Supporting Information for:

A solid-phase approach to the phallotoxins: total synthesis of [Ala⁷]-phalloidin

Marc O. Anderson, † Anang A. Shelat, ‡ R. Kiplin Guy $^{*\dagger \parallel}$

[†]Department of Pharmaceutical Chemistry, [‡]Chemistry and Chemical Biology Program, ^{||}Department of Cellular and Molecular Pharmacology

University of California at San Francisco, San Francisco, CA 94143-2280

Table of Contents	Page
Abbreviations	S3
General: Purification and Analysis	S3
General: Solution-phase synthesis methods	S4
General: Solid-phase synthesis methods	S4
Figure S1. Synthesis of protected <i>cis</i> -Hyp fragment 5 .	S 5
Fmoc-trans-Hyp-O-Allyl ester (18)	S 5
Fmoc-cis-Hyp(O-3,5-dinitrobenzoate)-O-Allyl ester (19)	S6
Fmoc-cis-Hyp-O-Allyl ester (5)	S7

^{*} rguy@cgl.ucsf.edu

Ns-Trp-O-Allyl ester (12)	S 7
General: NMR-derived computational restraints	S8
General: Computational modeling	S9
Table S1: [Ala ⁷]-phalloidin "natural" atropisomer (1): ¹ H assignments	S12
Table S2: [Ala ⁷]-phalloidin "natural" atropisomer (1): ¹³ C assignments	S12
Table S3: [Ala ⁷]-phalloidin "non-natural" atropisomer (1'): ¹ H assignments	S12
Table S4: [Ala ⁷]-phalloidin "non-natural" atropisomer (1'): ¹³ C assignments	S13
Table S5: Calculated and experimental NMR-derived restraints for species 1 (method I)	S14
Table S6: Calculated Cartesian coordinates for species 1 (method I)	S15
Table S7: Calculated and experimental NMR-derived restraints for species 1' (method I)	S16
Table S8: Calculated and experimental NMR-derived restraints for species 1' (method II)	S17
Table S9: Calculated Cartesian coordinates for species 1' (method II)	S18
Figure S2. ¹ H NMR: Fmoc- <i>trans</i> -Hyp-O-Allyl ester (18)	S21
Figure S3. ¹³ C NMR: Fmoc- <i>trans</i> -Hyp-O-Allyl ester (18)	S22
Figure S4. ¹ H NMR: Fmoc- <i>cis</i> -Hyp(<i>O</i> -3,5-dinitrobenzoate)-O-Allyl ester (19)	S23
Figure S5. ¹³ C NMR: Fmoc- <i>cis</i> -Hyp(<i>O</i> -3,5-dinitrobenzoate)-O-Allyl ester (19)	S24
Figure S6. ¹ H NMR: Fmoc- <i>cis</i> -Hyp-O-Allyl ester (5)	S25
Figure S7. ¹³ C NMR: Fmoc- <i>cis</i> -Hyp-O-Allyl ester (5)	S25
Figure S8. ¹ H NMR: Boc-Cys-[S-(2-((o-NO ₂ Ph)SO ₂ -Trp-O-Allyl))]-O-t-Bu ester (13)	S27
Figure S9. ¹³ C NMR: Boc-Cys-[S-(2-((o-NO ₂ Ph)SO ₂ -Trp-O-Allyl))]-O-t-Bu ester (13)	S28
Figure S10. ¹ H NMR: Fmoc-Cys-[S-(2-((o-NO ₂ Ph)SO ₂ -Trp-O-Allyl))]-OH (7)	S29
Figure S11. ¹³ C NMR: Fmoc-Cys-[S-(2-((o-NO ₂ Ph)SO ₂ -Trp-O-Allyl))]-OH (7)	S30
Figure S12. RP-HPLC: Non-cyclic heptapeptide 4	S31
Figure S13. MALDI-TOF-MS: Partially deprotected component 4a	S32
Figure S14. MALDI-TOF-MS: Partially deprotected component 4b	S33
Figure S15. Analytical RP-HPLC: Monocyclic heptapeptide 3	S34
Figure S16. MALDI-TOF-MS: Partially deprotected component 3a	S35
Figure S17. MALDI-TOF-MS: Partially deprotected component 3b	S36
Figure S18. Analytical RP-HPLC: [Ala ⁷]-phalloidin secopeptide (9.8 min)	S37
Figure S19. ESI-MS: [Ala ⁷]-phalloidin secopeptide	S38
Figure S20. Analytical RP-HPLC: [Ala ⁷]-phalloidin (1 and 1') before final purification:	S39

Figure S21. MALDI-TOF-MS: [Ala ⁷]-phalloidin natural atropisomer (1)	S40
Figure S22. ¹ H NMR: [Ala ⁷]-phalloidin natural atropisomer (1)	S41
Figure S23. Analytical RP-HPLC: [Ala ⁷]-phalloidin natural atropisomer (1)	S42
Figure S24. MALDI-TOF-MS: [Ala ⁷]-phalloidin non-natural atropisomer (1')	S43
Figure S25. ¹ H NMR: [Ala ⁷]-phalloidin non-natural atropisomer (1')	S44
Figure S26. Analytical RP-HPLC: [Ala ⁷]-phalloidin non-natural atropisomer (1')	S45

Abbreviations:

Boc = *tert*-butoxycarbonyl

DHPP = dihydropyranyl polystyrene (free resin)

Fmoc = 9-fluorenemethoxycarbonyl

HOAt = 1-hydroxy-7-azabenzotriazole

HOBt = 1-hydroxybenzotriazole

Ns = Nosyl = 2-nitrobenzenesulfonyl

PyAOP = (7-azabenzotriazole-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate

PyBOP = benzotriazole-1-yloxy-tripyrrolidinophosphonium hexafluorophosphate

Tmse = 2-trimethylsilylethyl

THPP = tetrahydropyranyl polystyrene (loaded resin)

General: Purification and Analysis. Flash column chromatography was performed using the general procedure described by Still et al.¹ Analytical RP-HPLC was carried out using C18 stationary phase (column: 3.5 μm; 4.6 x 50 mm) at 1 ml/min. One of three solvent gradients was used: (A) H₂O:CH₃CN (0.05% CF₃CO₂H) 90:10 to 0:100 over 12 min; (B) 90:10 to 70:30 over 22 min; or (C) 90:10 to 80:20 over 2 min, then 80:20 isocratic for 20 min. The following abbreviations are used to

-

¹ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.

describe NMR peak splitting when appropriate: s=singlet, d=doublet, t=triplet, q=quartet, bs=broad singlet, mult=multiplet. FT-IR spectra were recorded in CDCl₃ solution. MALDI-MS was carried out using α -cyano-4-hydroxycinammic acid matrix. Melting points are uncorrected.

General: Solution-phase synthesis methods. Solution phase reactions were carried out under an atmosphere of argon. Solvents specified as "anhydrous" were dried using the procedure recommended by Grubbs et al.² using the solvent purification system manufactured by Glass Contour, Inc. (Laguna Beach, CA). Reagents were of commercial quality unless otherwise indicated. The term "solvents were removed in vacuo" typically implies rotary evaporation followed by the use of a hi-vacuum pump. Sulfuryl chloride was used as the commercially available material, but was stored over potassium carbonate before use. Developed TLC plates were visualized using short wave UV light (254 nm), and were typically stained in an iodine/silica chamber and/or using a staining dip (e.g. *p*-anisaldehyde or ceric ammonium molybdate) followed by heating with a heat gun.

General: Solid-phase synthesis methods. Reactions were carried out in Biorad Biospin chromatography columns, attached to 3-way solvent-resistant stopcocks. Reaction vessels were agitated by 360° rotation. Progress of solid-phase reactions was followed by complementary methods. The presence of resin-bound primary amines was confirmed with the standard Kaiser test, while the presence of secondary amines was confirmed with the chloranil test. Micro-scale cleavage experiments were done to characterize certain key intermediates: a small amount of beads (~1-2 mg) is placed in a micro-scale reactor, and cleaved by the addition of CF₃CO₂H:H₂O:Et₃SiH (8:2:10) (0.4 ml), followed by agitation for 15 minutes. The cleavage mixture was then azeotropically concentrated in vacuo by the addition and evaporation of toluene (x 3). The crude material was analyzed by either ESI-MS or

² Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen R. K.; Timmers, F. J. *Organometallics*, **1996**, *15*(5), 1518-1520.

MALDI-TOF-MS (α -cyano-4-hydroxycinammic acid matrix). The purity of the material was gauged by RP-HPLC.

Figure S1. Synthesis of protected *cis*-Hyp fragment **5**. *Reagents and conditions:* (a) Cs₂CO₃, MeOH; then allyl bromide, DMF, 20 h, rt (87%); (b) 3,5-dinitrobenzoic acid, di-*tert*-butyldiazodicarboxylate (DBAD), PPh₃, THF, 16 h, rt (100%); (c) NaN₃, MeOH-Dioxane, 15-crown-5, reflux overnight (quantitative).

Fmoc-*trans*-Hyp-O-Allyl ester (18). To a solution of Fmoc-*trans*-Hyp-OH (17) (3.065 g, 8.67 mmol) in CH₃OH (90% aq., 30 ml) was added Cs₂CO₃ (1.413 g, 4.34 mmol, 0.5 eq). The solution was stirred for 5 min at rt and then concentrated *in vacuo* to a white residue, which was then taken up in DMF (30 ml) and treated with allyl bromide (1.101 g, 9.11 mmol, 1.05 eq). The solution was stirred at rt for 20 h, at which time TLC (2:3 hexanes:ethyl acetate, UV, product $R_f = 0.3$) showed complete conversion. The solution was taken up in diethyl ether (100 ml), washed with water (2 x 100 ml) and brine (100 ml), dried over MgSO₄, and concentrated *in vacuo* to a colorless oil (2.747 g, 81%): $[\alpha]_D^{25}$ -50.7 (*c*, CH₂Cl₂); IR (CDCl₃): 3608, 3154, 2984, 1745, 1701 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 2.06 – 2.10 (mult, 1H), 2.29 – 2.32 (mult, 1H), 3.30 (bs, 1H), 3.63 – 3.73 (mult, 2H), 4.12 (t, 1H, J = 7 Hz), 4.22 – 4.31 (mult, 2H), 4.37 – 4.63 (mult, 4H), 5.14 – 5.31 (mult, 2H), 5.77 – 5.88 (mult, 1H), 7.27 (t, 2H, J = 7 Hz), 7.36 (t, 2H, J = 8 Hz), 7.52 (d, 2H, J = 7), 7.72 (d, 2H, J = 8); ¹³C-NMR (100 Hz, CDCl₃): two rotomers observed – some carbons are doubled. δ 38.6 and 39.5, 47.3 and 47.4, 54.8 and 55.5, 58.0 and 58.3, 66.1, 67.9 and 68.1, 69.3 and 70.1, 118.8 and 119.1, 120.2, 125.2 and 125.3, 127.3,

127.9, 131.7 and 131.9, 141.5, 143.8, 144.0, 144.2, 144.2, 155.2 and 155.3, 172.6. HRMS Calc. For $C_{23}H_{23}NO_5$ [M+H] = 394.1654, found [M+H] = 394.1656.

Fmoc-cis-Hyp(O-3,5-dinitrobenzoate)-O-Allyl ester (19). A solution of Fmoc-trans-Hyp-O-Allyl ester (18) (2.747 g. 6.98 mmol) in THF (35 ml) and toluene (35 ml) was cooled to 0 °C, and was then treated with 3,5-dinitrobenzoic acid (2.962 g, 13.96 mmol, 2.0 eq) and triphenylphosphine (3.663 g, 13.96 mmol, 2.0 eq). The mixture was stirred until it was completely homogenous, and was then treated with di-tert-butyldiazodicarboxylate (DBAD) (3.215 g, 13.96 mmol, 2.0 eq) in a single portion. The solution was stirred for 16 h at rt, after which the reaction was judged complete by TLC (3:2 hexanes: ethyl acetate, UV, product $R_f = 0.2$). The resulting solution was concentrated in vacuo, dissolved in diethyl ether (50 ml), washed with NaHCO₃ (10% aq., 2 x 50 ml) and brine (50 ml), dried over MgSO₄, and concentrated *in vacuo* on silica. The product was isolated by dry-loaded silica flash column chromatography (5:2 to 3:2 hexanes:ethyl acetate) as a slightly yellow foam (3.296 g, 80%): $[\alpha]_D^{25}$ -23.6 (c, CH₂Cl₂); IR (CDCl₃): 3154, 3101, 2984, 1735 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 2.49 - 2.61 (mult, 2H), 3.86 (bs, 2H), 4.05 - 4.19 (mult, 2H), 4.34 - 4.51 (mult, 2H), 4.62 - 4.72 (mult, 2H), 5.11 (t, 1H, J = 8 Hz), 5.26 (t, 1H, J = 16 Hz), 5.61 (d, 1H, J = 19 Hz), 5.82 – 5.88 (mult, 1H), 7.26 (t, 2H, J = 9 Hz), 7.32 - 7.36 (mult, 2H), 7.49 - 7.57 (mult, 2H), 7.69 (d, 2H, J = 7 Hz), 8.97 (s, 1H),9.01 (s, 1H), 9.13 (d, 1H, J = 2 Hz); ¹³C-NMR (100 Hz, CDCl₃): two rotomers observed – some carbons are doubled. 8 35.6 and 36.6, 47.3, 52.8 and 53.3, 57.8 and 58.2, 66.2, 67.8 and 67.9, 74.6 and 75.7, 118.5 and 118.8, 120.1, 122.8, 125.0 and 125.1, 127.3, 127.9, 129.7, 131.8 and 131.9, 133.3, 141.3 and 141.4, 143.7 and 144.0, 148.8, 154.3 and 154.6, 162.0 and 162.1, 171.2 and 171.3; HRMS Calc. For $C_{30}H_{25}N_3O_{10}$ [M+H] = 588.1618, found [M+H] = 588.1616.

Fmoc-*cis***-Hyp-O-Allyl ester (5).** To a solution of Fmoc-*cis*-Hyp(*O*-3,5-dinitrobenzoate)-O-Allyl ester (19) (2.955 g, 5.03 mmol) in 1,4-dioxane (50 ml) and CH₃OH (50 ml) was added NaN₃ (2.616 g, 40.3 mmol, 8 eq) and 15-crown-5 (0.100 ml, 0.503 mmol, 0.1 eq). The solution was stirred at 40 °C for

20 h, after which the reaction was judged complete by TLC (3:2 hexanes:ethyl acetate, UV, product $R_f = 0.3$). The reaction mixture was then concentrated *in vacuo* on silica. The product was isolated by dryloaded silica flash column chromatography (2:3 hexanes:ethyl acetate) as a slightly yellow foam (1.995 g, quantitative yield): $[\alpha]_D^{25}$ -26.6 (c 0.5, CH_2Cl_2); IR (CDCl₃): 3470, 2953, 2884, 1701 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): two rotomers observed – some protons are doubled. δ 2.18 (t, 1H, J = 12 Hz), 2.30 – 2.37 (mult, 1H), 2.99 (d, 1H, J = 9 Hz, OH_a), 3.34 (d, 1H, J = 10 Hz, OH_b), 3.59 – 3.76 (mult, 2H), 4.11 – 4.59 (mult, 5H), 4.68 (d, 2H, J = 6 Hz), 5.21 – 5.37 (mult, 2H), 5.86 – 5.92 (mult, 1H), 7.27 – 7.31 (mult, 2H), 7.36 (t, 2H, J = 8 Hz), 7.51 – 7.57 (mult, 2H), 7.74 (d, 2H, J = 8 Hz), 8.99 (bs, 1H); ¹³C-NMR (100 Hz, CDCl₃): two rotomers observed – some carbons are doubled. δ 38.0 and 39.2, 47.4 and 47.5, 56.0 and 56.3, 58.0 and 58.5, 66.2 and 66.3, 66.6 and 68.0, 70.2 and 71.4, 119.2 and 119.4, 120.2, 125.2 and 125.3, 127.3 and 128.0, 131.6, 141.5, 143.8 and 143.9, 144.1 and 144.3, 154.8 and 155.2, 174.4; HRMS Calc. For $C_{23}H_{23}NO_5$ [M+H] = 394.1654, found [M] = 394.1656.

(*o*-NO₂Ph)SO₂-Trp-O-Allyl ester = Ns-Trp-O-Allyl ester (12). A suspension of L-tryptophan (22) (5.044 g, 24.7 mmol) in allyl alcohol (62 ml) and benzene (21 ml) was degassed by bubbling argon through the mixture for 20 min. *Para*-toluenesulfonic acid hydrate (9.392 g, 49.38 mmol, 2.0 eq) was added, a Dean-Stark apparatus was attached, and the suspension was heated to reflux for 4.5 h, at which point 1.4 ml H₂O had been collected, and TLC (5:3:1 CHCl₃:CH₃OH:CH₃CO₂H, product R_f = 0.8) showed mostly complete conversion. The suspension was concentrated *in vacuo*, re-suspended in NaHCO₃ (5% aq., 50 ml), the pH was adjusted to 9.0 with NaOH (1 M aq), and the product was extracted with 1:1 ether:ethyl acetate (2 x 30 ml). The organic layer was dried over MgSO₄ and concentrated *in vacuo* to yield H-Trp-O-Allyl ester as a viscous amber oil (5.889 g, quant). The material was slightly contaminated with allyl alcohol, but could be used in the next step without further purification.

A solution of H-Trp-O-Allyl ester (5.683 g) in CH₂Cl₂ (70 ml) was stirred in an ice bath for 10 min, and treated with Et₃N (2.8 ml, 19.7 mmol, 0.8 eq). Next, a solution of *o*-nitrobenzenesulfonyl chloride

(4.38 g, 19.7 mmol, 0.8 eq) in CH₂Cl₂ (2 x 10 ml) was added by dropping funnel over several minutes. The solution turned amber during the addition and was then stirred for 1 h at rt. The solution was then concentrated *in vacuo* on silica. The target compound (**12**) was isolated by dry-loaded silica flash column chromatography (2:1 to 3:2 hexanes:ethyl acetate) as an amber oil (6.215 g, 73%): $[\alpha]_D^{25}$ -69.8 (*c* CHCl₃); IR (CDCl₃): 3476, 3154, 2253, 1740 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 3.24 – 3.32 (mult, 2H), 4.35 – 4.51 (mult, 3H), 5.14 – 5.20 (mult, 2H), 5.65 – 5.69 (mult, 1H), 6.04 (d, 1H, J = 8 Hz), 6.97 (t, 1H, J = 8 Hz), 7.03 (d, 1H, J = 3 Hz), 7.10 (t, 1H, J = 8 Hz), 7.22 (d, 1H, J = 8 Hz), 7.36 (d, 1H, J = 8 Hz), 7.47 – 7.52 (mult, 2H), 7.65 (dd, 1H, J = 2, 8 Hz), 7.85 (dd, 1H, J = 2, 8 Hz), 8.05 (bs, 1H); ¹³C-NMR (100 Hz, CDCl₃): δ 29.3, 57.1, 66.5, 108.9, 111.6, 118.5, 119.3, 119.9, 122.4, 124.0, 125.6, 126.9, 130.4, 131.3, 132.9, 133.5, 133.8, 136.4, 147.1, 170.9. HRMS Calc. For C₂₀H₁₉N₃O₆S [M+H] = 430.1073, found [M+H] = 430.1072.

General: NMR-derived computational restraints. 2D NMR spectra were processed using the SPARKY program.³ Values of the 3 J NH- 4 H $_{\alpha}$ coupling constants in the final products were derived by measurement of the distance between crosspeaks in the DQF-COSY spectra. ROESY spectra were recorded at 200 and 400 msec mixing times. Distance restraints for computational modeling experiments were established qualitatively using the isolated spin-pair approximation (ISPA) on ROESY peak volumes measured at the 400 msec mixing time. Thus, distances were estimated to be 3, 4, 5, or 6 angstroms based on comparison of relative peak volumes.

General: Computational modeling. All calculations were performed within the AMBER 8.0 suite of programs.⁴ Molecular coordinate and topology files were constructed using the *tleap* module.

³ Goddard, T. D.; Kneller, D. G. *SPARKY 3*, University of California, San Francisco.

⁴ Case, D. A.; Darden, T. A., Cheatham, T. E.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Merz, K. M.; Wang, B.; Pearlman, D. A.; Crowley, M.; Brozell,, S.; Tsui, V.; Gohlke, H.; Mongan, J.; Hornak, V.; Cui, G.; Beroza, P.; Schafmeister, C.; Caldwell, J. W.; Ross, W. S.; Kollman, P. A. (2004), *AMBER* 8, University of California, San Francisco.

Energy minimizations were performed using the AMBER 99 force field with the modified Generalized Born implicit solvent model⁵ (parameters *igb*=5, *gbsa*=1, *extdiel*=48.75) as implemented in the *sander* module. MOE 2002.03 was used to visually analyze and build structures.⁶

Torsional restraints were applied by refining directly to ³J NH-H_{\alpha} coupling constants using a Karplus relation with A=9.5, B=-1.4, and C=0.3. In order to account for experimental error, deviations less than or equal to $\pm 10\%$ of the experimental J-coupling were not penalized. Deviations greater than $\pm 10\%$ and less than or equal to $\pm 20\%$ of the experimental value were penalized by a harmonic potential with a force constant of 2 kcal/mol; deviations greater than $\pm 20\%$ were penalized by a linear potential with a force constant of 5 kcal/mol. The makeDIST RST module was used to convert experimentally derived distance cutoffs to distance restraint limits appropriate for the sander module. To prevent C_{α} -proton epimerization during the minimization, the makeCHIR RST module provided appropriate sander chirality restraints for all amino acids except Ala⁵. The chirality restraint for this residue was omitted to allow equilibration of L-Ala⁵ to D-Ala⁵. Stereochemical assignment of the C₀-proton was not possible by NMR-data alone, and inversion is mechanistically possible in the carboxyl activation of Ala⁵ preceding the second cyclization of the synthesis. As mentioned in the "Results and Discussion" section, the absence of this restraint had no effect, and did not lead to epimerization of Ala⁵ in these simulations. The potential function for distance and chirality restraints followed a harmonic function with force constants of 2 kcal/mol and 100 kcal/mol for small deviations, followed by a linear function with force constants of 5 kcal/mol and 200 kcal/mol, respectively. The bounds for the penalty functions were specific to the atoms involved and were determined by makeDIST RST or makeCHIR RST. All restraints were imposed at 100% weight for the entire simulation.

⁵ Onufriev, A.; Bashford, D.; Case, D. A. *Proteins-Structure Function and Bioinformatics*. **2004**, 55(2), 383-394.

⁶ "Molecular Operating Environment", Chemical Computing Group (http://www.chemcomp.com)

Method I results (restrained minimization with "U-Type" structure): The solution structure of [Ala⁷]-phalloidin established by Paolillo et al.⁷ provided the starting conformation for species 1 and 1'. These two structures were subjected to 7,500 steps of steepest descent minimization followed by 2,500 steps of conjugate gradient minimization using the sander module. As reported in Table S5, the final structure of atropisomer 1, following restrained minimization using NMR-derived restraints, had minimal violations. Heavy-atom backbone RMSD to the previously reported NMR and X-ray structures of [Ala⁷]-phalloidin⁷ were 0.54 Å and 0.80 Å, respectively. The absence of the chirality restraint at residue Ala⁵ had no effect in the simulation, namely epimerization from L-Ala⁵ to D-Ala⁵ was not observed. The final model had a U-type structure with a positive indole-thioether angle (57.3) between atoms Cys³C_β-Cys³S-Trp⁶C'2-Trp⁶N_{ind}. However, when method I was employed on species 1', significant restraint violations and relatively high total energy were observed in the resulting model (Table S7).

Method II results (restrained minimization with "D-Type" structure): The inverted starting conformation used for species 1' was manually constructed from the solution structure of species 1 by breaking the thioether bridge and rotating the Cys³ and Trp⁶ backbones roughly 180 degrees in MOE. The thioether bridge was reformed and the resulting structure was minimized in MOE using the MMFF94 force field.⁸ This structure was then subjected to 7,500 steps of steepest descent minimization followed by 2,500 steps of conjugate gradient minimization using the *sander* module. The final structure was consistent with the NMR-derived restraints, and the overall energy is significantly lower than the structure resulting from method I (Table S8). The absence of a chirality restraint at residue

⁷ Zanotti, G.; Falcigno, L.; Saviano, M.; D'Auria, G.; Bruno, B. M.; Campanile, T.; Paolillo, L. *Chem. Eur. J.* **2001**, *7*, 1479-1485.

^{8 (}a) Halgren, T. A. J. Am. Chem. Soc. 1992, 114, 7827-7843. (b) Halgren, T. A. J. Comp. Chem. 1996, 17, 490-519. (c) Halgren, T. A. J. Comp. Chem. 1996, 17, 520-552. (d) Halgren, T. A. J. Comp. Chem. 1996, 17, 553-586. (e) Halgren, T. A.; Nachbar, R. B. J. Comp. Chem. 1996, 17, 587-615. (f) Halgren, T. A. J. Comp. Chem. 1996, 17, 616-641.

Ala⁵ did not affect the model, and epimerization from L-Ala⁵ to D-Ala⁵ was not observed in the simulation. The model had a D-type structure with a negative indole-thioether angle (-62.7) between atoms Cys^3C_β - Cys^3S - Trp^6C '2- Trp^6N_{ind} .

Table S1: [Ala⁷]-phalloidin "natural" atropisomer (1): ¹H assignments (recorded in DMSO_{d6} at 298 K)

Residue	NH	$H_{\underline{\alpha}}$	Н <u>е</u>	Н	others	^{3}J NH-H _{α} [Hz]
1	5 21	4.40	1.01			7 0
Ala ¹	7.31	4.48	1.21			7.9
D-Thr ²	8.50	3.96	4.24	1.06	OH (4.79)	7.6
Cys ³	7.69	4.73	3.22, 3.52			7.5
Hyp ⁴		4.14	1.80, 2.28	4.33	$H_{\delta}(3.50, 3.75)$	
Ala ⁵	7.70	3.90	0.79			7.0
D-Thr ² Cys ³ Hyp ⁴ Ala ⁵ Trp ⁶	7.25	4.81	3.12, 3.32		H' ₄ (7.71), H' ₅ (6.97),	9.9
					H' ₆ (7.10), H' ₇ (7.23), NH _{ind} (11.22)	
Ala ⁷	8.49	3.89	1.16		1111mg (11.22)	5.1

Table S2: $[Ala^7]$ -phalloidin "natural" atropisomer (1): 13 C assignments of protonated carbons via HMQC (recorded in DMSO_{d6} at 298 K)

Residue	C_{α}	C_{β}	$\mathbf{C}_{\mathbf{y}}$	others
		_	-	
Ala ¹	48.6	18.4		
D-Thr ²	59.0	64.4	20.1	
Cys ³	49.5	38.1		
Cys ³ Hyp ⁴ Ala ⁵ Trp ⁶	60.8	36.5	68.4	$C_{\delta}(53.9)$
Ala ⁵	50.5	16.1		
Trp ⁶	51.7	28.6		C' ₄ (119.8), C' ₅ (118.2), C' ₆ (122.1)
•				C' ₇ (110.4)
Ala^7	48.3	16.0		

Table S3: [Ala⁷]-phalloidin "non-natural" atropisomer (1'): ¹H assignments (recorded in DMSO_{d6} at 298 K)

Residue	NH	Η <u>α</u>	Н <u>в</u>	Н _у	others	^{3}J NH-H _{α} [Hz]
Ala ¹	8.20	4.46	1.25			8.7
D-Thr ²	6.96	4.34	4.18	1.06		9.5
Cys ³	7.49	3.02	3.43, 3.75			7.6
Hyp ⁴		3.50	1.67, 2.12	4.09	$H_{\delta}(3.29, 3.45)$	
Ala ⁵	7.89	4.14	1.07			8.8
D-Thr ² Cys ³ Hyp ⁴ Ala ⁵ Trp ⁶	6.23	4.68	3.10,3.19		H' ₄ (7.53), H' ₅ (7.06), H' ₆ (7.16), H' ₇ (7.32),	4.9
Ala ⁷	8.6	4.07	1.36		NH _{ind} (11.45)	5.3

Table S4: $[Ala^7]$ -phalloidin "non-natural" atropisomer (1'): 13 C assignments of protonated carbons via HMQC (recorded in DMSO_{d6} at 298 K)

Residue	C_{α}	$\mathbf{C}_{\boldsymbol{\beta}}$	$\mathbf{C}_{\mathbf{r}}$	others
	-	-	-	
Ala ¹	47.1	17.9		
D-Thr ²	57.8	65.7	19.8	
Cys ³	54.0	33.6		
Cys ³ Hyp ⁴ Ala ⁵ Trp ⁶	54.8	38.6	66.3	$C_{\delta}(54.6)$
Ala ⁵	46.8	1.07		
Trp^6	56.9	24.4		C' ₄ (117.0), C' ₅ (119.0), C' ₆ (122.5)
•				$C'_{7}(110.7)$
Ala^7	51.5	15.9		

Table S5: Calculated and experimental NMR-derived restraints for "natural" atropisomer 1 (method I): total restraint violation = 0.33 kcal/mol; total energy = -28.8 kcal/mol.

Atom	Residue	Atom	Residue	Experimental	Calculated	Limit	Violation
(J-Valu	ue restraints):			(Hz)	(Hz)	(Hz)	(kcal/mol)
HN	Ala ¹	НА	Ala ¹	7.9	8.718	8.7	0.002
HN	D-Thr ²	HA	D-Thr ²	7.6	8.403	8.4	0
HN	Cys ³	HA	Cys ³	7.5	6.685	6.7	0
HN	Ala ⁵	HA	Ala ⁵	7	6.221	6.3	0.013
HN	$\text{Trp}^6_{\underline{}}$	HA	$\text{Trp}^6_{\underline{}}$	9.9	10.653	10.9	0
HN	Ala ⁷	HA	Ala ⁷	5.1	5.658	5.6	0.017
(distan	ce restraints):			(Å)	(Å)	(Å)	(kcal/mol)
QB	Ala ⁵	НА	Ala ⁵	4	2.605	4.8	0
QG	D-Thr ²	HA	D-Thr ²	4	2.933	4.8	0
QG	D-Thr ²	HB	D-Thr ²	4	2.592	4.8	0
QB	Ala^7	HA	Ala^7	4	2.539	4.8	0
QB	Ala ¹	HA	Ala ¹	4	2.595	4.8	0
QB	Hyp ⁴	HA	Hyp ⁴	4	2.544	4.49	0
QB	Hyp ⁴	НО	Hyp ⁴	4	2.793	4.49	0
QB	Hyp ⁴	HG3	Hyp ⁴	3	2.578	3.37	0
QB	Hyp ⁴	QD	Hyp ⁴	4	3.399	5.04	0
QB	Hyp ⁴	ÔН	Hyp ⁴	5	2.683	5.61	0
QB	Hyp^4	HA	Hyp ⁴	4	2.544	4.49	0
QB	Trp ⁶	HA	Trp ⁶		2.542	5.61	0
HD2	Hyp ⁴	HD3	Hyp ⁴	5 3	1.79	1.8	0.01
QD	Hyp ⁴	OH	Hyp ⁴	4	2.667	4.49	0
QD	Hyp ⁴	HA	Cys ³	5	2.258	5.61	0
QD	Hyp ⁴	HG3	Hyp ⁴	4	2.527	4.49	0
QD	Hyp ⁴	HA	Cys ³	5	2.258	5.61	0
QD	Hyp ⁴	OH	Hyp ⁴	5	2.667	5.61	0
HA	D-Thr ²	HB	D-Thr ²	4	3.04	4.0	0
HA	Hyp ⁴	HA	Trp ⁶	6	6.243	6.0	0.296
HA	Hyp ⁴	HG	Hyp ⁴	4	2.973	4.0	0
HB	D-Thr ²	HG	D-Thr ²	4	2.248	4.0	0
HG3	Hyp ⁴	ОН	Hyp ⁴	4	2.077	4.0	0
HA	Trp ⁶	HE3	Trp ⁶	5	2.429	5.0	0
(chirali	ity restraints):			(deg)	(deg)	(deg)	(deg)
C	Ala ¹	НА	Ala ¹	-	73.967	80	0
C	D-Thr ²	HA	D-Thr ²	-	283.326	310	0
C	Cys ³	HA	Cys ³	-	75.596	80	0
C	Hyp ⁴	HA	Hyp ⁴	-	72.459	80	0
C	$Trp_{\underline{}}^{6}$	HA	$Trp_{\underline{}}^{6}$	-	74.658	80	0
C	Ala^7	HA	Ala^7	-	76.923	80	0

Table S6: Calculated Cartesian coordinates for "natural" atropisomer 1 (method I).

#	Atom	Residue	X	Y	Z	Element
1	N	Ala ¹	-0.396	-3.467	0.198	N
2	H	Ala ¹	-0.261	-2.496	0.439	H
3	CA	Ala ¹	-1.733	-4.03	0.412	C
4	HA	Ala^1	-1.919	-4.829	-0.31	Н
5	CB	Ala ¹	-1.792	-4.628	1.828	C
6	HB1	Ala ¹	-1.583	-3.858	2.573	Н
7	HB2	Ala ¹	-2.784	-5.042	2.013	Н
8	HB3	Ala ¹	-1.053	-5.426	1.925	Н
9	C	Ala ¹	-2.797	-2.943	0.174	C
10	O N	Ala ¹ D-Thr ²	-3.091 -3.335	-2.132 -2.89	1.056 -1.049	O N
11 12	H	D-Thr ²	-3.333 -3.046	-2.89 -3.584	-1.726	H
13	CA	D-Thr ²	-4.22	-1.805	-1.726	C
14	НА	D-Thr ²	-4.871	-1.502	-0.693	Н
15	CB	$D-Thr^2$	-5.137	-2.267	-2.665	C
16	HB	D-Thr ²	-4.54	-2.48	-3.552	Н
17	CG2	D-Thr ²	-5.948	-3.516	-2.305	C
18	HG21	D-Thr ²	-6.518	-3.343	-1.391	H
19	HG22	D-Thr ²	-6.633	-3.761	-3.118	Н
20	HG23	D-Thr ²	-5.282	-4.366	-2.156	Н
21	OG1	D-Thr ²	-6.081	-1.257	-2.958	O
22	HG1	D-Thr ²	-6.577	-1.548	-3.735	H
23	C	D-Thr ²	-3.367	-0.59	-1.912	C
24	O	$D-Thr^2$	-3.082	-0.35	-3.089	0
25	N H	Cys ³ Cys ³	-2.868 -3.072	0.136	-0.906 0.038	N H
26 27	п СА	Cys ³	-1.888	-0.174 1.219	-1.057	п С
28	HA	Cys ³	-2.254	1.905	-1.819	Н
29	CB	Cys ³	-1.805	2.023	0.251	C
30	HB2	Cys ³	-0.924	2.666	0.21	Н
31	HB3	Cys ³	-2.68	2.671	0.312	Н
32	SG	Cys ³	-1.751	1.035	1.776	S
33	C	Cvs ³	-0.497	0.678	-1.471	C
34	O	Cys ³ Hyp ⁴	0.069	-0.147	-0.745	O
35	N	Hyp ⁴	0.105	1.143	-2.592	N
36	CD	Hyp ⁴	-0.507	1.975	-3.626	C
37	HD2	Hvn'	-0.391	3.03	-3.37	H
38	HD3	Hyp ⁴ Hyp ⁴	-1.559	1.734	-3.773	H
39 40	CG OH	Hyp Hyp ⁴	0.243 0.233	1.663 2.768	-4.918 -5.802	C O
41	НО	Hyp ⁴ Hyp ⁴	0.233	2.708	-6.617	Н
42	HG3	Hyp ⁴	-0.192	0.778	-5.387	H
43	CB	Hyp ⁴ Hyp ⁴	1.648	1.345	-4.419	C
44	HB2	Hvn⁴	2.215	2.273	-4.308	Н
45	HB3	Hyp ⁴	2.167	0.668	-5.1	Н
46	CA	Hyp ⁴	1.428	0.689	-3.047	C
47	HA	Hyp ⁴ Hyp ⁴ Hyp ⁴	1.392	-0.395	-3.162	Н
48	C	Hvp⁴	2.594	1.021	-2.104	C
49	O	Hyp⁴	3.6	0.312	-2.11	O
50	N	Ala ³	2.457	2.058	-1.268	N
51	Н	Ala ⁵	1.6	2.592	-1.302	Н
52 53	CA	Ala^5	3.44	2.4	-0.231	C
53 54	HA	Ala ⁵	4.435	2.413	-0.683	H
54 55	СВ	Ala ⁵ Ala ⁵	3.101	3.799	0.302	С
55 56	HB1 HB2	Ala ⁵	2.119 3.848	3.794 4.099	0.779 1.04	H H
50 57	пв2 НВ3	Ala ⁵	3.106	4.099	-0.515	п Н
31	11103	rua	5.100	7.344	-0.515	11

58	C	Ala ⁵	3.504	1.361	0.908	C
59	O	Ala ⁵	4.517	1.288	1.611	O
60	N	Trp ⁶	2.441	0.554	1.077	N
61	Н	Trp ⁶	1.643	0.703	0.474	Н
62	CA	Trp ^o	2.307	-0.469	2.129	C
63	HA	Trp ^o	3.127	-0.357	2.835	Н
64	CB	Trp ^o	0.986	-0.256	2.884	C
65	HB2	Trp ^o	0.194	-0.747	2.321	Н
66	HB3	Trp ^o	1.054	-0.765	3.846	Н
67	CG	Trp°	0.607	1.181	3.136	C
68	CD1	Trp ^o	-0.506	1.819	2.701	C
69	NE1	Trp ^o	-0.495	3.142	3.07	N
70	HE1	Trp ^o	-1.246	3.782	2.847	Н
71	CE2	Trp ^o	0.652	3.449	3.766	C
72	CZ2	Trp°	1.136	4.637	4.332	C
73	HZ2	Trp ⁶	0.559	5.549	4.258	Н
74	CH2	Trp ^o	2.377	4.628	4.991	C
75	HH2	Trp ⁶	2.766	5.538	5.432	Н
76	CZ3	Trp ⁶	3.113	3.432	5.074	C
77	HZ3	Trp ⁶	4.07	3.425	5.581	Н
78	CE3	Trp ⁶	2.617	2.244	4.504	C
79	HE3	Trp ⁶	3.201	1.336	4.576	Н
80	CD2	Trp ⁶	1.374	2.217	3.833	C
81	C	Trp ⁶	2.383	-1.902	1.605	C
82	O	Trp ^o	2.733	-2.791	2.38	O
83	N	Ala′	2.035	-2.11	0.325	N
84	Н	Ala′	1.635	-1.307	-0.143	Н
85	CA	Ala^7	1.998	-3.377	-0.438	C
86	HA	Ala^7	2.123	-3.106	-1.489	Н
87	CB	Ala^7	3.203	-4.28	-0.111	C
88	HB1	Ala^7	3.074	-4.763	0.858	Н
89	HB2	Ala^7	3.29	-5.061	-0.869	Н
90	HB3	Ala^7	4.124	-3.695	-0.112	Н
91	C	Ala ⁷	0.645	-4.125	-0.329	C
92	O	Ala^7	0.547	-5.292	-0.719	O

Table S7: Calculated and experimental NMR-derived restraints for "non-natural" atropisomer 1' (method I): total restraint violation = 18.48 kcal/mol; total energy = -3.48 kcal/mol.

Atom	Residue	Atom	Residue	Experimental	Calculated	Limit	Violation
(J-Valu	ue restraints):			(Hz)	(Hz)	(Hz)	(kcal/mol)
HN	Ala^1	НА	Ala ¹	8.7	9.635	9.6	0.006
HN	D-Thr ²	HA	D-Thr ²	9.5	10.583	10.5	0.034
HN	Cys ³	HA	Cys ³	7.6	6.746	6.8	0.006
HN	Ala ⁵	HA	Ala ⁵	8.8	7.711	7.9	0.071
HN	Trp ⁶	HA	Trp ⁶	4.9	5.438	5.4	0.007
HN	Ala ⁷	HA	Ala ⁷	5.3	5.869	5.8	0.024
(distan	ce restraints):			(Å)	(Å)	(Å)	(kcal/mol)
QG	D-Thr ²	НА	Ala ¹	5.0	4.167	6.0	0
QG	D-Thr ²	HA	D-Thr ²	4.0	2.932	4.8	0
QG	D-Thr ²	HB	D-Thr ²	3.0	2.593	3.6	0
QG	D-Thr ²	HN	D-Thr ²	4.0	3.086	4.8	0

QB	Ala ⁵	HN	Ala ⁵	4.0	2.607	4.8	0
QB	Ala ⁵	HA	Ala ⁵	3.0	2.642	3.6	0
QB	Ala ⁵	QB	Cys ³	6.0	3.62	8.09	0
QB	Ala ⁵	HA	D-Thr ²	5.0	9.072	6.0	14.112
QB	Ala ¹	HN	Ala^1	4.0	3.14	4.8	0
QB	Ala^1	HA	Ala^1	3.0	2.599	3.6	0
QΒ	Ala ¹	HN	D-Thr ²	5.0	4.498	6.0	0
QB	Ala ¹	QB	$\text{Cys}^3_{\underline{}}$	6.0	7.111	8.09	0
QΒ	Ala ¹	ĤΑ	Ala^7	5.0	5.491	6.0	0
QΒ	Ala ¹	HA	Ala^1	4.0	5.198	4.8	0.793
QΒ	Ala ¹	HA	Ala^7	3.0	2.544	3.6	0
QВ	Hvp^4	HA	Hvp^4	4.0	2.537	4.49	0
QΒ	Hvp^4	HG3	Hvp ⁴	4.0	2.61	4.49	0
QΒ	Hyp ⁴	QD	Hvp⁴	5.0	3.219	6.3	0
QВ	Hyp ⁴	ĤΑ	Hyp ⁴	3.0	2.537	3.37	0
QВ	Trp^6	HA	Trp ⁶	4.0	2.608	4.49	0
QВ	Trp ⁶	HN	Trp ⁶	4.0	2.721	4.49	0
QВ	Trp^6	HE3	Trp ⁶	4.0	3.55	4.49	0
QΒ	Trp ⁶	HG3	Hyp ⁴	6.0	7.537	6.73	2.786
QВ	Trp^6	HA	Trp^6	4.0	2.608	4.49	0
QВ	Trp ⁶	HE3	Trp ⁶	5.0	3.55	5.61	0
HD2	Hyp ⁴	HD3	Hvp ⁴	3.0	1.792	1.8	0
QD	Hyp ⁴	HG3	Hyp ⁴	4.0	2.55	4.49	0
QВ	Cys^3	HN	Ala ¹	6.0	5.192	6.73	0
ĤΑ	Ala ⁷	HN	Ala ¹	5.0	3.076	5.0	0
HA	Ala ⁵	HN	Trp^6	4.0	3.549	4.0	0
HB	D-Thr ²	HN	Cys ³	5.0	4.47	5.0	0
HB	D-Thr ²	HN	D-Thr ²	4.0	2.662	4.0	0
HA	D-Thr ²	HN	D-Thr ²	3.0	2.996	3.0	0
HA	Ala ¹	HN	D-Thr ²	4.0	2.479	4.0	0
HA	Ala ¹	HN	Ala^1	3.0	2.957	3.0	0
HA	Trp ⁶	HN	D-Thr ²	7.0	7.356	7.0	0.633
(chirali	ity restraints):			(deg)	(deg)	(deg)	(deg)
(Chiran	uy restraints).			(ueg)	(ueg)	(ueg)	(ueg)
C	Ala ¹	HA	Ala ¹	-	73.801	80	0
C	$D-Thr^2$	HA	D-Thr ²	-	283.338	310	0
C	Cys ³	HA	Cys ³	-	74.887	80	0
C	Hyp ⁴	HA	Hyp ⁴	-	72.56	80	0
C	$\operatorname{Trp}_{7}^{6}$	HA	Trp ⁶	-	73.753	80	0
C	Ala ⁷	HA	Ala^7	-	76.741	80	0

Table S8: Calculated and experimental NMR-derived restraints for "non-natural" atropisomer 1' (method II): total restraint violation = 3.86 kcal/mol; total energy = -24.84 kcal/mol.

Atom	Residue	Atom	Residue	Experimental	Calculated	Limit	Violation
(J-Val	ue restraints):			(Hz)	(Hz)	(Hz)	(kcal/mol)
HN	Ala ¹	НА	Ala ¹	8.7	9.665	9.6	0.021
HN	D-Thr ²	HA	D-Thr ²	9.5	10.486	10.5	0
HN	Cys ³	HA	Cys ³	7.6	8.006	8.4	0
HN	Ala ⁵	HA	Ala ⁵	8.8	7.863	7.9	0.003
HN	Trp^6	HA	Trp^6	4.9	4.355	4.4	0.004
HN	Ala^7	HA	Ala^7	5.3	5.747	5.8	0

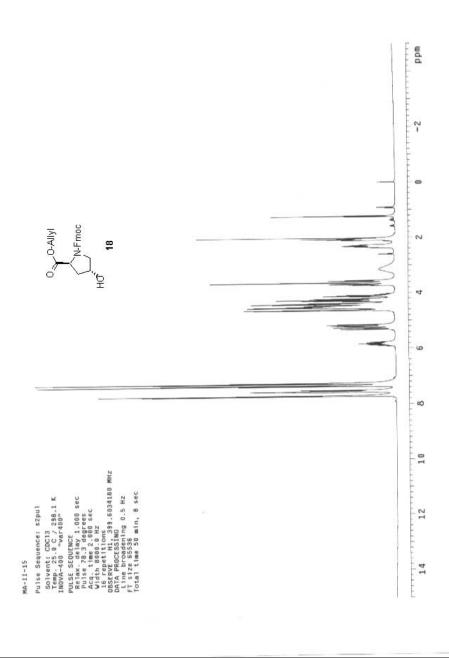
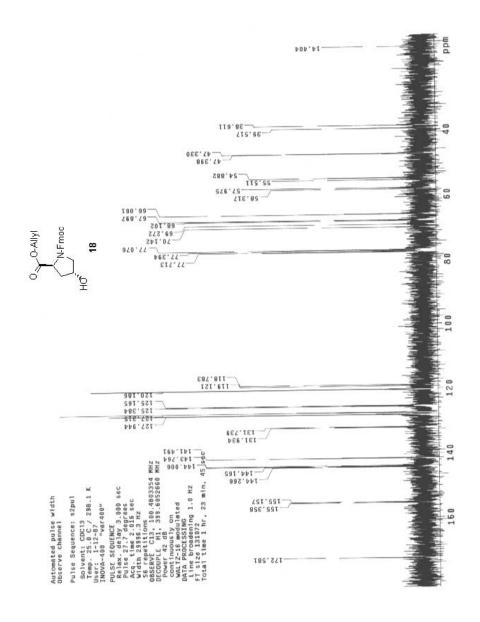
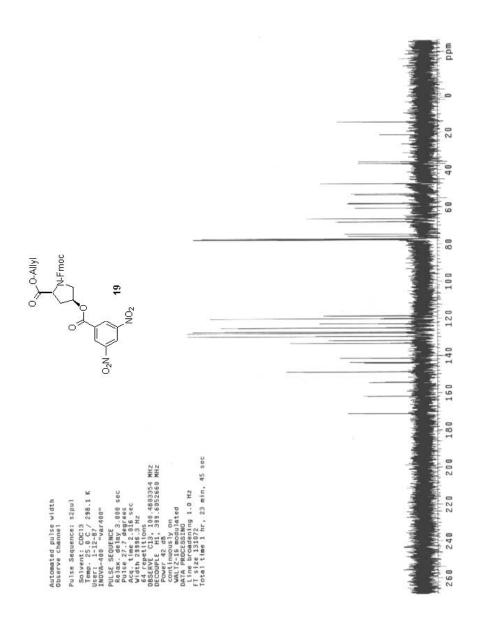

QG D-Thr² HA Ala¹ 5.0 3.712 6.0 0 QG D-Thr² HA D-Thr² 4.0 3.216 4.8 0 QG D-Thr² HB D-Thr² 4.0 3.216 4.8 0 QG D-Thr² HN D-Thr² 4.0 3.272 4.8 0 QB Ala⁵ HN Ala⁵ 4.0 2.681 4.8 0 QB Ala⁵ HA Ala⁵ 3.0 2.599 3.6 0 QB Ala⁵ HA Ala⁵ 4.0 2.681 4.8 0 QB Ala⁵ HA Ala⁵ 4.0 3.060 6.979 8.09 0 QB Ala⁵ HA Ala¹ 4.0 3.060 4.8 0 QB Ala⁵ HA Ala¹ 4.0 3.060 4.8 0 QB Ala¹ HA Ala¹ 3.0 2.622	(distan	ce restraints):			(Å)	(Å)	(Å)	(kcal/mol)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OG	D-Thr ²	НΔ	$\Delta 1a^1$	5.0	3 712	6.0	0
QG D-Thr² HB D-Thr² 3.0 2.582 3.6 0 QG D-Thr² HN D-Thr² 4.0 3.272 4.8 0 QB Ala² HN Ala² 4.0 2.681 4.8 0 QB Ala² HA Ala² 3.0 2.599 3.6 0 QB Ala² HA Ala² 3.0 2.599 8.0 9 QB Ala² HA D-Thr² 5.0 4.961 6.0 0 QB Ala² HA D-Thr² 5.0 4.961 6.0 0 QB Ala¹ HA Ala¹ 4.0 3.069 4.8 0 QB Ala¹ HA Ala¹ 4.0 3.069 4.8 0 QB Ala¹ HA Ala¹ 4.0 3.09 2.315 0 QB Ala¹ HA Ala¹ 5.0 3.711 6.0				D-Thr ²				
QG D-Thr² HN Ala⁵ 4.0 32.72 4.8 0 QB Ala⁵ HN Ala⁵ 4.0 2.681 4.8 0 QB Ala⁵ HA Ala⁵ 3.0 2.599 3.6 0 QB Ala⁵ QB Cys³ 6.0 6.979 8.09 0 QB Ala⁵ HA Ala¹ 4.0 3.069 4.8 0 QB Ala¹ HA Ala¹ 4.0 3.069 4.8 0 QB Ala¹ HA Ala¹ 3.0 2.622 3.6 0 QB Ala¹ HN D-Thr² 5.0 4.399 6.0 0 QB Ala¹ HA Ala¹ 3.0 2.622 3.6 0 QB Ala¹ HA Ala¹ 5.0 5.241 6.0 0 QB Ala¹ HA Ala² 4.0 5.031 4.8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
QB Alas HN Alas 3.0 2.599 3.6 0 QB Alas HA Alas 3.0 2.5999 3.6 0 QB Alas HA D-Thr² 5.0 4.961 6.0 0 QB Alas HA D-Thr² 5.0 4.961 6.0 0 QB Alas HA D-Thr² 5.0 4.961 6.0 0 QB Alas HA Alas 3.0 2.622 3.6 0 QB Alas HN D-Thr² 5.0 4.399 6.0 0 QB Alas HN Alas 5.0 5.241 6.0 0 QB Alas HA Alas 5.0 5.241 6.0 0 QB Alas HA Alas 5.0 3.711 6.0 0 QB Alas HA Alas 4.0 5.031 4.8								
QB Ala ⁵ HA Ala ⁵ 3.0 2.599 3.6 0 QB Ala ⁵ QB Cys ³ 6.0 6.979 8.09 0 QB Ala ⁵ HA D-Thr ² 5.0 4.961 6.0 0 QB Ala ¹ HA Ala ¹ 4.0 3.069 4.8 0 QB Ala ¹ HA Ala ¹ 4.0 3.069 4.8 0 QB Ala ¹ HA Ala ¹ 4.0 3.069 2.315 6.0 0 QB Ala ¹ HA Ala ⁷ 5.0 5.241 6.0 0 QB Ala ¹ HA Ala ⁷ 5.0 5.241 6.0 0 QB Ala ² HA Ala ² 5.0 3.711 6.0 0 QB Ala ² HA Ala ² 3.0 2.593 3.6 0 QB Hyp ⁴ HA Ala ² <td< td=""><td>OB</td><td>Δ1a⁵</td><td></td><td>Δ1a⁵</td><td></td><td></td><td></td><td></td></td<>	OB	Δ1a ⁵		Δ1a ⁵				
QB Ala ⁵ QB Cys ³ 6.0 6.979 8.09 0 QB Ala ⁵ HA D-Thr ² 5.0 4.961 6.0 0 QB Ala ¹ HA D-Thr ² 5.0 4.961 6.0 0 QB Ala ¹ HA Ala ¹ 3.0 2.622 3.6 0 QB Ala ¹ HN D-Thr ² 5.0 4.399 6.0 0 QB Ala ¹ HN D-Thr ² 5.0 4.399 6.0 0 QB Ala ¹ HA Ala ⁷ 5.0 5.241 6.0 0 QB Ala ² HA Ala ¹ 4.0 5.031 4.8 0.268 QB Ala ² HA Ala ¹ 4.0 5.031 4.8 0.268 QB Ala ² HA Ala ¹ 4.0 2.593 3.6 0 QB Hyp ⁴ HG 3.0 2.545	OB			Λ1α ⁵				
QB Ala H Ala A				Cyc ³				
QB Ala ¹ H Ala ¹ 3.0 3.069 4.8 0 QB Ala ¹ HA Ala ¹ 3.0 2.622 3.6 0 QB Ala ¹ HN D-Thr ² 5.0 4.399 6.0 0 QB Ala ¹ HA Ala ⁷ 5.0 5.241 6.0 0 QB Ala ⁷ HN Ala ¹ 5.0 3.711 6.0 0 QB Ala ⁷ HA Ala ¹ 4.0 5.031 4.8 0.268 QB Ala ⁷ HA Ala ⁷ 3.0 2.593 3.6 0 QB Hyp ⁴ HG3 Hyp ⁴ 3.0 2.598 3.37 0 QB Hyp ⁴ HA Hyp ⁴ 4.0 2.545 4.49 0 QB Hyp ⁴ HA Hyp ⁴ 3.0 2.545 3.37 0 QB Trp ⁶ HA Trp ⁶ 4.0				Cys D-Thr ²				
QB Ala ¹ HA Ala ¹ 3.0 2.622 3.6 0 QB Ala ¹ HN D-Thr ² 5.0 4.399 6.0 0 QB Ala ¹ QB Cys ³ 6.0 8.803 8.09 2.315 QB Ala ¹ HA Ala ² 5.0 5.241 6.0 0 QB Ala ⁷ HA Ala ¹ 4.0 5.031 4.8 0.268 QB Ala ⁷ HA Ala ¹ 4.0 5.031 4.8 0.268 QB Ala ⁷ HA Ala ⁷ 3.0 2.593 3.6 0 QB Hyp ⁴ HA Ala ⁷ 3.0 2.598 3.37 0 QB Hyp ⁴ HA Hyp ⁴ 4.0 2.545 4.49 0 QB Hyp ⁴ HA Hyp ⁴ 3.0 2.545 3.37 0 QB Trp ⁶ HA Trp ⁶ 4.0 <td></td> <td></td> <td></td> <td>Δ-1111 Λ12¹</td> <td></td> <td></td> <td></td> <td></td>				Δ-1111 Λ12 ¹				
OB Ala¹ HN D-Thr² 5.0 4.399 6.0 0 QB Ala¹ QB Cys³² 6.0 8.803 8.09 2.315 QB Ala¹ HA Ala¹ 5.0 5.241 6.0 0 QB Ala² HN Ala¹ 5.0 3.711 6.0 0 QB Ala² HA Ala¹ 4.0 5.031 4.8 0.268 QB Ala² HA Ala¹ 4.0 5.031 4.8 0.268 QB Hyp⁴ HA Ala² 4.0 5.031 4.8 0.268 QB Hyp⁴ HG3 Hyp⁴ 3.0 2.593 3.6 0 QB Hyp⁴ HG3 Hyp⁴ 4.0 2.545 4.49 0 QB Hyp⁴ HA Hyp⁴ 3.0 2.545 3.37 0 QB Trp6 HA Trp6* 4.0 2.711								
QB Ala¹ QB Cys³ 6.0 8.803 8.09 2.315 QB Ala¹ HA Ala² 5.0 5.241 6.0 0 QB Ala² HN Ala¹ 5.0 3.711 6.0 0 QB Ala² HN Ala¹ 4.0 5.031 4.8 0.268 QB Ala² HA Ala¹ 4.0 5.031 4.8 0.268 QB Ala² HA Ala¹ 3.0 2.593 3.6 0 QB Hyp⁴ HG3 Hyp⁴ 3.0 2.598 3.37 0 QB Hyp⁴ HA Hyp⁴ 4.0 2.545 4.49 0 QB Hyp⁴ HA Hyp⁴ 3.0 2.545 3.37 0 QB Hyp⁴ HA Hyp⁴ 3.0 2.545 3.37 0 QB Tp6 HA Tp6 4.0 2.711 4.49								
OB Ala ⁷ HA Ala ⁷ 5.0 5.241 6.0 0 QB Ala ⁷ HN Ala ¹ 5.0 3.711 6.0 0 QB Ala ⁷ HA Ala ¹ 4.0 5.031 4.8 0.268 QB Ala ⁷ HA Ala ⁷ 3.0 2.593 3.6 0 QB Hyp ⁴ HG3 Hyp ⁴ 3.0 2.598 3.37 0 QB Hyp ⁴ HA Hyp ⁴ 4.0 2.545 4.49 0 QB Hyp ⁴ HA Hyp ⁴ 3.0 2.545 3.37 0 QB Hyp ⁴ HA Hyp ⁴ 3.0 2.545 3.37 0 QB Typ ⁶ HA Typ ⁶ 4.0 2.711 4.49 0 QB Typ ⁶ HA Typ ⁶ 4.0 2.774 4.49 0 QB Typ ⁶ HG3 Hyp ⁴ 6.0								
QB Ala ⁷ HN Ala ¹ 5.0 3.711 6.0 0 QB Ala ⁷ HA Ala ¹ 4.0 5.031 4.8 0.268 QB Ala ⁷ HA Ala ¹ 3.0 2.598 3.37 0 QB Hyp ⁴ HG3 Hyp ⁴ 4.0 2.545 4.49 0 QB Hyp ⁴ QD Hyp ⁴ 5.0 3.2 6.3 0 QB Hyp ⁴ QD Hyp ⁴ 5.0 3.2 6.3 0 QB Typ ⁶ HA Hyp ⁴ 5.0 3.2 6.3 0 QB Typ ⁶ HA Typ ⁶ 4.0 2.711 4.49 0 QB Typ ⁶ HB Typ ⁶ 4.0 2.774 4.49 0 QB Typ ⁶ HG3 Hyp ⁴ 6.0 7.229 6.73 1.245 QB Typ ⁶ HA Typ ⁶ 5.0								
QB Ala ⁷ HA Ala ¹ 4.0 5.031 4.8 0.268 QB Ala ⁷ HA Ala ⁷ 3.0 2.593 3.6 0 QB Hyp ⁴ HG3 Hyp ⁴ 3.0 2.598 3.37 0 QB Hyp ⁴ HA Hyp ⁴ 4.0 2.545 4.49 0 QB Hyp ⁴ HA Hyp ⁴ 3.0 2.545 3.37 0 QB Hyp ⁴ HA Hyp ⁴ 3.0 2.545 3.37 0 QB Typ ⁶ HA Typ ⁶ 4.0 2.711 4.49 0 QB Typ ⁶ HA Typ ⁶ 4.0 2.714 4.49 0 QB Typ ⁶ HE3 Typ ⁶ 4.0 2.774 4.49 0 QB Typ ⁶ HA Typ ⁶ 4.0 2.711 4.49 0 QB Typ ⁶ HB3 Typ ⁶ 4.0								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Ala ¹				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	QD OD							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Ala Um ⁴				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		пур 11 ⁴		пур 11 ⁴				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	QD OD	пур 11. т		пур 11. т. ⁴				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		нур 11 ⁴		нур				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		нур т ⁶		нур т ⁶				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Trp		1 rp				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Trp		1 rp				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Trp*		1 rp*				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Trp		нур Т				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Trp*		Trp*				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1rp*		1 rp*				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Hyp 4		Hyp 4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Hyp		Hyp				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ala		Trp				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		D-Thr ²		Cys				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
HA Trp^6 HN D-Thr² 7.0 3.418 7.0 0 (chirality restraints): (deg) (deg) (deg) (deg) (deg) C Ala¹ HA Ala¹ - 71.963 80 0 C D-Thr² HA D-Thr² - 283.841 310 0 C Cys³ HA Cys³ - 76.155 80 0 C Hyp⁴ HA Hyp⁴ - 72.781 80 0 C Trp6 HA Trp6 - 74.492 80 0								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HA	Trp ^o	HN	D-Thr ²	7.0	3.418	7.0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(chirality restraints):			(deg)	(deg)	(deg)	(deg)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C	A1a 1	ЦΛ	A1a 1		71 063	80	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		D_Thr ²		D_Thr ²	-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{VG^3}		C_{Vo^3}	-			
C Trp° HA Trp° - 74.492 80 0	C	Cys Hym ⁴		Cys Hym ⁴	-			
C Ala ⁷ HA Ala ⁷ - 73.399 80 0	C	пур Тт		пур Тт	-			
C Aia ПА Aia - /3.399 80 0	C			11p	-			
	C	Ala	пА	Ala	-	13.377	ου	U

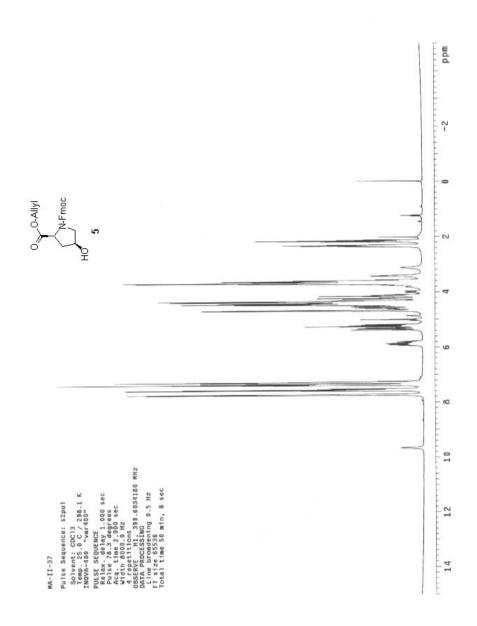
Table S9: Calculated Cartesian coordinates for "non-natural" atropisomer 1' using method II.

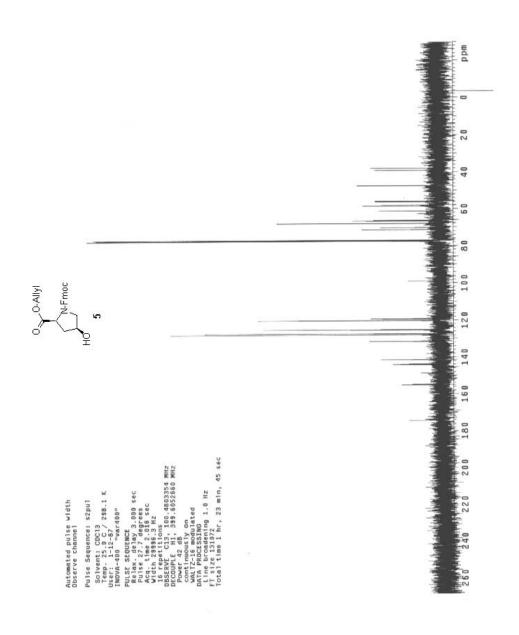

#	Atom	Residue	X	Y	Z	Element
1	N	Ala ¹	-0.902	-3.252	3.001	N
2	Н	Ala^1	-0.49	-2.566	2.38	Н
3	CA	Ala ¹	-2.1	-2.83	3.736	C
4	HA	Ala^1	-2.662	-3.72	4.026	H
5	CB	Ala ¹	-1.593	-2.092	4.986	C

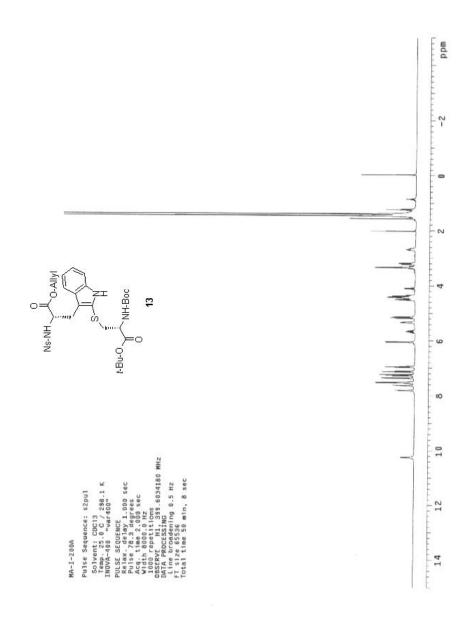
6	HB1	Ala ¹	-1.078	-1.181	4.674	Н
		Ala				
7	HB2	Ala ¹	-2.431	-1.828	5.631	Η
8	HB3	Ala ¹	-0.906	-2.725	5.546	Н
		Ala				
9	C	Ala ¹	-3.087	-1.945	2.931	C
10	O	Ala ¹	-3.835	-1.168	3.532	O
11	N	D-Thr ²	-3.108	-2.026	1.59	N
12	Н	D-Thr ²	-2.515	-2.714	1.148	Η
13	CA	D-Thr ²	-4.086	-1.289	0.744	C
14	HA	D-Thr ²	-4.431	-0.422	1.308	Η
15	CB	D-Thr ²	-5.336	-2.153	0.426	C
16	HB	D-Thr ²	-5.13	-2.768	-0.45	Η
17	CG2	D-Thr ²	-5.806	-3.077	1.555	C
18	HG21	D-Thr ²	-5.996	-2.499	2.46	Η
19	HG22	D-Thr ²	-6.722	-3.59	1.262	Н
20	HG23	D-Thr ²	-5.049	-3.835	1.76	Η
21	OG1	D-Thr ²	-6.454	-1.326	0.167	O
		D TIII				
22	HG1	D-Thr ²	-7.174	-1.902	-0.123	Η
23	C	D-Thr ²	-3.477	-0.698	-0.551	C
24	Ō	D-Thr ²	-4.208	-0.382	-1.493	Ō
25	N	Cys ³	-2.136	-0.563	-0.615	N
26	Н	Cys ³	-1.633	-0.803	0.234	Н
		Cys				
27	CA	Cvs	-1.332	0.042	-1.71	C
28	HA	Cys_3^3	-0.287	-0.088	-1.453	Η
		Cys ₃				
29	CB	Cys ³	-1.538	-0.732	-3.03	C
30	HB2	Cys^3	-2.581	-1.028	-3.11	Η
31	HB3	Cys_{2}^{3}	-1.332	-0.06	-3.861	Н
		Cys				
32	SG	Cys_3^3	-0.534	-2.228	-3.275	S
33	C	Cys^3	-1.552	1.566	-1.922	C
		Cys				
34	O	Cys ³	-2.674	2.058	-1.778	O
35	N	Hyp ⁴	-0.509	2.332	-2.331	N
	CD	114	-0.719			
36		Hyp ⁴		3.546	-3.109	C
37	HD2	Hyp ⁴	-0.81	4.405	-2.442	Η
38	HD3	Hyp ⁴	-1.602	3.464	-3.744	Н
		11yp				
39	CG	Hyp ⁴	0.529	3.683	-3.978	C
40	OH	Hyp ⁴	0.712	5.007	-4.436	O
		11 4				
41	НО	Hyp ⁴	1.507	5.029	-4.988	Η
42	HG3	Hyp ⁴	0.489	2.959	-4.797	Η
43		II.m ⁴		3.242		C
	CB	Hyp ⁴	1.612		-3.006	
44	HB2	Hyp ⁴	1.816	4.036	-2.284	Η
45	HB3	Hyp ⁴	2.524	2.941	-3.525	Н
		11yp				
46	CA	Hyp ⁴	0.939	2.046	-2.319	C
47	HA	Hyp ⁴	1.097	1.175	-2.947	Η
48		11, p				C
	C	Hyp ⁴	1.605	1.75	-0.963	
49	O	Hyp ⁴	2.764	1.341	-0.939	O
50	N	Ala ⁵	0.876	1.857	0.155	N
		Ala				
51	Н	Ala ⁵	-0.023	2.315	0.094	Η
52	CA	Ala ⁵	1.153	1.092	1.38	C
		A 1 - 5				
53	HA	Ala ⁵	2.214	1.175	1.632	Η
54	CB	Ala ⁵	0.325	1.696	2.528	C
55	HB1	Ala ⁵	-0.742	1.632	2.304	Н
		Ala				
56	HB2	Ala ⁵	0.523	1.154	3.454	Η
57	HB3	Ala ⁵	0.597	2.743	2.672	Η
		A 1 - 5				
58	C	Ala ⁵	0.853	-0.402	1.124	C
59	O	Ala ⁵	-0.172	-0.922	1.565	O
60	N	Trp ⁶	1.641	-1.066	0.265	N
		11p				
61	Н	Trp ⁶	2.492	-0.609	-0.043	Η
62	CA	Trp ⁶	1.278	-2.335	-0.4	C
		T6				
63	HA	Trp ⁶	0.265	-2.237	-0.781	Η
64	CB	Trp^6	2.221	-2.608	-1.584	C
65	HB2	Trp ⁶	3.247	-2.562	-1.224	Н
		11p				
66	HB3	Trp^6	2.045	-3.62	-1.945	Η
67	CG	Trp ⁶	2.117	-1.715	-2.789	C
٠,	~ ~	- - L		,	,0,	_

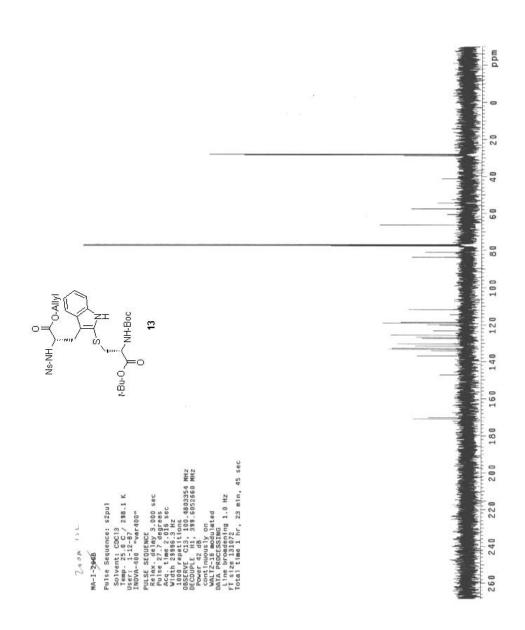
68	CD1	Trp ⁶	1.029	-1.528	-3.577	C
69	NE1	Trp ⁶	1.325	-0.715	-4.643	N
70	HE1	Trp^6	0.655	-0.495	-5.371	Η
71	CE2	Trp ⁶	2.631	-0.289	-4.592	C
72	CZ2	Trp ⁶	3.387	0.556	-5.415	C
73	HZ2	Trp ^o	2.937	1.004	-6.292	Η
74	CH2	Trp ⁶	4.726	0.818	-5.084	C
75	HH2	Trp ^o	5.323	1.472	-5.708	Η
76	CZ3	Trp ^o	5.288	0.226	-3.938	C
77	HZ3	Trp ⁶	6.321	0.429	-3.682	Η
78	CE3	Trp ⁶	4.52	-0.627	-3.119	C
79	HE3	Trp ^o	4.972	-1.067	-2.241	Η
80	CD2	Trp ⁶	3.167	-0.908	-3.419	C
81	C	Trp ⁶	1.161	-3.552	0.516	C
82	O	Trp^6	0.552	-4.545	0.118	Ο
83	N	Ala^7	1.627	-3.464	1.761	N
84	Н	Ala^7	2.186	-2.658	2.004	Η
85	CA	Ala^7	1.286	-4.418	2.822	C
86	HA	Ala^7	1.47	-5.432	2.461	Η
87	CB	Ala^7	2.216	-4.142	4.01	C
88	HB1	Ala^7	2.017	-3.147	4.412	Η
89	HB2	Ala^7	2.028	-4.877	4.794	Η
90	HB3	Ala^7	3.26	-4.212	3.698	Η
91	C	Ala^7	-0.189	-4.352	3.291	C
92	O	Ala^7	-0.653	-5.276	3.965	Ο

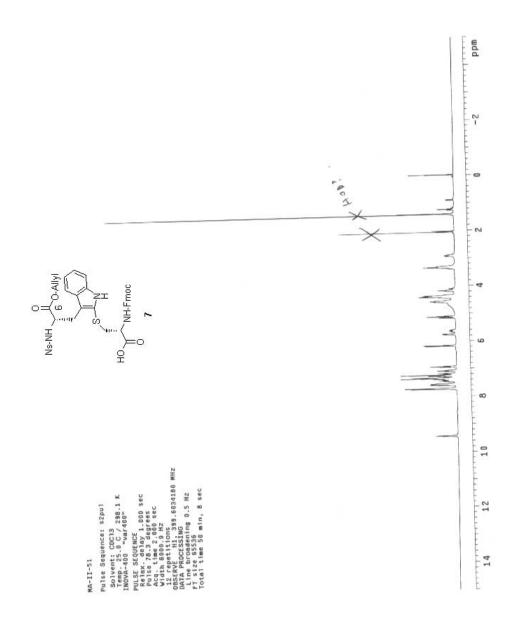

Figure S2. ¹H NMR (400 MHz, CDCl₃): Fmoc-*trans*-Hyp-O-Allyl ester (**18**) (note presence of two rotomers)

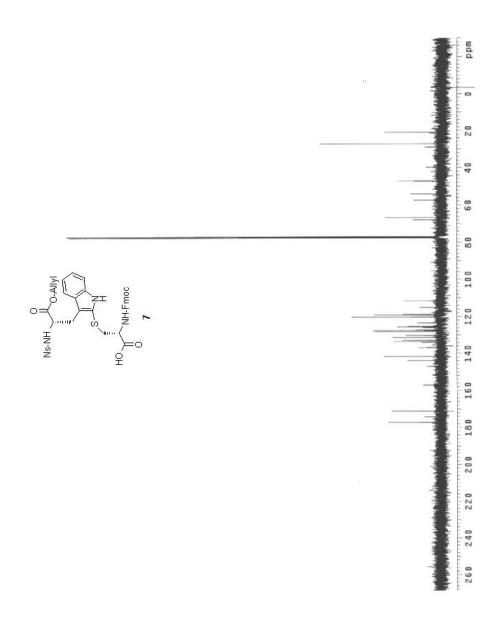

Figure S3. ¹³C NMR (400 MHz, CDCl₃): Fmoc-*trans*-Hyp-O-Allyl ester (**18**) (note presence of two rotomers)


Figure S4. ¹H NMR (400 MHz, CDCl₃): Fmoc-*cis*-Hyp(*O*-3,5-dinitrobenzoate)-O-Allyl ester (**19**) (note presence of two rotomers)


Figure S5. ¹³C NMR (400 MHz, CDCl₃): Fmoc-*cis*-Hyp(*O*-3,5-dinitrobenzoate)-O-Allyl ester (**19**) (note presence of two rotomers)


Figure S6. ¹H NMR (400 MHz, CDCl₃): Fmoc-*cis*-Hyp-O-Allyl ester (**5**) (note presence of two rotomers)


Figure S7. ¹³C NMR (400 MHz, CDCl₃): Fmoc-*cis*-Hyp-O-Allyl ester (**5**) (note presence of two rotomers)


Figure S8. ¹H NMR (400 MHz, CDCl₃): Boc-Cys-[*S*-(2-((*o*-NO₂Ph)SO₂-Trp-O-Allyl))]-O-*t*-Bu ester (13)

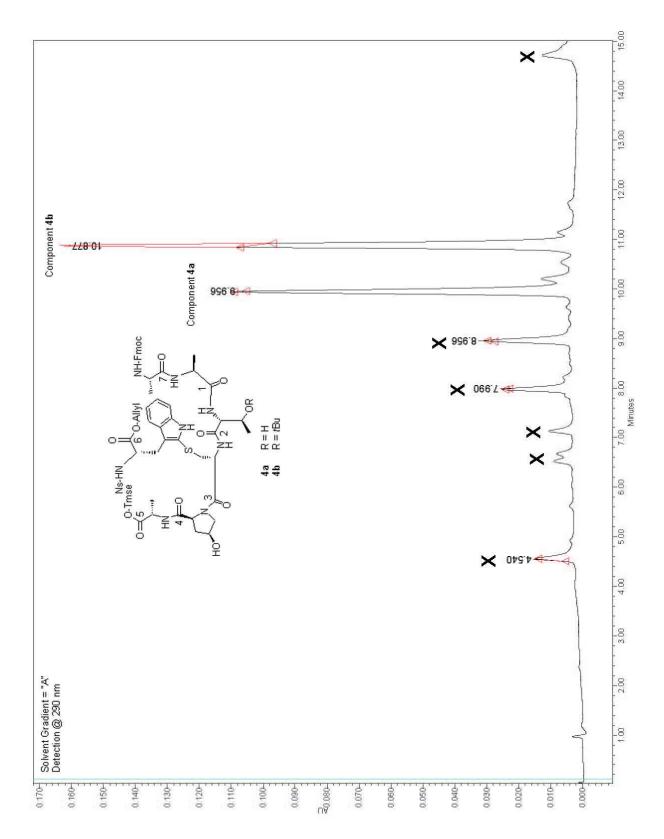

Figure S9. ¹³C NMR (400 MHz, CDCl₃): Boc-Cys-[*S*-(2-((*o*-NO₂Ph)SO₂-Trp-O-Allyl))]-O-*t*-Bu ester (13)

Figure S10. ¹H NMR (400 MHz, CDCl₃): Fmoc-Cys-[*S*-(2-((*o*-NO₂Ph)SO₂-Trp-O-Allyl))]-OH (**7**)

Figure S11. ¹³C NMR (400 MHz, CDCl₃): Fmoc-Cys-[S-(2-((o-NO₂Ph)SO₂-Trp-O-Allyl))]-OH (7)

Figure S12. Analytical RP-HPLC: Non-cyclic heptapeptide **4**. Partially deprotected components **4a** (9.0 min) and **4b** (10.9 min) were collected and analyzed by MALDI-TOF-MS (Figures S3 and S4). Other peaks were not identified.

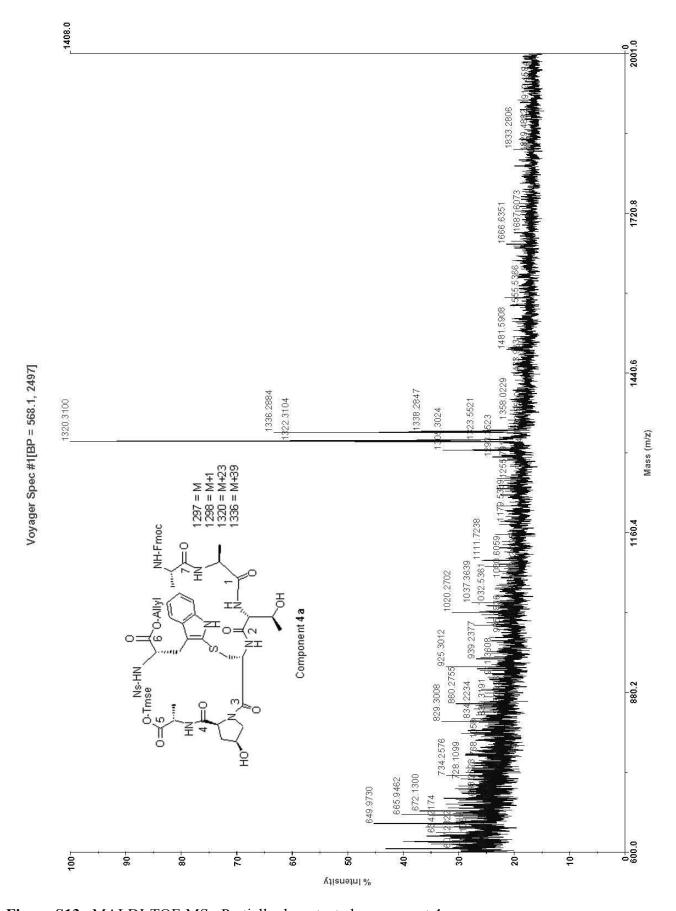


Figure S13. MALDI-TOF-MS: Partially deprotected component 4a.

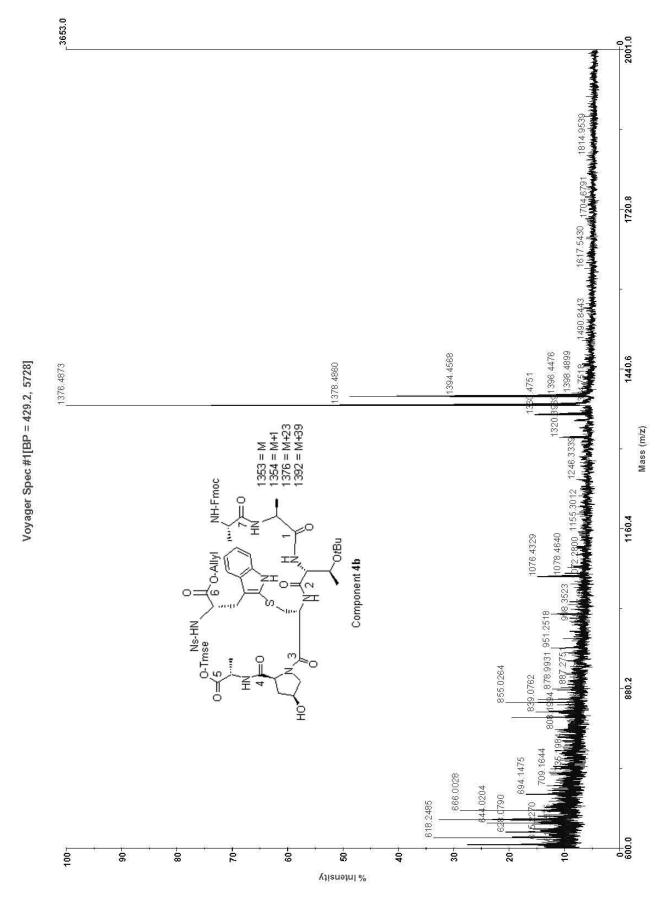
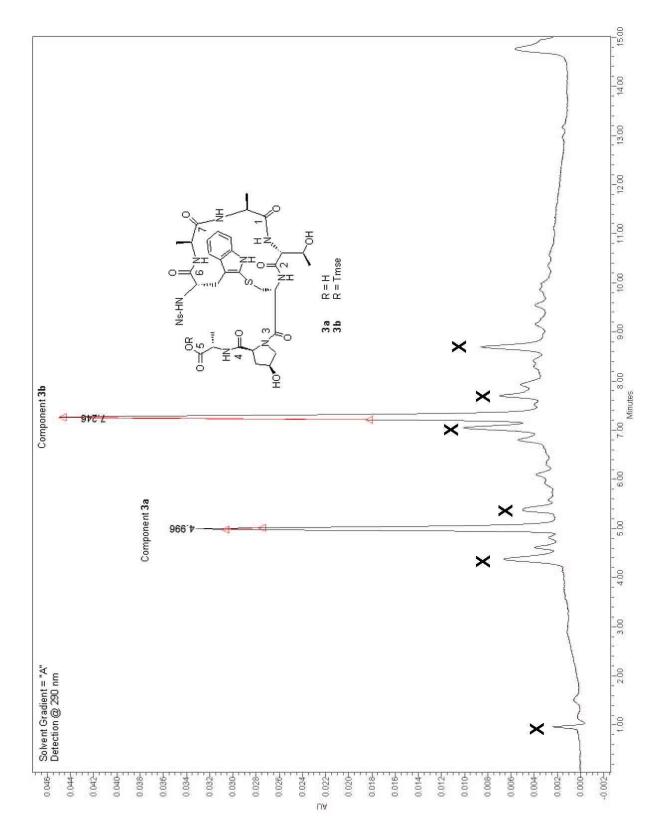



Figure S14. MALDI-TOF-MS: Partially deprotected component 4b.

Figure S15. Analytical RP-HPLC: Monocyclic heptapeptide **3**: Partially deprotected components **3a** (5.0 min) and **3b** (7.2 min) were collected and analyzed by MALDI-TOF-MS (Figures S6 and S7).

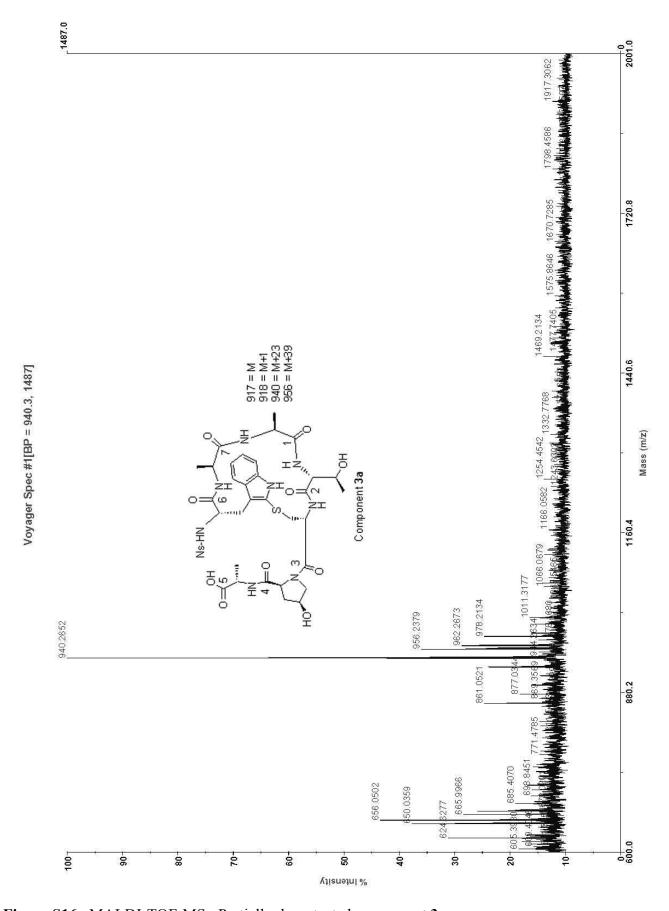
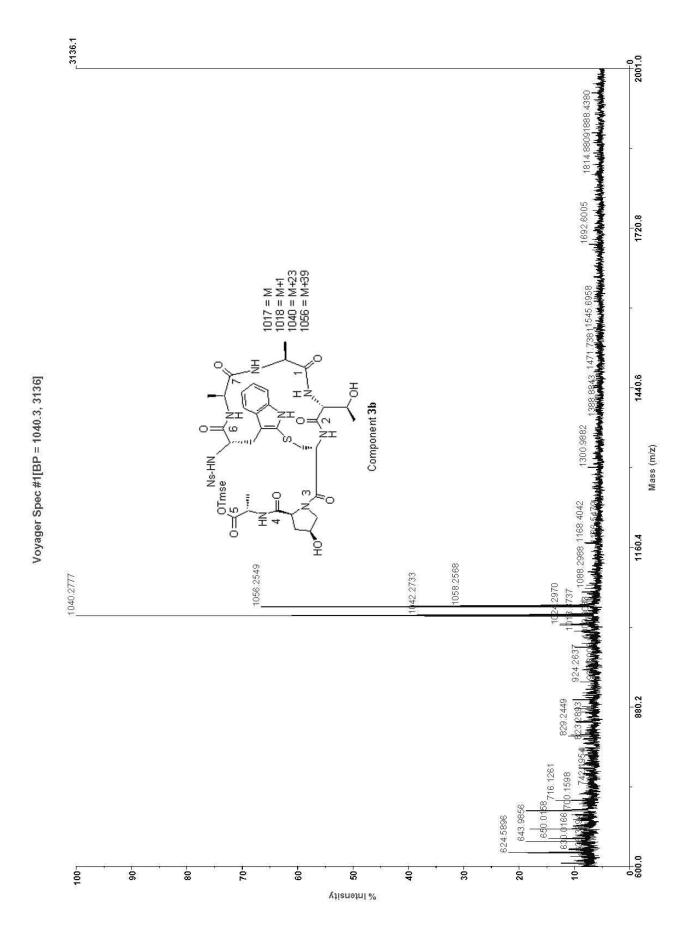
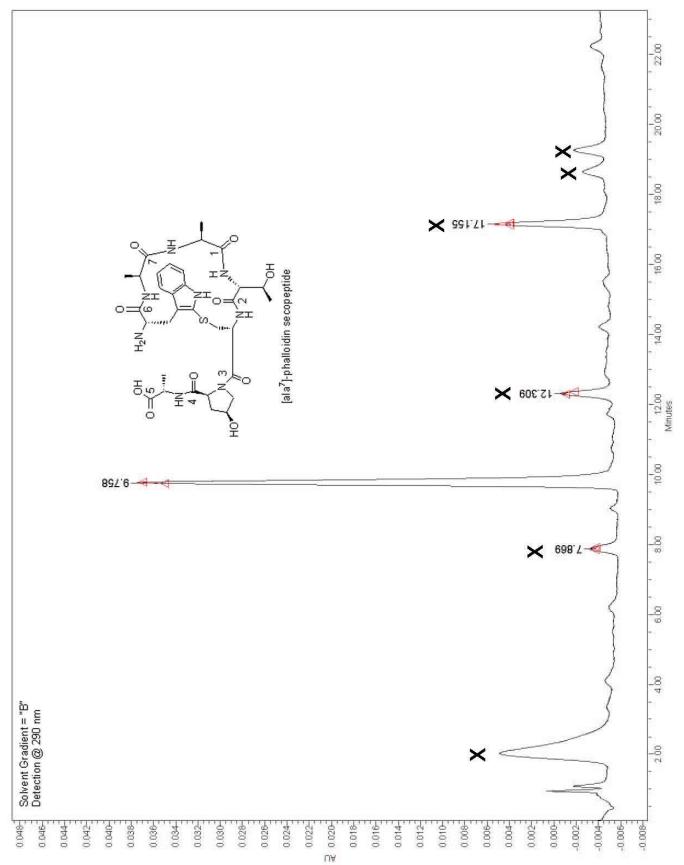
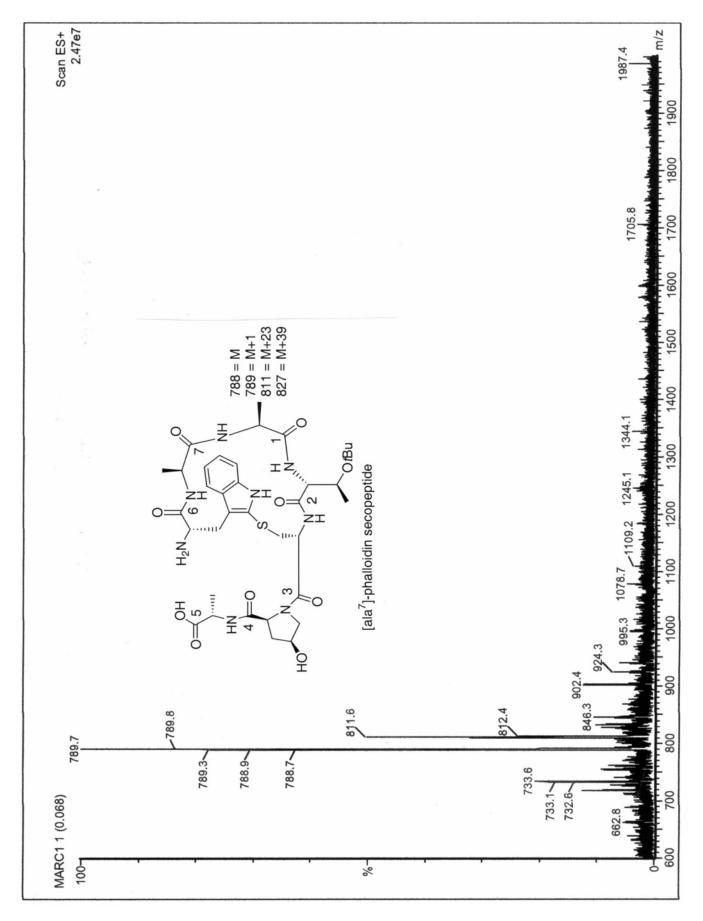


Figure S16. MALDI-TOF-MS: Partially deprotected component 3a.

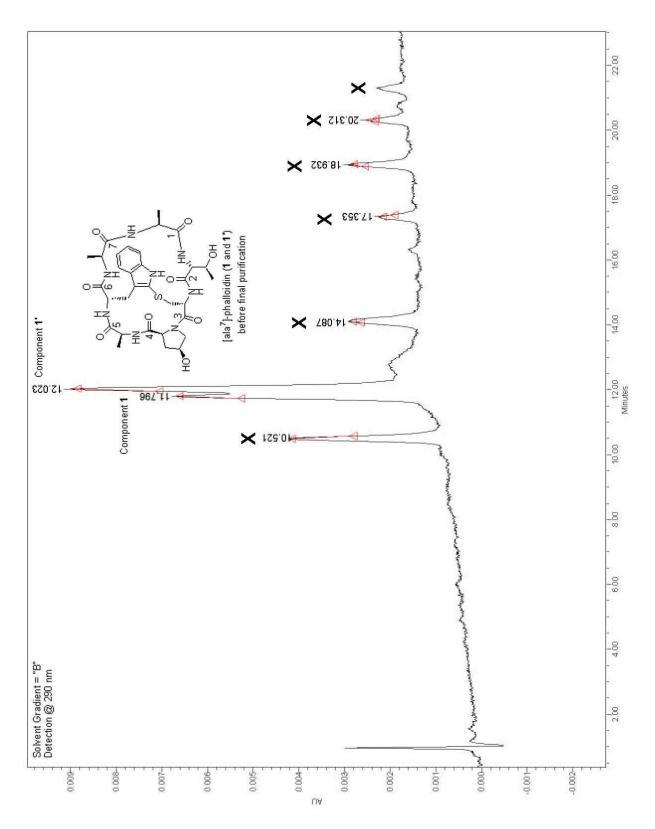
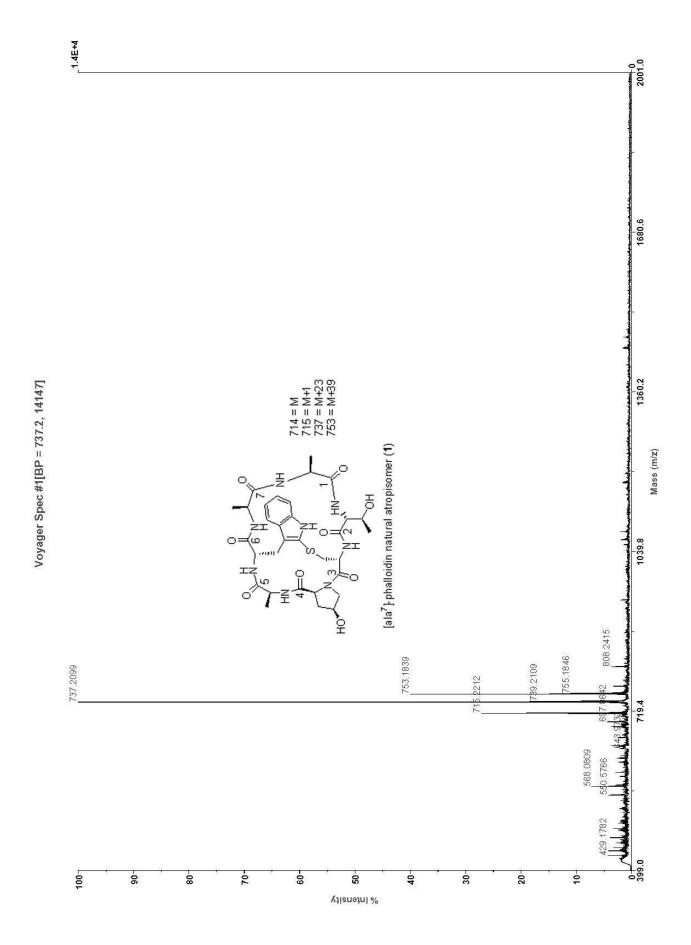
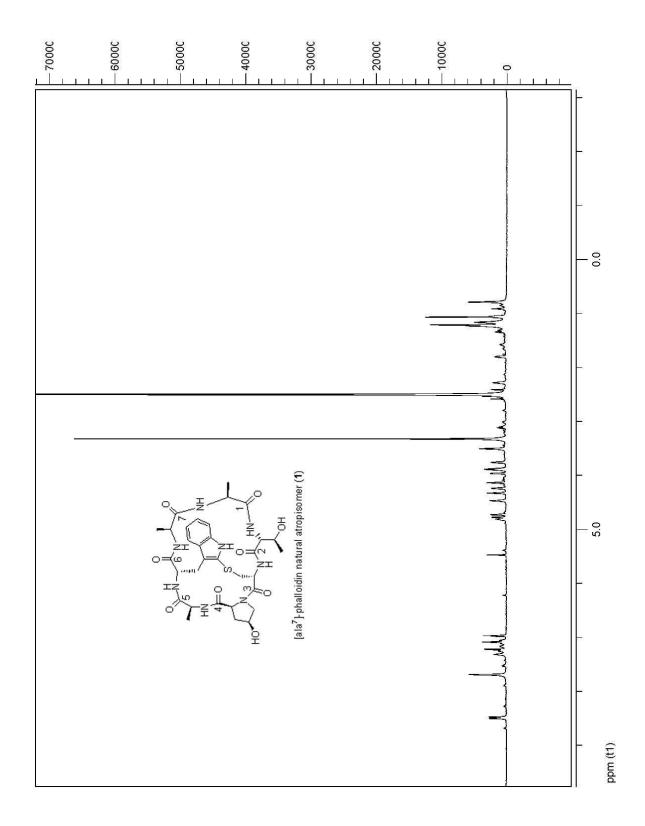
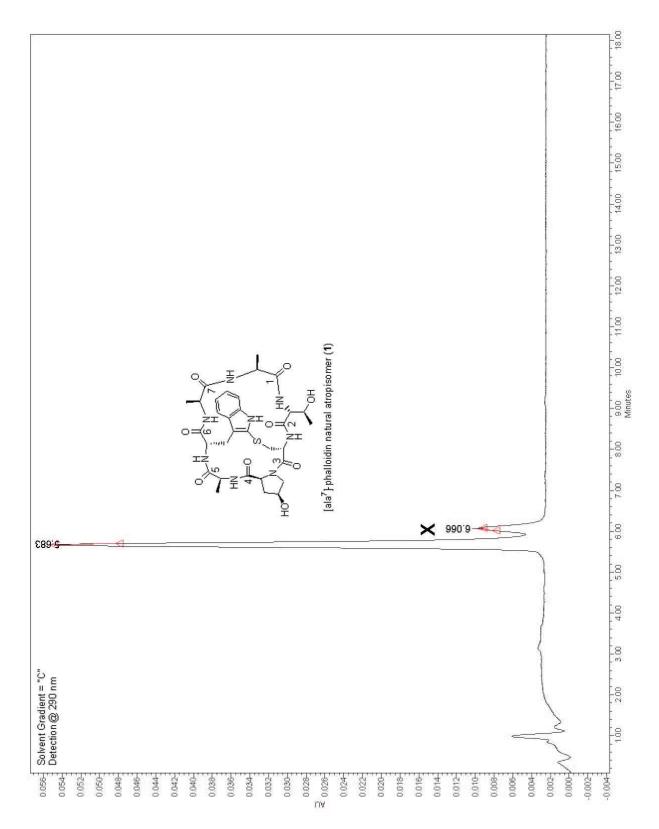
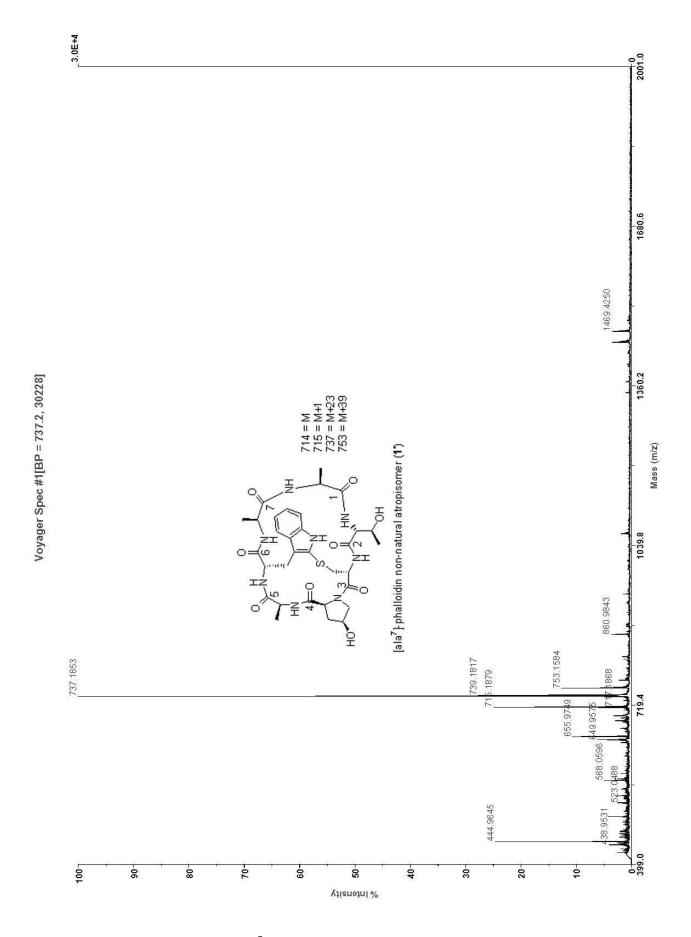

Figure S17. MALDI-TOF-MS: Partially deprotected component 3b.

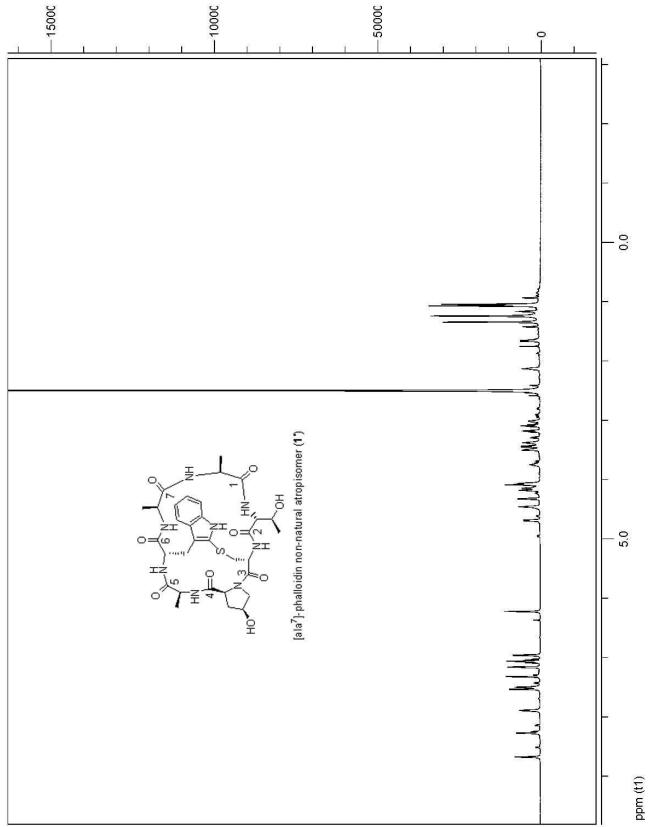
Figure S18. Analytical RP-HPLC: [Ala⁷]-phalloidin secopeptide (9.8 min) was collected and analyzed by ESI-MS (Figure S9).

Figure S19. ESI-MS: [Ala⁷]-phalloidin secopeptide intermediate.

Figure S20. Analytical RP-HPLC: crude mixture before final purification: ~1:2 ratio of [Ala⁷]-phalloidin natural atropisomer (1) (11.8 min) and non-natural atropisomer (1') (12.0 min) and other unidentified impurities.


Figure S21. MALDI-TOF-MS: [Ala7]-phalloidin natural atropisomer (1) after purification.


Figure S22. 1 H NMR (800 MHz, DMSO-d6): [Ala⁷]-phalloidin natural atropisomer (1) after purification, contaminated with \sim 10% of non-natural atropisomer (1').

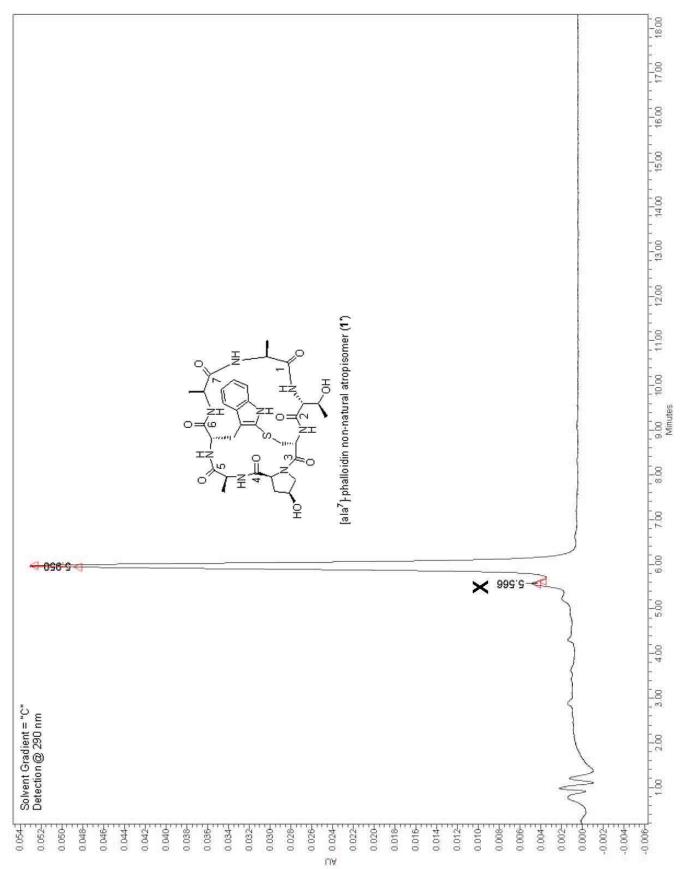

Figure S23. Analytical RP-HPLC: $[Ala^7]$ -phalloidin natural atropisomer (1) (5.7 min) after purification, contaminated with ~10% of non-natural atropisomer (1') (6.1 min).

Figure S24. MALDI-TOF-MS: [Ala⁷]-phalloidin non-natural atropisomer (1').

Figure S25. ¹H NMR (800 MHz, DMSO-d₆): [Ala⁷]-phalloidin non-natural atropisomer (1') after purification, contaminated with ~5% of natural atropisomer (1).

Figure S26. Analytical RP-HPLC: $[Ala^7]$ -phalloidin non-natural atropisomer (1') (6.0 min) after purification, contaminated with ~5% of natural atropisomer (1) (5.6 min).