Supporting Information

Liphagal, A Selective Inhibitor of PI3 Kinase Alpha Isolated from the Sponge Aka coralliphaga: Structure Elucidation and Biomimetic Synthesis

Frederic Marion ${ }^{\dagger}$, David E. Williams ${ }^{\dagger}$, Brian O. Patrick ${ }^{\dagger}$, Irwin Hollander ${ }^{£}$, Robert Mallon ${ }^{£}$, Steven C. Kim ${ }^{£}$, Deborah M. Roll ${ }^{\mathcal{E}}$, Larry Feldberg ${ }^{£}$, Rob Van Soest ${ }^{\dagger}$, and Raymond J. Andersen ${ }^{\dagger}{ }^{*}$
Departments of Chemistry \& EOS, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1; Institute for Systematics and Ecology, University of Amsterdam, 1090 GT Amsterdam, The Netherlands; Wyeth Research, 401 North Middletown Road, Pearl River, New York 10965

Index:

Page 3: Experimental details for the isolation and synthesis of liphagal (1)
Page 10: Table 1, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data for Natural Liphagal (1)
Page 12: Proton NMR spectrum for enol ether 12.
Page 13: Carbon NMR spectrum for enol ether 12.
Page 14: Proton NMR spectrum for the dimethyl ketal of aldehyde 13
Page 15: Carbon NMR spectrum for the dimethyl ketal of aldehyde 13
Page 16: Proton NMR spectrum for the aldehyde 13
Page 17: Carbon NMR spectrum for the aldehyde 13
Page 18: Proton NMR spectrum for the carboxylic acid 14
Page 19: Carbon NMR spectrum for the carboxylic acid 14
Page 20: Proton NMR spectrum for the phenol precursor to 8
Page 21: Carbon NMR spectrum for the phenol precursor to 8
Page 22: Proton NMR spectrum of $\mathbf{8}$
Page 23: Carbon NMR spectrum of $\mathbf{8}$
Page 24: Proton NMR spectrum of aldehyde precursor to 9
Page 25: Carbon NMR spectrum of aldehyde precursor to 9
Page 26 Proton NMR spectrum of $\mathbf{9}$
Page 27: Carbon NMR spectrum of 9
Page 28: Proton NMR spectrum of $\mathbf{1 0}$
Page 29: Carbon NMR spectrum of $\mathbf{1 0}$
Page 30: Phosphorous NMR spectrum of 10
Page 31: Proton NMR spectrum of 16
Page 32: carbon NMR spectrum of $\mathbf{1 6}$
Page 33: Proton NMR spectrum of 18
Page 34: Carbon NMR spectrum of 18
Page 35: Proton NMR spectrum of 19a
Page 36: Carbon NMR spectrum of 19a

Page 37: Proton NMR spectrum of 19b
Page 38: Carbon NMR spectrum of $\mathbf{1 9 b}$
Page 39: Proton NMR spectrum of synthetic racemic liphagal (1) in CDCl_{3} at 400 MHz
Page 40: Carbon NMR spectrum of synthetic racemic liphagal (1) in CDCl_{3} at 100 MHz
Page 41: Proton NMR spectrum of synthetic racemic liphagal (1) in DMSO- d_{6} at 400 MHz
Page 42: Proton NMR spectrum of natural liphagal (1) in DMSO- d_{6} at 500 MHz
Page 43: Carbon NMR spectrum of natural liphagal (1) in DMSO- d_{6} at 100 MHz
Page 44: ORTEP diagram for 19b
Page 45: Experimental details for the single crystal x-ray diffraction analysis of 19b

Experimental Section

General Experimental Procedures. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AMX-500, AV-400, and AM400 spectrometers. ${ }^{1} \mathrm{H}$ chemical shifts are referenced to the residual $\mathrm{DMSO}-\mathrm{d}_{6}$ and CDCl_{3} signals ($\delta 2.49$ and 7.24 ppm) and ${ }^{13} \mathrm{C}$ chemical shifts are referenced to the $\mathrm{DMSO}-\mathrm{d}_{6}$ and CDCl_{3} solvent peaks ($\delta 39.5$ and 77.0 ppm). Low and high resolution EIMS were recorded on Kratos AEI MS-59 and AEI MS-50 mass spectrometers, and low and high resolution ESI-QIT-MS were recorded on a Bruker-Hewlett Packard 1100 Esquire-LC system mass spectrometer. UV spectra were recorded with a Waters 2487 Dual λ Absorbance Detector. Optical rotations were measured using a Jasco P-1010 Polarimeter with sodium light (589 nm).

Merck Type 5554 silica gel plates and Whatman MKC18F plates were used for analytical thin layer chromatography. Waters Sep-Pak’s or Merck silica gel G60 (230-400 mesh) were used for silica gel chromatograhpy. Reversed-phase HPLC purifications were performed on a Waters 600E System Controller liquid chromatography attached to a Waters 996 Photodiode Array Detector. All solvents used for HPLC were Fisher HPLC grade.

Isolation of liphagal (1): Specimens of Aka coralliphaga (Demospongiae, order Haplosclerida, family Phloeodictyidae) were collected by hand using SCUBA at a depth of 20 m on reefs in Prince Rupert Bay, 4 Km south of Portsmouth, Dominica in June 1997. Freshly collected sponge was frozen on site and transported frozen to Vancouver. A voucher sample of Aka coralliphaga has been deposited at the University of Amsterdam (ZM 17866).

A sample of sponge (300 g) was cut into small pieces, immersed in and subsequently extracted repeatedly with $\mathrm{MeOH}(4 \times 400 \mathrm{~mL})$ at room temperature. The combined methanolic extracts were concentrated in vacuo and the resultant brown gum was partitioned between EtOAc ($4 \times 50 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$. The $\mathrm{H}_{2} \mathrm{O}$ extract exhibited PI3K inhibitory activity and was further extracted with $\mathrm{BuOH}(4 \times 50 \mathrm{~mL}$). The combined BuOH extracts were evaporated to dryness, to give 265 mg of brown oil, that was chromatographed on a Sephadex LH-20 column eluting with MeOH to give a fraction (143.7 mg) exhibiting PI3K inhibitory
activity. Pure liphagal (1) (5.6 mg) was obtained from this mixture via C_{18} reversed-phase HPLC using a CSCInertsil 150A/ODS2, $5 \mu \mathrm{~m} 25 \times 0.94 \mathrm{~cm}$ column, eluting with $17: 3 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$.

Liphagal (1): Isolated as a yellow amorphous solid; $[\alpha]^{25}{ }_{\mathrm{D}}+12.0^{\circ}$ (c 3.7, MeOH); UV (MeOH) $\lambda_{\text {max }} 197$ (ε 28,600), 240 ($\varepsilon 10,900$), $313(\varepsilon 7,100), 385(\varepsilon 2,700) \mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR, see Table $1 ;{ }^{13} \mathrm{C}$ NMR, see Table 1; HREIMS [M] ${ }^{+} \mathrm{m} / \mathrm{z} 356.19944$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4}, 356.19876$).

Synthesis of liphagal.

Preparation of Compound 8. To a solution of 2,4,5-trimethoxybenzaldehyde (7) ($3.92 \mathrm{~g}, 20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{BBr}_{3}\left(1,0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20 \mathrm{mmol}\right)$. The resulting dark mixture was stirred at rt for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$ was then added and the mixture was stirred for 30 min and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 200 mL). The organic phase was dried over MgSO_{4}, filtered, and evaporated under reduced pressure. Chromatography of the residue on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded the phenol (3.2 g) in 87% yield. Bromine ($0.8 \mathrm{~mL}, 15.3 \mathrm{mmol}$) was added at rt to a solution of the phenol ($2.76 \mathrm{~g}, 15.2 \mathrm{mmol}$) and NaOAc (1.9 g, 23 mmol) in $\mathrm{AcOH}(100 \mathrm{~mL}$). The resulting yellow solution was stirred for 2 h . The solvent was removed under vacuum and the residue was poured into an aqueous solution of NaHCO_{3}. The aqueous phase was extracted with EtOAc. The combined EtOAc layers were dried over MgSO_{4}, filtered, and evaporated under reduced pressure. Chromatography of the residue on silica gel (3:7 EtOAc/hexanes) afforded the bromophenol 8 in 54\% yield.

Phenol : isolated as a pale yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.35(\mathrm{~s}, 1 \mathrm{H}), 9.65(\mathrm{~s}, 1 \mathrm{H}), 6.86$ (s, 1H), $6.42(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.9,159.3,157.2,142.9$, 113.13, 112.8, 100.08, 56.3, 56.2 ppm; HREIMS [M] ${ }^{+} m / z 182.0578\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}\right.$, calcd 182.0579).

Compound 8: isolated as a yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.55(\mathrm{~s}, 1 \mathrm{H}), 9.74(\mathrm{~s}, 1 \mathrm{H}), 7.00$ (s, 1H), 3.98 (s, 3H), $3.87(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.4,154.8,154.7,146.8,115.7,114.7$, 106.8, 61.0, 56.7 ppm ; HRESIMS $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 260.9752\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Br}\right.$, calcd 260.9762).

Preparation of Compound 9. A solution of bromophenol 8 ($2.1 \mathrm{~g}, 8.0 \mathrm{mmol}$), $\operatorname{TBSCl}(2.4 \mathrm{~g}, 16 \mathrm{mmol})$ and imidazole ($2.18 \mathrm{~g}, 32 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was stirred rt for 15 h . The organic phase was diluted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed sequentially with aqueous $\mathrm{HCl}(1.0 \mathrm{M})$ and brine. $\mathrm{The} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase was dried over MgSO_{4}, filtered, and evaporated under reduced pressure. Chromatography of the residue on silica gel (1:9 EtOAc/hexanes) afforded the silylether aldehyde (2.4 g) in 80% yield. To a solution of the aldehyde (2.33 g , 6.2 mmol) in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(285 \mathrm{mg}, 7.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min an aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the resulting mixture was stirred at rt for additional 30 min . The MeOH was evaporated under reduced pressure and the aqueous residue was then extracted with EtOAc. The EtOAc phase was dried over MgSO_{4}, filtered, and evaporated under reduced pressure. Chromatography of the residue on silica gel (3:7 EtOAc/hexanes) afforded the benzylalcohol 9 (2.2 g) in 94\% yield.

Silylether: isolated as a pale yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.17(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.5,153.2,151.4$, 148.6, 123.8, 112.8, 108.7, 60.7, 56.2, 25.9 (3C), 18.7, $-3.5,-3.6 \mathrm{ppm}$; HRESIMS $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 397.0457$ $\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{BrNaSi}\right.$, calcd 397.0447).

Compound 9: isolated as a white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.83$ (s, 3H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.24(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.2,146.4,144.1,127.8$, 112.0, 111.3, 61.1, 60.4, 56.4, 26.2 (3C), 18.8, -2.8 (2C) ppm; HRESIMS [M+Na] ${ }^{+} \mathrm{m} / \mathrm{z} 399.0601$ ($\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{BrNaSi}$, calcd 399.0603).

Preparation of Compound 10. A solution of benzylalcohol $9(1.6 \mathrm{~g}, 4.24 \mathrm{mmol})$ and $\mathrm{PPh}_{3} \mathrm{HBr}(1.46 \mathrm{~g}$, 4.24 mmol) in MeCN (20 mL) was refluxed for 2 h . The solvent was removed under reduced pressure and the residue was dissolved in THF (20 mL) and $\mathrm{HF} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(0.5 \mathrm{~mL})$ was added at rt. A precipitate was observed to form immediately and the resulting suspension was stirred for 1 hr . The precipitate was collected by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$ to yield the phosphonium salt 10 (2.4 g) in 94% yield.

Compound 10: isolated as a white solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.75-7.65 (m, 9H), 7.6-7.55 (m, $6 \mathrm{H}), 6.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}), 5.45(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=13.5 \mathrm{~Hz}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 146.8,146.4,140.7,134.8$ (3C), 134.5 (3C), 134.4 (3C), 130.0 (3C), 129.8 (3C), 127.5, 118.3, 117.2,
115.0, 114.9, 109.8, 56.5, 53.0, $26.3(\mathrm{~d}, \mathrm{~J}=63.0 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($81 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.9 \mathrm{ppm}$; HRESIMS $[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z} 507.0745\left(\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{BrP}\right.$, calcd 507.0725).

Preparation of Compound 12. To a solution of $\mathrm{MeOCH}_{2} \mathrm{PPh}_{3} \mathrm{Cl}(10.26 \mathrm{~g}, 30 \mathrm{mmol})$ in THF (100 mL), was added t-BuOK ($3.4 \mathrm{~g}, 30 \mathrm{mmol}$). The resulting red solution was stirred at rt for 15 min and then a solution of geranyl acetone (11) ($2.91 \mathrm{~g}, 15 \mathrm{mmol}$) in THF (50 mL) was added. After stirring at rt for 30 min an aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the resulting solution was extracted with EtOAc. The EtOAc phase was dried over MgSO_{4}, filtered, and evaporated under reduced pressure. Chromatography of the residue on silica gel (hexanes) afforded the enol ether 12 in quantitative yield (3.4 g).

Compound 12: isolated as a colorless oil as an equimolar mixture of E and Z stereoisomers; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~m}, 4 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.2-1.8(\mathrm{~m}, 16 \mathrm{H}), 1.66$ (s, 6H), 1.58 (s, 12H), $1.52(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.8,141.6,134.9,134.7,131.0$, 130.9, 124.4, 124.3, 124.2, 123.9, 114.2, 113.7, 58.9 (2C), 39.6, 34.0, 31.5, 30.2, 28.9, 26.7, 26.6, 26.6, 25.9, 25.5, 22.5, 17.5, 17.1, 15.8, 13.9, 12.6 ppm; HREIMS [M] ${ }^{+} m / z 222.1979\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}\right.$, calcd 222.1983).

Preparation of Compound 13. A solution of enol ether $12(3.4 \mathrm{~g}, 15 \mathrm{mmol})$ and PPTS ($378 \mathrm{mg}, 1.5$ mmol) in $\mathrm{MeOH}(60 \mathrm{~mL})$ was refluxed for 5 h . The resulting mixture was poured into an aqueous solution of NaHCO_{3}. The aqueous phase was extracted with EtOAc and the EtOAc phase was dried over MgSO_{4}, filtered and evaporated under reduced pressure. Chromatography of the residue on silica gel (1:49 EtOAc/hexanes) afforded the dimethylketal $(3.4 \mathrm{~g})$ in 90% yield. A solution of the ketal $(3.4 \mathrm{~g}, 13 \mathrm{mmol})$ and PPTS $(5 \mathrm{~g}, 20$ $\mathrm{mmol})$ in acetone $(40 \mathrm{~mL})$ and water (10 mL) was stirred at rt for 4 d . The resulting mixture was poured into an aqueous solution of NaHCO_{3}. The aqueous phase was extracted with EtOAc. The EtOAc phase was dried over MgSO_{4}, filtered, and evaporated under reduced pressure. Chromatography of the residue on silica gel (1:99 EtOAc/hexanes) afforded the aldehyde 13 (2.28 g) in 84% yield.

Dimethylketal: isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.07(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 7.0 Hz), $3.33(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.2-1.9(\mathrm{~m}, 7 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 0.88$
(d, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) $\delta 135.0,131.3,124.5,124.3,108.9,53.9$ (2C), 39.7, 35.2, 31.8, 26.7, 25.7, 25.2, 17.6, 15.9, 14.2 ppm.

Compound 13: isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.57(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}$), 5.03 (m, 2H), $2.30(\mathrm{~m}, 1 \mathrm{H}), 2.1-1.9(\mathrm{~m}, 6 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ 7.0 Hz) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 204.8, 136.1, 131.2, 124.1, 123.2, 45.6, 39.5, 30.4, 26.4, 25.5, 25.0, 17.5, 15.8, 13.1 ppm; HREIMS [M] ${ }^{+} \mathrm{m} / \mathrm{z} 208.1826\left(\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}\right.$, calcd 208.1827).

Preparation of Compound 14. To a solution of aldehyde $13(208 \mathrm{mg}, 1.0 \mathrm{mmol})$ in acetone (6.0 mL) and $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{~mL}), \mathrm{NaH}_{2} \mathrm{PO}_{4}(138 \mathrm{mg}, 3.0 \mathrm{mmol})$, amylene ($0.5 \mathrm{~mL}, 4.5 \mathrm{mmol}$), and NaClO_{2} ($340 \mathrm{mg}, 3.0$ mmol) were added successively. The resulting mixture was stirred at rt for 12 h . The volatiles were removed under reduced pressure and the residual aqueous phase was diluted with water and extracted with EtOAc. The EtOAc phase was dried over MgSO_{4}, filtered, and evaporated under reduced pressure. Chromatography of the residue on silica gel (1:9 EtOAc/hexanes) afforded the acid 14 (132 mg) in 60% yield.

Compound 14: isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.00(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H})$, 2.1-1.9 (m, 6H), $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}), 1.45(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 184.4,137.4,132.75,125.7,124.8,39.67,38.76,33.47,26.59,25.64,25.44,19.06,18.23$, 17.35 ppm ; HREIMS [M] ${ }^{+} \mathrm{m} / \mathrm{z} 224.1774\left(\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}\right.$, calcd 224.1776).

Preparation of Compound 16: A solution of acid 14 ($800 \mathrm{mg}, 3.57 \mathrm{mmol}$), phosphonium salt 10 (2.11 g, 3.58 mmol), DCC ($1.24 \mathrm{~g}, 6.0 \mathrm{mmol}$), and DMAP ($50 \mathrm{mg}, 0.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was stirred at rt for 18 h . Solvent was evaporated under reduced pressure and the residue was dissolved in THF (50 mL) and $\mathrm{Et}_{3} \mathrm{~N}$ (3.0 mL) was added. The resulting mixture was refluxed for 4 h . After cooling to rt , silica was added and the THF was evaporated under reduced pressure. The resulting dried silica was deposited on a silica gel column and eluted with 1:19 EtOAc/hexanes to afford the benzofuran $\mathbf{1 6}(1.24 \mathrm{~g})$ in 80% yield.

Compound 16: isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.09$ (m, 2H), 3.86 (s, 6H), 2.93 (m, 1H), 2.15-1.7 (m, 8H), 1.65 (s, 3H), 1.58 (s, 3H), 1.55 (s, 3H), $1.30(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ 7.0 Hz) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 165.0,150.3,146.6,143.9,135.5,131.2,124.3,124.2,123.7$,
101.8, 101.2, $99.7,61.0,56.6,39.6,35.3,33.0,26.5,25.6,25.4,18.9,17.6,16.5 ;$ HRESIMS $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ $457.1342\left(\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{BrNa}\right.$, calcd 457.1354).

Preparation of Compounds 18a and 18b. Method A: To a solution of benzofuran 16 ($200 \mathrm{mg}, 0.45$ mmol) in cyclohexane (5 mL) was added anhydrous formic acid (2 mL) and the resulting biphasic mixture was refluxed for 1 month. After cooling to rt, the organic phase was separated and evaporated under reduced pressure. Chromatography of the residue on silica gel (1:99 EtOAc/hexanes) afforded the tetracyclic compound 18 (white solid, 79 mg) as an equimolar mixture of 2 diastereomers in 40% yield.

Method B: To a solution of benzofuran $16(218 \mathrm{mg}, 0.5 \mathrm{mmol})$ in nitropropane (25 mL), at $-78^{\circ} \mathrm{C}$, was added chlorosulfonic acid ($0.27 \mathrm{~mL}, 2 \mathrm{mmol}$). The resulting mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 30 min . An aqueous solution of NaHCO_{3} was then added and the aqueous phase was extracted with EtOAc. The EtOAc phase was dried over MgSO_{4}, filtered, and evaporated under reduced pressure. Chromatography of the residue on silica gel (3:97 EtOAc/hexanes) afforded the tetracyclic compound 18 (93 mg) as a mixture of 2 diastereomers in 43% yield with a $5 / 2$ diastereomeric ratio of 18b/18a.

Compounds 18a and 18b: isolated as a white solid; ${ }^{1} \mathrm{H}$ NMR of the $1 / 1$ mixture ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.11(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.25(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.0-1.5(\mathrm{~m}$, 19H), 1.43 (d, 3H, $J=6.9 \mathrm{~Hz}$), $1.39(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H})$, 0.93 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, 100 MHz) $\delta 159.5,158.2,150.5,150.4,147.5,147.3,145.5 .145 .3$, $127.4,126.8,125.6,125.5,106.8,106.1,101.2,100.9,62.6,58.7,58.6,54.8,51.6,45.5,43.5,43.3,41.5,41.1$, 40.8, 37.2, 36.2, 36.0, 35.2, 35.0, 34.7, 32.6, 25.4, 24.2, 23.8, 23.4 (2C), 21.6, 21.4, 20.3, 20.2, 20.0 ppm ; HRESIMS $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 435.1534\left(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Br}\right.$, calcd 435.1535).

Preparation of Compounds 19a and 19b. To a solution of bromobenzofuran 18 (130 mg, 0.3 mmol) in THF (20 mL) at $-78^{\circ} \mathrm{C}$ was added n - $\mathrm{BuLi}(1.6 \mathrm{M}$ in Hexanes, $0.21 \mathrm{~mL}, 0.33 \mathrm{mmol}$). After stirring at this temperature for 30 min DMF ($0.23 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added. The mixture was stirred for 1 h and then warmed to rt. Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the aqueous phase was extracted with EtOAc. The EtOAc phase was dried over MgSO_{4}, filtered, and evaporated under reduced pressure. Chromatography of the residue on silica gel (3:97

EtOAc/hexanes) afforded the aldehyde $19(87 \mathrm{mg})$ in 76 \% yield. The two diastereomers 19a and 19b were separated by HPLC using a Whatman Magnum-9 Partisil 10 column with 1:19 EtOAc/hexanes as the eluent.

Compound 19a: isolated as a white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.54(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H})$, $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.46(\mathrm{~m}$, 5 H), $1.44(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 188.4,158.9,149.5,147.9,146.4,125.3,124.6,114.8,113.1,62.8,57.3,53.4,41.9,40.3,39.5,34.8$, 34.7, 33.5, 33.25, 24.0, 22.0, 21.9, 20.2, 18.9 ppm ; HRESIMS [M+Na] ${ }^{+} \mathrm{m} / \mathrm{z} 407.2190\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}\right.$, calcd 407.2198).

Compound 19b: isolated as a white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.54(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H})$, $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.0-1.41(\mathrm{~m}, 9 \mathrm{H}), 1.39(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.39(\mathrm{~s}, 3 \mathrm{H})$, $1.23(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 188.2,157.5,149.1,147.9,146.0$, 125.2, 123.9, 114.9, 112.3, 62.7, 57.1, 50.2, 41.9, 40.2, 39.0, 35.7, 34.4, 33.6, 31.0, 22.7, 22.2, 20.3, 18.8, 18.6 ppm; HRESIMS $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 407.2190\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}\right.$, calcd 407.2198).

Preparation of (\pm) Liphagal (1). To a solution of dimethoxyliphagal (19a) (5 mg, 0.013 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added BI_{3} (4.0 equiv, 0.01 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The resulting mixture was allowed to warm to rt and was then quenched with an aqueous solution of sodium thiosulfate. The organic layer was separated, dried over MgSO_{4}, filtered and evaporated. The residue was dissolved in MeCN and purified via C_{18} reversed-phase HPLC using a CSC-Inertsil 150A/ODS2, $5 \mu \mathrm{~m} 25 \mathrm{x} 0.94 \mathrm{~cm}$ column, with 4:1 $\mathrm{MeCN} /\left(0.05 \% \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}\right)$ as eluent to yield 3 mg of liphagal (1) in 64% yield.
(\pm) Liphagal (1): isolated as an amorphous yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.22(\mathrm{~s}, 1 \mathrm{H})$, $10.43(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.8-1.5(\mathrm{~m}, 7 \mathrm{H}), 1.41(\mathrm{~d}$, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3$) ~ \delta$ 192.3, 156.4, 147.8, 145.2, 139.3, 125.4, 120.2, 115.8, 106.1, 53.6, 41.8, 40.1, 39.3, 35.0, 34.7, 33.5, 33.2, 24.0, 21.8, 21.5, 20.1, 18.6 ppm.

Table 1. NMR Data for liphagal (1) recorded in DMSO- d_{6}.

Atom \#	$1_{H(\delta)}$	${ }^{13} \mathrm{C}(\delta)$	$\mathrm{HMBC}^{\text {a }}$	1D NOESY ${ }^{\text {b }}$
1 ax	1.38	39.7	1.28, 1.50	1.21, 1.50, 2.47
1 eq	2.47			1.28, 1.38, 1.68, 7.43
2 ax	$1.68 \mathrm{qt}, J=13.4,1.4 \mathrm{~Hz}$	18.3		0.91, 1.28, 1.48, 2.47
2 eq	1.48 m			1.68
3 ax	$1.21 \mathrm{td}, J=13.4,3.3 \mathrm{~Hz}$	41.3	0.91, 0.94	0.94, 1.38, 1.43, 1.50
3 eq	1.43 m			0.91, 0.94, 1.21
4		34.4	0.91, 0.94, 1.52	
5	1.50 m	53.4	0.91, 0.94, 1.28	0.94, 1.21, 1.38
6	1.52 m	23.5	1.50, 2.12, 3.16	0.91, 1.28, 2.12, 3.16
6	1.78 m			0.91, 0.94, 2.12
7	1.42 m	34.7	1.36, 1.78, 3.16	1.36, 2.12
7	2.12 dtd, $J=13.2,6.7,3.3 \mathrm{~Hz}$			1.42, 1.52, 1.78, 3.16
8	3.16 m	33.0^{1}	1.36, 1.78, 2.12	1.36, 1.52, 2.12
9		155.2	1.36, 2.12, 3.16	
10		124.4	1.28, 3.16, 7.43	
11		38.9	1.28, 1.50, 1.78	
12		119.2		
13	7.43 s	114.9		1.28, 2.47
14		140.8	7.43	
15		147.2^{2}	7.43, 10.40	
16		107.9	7.43, 10.40	
17		145.8^{2}	7.43, 10.40	
18	10.40 s	189.7		1.36
19	0.91 s	21.6^{3}	0.94, 1.50	0.94, 1.28, 1.52 1.68, 1.78
20	0.94 s	32.9^{1}	0.91, 1.50	0.91, 1.21, 1.43, 1.50, 1.78
21	1.36 d, $J=7.1 \mathrm{~Hz}$	21.7^{3}	3.16	1.42, 1.50, 3.16, 10.4
22	1.28 s	19.9	1.50	$\begin{aligned} & 0.91,1.52,1.68,2.47,3.16 \\ & 7.43 \end{aligned}$

${ }^{\text {a }}$ Chemical shifts of proton resonances correlated to the carbon resonance listed in the $\delta{ }^{13} \mathrm{C}$ column. Experiments optimized for both 2 \& 8 Hz .
${ }^{1,2,3}$ Assignments within a column are interchangeable.
${ }^{\mathrm{b}}$ Chemical shift of proton resonances correlated to the proton resonance listed in the $\delta{ }^{1} \mathrm{H}$ column.

Page 12

$\begin{array}{r}141.8217 \\ \hline 141.6240\end{array}$
-134.9343
134.7062
-131.0269
-130.9661
124.3828
124.3676
2992
+123,9875

114.1962
$\Upsilon_{113.6565}$
77.2584
-76.9468
76.6275
-58.9682

Page 14

-55.3589
78.8525
78.4260

$\cdots \cdots \cdots$,

- 136.4556
-132. 7164
125.8930
+125.7788
-110.3118

77.9995
-

-41.1484

- 36.5944
-33. 2055
-28.1413
-27.0904
26.6334
-19.0789
$\checkmark-17.3807$
-15.6444
0 -

(mua)

-137. 6589
-132.7926
125.6341
ᄃ124.7126

$$
-124.7126
$$

78.8601
-78.4412
$=78.0148$
-47.1799
-41.0951

- 31.9947
27.9814
-27.0827
-26.5725
$\overbrace{-19.0637}^{-17.3959}$
14.6772

Page 18

01

$\begin{array}{r}-132.7545 \\ \Gamma_{1}^{125.6798} \\ \hline 124.7659\end{array}$
ZHW 00L ‘£
124.7659

$$
\begin{array}{r}
78.8753 \\
78.4489 \\
78.0224
\end{array}
$$

$$
\begin{array}{r}
41.0951 \\
=40.1889
\end{array}
$$

$$
-34.9038
$$

28.0194
-27.0751
26.8771
₹-19.0637

-195.4067
-160.7717
-158.6622

114.6069
$\Gamma_{1}^{114.2795}$
-101.5541
78.8982
-78.4717
78.0529

-144. 3681
57.8567
-57.7577

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$

N	
\cdots	$\infty 0$
N	-0
-	O +
0	\cdots
\cdots	NN

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$

-189.9921
154.6870
$=-152.9202$
-150.0111

-125.2305
-114.2947
-110.1519
$\quad \begin{array}{r}78.8677 \\ 78.4489 \\ 78.0224\end{array}$
-62.1518
-57.6359
-27. 3340
-20.0994

149.6456
$=-147.8864$
-145.5180
-129.3047
113.4722
$\Gamma_{1}^{112.7259}$
78.8829
-78.4565
-78.0300
$-\quad 62.5478$
$-\quad 61.8929$
57.8034
-27.6082
-20.2365
——1. 1.4066

Page 28

${ }^{31} \mathrm{P}$ NMR, $\mathrm{CDCl}_{3}, 81 \mathrm{MHz}$

－7． 2396
—6． 9021
－6． 3172
5.1064
5.1037
5.0851
-5.0702
5.0672
5.0638
－3． 8640
2.9480
$\Gamma^{2} .9305$

ZHW 00t ‘夭Iכロコ＇પWNN Ht
2.0507
-2.0321
-1.0135
-1.9708
$=1.8369$
-1.8331
-1.8198
-1.7821
-1.7733
-1.7471
-1.6599
1.6580
-1.5816
1.5545
-1.3137
1.2962

101.8233
-101.1924
-99.6647
-99.6647
77.2499
-76.9307
$=76.6115$
-76.6115
-61.0070
-56.5682

- 39.5804
-35.2935
$-\quad 32.9525$
-26.5222
-25.5797
-25.3593
-18.9442
-17.5685
15.9115

Page 33

-7. 4523
-7. 2400

(mdd)

$0 \cdot 1$

001

Page 39

09

77.1967
-76.8851
$=76.5659$

药

Page 41

Experimental

Data Collection

A colourless tablet crystal of $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4}$ having approximate dimensions of $0.50 \times 0.35 \times 0.10 \mathrm{~mm}$ was mounted on a glass fiber. All measurements were made on a Bruker X8 APEX diffractometer with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation.

The data were collected at a temperature of $-100.0 \pm 0.1^{\circ} \mathrm{C}$ to a maximum 2θ value of 55.9°. Data were collected in a series of ϕ and ω scans in 0.50° oscillations with 10.0 second exposures. The crystal-to-detector distance was 38.02 mm .

Data Reduction

Of the 35886 reflections that were collected, 4872 were unique ($\mathrm{R}_{\mathrm{int}}=0.035$); equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT ${ }^{1}$ software package. The linear absorption coefficient, μ, for Mo-K α radiation is $0.84 \mathrm{~cm}^{-1}$. Data were corrected for absorption effects using the multi-scan technique (SADABS ${ }^{2}$), with minimum and maximum transmission coefficients of 0.901 and 0.992 , respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods ${ }^{3}$. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in calculated positions but not refined. The final cycle of full-matrix leastsquares refinement ${ }^{4}$ on F^{2} was based on 4872 reflections and 259 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$
\begin{gathered}
\mathrm{R} 1=\Sigma| | \mathrm{Fo}|-|\mathrm{Fc} \| / \Sigma| \mathrm{Fo}|=0.081 \\
\mathrm{wR} 2=\left[\Sigma\left(\mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}\right) / \Sigma \mathrm{w}\left(\mathrm{Fo}^{2}\right)^{2}\right]^{1 / 2}=0.161
\end{gathered}
$$

The standard deviation of an observation of unit weight ${ }^{5}$ was 1.08 . The weighting scheme was based on counting statistics. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.34 and $-0.19 \mathrm{e}^{-} / \AA^{3}$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber ${ }^{6}$. Anomalous dispersion effects were included in Fcalc ${ }^{7}$; the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Creagh and McAuley ${ }^{8}$. The values for the mass attenuation coefficients are those of Creagh and Hubbell ${ }^{9}$. All refinements were performed using the SHELXTL ${ }^{10}$ crystallographic software package of Bruker-AXS.

References

(1) SAINT. Version 7.03A. Bruker AXS Inc., Madison, Wisconsin, USA. (1997-2003).
(2) SADABS. Bruker Nonius area detector scaling and absorption correction - V2.10, Bruker AXS Inc., Madison, Wisconsin, USA (2003).
(3) SIR97 - Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C. , Guagliardi A., Moliterni A.G.G., Polidori G.,Spagna R. (1999) J. Appl. Cryst. 32, 115-119.
(4) Least Squares function minimized:

$$
\Sigma w\left(\mathrm{~F}_{0}^{2}-\mathrm{F}_{\mathrm{C}}{ }^{2}\right)^{2}
$$

(5) Standard deviation of an observation of unit weight:

$$
\left[\Sigma w\left(\mathrm{~F}_{\mathrm{o}}^{2}-\mathrm{F}_{\mathrm{C}}^{2}\right)^{2} /\left(\mathrm{N}_{\mathrm{O}}-\mathrm{N}_{\mathrm{V}}\right)\right]^{1 / 2}
$$

where: $\mathrm{N}_{\mathrm{O}}=$ number of observations

$$
N_{V}=\text { number of variables }
$$

(6) Cromer, D. T. \& Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).
(7) Ibers, J. A. \& Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).
(8) Creagh, D. C. \& McAuley, W.J .; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).
(9) Creagh, D. C. \& Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).
(10) SHELXTL Version 5.1. Bruker AXS Inc., Madision, Wisconsin, USA. (1997).

