

SUPPORTING INFORMATION **γ,δ -Unsaturated β -Diketones by Acylation of Ketones**

Alan R. Katritzky,* Nabin K. Meher and Sandeep K. Singh
Center for Heterocyclic Compounds, Department of Chemistry,
University of Florida, Gainesville, Florida 32611-7200

Table of Contents

1. General Experimental Details	S2
2. General procedure for preparation of unsaturated <i>N</i> -acylbenzotriazoles 2a–e ...	S2
3. Characterization data for compounds 2a–e	S2
4. General Procedure for Acylation with Unsaturated <i>N</i> -Acylbenzotriazoles	S3
5. Characterization data for compounds 3b,e–n,p	S3
6. References.....	S7

General Experimental Details. All reactions were carried out under a nitrogen atmosphere and solvents were dried according to standard procedures. Ketones, carboxylic acids and benzotriazole were purchased and used without further purification. Purification by column chromatography was carried out using silica gel. Melting points are uncorrected. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded in CDCl₃ (with TMS for ¹H and chloroform-*d* for ¹³C as the internal standard) except for **2e**, which was recorded in DMSO-*d*₆.

General Procedure for Preparation of Unsaturated *N*-Acylbenzotriazoles **2a–e.** To a solution of 1*H*-1,2,3-benzotriazole (11.9 g, 100 mmol) in CH₂Cl₂ (125 mL), SOCl₂ (1.9 mL, 25 mmol) was added dropwise with stirring at room temperature. After 30 min, unsaturated acid (25 mmol) was added. The reaction was continued for 3 h and the precipitated solid was filtered and washed with CH₂Cl₂ (50 mL). The combined filtrate was washed with aq NaOH (2N, 2×100 mL), water (100 mL) and brine (30 mL). The organic layer was dried over anhyd Na₂SO₄ and the solvent evaporated to obtain a solid, that was recrystallized from an appropriate solvent to give *N*-acylbenzotriazoles (**2a–e**).

(E)-1-(1*H*-1,2,3-Benzotriazol-1-yl)-3-phenyl-2-propen-1-one (2a). Yield 94%; colorless needles (from hexane/EtOAc); mp 152–153 °C (Lit.¹ mp 151–152 °C).

(E)-1-(1*H*-1,2,3-Benzotriazol-1-yl)-3-(2-furyl)-2-propen-1-one (2b). Yield 90%; light pink needles (from hexane/CH₂Cl₂); mp 142–143 °C (Lit.² mp 142–144 °C).

(E)-1-(1*H*-1,2,3-Benzotriazol-1-yl)-3-(2-thienyl)-2-propen-1-one (2c). Yield 95%; yellow plates (from hexane/EtOAc); mp 169–170 °C (Lit.² mp 169–170 °C).

1-(1*H*-1,2,3-Benzotriazol-1-yl)-3-phenyl-2-propyn-1-one (2d). Yield 90%; colorless needles (from hexane/CH₂Cl₂); mp 123–124 °C (Lit.¹ mp 124–125 °C).

1-(1*H*-1,2,3-Benzotriazol-1-yl)-3-methyl-2-buten-1-one (2e). Yield 90%; colorless needles (from hexane); mp 95–97 °C; ¹H NMR δ 2.16 (d, *J* = 0.9 Hz, 3H), 2.42 (d, *J* = 0.6 Hz, 3H), 7.37–7.38 (m, 1H), 7.46–7.51 (m, 1H), 7.61–7.66 (m, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 8.37 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (DMSO-*d*₆) δ 21.3, 28.0, 114.0, 114.2, 119.9, 126.2, 130.4, 130.9, 145.5, 162.7, 164.8. Anal. Calcd for C₁₁H₁₁N₃O: C, 65.66; H, 5.51; N, 20.88. Found: C, 65.86; H, 5.50; N, 21.08.

General Procedure for Acylation with Unsaturated *N*-Acylbenzotriazoles. To a solution of diisopropylamine (0.38 mL, 2.7 mmol) in THF (3 mL) under nitrogen atmosphere was added *n*-BuLi (1.7 mL, 2.6 mmol, 1.6M) dropwise with stirring at –15 °C. The solution was cooled to –78 °C and a solution of ketone **1a–f** (2.6 mmol) in THF (10 mL) was added dropwise and the mixture was stirred for 1 h at –78 °C. A solution of *N*-acylbenzotriazole **2a–e** (2 mmol) in THF (10 mL) was added at –78 °C and the reaction was continued for 3 h. The reaction was quenched with water (20 mL) at –78 °C and the mixture was diluted with diethyl ether (40 mL). Aqueous work-up gave a residue that was purified by column chromatography on silica gel using hexanes/ethyl acetate (9.8:0.2) to give γ,δ -unsaturated β -diketones **3a–p**.

4-(*tert*-Butyl)-2-[(*E*)-3-(2-furyl)-2-propenoyl]cyclohexanone (3b). Yield 0.22 g (51%); yellow needles (from hexane); mp 92–94 °C; ¹H NMR δ 0.97 (s, 9H), 1.30–1.37 (m, 2H), 1.89–1.94 (m, 1H), 2.14–2.23 (m, 1H), 2.40–2.54 (m, 2H), 2.59–2.65 (m, 1H), 6.48–6.49 (dd, *J* = 3.0, 1.8 Hz, 1H), 6.62 (d, *J* = 3.6 Hz, 1H), 6.83 (d, *J* = 15.3 Hz, 1H), 7.46 (d, *J* = 15.3 Hz, 1H), 7.51 (s, 1H), 16.78 (s, 1H); ¹³C NMR δ 23.1, 25.2, 27.6, 32.7, 35.1, 44.9, 107.3, 112.7, 115.2, 117.6, 127.7, 144.8, 152.3, 180.5, 193.5. Anal. Calcd for C₁₇H₂₂O₃: C, 74.42; H, 8.08. Found: C, 74.52; H, 8.25.

4-(*tert*-Butyl)-2-(3-methyl-2-butenoyl)cyclohexanone (3e). Yield 0.18 g (38%); yellow needles (from hexane); mp 67–68 °C; ¹H NMR δ 0.93 (s, 9H), 1.23–1.30 (m, 2H), 1.86–1.89 (m, 1H), 1.96 (s, 3H), 1.99–2.07 (m, 1H), 2.17 (s, 3H), 2.38–2.43 (m, 3H), 6.07 (s, 1H), 16.80 (s, 1H); ¹³C NMR δ 21.3, 23.1, 25.6, 27.5, 28.5, 32.6, 33.3, 44.9, 106.9, 119.6, 154.6, 185.8, 189.5. Anal. Calcd for C₁₅H₂₄O₂: C, 76.22; H, 10.23. Found: C, 76.06; H, 10.50.

3-Methyl-6-[(*E*)-3-phenyl-2-propenoyl]-2-cyclohexen-1-one (3f). Yield 0.21 g (44%); yellow needles (from hexane); mp 128 °C; ¹H NMR δ 2.00 (s, 3H), 2.33 (t, *J* = 7.2 Hz, 2H), 2.74 (t, *J* = 7.2 Hz, 2H), 5.97–5.98 (m, 1H), 6.93 (d, *J* = 15.6 Hz, 1H), 7.30–7.40 (m, 3H), 7.52–7.54 (m, 2H), 7.59 (d, *J* = 15.6 Hz, 1H), 15.76 (s, 1H); ¹³C NMR δ 22.4, 24.4, 30.3, 105.1, 118.9, 126.2, 127.9, 129.0, 129.6, 136.0, 138.5, 160.0, 168.6, 191.3. Anal. Calcd for C₁₆H₁₆O₂: C, 79.97; H, 6.71. Found: C, 80.29; H, 6.91.

6-[(*E*)-3-(2-Furyl)-2-propenoyl]-3-methyl-2-cyclohexen-1-one (3g). Yield 0.24 g (52%); yellow prisms (from hexane); mp 112–114 °C; ¹H NMR δ 2.00 (s, 3H), 2.32 (t, *J* = 7.2 Hz, 2H), 2.73 (t, *J* = 7.2 Hz, 2H), 5.97 (d, *J* = 1.2 Hz), 6.45–6.47 (m, 1H), 6.53 (d, *J* = 3.3 Hz, 1H), 6.82 (d, *J* = 15.0 Hz, 1H), 7.34 (d, *J* = 15.0 Hz, 1H), 7.46 (s, 1H), 15.68 (s, 1H); ¹³C NMR δ 22.4, 24.5, 30.3, 105.2, 112.6, 113.7, 117.0, 125.0, 126.3, 144.2, 152.6, 159.9, 168.4, 191.2. Anal. Calcd for C₁₄H₁₄O₃: C, 73.02; H, 6.13. Found: C, 73.11; H, 6.26.

3-Methyl-6-[(*E*)-3-(2-thienyl)-2-propenoyl]-2-cyclohexen-1-one (3h). Yield 0.21 g (42%); yellow plates (from hexane); mp 110–112 °C; ¹H NMR δ 1.99 (s, 3H), 2.32 (t, *J* = 7.2 Hz, 2H), 2.70 (t, *J* = 7.2 Hz, 2H), 5.97 (d, *J* = 0.9 Hz, 1H), 6.70 (d, *J* = 15.3 Hz, 1H), 7.03 (dd, *J* = 4.8, 3.6 Hz, 1H), 7.19 (d, *J* = 3.6 Hz, 1H), 7.32 (d, *J* = 4.8 Hz, 1H), 7.69 (d, *J* = 15.3 Hz, 1H), 15.76

(s, 1H); ^{13}C NMR δ 22.4, 24.4, 30.3, 104.9, 118.1, 126.2, 127.5, 128.3, 129.9, 131.3, 141.6, 159.8, 168.4, 191.0. Anal. Calcd for $\text{C}_{14}\text{H}_{14}\text{O}_2\text{S}$: C, 68.26; H, 5.73. Found: C, 68.00; H, 5.86.

3,5-Dimethyl-6-[(E)-3-phenyl-2-propenoyl]-2-cyclohexen-1-one (3i). Yield 0.23 g (45%); yellow microcrystals (from hexane); mp 81–82 °C; ^1H NMR δ 1.15 (d, J = 7.2 Hz, 3H), 1.99 (s, 3H), 2.10 (dd, J = 17.7, 0.9 Hz, 1H), 2.67 (br dd, J = 18.1, 6.1 Hz, 1H), 3.19 (quintet, J = 6.8 Hz, 1H), 5.98 (q, J = 1.2 Hz, 1H), 6.92 (dd, J = 15.6, 0.9 Hz, 1H), 7.33–7.41 (m, 3H), 7.53–7.56 (m, 2H), 7.63 (d, J = 15.6 Hz, 1H), 16.11 (d, J = 0.9 Hz, 1H); ^{13}C NMR δ 22.5, 24.9, 27.7, 37.6, 110.6, 118.7, 124.9, 128.0, 129.0, 129.7, 136.0, 139.1, 157.2, 170.1, 189.8. Anal. Calcd for $\text{C}_{17}\text{H}_{18}\text{O}_2$: C, 80.28; H, 7.13. Found: C, 80.30; H, 7.28.

3,5-Dimethyl-6-[(E)-3-(2-thienyl)-2-propenoyl]-2-cyclohexen-1-one (3j). Yield 0.22 g (42%); yellow prisms (from hexane/EtOAc); mp 81–82 °C; ^1H NMR δ 1.14 (d, J = 7.2 Hz, 3H), 1.98 (s, 3H), 2.09 (d, J = 16.8 Hz, 1H), 2.66 (br dd, J = 18.0, 5.6 Hz, 1H), 3.13 (quintet, J = 6.8 Hz, 1H), 5.96–5.97 (q, J = 1.2 Hz, 1H), 6.68 (d, J = 15.0 Hz, 1H), 7.04 (dd, J = 4.9, 3.4 Hz, 1H), 7.21 (d, J = 3.3 Hz, 1H), 7.33 (d, J = 5.4 Hz, 1H), 7.73 (d, J = 15.0 Hz, 1H), 16.10 (s, 1H); ^{13}C NMR δ 22.5, 25.0, 27.7, 37.6, 110.5, 117.9, 124.9, 127.6, 128.4, 130.0, 131.8, 141.6, 157.1, 170.0, 189.6. Anal. Calcd for $\text{C}_{15}\text{H}_{16}\text{O}_2\text{S}$: C, 69.20; H, 6.19. Found: C, 69.47; H, 6.34.

2-[(E)-3-Phenyl-2-propenoyl]-1-indanone (3k). Yield 0.28 g (53%); yellow needles (from hexane/EtOAc); mp 121–122 °C; ^1H NMR δ 3.78 (s, 2H), 6.72 (d, J = 15.9 Hz, 1H), 7.34–7.46 (m, 4H), 7.53–7.59 (m, 4H), 7.66 (d, J = 15.9 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1 H), 13.65 (br s, 1H); ^{13}C NMR δ 29.8, 111.7, 119.7, 123.6, 126.1, 127.7, 128.1, 129.1, 130.1, 133.6, 135.6, 139.1, 139.4, 148.5, 165.6, 196.3. Anal. Calcd for $\text{C}_{18}\text{H}_{14}\text{O}_2$: C, 82.42; H, 5.38. Found: C, 82.06; H, 5.50.

2-[(E)-3-(2-Furyl)-2-propenoyl]-1-indanone (3l). Yield 0.20 g (40%); yellow needles (from hexane); mp 124–125 °C; ¹H NMR δ 3.74 (s, 2H), 6.48–6.50 (m, 1H), 6.58–6.63 (m, 2H), 7.53–7.44 (m, 2H), 7.51–7.59 (m, 3H), 7.84 (d, *J* = 7.8 Hz, 1H), 13.58 (br s, 1H); ¹³C NMR δ 29.8, 111.8, 112.8, 114.5, 117.7, 123.5, 125.7, 126.1, 127.6, 133.5, 139.3, 144.8, 148.5, 152.2, 165.5, 196.0. Anal. Calcd for C₁₆H₁₂O₃: C, 76.18; H, 4.79. Found: C, 76.20; H, 4.80.

(3*R*)-3-Methyl-6-(1-methylethylidene)-2-[(E)-3-phenyl-2-propenoyl]cyclohexanone (3m). Yield 0.29 g (51%); yellow microcrystals (from hexane); mp 106–107 °C; ¹H NMR δ 1.15 (d, *J* = 6.9 Hz, 3H), 1.73–1.79 (m, 2H), 1.89 (s, 3H), 2.28 (s, 3H), 2.49 (br d, *J* = 6.3 Hz, 2H), 3.04–3.11 (m, 1H), 7.04 (d, *J* = 15.6 Hz, 1H), 7.31–7.41 (m, 3H), 7.54–7.57 (m, 2H), 7.67 (d, *J* = 15.6 Hz, 1H), 17.43 (s, 1H); ¹³C NMR δ 20.8, 24.1, 24.5, 24.6, 28.4, 28.9, 115.1, 120.2, 127.6, 128.1, 129.0, 129.7, 136.1, 139.5, 148.2, 175.8, 189.8. Anal. Calcd for C₁₆H₁₂O₃: C, 80.81; H, 7.85. Found: C, 80.87; H, 8.12.

(E)-1,5-Diphenyl-4-pentene-1,3-dione (3n). Yield 0.33 g (66%); yellow microcrystals (from hexane/diethyl ether); mp 97–98 °C (Lit.³ mp 111–112 °C); ¹H NMR δ 6.35 (s, 1H), 6.65 (d, *J* = 15.6 Hz, 1H), 7.35–7.43 (m, 3H), 7.45–7.50 (m, 2H), 7.53–7.58 (m, 3H), 7.69 (d, *J* = 15.9 Hz, 1H), 7.96 (d, *J* = 7.5 Hz, 2H), 16.12 (br s, 1H); ¹³C NMR δ 97.9, 123.5, 127.6, 128.2, 128.9, 129.1, 130.2, 132.8, 135.2, 136.5, 140.2, 179.6, 189.6. Anal. Calcd for C₁₇H₁₄O₂: C, 81.58; H, 5.64. Found: C, 81.21; H, 5.64.

3-Methyl-6-(3-phenyl-2-propynoyl)-2-cyclohexen-1-one (3p). Yield 0.12 g (25%); pale yellow needles (from EtOAc); mp 107–109 °C; ¹H NMR δ 2.00 (s, 3H), 2.35 (t, *J* = 9.3 Hz, 2H), 2.78 (t, *J* = 9.3 Hz, 2H), 6.06–6.08 (m, 1H), 6.74 (s, 1H), 7.46–7.49 (m, 3H), 7.74–7.77 (m, 2H); ¹³C NMR δ 18.2, 23.6, 28.4, 110.97, 111.0, 115.9, 116.0, 125.6, 128.9, 130.8, 131.7,

150.3, 160.0, 161.2, 178.4. Anal. Calcd for $C_{16}H_{14}O_2$: C, 80.65; H, 5.92. Found: C, 80.36; H, 5.95.

References

1. Katritzky, A. R.; Zhang, Y.; Singh, S. K. *Synthesis* **2003**, 2795.
2. Katritzky, A. R.; Wang, M.; Zhang, S. *Arkivoc* **2001**, *ix*, 19.
3. Linn, B. O.; Hauser, C. R. *J. Am. Chem. Soc.* **1956**, *78*, 6066.