thiophene (47).** Purification by flash chromatography (20:1 hexane/ EtOAc) afforded 58 mg (50%) of the product as a light yellow solid: mp 98-99 °C; ¹H NMR (CDCl₃) δ 7.41-7.44 (m, 2H), 7.54-7.58 (m, 4H), 7.63-7.68 (m, 2H), 8.01 (d, J = 5.4 Hz, 1H), 8.30-8.35 (m, 1H), 8.43-8.49 (m, 1H); ¹³C NMR (CDCl₃) δ 101.18, 122.2, 124.2, 127.3, 127.4, 127.9, 128.8, 128.9, 129.0, 129.6, 132.8, 134.4, 136.3, 139.7, 141.2, 144.8; IR (neat, cm⁻¹) 3102, 3059, 3025, 1551, 1492, 1442; HRMS Calcd for $C_{18}H_{11}$ IS: 385.9626. Found: 385.9633.

5-Iodo-4-phenylnaphtho[1,2-*c***]thiophene (48).** Purification by flash chromatography (20:1 hexane/ EtOAc) afforded 43 mg (37%) of the product as a white solid: mp 149-150 °C; ¹H NMR (CDCl₃) δ 7.36-7.40 (m, 2H), 7.52-7.67 (m, 6H), 7.81 (s, 1H), 8.12-8.17 (m,

1H), 8.40-8.44 (m, 1H); ¹³C NMR (CDCl₃) δ 101.1, 121.4, 124.0, 127.6, 127.7, 128.1, 129.0, 129.4, 132.9, 133.8, 134.5, 135.2, 138.2, 140.4, 144.1 (one sp² carbon missing due to overlap); IR (neat, cm⁻¹) 3057, 3022, 1554, 1496; HRMS Calcd for C₁₈H₁₁IS: 385.9626. Found: 385.9632.

General procedure for the electrophilic cyclization of 2-(1-alkynyl)biphenyls by I₂. To a solution of 2-(1-alkynyl)biphenyl (0.30 mmol) in CH₂Cl₂ (3 mL) was added I₂ (3.0 equiv) and NaHCO₃ (3.0 equiv) at room temperature. The reaction mixture was stirred at room temperature for 24 h unless otherwise indicated. The reaction mixture was then diluted with diethyl ether (50 mL), washed with satd aq Na₂S₂O₃ (25 mL), dried (MgSO₄), and filtered. The solvent was evaporated under reduced pressure and the product was purified by chromatography on a silica gel column.

9-Iodo-10-phenylphenanthrene (2). Purification by flash chromatography (50:1 hexane/EtOAc) afforded 92 mg (80%) of the product as a white solid with a melting point and spectral properties identical to those previously reported.²

NBS. To a solution of 2-(1-alkynyl)biphenyl (0.30 mmol) in CH₂Cl₂ (3 mL) was added NBS (1.2 equiv) and silica gel (50 mg) at room temperature. The reaction mixture was stirred at room tempature for 144 h unless otherwise indicated. The reaction mixture was then diluted with diethyl ether (50 mL), washed with satd aq Na₂S₂O₃ (25 mL), dried (MgSO₄), and filtered. The solvent was evaporated under reduced pressure and the product was purified by chromatography on a silica gel column.

9-Bromo-10-phenylphenanthrene (**3**). Purification by flash chromatography (40:1 hexane/EtOAc) afforded 86 mg (86%) of the product as a white solid: mp 108-109 °C;

¹H NMR (CDCl₃) δ 7.34-7.38 (m, 2H), 7.41-7.47 (m, 2H), 7.50-7.60 (m, 3H), 7.64-7.77 (m, 3H), 8.53-8.57 (m, 1H), 8.72-8.77 (m, 2H);

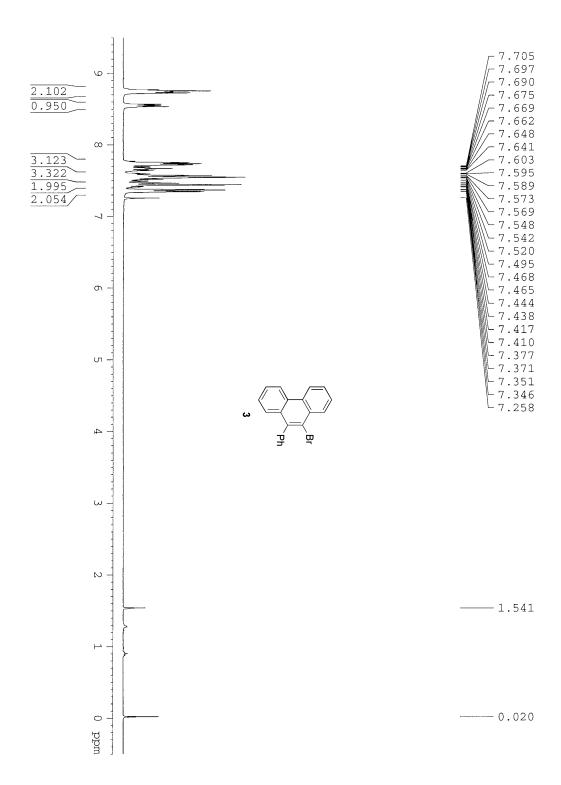
¹³C NMR (CDCl₃) δ 122.9, 123.8, 127.1, 127.3, 127.7, 127.9, 128.0, 128.2, 128.7, 129.2, 129.3, 130.2, 130.7, 131.2, 132.9, 139.9, 141.3; IR (neat, cm⁻¹) 3070, 3058, 3027, 1583, 1567, 1484; HRMS Calcd for C₂₀H₁₅Br: 332.0201. Found: 332.0209.

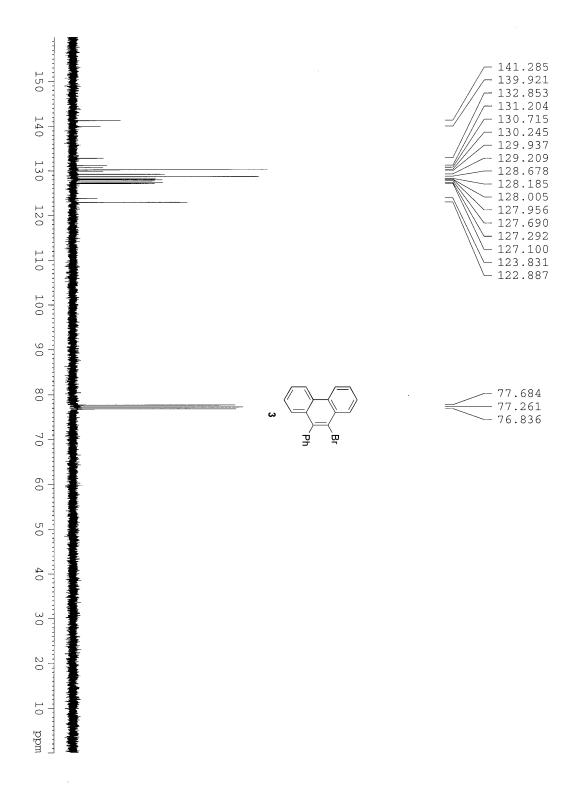
5-Bromo-6-phenylbenzo[*b*]naphtha[1,2-*d*]thiophene (41). Purification by flash chromatography (40:1 hexane/EtOAc) afforded 102 mg (88%) of the product as a yellow oil: 1 H NMR (CDCl₃) δ 7.46-7.53 (m, 3H), 7.54-7.63 (m, 4H), 7.68-7.74 (m, 1H), 7.78-7.83 (m, 1H), 7.88 (dd, J = 7.8, 0.6 Hz, 1H), 8.64 (dd, J = 8.4, 1.2 Hz, 1H), 8.86 (d, J = 8.1 Hz, 1H), 9.07 (d, J = 7.8 Hz, 1H); 13 C NMR (CDCl₃) δ 122.7, 123.3, 123.6, 125.1, 125.3, 125.8, 126.5, 127.9, 128.9, 129.0, 129.70, 129.74, 130.9, 131.0, 136.4, 136.6, 140.6, 141.0, 141.4; IR (neat, cm⁻¹) 3059, 2921, 1558, 1494, 1442; HRMS Calcd for $C_{22}H_{13}$ BrS: 387.9921. Found: 387.9930.

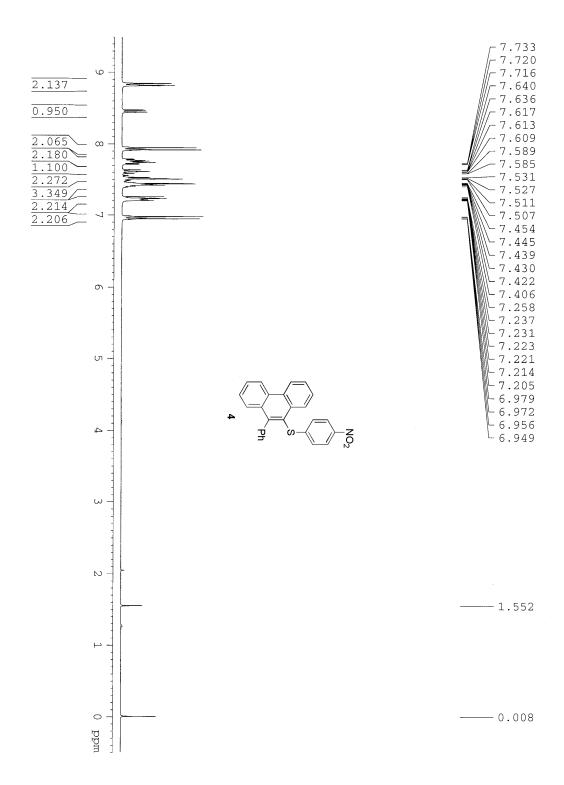
General procedure for the electrophilic cyclization of 2-(1-alkynyl)biphenyls by *p*-O₂NC₆H₄SCl. To a solution of 2-(1-alkynyl)biphenyl (0.30 mmol) in CH₂Cl₂ (3 mL) was added *p*-O₂NC₆H₄SCl (1.2 equiv) at room temperature. The reaction mixture was stirred for 0.5 h unless otherwise indicated. The reaction mixture was then diluted with diethyl ether (50 mL), washed with satd aq NH₄Cl (25 mL), dried (MgSO₄), and filtered. The solvent was evaporated under reduced pressure and the product was purified by chromatography on a silica gel column.

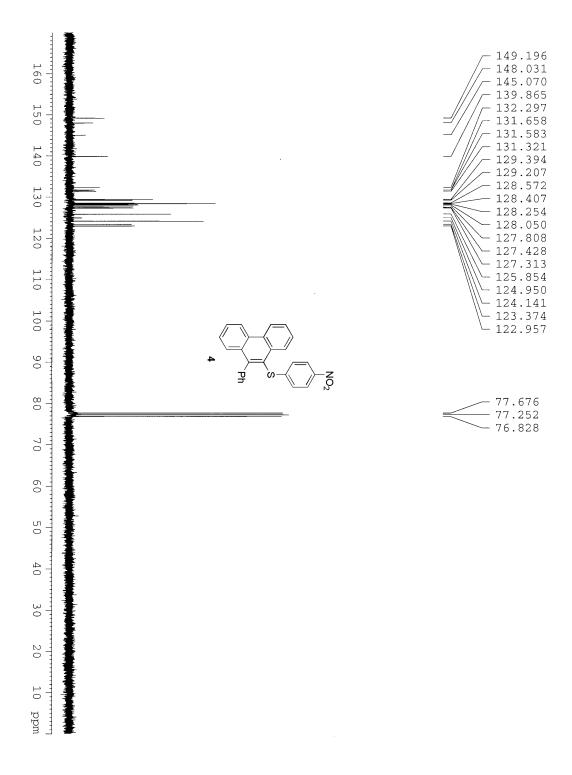
9-(4-Nitrophenylsulfenyl)-10-phenylphenanthrene (**4).** Purification by flash chromatography (30:1 hexane/EtOAc) afforded 112 mg (92%) of the product as a yellow solid: mp 192-193 °C; ¹H NMR (CDCl₃) δ 6.94-6.98 (m, 2H), 7.20-7.24 (m, 2H), 7.39-7.47 (m, 3H), 7.50-7.54 (m, 2H), 7.71-7.64 (m, 1H), 7.72-7.79 (m, 2H), 7.93 (dt, J = 9.3, 2.1 Hz, 2H), 8.46 (dd, J = 8.4, 0.9 Hz, 1H), 8.83 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃) δ 123.0, 123.4, 124.1, 125.0, 125.9, 127.3, 127.4, 127.8, 128.1, 128.3, 128.4, 128.6, 129.2, 129.4, 131.3, 131.6, 131.7, 132.3, 139.9, 145.1, 148.0, 149.2; IR (neat, cm⁻¹) 3066, 3024, 2834, 1610; HRMS Calcd for $C_{26}H_7NO_2S$: 407.0980. Found: 407.0989.

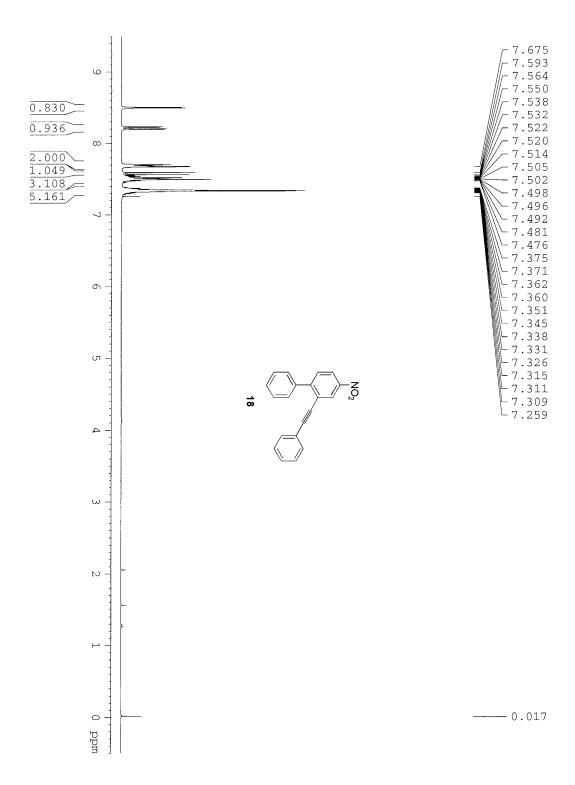
5-(4-Nitrophenylthio)-6-phenylbenzo[*b*]/naphtha[1,2-*d*]thiophene (42). Purification by flash chromatography (9:1 hexane/EtOAc) afforded 101 mg (91%) of the product as a yellow solid: mp > 215 °C (decomposed); 1 H NMR (CDCl₃) δ 6.93-6.97 (m, 2H), 7.34-7.38 (m, 2H), 7.43-7.57 (m, 4H), 7.61-7.68 (m, 2H), 7.79-7.85 (m, 1H), 7.92-7.95 (m, 3H), 8.63 (dd, J = 8.7, 0.9 Hz, 1H), 8.94 (d, J = 8.4 Hz, 1H), 9.17 (d, J = 5.4 Hz, 1H); 13 C NMR (CDCl₃) δ 123.4, 124.2, 125.5, 125.6, 126.0, 126.5, 126.9, 128.03, 128.04, 128.7, 129.0, 129.0, 131.2, 131.7, 132.8, 136.6, 139.9, 141.3, 141.4, 143.3, 145.2, 149.1 (two sp² carbons missing due to overlap); IR (neat, cm⁻¹) 3060, 2924, 1579, 1513, 1336; HRMS Calcd for $C_{28}H_{17}NO_{2}S_{2}$: 463.0701 Found: 463.0713.


57


Ethyl (2*E*)-3-(10-phenyl-9-phenanthryl)acrylate (57). To a solution of 9-iodo-10-phenylphenanthrene (0.20 mmol) and ethyl acrylate (1.0 mmol, 5.0 equiv) in DMF (0.8 mL) were added Pd(OAc)₂ (2.2 mg, 5 mol %), *n*-Bu₄NCl (0.20 mmol, 1 equiv) and NaHCO₃ (0.5 mmol, 2.5 equiv). The resulting mixture was heated under a N₂ atmosphere at 100 °C for 3 d. The mixture was cooled to room temperature and diluted with 70 mL


of ether, washed with 25 mL of satd aq NaCl, dried (MgSO₄) and filtered. The solvent was evaporated under reduced pressure. The residue was chromatographed using 7:1 hexane/EtOAc to afford 69.0 mg (98%) of the product as a yellow solid: mp 135-136 °C; 1 H NMR (CDCl₃) δ 1.28 (t, J = 7.1 Hz, 3H), 4.20 (q, J = 6.9 Hz, 2H), 6.02 (d, J = 16.2 Hz, 1H), 7.26-7.31 (m, 2H), 7.44-7.55 (m, 5H), 7.62-7.75 (m, 3H), 7.88 (d, J = 16.2 Hz, 1H), 8.23 (dd, J = 1.2, 8.1 Hz, 1H), 8.73-8.81 (m, 2H); 13 C NMR (CDCl₃) δ 14.5, 60.7, 122.7, 123.2, 126.1, 126.5, 127.0, 127.1, 127.31, 127.34, 127.8, 128.3, 128.6, 129.9, 130.2, 130.4, 130.6, 130.9, 131.7, 138.3, 139.0, 143.5, 166.6; IR (neat, cm $^{-1}$) 3066, 2982, 1712, 1642, 1488; HRMS Calcd for $C_{25}H_{20}O_{3}$: 352.1463. Found: 352.1469.


References


- 1. Yao, T. Campo, M. A.; Larock, R. C. Org. Lett. 2004, 6, 2677.
- 2. Campo, M. A.; Larock, R. C. Org. Lett. 2000, 2, 3675.

