

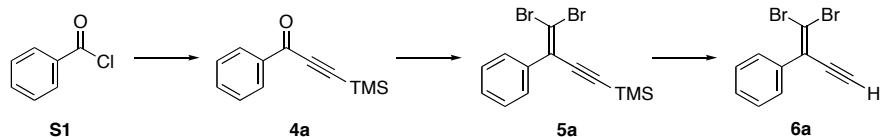
Supporting Information

A One-pot Synthesis and Functionalization of Polyynes

*Yasuhiro Morisaki, Thanh Luu, and Rik R. Tykwinski**

Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

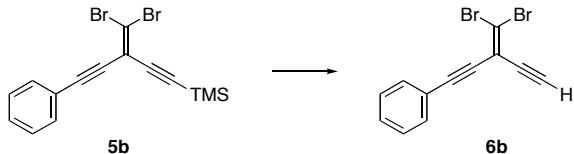
rik.tykwinski@ualberta.ca


General. Reagents were purchased reagent grade from commercial suppliers and used without further purification. Et_2O , toluene, and THF were distilled from sodium/benzophenone ketyl, and hexanes and CH_2Cl_2 were distilled from CaH_2 immediately prior to use. Anh. MgSO_4 or Na_2SO_4 were used as the drying agent after aqueous work-up. Evaporation and concentration *in vacuo* was done at water-aspirator pressure. All reactions were performed in standard, dry glassware under an inert atmosphere of Ar or N_2 . Column chromatography: *silica gel-60* (230-400 mesh) from *General Intermediates of Canada*. Thin Layer Chromatography (TLC): aluminum sheets covered with *silica gel-60 F₂₅₄* from *Macherey-Nagel*; visualization by UV light or KMnO_4 stain. Mp: *Gallenkamp* apparatus; uncorrected. IR spectra (cm^{-1}): *Nicolet Magna-IR 750* (neat) or *Nic-Plan IR Microscope* (solids). ^1H - and ^{13}C -NMR: *Varian Gemini-300*, 400 or 500 instruments, at rt in CDCl_3 ; solvent peaks (7.24 for ^1H and 77.0 for ^{13}C) as reference. EI MS (m/z): *Kratos MS50* instrument. Elemental analyses were conducted by Spectral Services at the University of Alberta.

For simplicity, the coupling constants for the aryl protons for *para*-substituted phenyl groups have been reported as pseudo first-order, even though they are second-order spin systems. For mass spectral analyses, low-resolution data are provided in cases when M^+ is not the base peak; otherwise, only high-resolution data are provided.

In cases where crude reaction mixtures were passed through a plug of silica gel and celite, the following procedure was employed: To a fritted funnel (35 mL), a mixture of silica gel and hexanes was added, which was then covered by celite. A sample solution was introduced and flushed with the solvent (as indicated below). Progress of separation was monitored by means of TLC.

All new compounds are characterized below; references are provided for known compounds. In cases where spectral data were not provided in these original reports, it is provided herein.

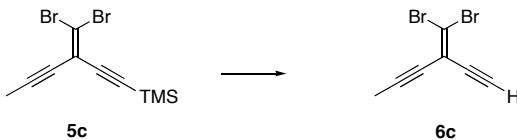

Synthesis and Characterization

Compound 5a. To benzoyl chloride **S1** (4.2 g, 30 mmol) in CH_2Cl_2 (80 mL) was added bis(trimethylsilyl)acetylene (5.2 g, 30 mmol), and the temperature was lowered to 0 °C. Powdered AlCl_3 (5.8 g, 44 mmol) was slowly added. The reaction was stirred and warmed to rt. After 22 h, the reaction mixture was carefully quenched by addition to HCl (conc, 15 mL) diluted with ice (85 mL). The organic phase was separated, washed with saturated aqueous NH_4Cl , and dried over MgSO_4 . The crude mixture was plugged through a silica gel column, and the resulting solution reduced to afford the

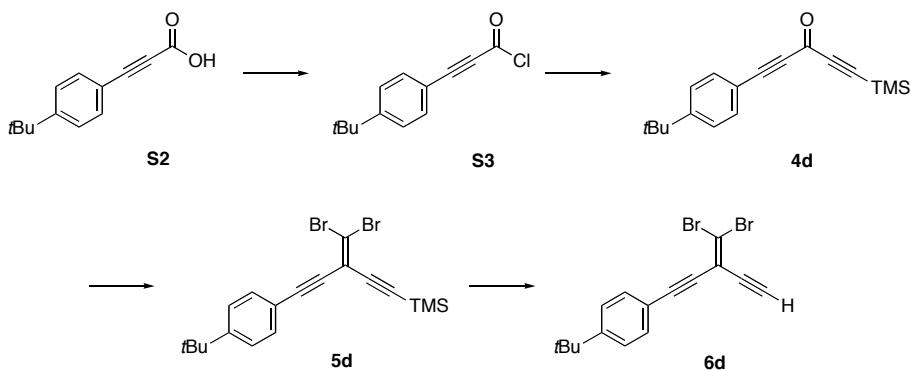
intermediate ketone **4a**,^{1,2,3} $R_f = 0.4$ (hexanes/CH₂Cl₂ 1:1), that was carried onto the next step without further purification. CBr₄ (19 g, 55 mmol) and PPh₃ (29 g, 110 mmol) were added to CH₂Cl₂ (150 mL). The heterogeneous mixture was added to a solution of the crude ketone **4a** in CH₂Cl₂ (50 mL) at 0 °C and stirred overnight at rt. After the reaction mixture was reduced, hexanes (200 mL) was added. The mixture was filtered through a short silica gel column to afford **5a** (8.3 g, 77% based on **S1**) as a pale yellow oil. $R_f = 0.6$ (hexanes/CH₂Cl₂ 4:1). IR (CHCl₃, cast) 2959, 2136 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.43 (m, 2H), 7.39–7.34 (m, 3H), 0.22 (9H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 131.0, 128.6, 128.5, 128.3, 104.2, 103.4, 100.4, -0.30. HRMS calcd. for C₁₃H₁₄⁷⁹Br⁸¹BrSi 357.9211, found 357.9211. Anal. calcd. for C₁₃H₁₄Br₂Si: C, 43.60; H, 3.94. Found: C, 43.52; H, 4.03.

Compound 6a. Dibromoolefin **5a** (7.00 g, 19.5 mmol) was dissolved in THF (50 mL) and MeOH (50 mL), and pulverized K₂CO₃ (0.10 g, 0.75 mmol) was added at rt. TLC analysis was used to monitor the reaction until desilylation was completed. After 1 h, diluted sat. NH₄Cl (100 mL) and Et₂O (100 mL) were added. The organic layer was separated, washed with H₂O, and dried over MgSO₄. MgSO₄ was filtered off, and the solvent was reduced. The solution was passed through a short silica gel column to afford **6a** (5.21 g, 93%) as a white solid. Mp 39–42 °C. $R_f = 0.6$ (hexanes/CH₂Cl₂ 3:1). IR (CHCl₃, cast) 3290 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.40 (m, 2H), 7.39–7.34 (m, 3H), 3.59 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 130.1, 128.7, 128.5, 128.4, 100.8, 85.8, 82.7. EIMS *m/z* 285.9 (M⁺, 49), 126.0 ([C₁₀H₆]⁺, 100); HRMS calcd. for C₁₀H₆Br₂ 285.8816, found 285.8816. Anal. calcd. for C₁₀H₆Br₂: C, 42.00; H, 2.11. Found: C, 41.80; H, 1.95.

Compound 6b. Dibromoolefin **5b**⁴ (1.9 g, 5.0 mmol) was dissolved in THF (40 mL) and MeOH (40 mL), and pulverized K₂CO₃ (0.10 g, 0.75 mmol) was added at rt. TLC analysis was used to monitor the reaction until desilylation was completed. After 1 h, sat. NH₄Cl (200 mL) and Et₂O (200 mL) were added. The organic layer was separated, washed with H₂O, and dried over MgSO₄. MgSO₄ was filtered off, and the solvent was reduced. The solution was passed through a short silica gel column to afford **6b** (1.2 g, 77%) as a pale yellow oil. As the neat oil **6b** slowly discolored, **6b** is best stored in a solution of hexanes, under refrigeration, unless used immediately. $R_f = 0.5$ (hexanes/CH₂Cl₂ 4:1). IR (CHCl₃,


1. Ochiai, M.; Kunishima, M.; Sumi, K.; Nagao, Y.; Fujita, E.; Arimoto, M.; Yamaguchi, H. *Tetrahedron Lett.* **1985**, 26, 4501–4504.

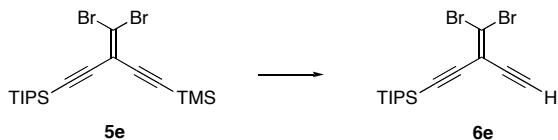
2. Maurette, L.; Tedeschi, C.; Sermot, E.; Soleilhavoup, M.; Hussain, F.; Donnadieu, B.; Chauvin, R. *Tetrahedron* **2004**, 60, 10077–10098.


3. Walton, D. R. M.; Waugh, F. J. *Organomet. Chem.* **1972**, 37, 45–56.

4. Eisler, S.; Chahal, N.; McDonald, R.; Tykwienski, R. R. *Chem. Eur. J.* **2003**, 9, 2542–2550.

cast) 3293, 2226, 2189, 2108 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 7.52–7.49 (m, 2H), 7.34–7.30 (m, 3H), 3.50 (s, 1H); ^{13}C NMR (100 MHz, CDCl_3) δ 131.6, 129.3, 128.4, 121.9, 113.4, 109.5, 96.2, 85.8, 83.9, 79.7. EIMS m/z 309.9 (M^+ , 95), 150.0 ($[\text{C}_{12}\text{H}_6]^+$, 100); HRMS calcd. for $\text{C}_{12}\text{H}_6^{79}\text{Br}^{81}\text{Br}$ 309.8816, found 309.8809. Anal. calcd. for $\text{C}_{12}\text{H}_6\text{Br}_2$: C 46.50; H 1.95. Found: C 46.74, H 1.97.

Compound 6c. Dibromoolefin **5c**⁵ (861 mg, 2.69 mmol) was dissolved in THF (10 mL) and MeOH (10 mL), and pulverized K_2CO_3 (0.10 g, 0.75 mmol) was added at rt. TLC analysis was used to monitor the reaction until desilylation was completed. After 1 h, sat. NH_4Cl (10 mL) and Et_2O (10 mL) were added. The organic layer was separated, washed with H_2O , and dried over MgSO_4 . MgSO_4 was filtered off, and the solvent was reduced. The solution was passed through a short silica gel column to afford **6c** (516 mg, 77%) as a pale yellow oil. As the neat oil **6c** slowly discolored, **6c** is best stored in a solution of hexanes under refrigeration, unless used immediately. $R_f = 0.5$ (hexanes). IR (CHCl_3 , cast) 3291, 2915, 2284, 2225, 2103 cm^{-1} ; ^1H NMR (500 MHz, CDCl_3) δ 3.43 (s, 1H), 1.98 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 113.6, 108.2, 94.3, 83.2, 80.2, 76.6, 4.8. HRMS calcd. for $\text{C}_7\text{H}_4^{79}\text{Br}^{81}\text{Br}$ 247.8659, found 247.8665.

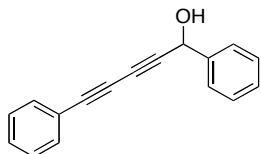

Compound 5d. To **S2**⁶ (1.0 g, 5.0 mmol) was added thionyl chloride (4.08 g, 34.3 mmol) and the reaction was stirred at rt overnight, protected from moisture by a drying tube filled with CaSO_4 . The excess thionyl chloride was removed in vacuo. To the acid chloride **S3** in CH_2Cl_2 (35 mL) was added bis(trimethylsilyl)acetylene (0.87 g, 5.1 mmol), and the temperature was lowered to $-30\text{ }^\circ\text{C}$. Powdered AlCl_3 (0.87 g, 6.5 mmol) was slowly added. The reaction was stirred and warmed to rt. After 2 h, the reaction mixture was carefully quenched by pouring into HCl (conc, 15 mL) diluted with ice (85 mL). The organic phase was separated, washed with saturated aq. NH_4Cl , and dried over MgSO_4 . The crude mixture was plugged through a silica gel column, and the resulting solution reduced to afford the

5. Mukai, C.; Miyakoshi, N.; Hanaoka, M. *J. Org. Chem.* **2001**, *66*, 5875–5880.

6. Schottelius, M. J.; Chen, P. *Helv. Chim. Acta* **1998**, *81*, 2341–2347.

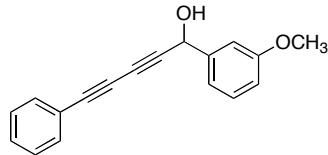
intermediate ketone **4d**, $R_f = 0.4$ (hexanes/CH₂Cl₂ 1:1), that was carried on without further purification. CBr₄ (2.5 g, 7.5 mmol) and PPh₃ (4.0 g, 15 mmol) were added to CH₂Cl₂ (150 mL). The mixture was added to a solution of the crude ketone **4d** in CH₂Cl₂ (10 mL) at rt and stirred for 30 min. The reaction mixture was reduced, and CH₂Cl₂ (5 mL) and hexanes (50 mL) were added. The heterogeneous mixture was filtered through a short silica gel column to afford **5d** (0.76 g, 35% based on **S2**) as a pale yellow solid. Mp 74–75 °C. $R_f = 0.6$ (hexanes/CH₂Cl₂ 4:1). IR (CHCl₃, cast) 2963, 2204, 2155 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.29 (s, 9H), 1.34 (s, 9H), 7.38 (d, $J = 8.0$ Hz, 2H), 7.49 (d, $J = 8.0$ Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ -0.4, 31.1, 34.8, 85.4, 96.2, 100.3, 102.3, 108.7, 114.4, 119.1, 125.4, 131.4, 152.5. EIMS m/z 438.0 (M⁺, 71), 423.0 ([M – CH₃]⁺, 100); HRMS calcd. for C₁₉H₂₂⁷⁹Br⁸¹BrSi 437.9837, found 437.9825. Anal. calcd. for C₁₉H₂₂Br₂Si: C, 52.07; H, 5.06. Found: C, 51.94; H, 5.07.

Compound 6d. Dibromoolefin **5d** (0.65 g, 1.5 mmol) was dissolved in THF (15 mL) and MeOH (15 mL), and pulverized K₂CO₃ (0.073 g, 0.52 mmol) was added at rt. TLC analysis was used to monitor the reaction until the desilylation was completed. After 30 min, HCl (2N, 15 mL) and Et₂O (50 mL) were added. The organic layer was separated, washed with H₂O, and dried over MgSO₄. MgSO₄ was filtered off, and the solvent was reduced. The solution was passed through a short silica gel column to afford **6d** (0.51 g, 93%) as a pale yellow solid. Mp 82–83 °C. $R_f = 0.6$ (hexanes/CH₂Cl₂ 4:1). IR (CHCl₃, cast) 3294, 2228, 2193, 2108 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.30 (s, 9H), 3.50 (s, 1H), 7.35 (d, $J = 8.0$ Hz, 2H), 7.44 (d, $J = 8.0$ Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 31.1, 34.9, 79.8, 83.8, 85.3, 96.6, 109.1, 113.5, 118.9, 125.5, 131.4, 152.8. EIMS m/z 365.9 (M⁺, 44), 350.9 ([M – CH₃]⁺, 100); HRMS calcd. for C₁₆H₁₄⁷⁹Br⁸¹Br 365.9442, found 365.9439. Anal. calcd. for C₁₆H₁₄Br₂: C, 52.49; H, 3.85. Found: C, 52.39; H, 3.95.



Compound 6e. Dibromoolefin **5e**⁷ (183 mg, 0.398 mmol) was dissolved in THF (10 mL) and MeOH (10 mL), and pulverized K₂CO₃ (0.10 g, 0.75 mmol) was added at rt. TLC analysis was used to monitor the reaction until desilylation was completed. After 1 h, sat. NH₄Cl (10 mL) and Et₂O (10 mL) were added. The organic layer was separated, washed with H₂O, and dried over MgSO₄. MgSO₄ was filtered off, and the solvent was reduced. The solution was passed through a short silica gel column to afford **6e** (112 mg, 72%) as a pale yellow oil. As the neat oil **6e** slowly discolored, **6e** is best stored in a solution of hexanes, under refrigeration, unless used immediately. $R_f = 0.5$ (hexanes). IR (CHCl₃, cast) 3302, 2943, 2890, 2180, 2135 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.44 (s, 1H), 1.09 (s, 21H); ¹³C NMR (125

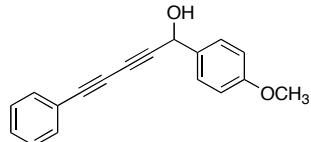
7. Anthony, J.; Boldi, A. M.; Rubin, Y.; Hobi, M.; Gramlich, V.; Knobler, C. B.; Seiler, P.; Diederich, F. *Helv. Chim. Acta* **1995**, 78, 13–45.


MHz, CDCl_3) δ 113.8, 110.4, 101.7, 100.3, 83.7, 79.8, 18.6, 11.1. EIMS m/z 390.0 (M^+ , 20), 346.9 ($[\text{M} - \text{iPr}]^+$, 100); HRMS calcd. for $\text{C}_{15}\text{H}_{22}\text{Si}^{79}\text{Br}^{81}\text{Br}$ 389.9837, found 389.9826.

General procedure for the synthesis of functionalized polyynes by trapping with electrophiles. A solution of dibromoolefin **6a,b,c** (0.5–1.0 nmol) was dissolved in toluene (2 mL) and this mixture was then diluted with hexanes (10 mL) and cooled to -20 °C under an Ar atmosphere. To this solution with stirring, BuLi (2.2 equiv, 1.6 or 2.5 M in hexanes) was added via syringe over a period of ca. 1 min. The reaction mixture was allowed to slowly warm to 0 °C. The reaction was then cooled to -20 °C again, and Et_2O (10 mL) was added, followed by the addition of the electrophile (dissolved in 2 mL of Et_2O) via a canula. The reaction mixture was allowed to slowly warm to rt overnight. Sat. aq. NH_4Cl (10 mL) and Et_2O (10 mL) were added, the organic phase was separated, washed with sat. aq. NaCl (2 x 10 mL), and dried over MgSO_4 . Solvent removal and purification by column chromatography (silica gel, solvent systems indicated below) gave the desired product. Additional steps, as required, are also indicated below.

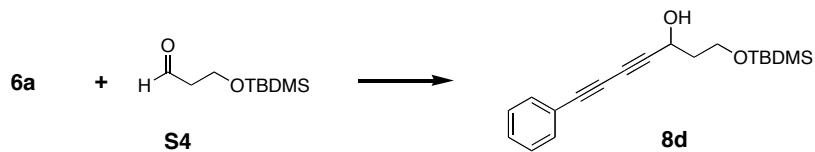
8a

Compound 8a.⁸ Dibromoolefin **6a** (167 mg, 0.586 mmol), BuLi (2.5 M in hexanes, 0.52 mL, 1.3 mmol), and benzaldehyde (73 mg, 0.69 mmol) were used as per the general procedure and yielded **8a** (94.7 mg, 70%) as an orange solid. $R_f = 0.5$ (CH_2Cl_2 /hexanes 2:1). Mp 75–78 °C. IR (CHCl_3 , cast) 3332, 3032, 2242 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 7.55 (d, $J = 6.8$ Hz, 2H), 7.49 (dt, $J = 6.8, 2.0$ Hz, 2H), 7.42–7.29 (m, 6H), 5.58 (d, $J = 6.0$ Hz, 1H), 2.35 (d, $J = 6.0$ Hz, 1H); ^{13}C NMR (100 MHz, CDCl_3) δ 139.7, 132.6, 129.4, 128.8, 128.7, 128.4, 126.7, 121.3, 81.6, 79.4, 73.2, 71.3, 65.2. HRMS calcd. for $\text{C}_{17}\text{H}_{12}\text{O}$ 232.0888, found 232.0888.

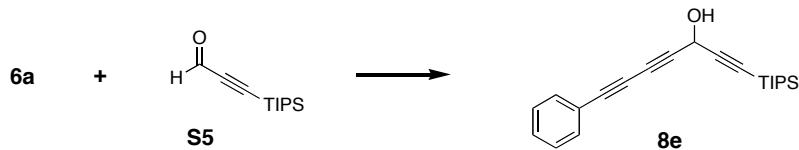


8b

Compound 8b. Dibromoolefin **6a** (175 mg, 0.611 mmol), BuLi (2.5 M in hexanes, 0.54 mL, 1.4 mmol), and *m*-methoxylbenzaldehyde (92 mg, 0.67 mmol) were used as per the general procedure and yielded **8b** (116 mg, 72%) as a yellow solid. Mp 28–31 °C. $R_f = 0.6$ (CH_2Cl_2). IR (CHCl_3 , cast) 3375,

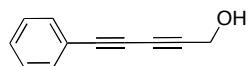

8. Alami, M.; Crousse, B.; Linstrumelle, G. *Tetrahedron Lett.* **1995**, *36*, 3687–3690.

2241, 2210, 1262 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3) δ 7.52–7.48 (m, 2H), 7.41–7.29 (m, 4H), 7.15–7.10 (m, 2H), 6.90 (dd, J = 2.7, 0.9 Hz, 1H), 5.57 (d, J = 6.5 Hz, 1H), 3.82 (s, 3H), 2.51 (d, J = 6.5, 1H); ^{13}C NMR (125 MHz, CDCl_3) δ 159.9, 141.2, 132.6, 129.8, 129.4, 128.4, 121.4, 118.9, 114.4, 112.1, 81.6, 79.4, 73.2, 71.3, 65.1, 55.4. HRMS calcd. for $\text{C}_{18}\text{H}_{14}\text{O}_2$ 262.0994, found 262.0996. Anal. calcd. for $\text{C}_{18}\text{H}_{14}\text{O}_2$: C, 82.42; H, 5.38. Found: C, 82.33; H, 5.29.

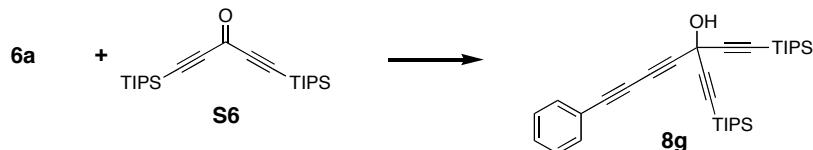


8c

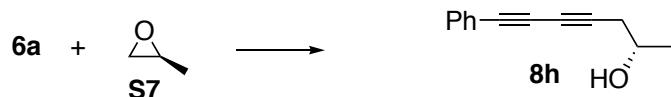
Compound 8c. Dibromoolefin **6a** (172 mg, 0.600 mmol), BuLi (2.5 M in hexanes, 0.52 mL, 1.3 mmol), and *p*-methoxybenzaldehyde (90 mg, 0.7 mmol) were used as per the general procedure and yielded **8c** (114 mg, 72%) as a yellow solid. Mp 67–69 °C. R_f = 0.4 (CH_2Cl_2). IR (CHCl_3 , cast) 3395, 2241, 2211, 1250 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 7.50–7.35 (m, J = 6.8 Hz, 4H), 7.37–7.28 (m, 3H), 6.91 (dt, J = 8.8, 2.5 Hz, 2H), 5.53 (d, J = 6.0 Hz, 1H), 3.80 (s, 3H), 2.16 (d, J = 6.0 Hz, 1H); ^{13}C NMR (100 MHz, CDCl_3) δ 159.9, 132.6, 132.1, 129.4, 128.4, 128.2, 121.4, 114.1, 81.9, 79.4, 73.2, 71.1, 64.8, 55.4. HRMS calcd. for $\text{C}_{18}\text{H}_{14}\text{O}_2$ 262.0994, found 262.1004.



Compound 8d. Dibromoolefin **6a** (516 mg, 1.78 mmol), BuLi (1.6 M in hexanes, 2.4 mL, 3.8 mmol), and aldehyde **S4**⁹ (324 mg, 1.73 mmol) were used as per the general procedure and yielded **8d** (307 mg, 57%) as a yellow oil. R_f = 0.5 (hexanes/EtOAc 4:1). IR (CHCl_3 , cast) 3405, 3063, 2242 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3) δ 7.49–7.45 (m, 2H), 7.37–7.26 (m, 3H), 4.73 (dt, J = 6.3, 4.2, 1H), 4.05 (ddd, J = 9.9, 8.4, 3.9 Hz, 1H), 3.84 (ddd, J = 10.5, 5.4, 4.2 Hz, 1H), 3.59 (d, J = 6.3 Hz, 1H), 2.10–2.00 (m, 1H), 1.94–1.84 (m, 1H), 0.90 (s, 9H), 0.10 (s, 3H), 0.08 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 132.5, 129.2, 128.4, 121.6, 83.1, 78.3, 73.4, 69.6, 62.3, 60.9, 38.4, 25.9, 18.2, -5.5. EIMS m/z 257.1 ([M - tBu]⁺, 24), 105.0 ([C₃H₉O₂Si]⁺, 100); HRMS calcd. for $\text{C}_{15}\text{H}_{17}\text{O}_2\text{Si}$ 257.0998, found 257.0995. Anal. calcd. for $\text{C}_{19}\text{H}_{26}\text{O}_2\text{Si}$: C, 72.56; H, 8.33. Found: C, 72.20; H, 8.43.


9. Vijn, R. J.; Hiemstra, H.; Kok, J. J.; Knotter, M.; Speckamp, N. W. *Tetrahedron* **1987**, 43, 5019–5030.

Compound 8e. Dibromoolefin **6a** (185 mg, 0.646 mmol), BuLi (2.5 M in hexanes, 0.57 mL, 1.4 mmol), and aldehyde **S5**¹⁰ (140 mg, 0.665 mmol) were used as per the general procedure and yielded **8e** (159 mg, 75%) as a yellow oil. R_f = 0.3 (hexanes/CH₂Cl₂ 4:3). IR (CHCl₃, cast) 3349, 2243, 2208, 1034 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, J = 6.8, 1.6 Hz, 2H), 7.36–7.31 (m, 3H), 5.24 (d, 6.0 Hz, 1H), 2.29 (d, J = 6.8 Hz, 1H), 1.08 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 132.6, 129.5, 128.4, 121.2, 102.6, 87.3, 79.5, 78.7, 73.0, 69.0, 53.2, 18.5, 11.1. EIMS *m/z* 336.2 (M⁺, 36), 293.1 ([M – iPr]⁺, 43). HRMS calcd. for C₂₂H₂₈OSi 336.1910, found 336.1909.



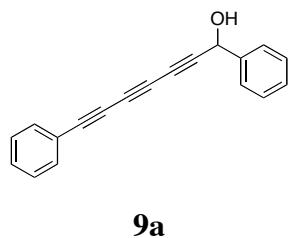
8f

Compound 8f.¹¹ Dibromoolefin **6a** (203 mg, 0.709 mmol), BuLi (2.5 M in hexanes, 0.62 mL, 1.6 mmol), and paraformaldehyde (641 mg, 2.13 mmol) were used as per the general procedure and yielded **8f** (64.1 mg, 58%) as a yellow oil. R_f = 0.2 (CH₂Cl₂). IR (CHCl₃, cast) 3324, 3061, 2914, 2243 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.50–7.46 (m, 2H), 7.38–7.27 (m, 3H), 4.40 (bd, J = 5.1, 2H), 1.52 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 132.6, 129.3, 128.4, 121.4, 80.5, 78.6, 73.2, 70.4, 51.6. HRMS calcd. for C₁₁H₈O 156.0575, found 156.0574.

Compound 8g. Dibromoolefin **6a** (181 mg, 0.636 mmol), BuLi (2.5 M in hexanes, 0.53 mL, 1.3 mmol), and ketone **S6**¹² (219 mg, 0.56 mmol) were used as per the general procedure and yielded **8g** (275 mg, 95%) as a yellow oil. R_f = 0.3 (hexanes/CH₂Cl₂ 3:1). IR (CHCl₃, cast) 3447, 2892, 2232 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.50 (dd, J = 6.6, 3.3 Hz, 2H), 7.40–7.28 (m, 3H), 2.79 (s, 1H), 1.08 (s, 42H), (OH peak was not observed); ¹³C NMR (100 MHz, CDCl₃) δ 132.7, 129.6, 128.4, 121.2, 103.0, 85.6, 80.4, 78.6, 73.0, 67.3, 54.9, 18.5, 11.1. EIMS *m/z* 473.3 ([M – iPr]⁺, 23), 347.2 ([C₂₀H₃₅OSi]⁺, 48); HRMS calcd. for C₃₃H₄₈OSi₂ 473.2696, found 473.2696.

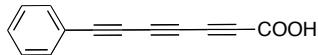
Compound (-)-8h. Dibromoolefin **6a** (201 mg, 0.703 mmol), BuLi (2.5 M in hexanes, 0.62 mL, 1.6 mmol), and S-(-)-propylene oxide **S7** (Aldrich, 49 mg, 0.06 mL, 0.84 mmol) were used as per the

10. Eisler, S.; Slepkov, A. D.; Elliott, E.; Luu, T.; McDonald, R.; Hegmann, F. A.; Tykwinski, R. R. *J. Am. Chem. Soc.* **2005**, *127*, 2666–2676. See supporting information.

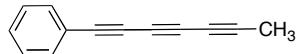

11. Lee, H. J.; Shim, S. C. *J. Chem. Soc. Chem. Commun.* **1993**, 1420–1422.

12. Lange, T.; van Loon, J.-D.; Tykwinski, R. R.; Schreiber, M.; Diederich, F. *Synthesis* **1996**, 537–550.

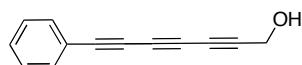
general procedure and yielded **(-)-8h** (45 mg, 35%) as a yellow oil. $R_f = 0.2$ (hexanes). $[\alpha]^{20}_D -9.3$ (c 1.31, MeOH); IR (CHCl₃, cast) 3356, 3055, 2971, 2230 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, $J = 8.0, 1.3$ Hz, 2H), 7.35–7.26 (m, 3H), 4.02 (bm, 1H), 2.55 (A part of ABX, $J = 17.2, 5.6$ Hz, 1H), 2.52 (B part of ABX, $J = 17.2, 5.6$ Hz, 1H), 1.87 (bd, $J = 4$ Hz, 1H), 1.29 (d, $J = 6.4$ Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 132.5, 129.0, 128.4, 121.8, 80.7, 75.4, 74.0, 67.4, 66.4, 30.2, 22.6. EIMS *m/z* 184.1 (M⁺, 32), 347.2 ([C₁₁H₈]⁺, 100); HRMS calcd. for C₁₃H₁₂O 184.0888, found 184.0887.[13]


Compound (-)-8i. A solution of dibromooolefin **6a** (213.3 mg, 0.7459 mmol) was dissolved in toluene (2 mL) and the mixture was diluted with hexanes (10 mL) and cooled to -20 °C under an Ar atmosphere. To this solution with stirring, BuLi (2.5 M in hexanes, 0.66 mL, 2.2 equiv) was added via syringe over a period of ca. 1 min, and the reaction allowed to slowly warm to 0 °C. The reaction was then cooled to -20 °C, Et₂O (10 mL) was added, followed by the *tert*-butyldimethylsilyl (*R*)-(+)-glycidyl ether **S8** (Aldrich, 0.13 g, 0.14 mL, 0.68 mmol, dissolved in 2 mL of Et₂O) and HMPA (0.3 mL). The reaction mixture was allowed to warm to rt overnight. Sat. aq. NH₄Cl (10 mL) and Et₂O (10 mL) were added, the organic phase was separated, washed with sat. aq. NaCl (2 x 10 mL), and dried over MgSO₄. Solvent removal and purification by column chromatography (silica gel, hexanes/CH₂Cl₂ 1:1) yielded **(-)-8i** (47 mg, 22%) as a light brown oil. $R_f = 0.25$ (hexanes/CH₂Cl₂ 1:1). $[\alpha]^{20}_D -7.3$ (c 0.24, MeOH); IR (CHCl₃, cast) 3429, 3063, 2929, 2247 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.46 (dd, $J = 8.0, 1.3$ Hz, 2H), 7.34–7.26 (m, 3H), 3.85 (m, 1H), 3.72 (dd, $J = 10.0, 4.0$ Hz, 1H), 3.63 (dd, $J = 10.0, 5.6$ Hz, 1H), 2.60 (A part of ABM, $J = 17.6$ Hz, 1H), 2.57 (B part of ABM, $J = 17.6$ Hz, 1H), 2.47 (d, $J = 5.6$ Hz, 1H), 0.90 (s, 9H), 0.087 (s, 3H), 0.085 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 132.5, 128.9, 128.3, 121.9, 80.3, 75.3, 74.1, 70.1, 66.0, 65.6, 25.8, 24.4, 18.2, -5.40, -5.42. EIMS *m/z* 314.2 (M⁺, 1), 257.1 ([M - *t*Bu]⁺, 45), 141.1 ([C₁₁H₉]⁺, 100); HRMS calcd. for C₁₉H₂₆O₂Si 314.1702, found 314.1700. Anal. calcd. for C₁₉H₂₆O₂Si: C, 72.56; H, 8.33. Found: C, 72.06; H, 8.33.

Compound 9a. Dibromooolefin **6b** (219 mg, 0.705 mmol), BuLi (2.5 M in hexanes, 0.62 mL, 1.5


13. Spectral data consistent with that reported for the (+)-enantiomer, see: Chang, M.-H.; Wang, G.-J.; Kuo, Y.-H.; Lee, C.-K. *J. Chin. Chem. Soc.* **2000**, *47*, 1131-1136.

mmol), and benzaldehyde (82 mg, 0.77 mmol) were used as per the general procedure and yielded **9a** (98 mg, 54%) as a yellow oil. R_f = 0.4 (CH₂Cl₂). IR (CHCl₃, cast) 3362, 3063, 2957, 2191 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.52 (m, 4H), 7.44–7.32 (m, 6H), 5.57 (s, 1H), 2.28 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 133.0, 129.8, 128.85, 128.84, 128.5, 126.7, 120.7, 78.9, 77.7, 74.1, 71.7, 65.7, 65.2, 64.3. EIMS *m/z* 256.1 (M⁺, 88), 226.1 ([C₁₈H₁₀]⁺, 100); HRMS calcd. for C₁₉H₁₂O 256.0888, found 256.0883.


9b

Compound 9b.¹⁴ Dibromoolefin **6b** (358 mg, 1.16 mmol), BuLi (2.5 M in hexanes, 1.0 mL, 2.5 mmol) were reacted as per the general procedure. CO₂, generated from dry ice, was passed through a drying tube filled with CaCl₂ and then was bubbled through the reaction mixture via syringe. After quenching the mixture with 10% aq. HCl, it was basicified by using a 10% aq. NaOH. The aqueous layer was separated and neutralized with 10% aq. HCl and Et₂O (5 mL). The mixture was reduced to dryness and yielded **9b** (146 mg, 65%) as a brown solid. DSC analysis showed an exothermic peak at 112 °C (decomposed). IR (CHCl₃, cast) 2927, 2206, 2182 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.53 (m, 2H), 7.43 (dt, *J* = 7.4, 1.6 Hz, 1H), 7.34 (dt, *J* = 7.2, 1.2 Hz, 2H), (HO not observed); ¹³C NMR (125 MHz, CDCl₃) δ 155.3, 133.4, 130.6, 128.7, 119.7, 80.7, 73.8, 73.4, 69.7, 67.3, 64.1. HRMS calcd. for C₁₃H₆O₂ 194.0368, found 194.0370.

9c

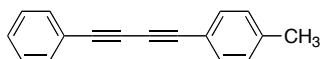
Compound 9c.¹⁵ Dibromoolefin **6b** (479 mg, 1.54 mmol), BuLi (2.5 M in hexanes, 1.3 mL, 3.4 mmol), and methyl iodide (331 mg, 2.31 mmol) were used as per the general procedure and yielded **9c** (164 mg, 65%) as a light brown crystalline solid. Spectral data were consistent with those reported.[15]


9d

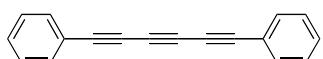
Compound 9d.¹⁶ Dibromoolefin **6b** (534 mg, 1.72 mmol), BuLi (1.6 M in hexanes, 2.4 mL, 3.8 mmol), and paraformaldehyde (101 mg, 3.33 mmol) were used as per the general procedure and yielded **9d** (224 mg, 72%) as a yellow oil. Spectral data were consistent with those reported.[16]

14. Bohlmann, F.; Sucrow, W.; Queck, I. *Chem. Ber.* **1964**, 97, 2586–2597.

15. Shi Shun, A. L. K.; Tykwinski, J. *Org. Chem.* **2003**, 68, 6810–6813.


16. Luu, T.; Shi, W.; Lowary, T. L.; Tykwinski, R. R. *Synthesis* **2005**, 3167–3178.

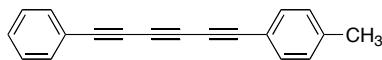
10


Compound 10.¹⁶ Dibromoolefin **6c** (574 mg, 2.07 mmol), BuLi (2.5 M in hexanes, 1.8 mL, 4.5 mmol), and paraformaldehyde (187 mg, 6.22 mmol) were used as per the general procedure and yielded **10** (146 mg, 59%) as a magenta crystalline solid. Spectral data were consistent with those reported.[16]

Procedure for the FBW-Negishi method. Dibromoolefin **6a,b,d,e** (1.0 mmol) in toluene (10 mL) was cooled to $-40\text{ }^{\circ}\text{C}$ under N_2 atmosphere. To this solution with stirring, BuLi (2.5 M in hexanes, 0.90 mL, 2.2 mmol) was added by a syringe over a period of ca. 5 min. The reaction mixture was allowed to slowly warm to $-20\text{ }^{\circ}\text{C}$. The reaction mixture was cooled to $-40\text{ }^{\circ}\text{C}$ again. To this mixture with stirring, ZnCl_2 (0.50 M in THF, 2.4 mL, 1.2 mmol) was added by a syringe over a period of ca. 5 min. The reaction mixture was allowed to slowly warm to $0\text{ }^{\circ}\text{C}$. Aryl halide (1.1 mmol) and $\text{Pd}(\text{PPh}_3)_4$ (58 mg, 0.050 mmol) were added directly under a flow of N_2 , and this mixture was heated up to $70\text{ }^{\circ}\text{C}$. After 20 h, the reaction mixture was filtered through a Celite column. After the solvent was removed under reduced pressure, the residue was purified by column chromatography (silica gel, hexanes/ CH_2Cl_2) to give the target compounds.

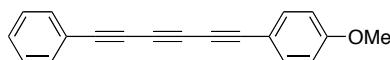
11

Compound 11.¹⁷ Dibromoolefin **6a** (286 mg, 0.998 mmol), BuLi (2.5 M in hexanes, 0.90 mL, 2.3 mmol), ZnCl_2 (0.5 M in THF, 2.4 mL, 1.2 mmol), *p*-tolyl iodide (260 mg, 1.19 mmol), and $\text{Pd}(\text{PPh}_3)_4$ (57 mg, 0.049 mmol) were used as per the general procedure and yielded **11** (195 mg, 90%) as a white solid. ^1H NMR (400 MHz, CDCl_3) δ 7.53–7.51 (m, 2H), 7.42 (d, $J = 8.0\text{ Hz}$, 2H), 7.36–7.30 (m, 3H), 7.14 (d, $J = 8.0\text{ Hz}$, 2H), 2.36 (s, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 139.6, 132.5, 132.4, 129.2, 129.1, 128.4, 121.9, 118.7, 81.9, 81.2, 74.1, 73.3, 21.6.

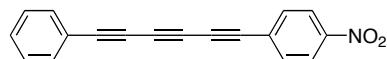

12a

Compound 12a.¹⁸ Dibromoolefin **6b** (150 mg, 0.484 mmol), BuLi (2.5 M in hexanes, 0.45 mL, 1.1 mmol), ZnCl_2 (0.5 M in THF, 1.2 mL, 0.60 mmol), phenyl iodide (121 mg, 0.593 mmol), and $\text{Pd}(\text{PPh}_3)_4$ (27.7 mg, 0.024 mmol) were used as per the general procedure and yielded **12a** (76.1 mg,

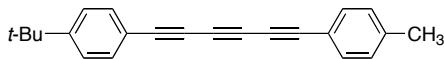
17. Fiandanese, V.; Bottalico, D.; Marchese, G.; Punzi, A. *Tetrahedron Lett.* **2003**, *44*, 9087–9090.


18. Rubin, Y.; Lin, S. S.; Knobler, C. B.; Anthony, J.; Boldi, A. M.; Diederich, F. *J. Am. Chem. Soc.* **1991**, *113*, 6943–6949.

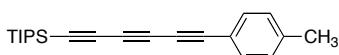
70%) as a white solid. Spectral data were consistent with those reported.[18]


12b

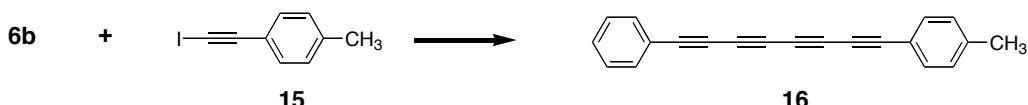
Compound 12b. Dibromoolefin **6b** (312 mg, 1.01 mmol), BuLi (2.5 M in hexanes, 1.0 mL, 2.5 mmol), ZnCl₂ (0.5 M in THF, 2.5 mL, 1.3 mmol), *p*-iodotoluene (234 mg, 1.07 mmol), and Pd(PPh₃)₄ (58 mg, 0.051 mmol) were used as per the general procedure and yielded **12b** (195 mg, 81%) as a white solid. Mp 111–112 °C. *R*_f = 0.6 (hexanes/CH₂Cl₂ 3:1). IR (CHCl₃, cast) 3081, 3018, 2247, 2195 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.32–7.40 (m, 3H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.52 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.7, 66.2, 66.7, 73.9, 74.5, 78.4, 79.0, 117.8, 121.1, 128.5, 129.3, 129.6, 132.9 (2x), 140.2. HRMS calcd. for C₁₉H₁₂ 240.0939, found 240.0934. Anal. calcd. for C₁₉H₁₂: C, 94.97; H, 5.05. Found: C, 95.05; H, 5.08.


12c

Compound 12c. Dibromoolefin **6b** (309 mg, 0.996 mmol), BuLi (2.5 M in hexanes, 0.90 mL, 2.3 mmol), ZnCl₂ (0.5 M in THF, 2.4 mL, 1.2 mmol), *p*-iodoanisole (255 mg, 1.09 mmol), and Pd(PPh₃)₄ (56 mg, 0.049 mmol) were used as per the general procedure and yielded **12c** (203 mg, 80%) as an orange solid. Mp 120–121 °C. *R*_f = 0.6 (hexanes/CH₂Cl₂ 3:2). IR (CHCl₃, cast) 2194, 2174 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.84 (s, 3H), 6.87 (d, *J* = 8.8 Hz, 2H), 7.34–7.40 (m, 3H), 7.50 (d, *J* = 8.8 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.3, 66.0, 66.8, 73.4, 74.6, 78.3, 79.0, 112.8, 114.2, 121.1, 128.5, 129.6, 132.9, 134.7, 160.8. HRMS calcd. for C₁₉H₁₂O 256.0888, found 256.0882. Anal. calcd. for C₁₉H₁₂O: C, 89.04; H, 4.72. Found: C, 89.05; H, 4.69.


12d

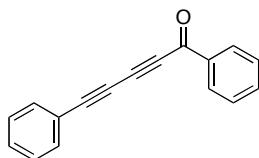
Compound 12d. Dibromoolefin **6b** (233 mg, 0.752 mmol), BuLi (2.5 M in hexanes, 0.70 mL, 1.8 mmol), ZnCl₂ (0.5 M in THF, 1.7 mL, 0.85 mmol), *p*-iodonitrobenzene (222 mg, 0.891 mmol), and Pd(PPh₃)₄ (40 mg, 0.035 mmol) were used as per the general procedure and yielded **12d** (171 mg, 84%) as a yellow solid. Mp 205 °C (decomp). *R*_f = 0.3 (hexanes/CH₂Cl₂ 7:3). IR (CHCl₃, cast) 3103, 3066, 2190, 2174 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.42 (m, 3H), 7.53 (t, *J* = 7.2 Hz, 2H), 7.66 (d, *J* = 8.8 Hz, 2H), 8.19 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 65.5, 69.2, 74.1, 75.9, 79.3, 80.2, 120.6, 123.8, 128.1, 128.6, 130.2, 133.1, 133.7, 147.8. HRMS calcd. for C₁₈H₉NO₂ 271.0633, found 271.0635.


13

Compound 13. Dibromoolefin **6d** (250 mg, 0.683 mmol), BuLi (1.6 M in hexanes, 1.0 mL, 1.6 mmol), ZnCl₂ (0.5 M in THF, 1.5 mL, 0.75 mmol), iodotoluene (150 mg, 0.688 mmol), and Pd(PPh₃)₄ (41 mg, 0.035 mmol) were used as per the general procedure and yielded **13** (123 mg, 60%) as a pale yellow solid. Mp 175 °C (decomp). *R*_f = 0.6 (hexanes/CH₂Cl₂ 4:1). IR (CHCl₃, cast) 3084, 3038, 2962, 2248, 2193 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.30 (s, 9H), 2.35 (s, 3H), 7.12 (d, *J* = 7.6 Hz, 2H), 7.34 (d, *J* = 7.6 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.7, 31.1, 35.0, 66.3, 66.4, 74.0 (2x), 78.8, 78.9, 117.9 (2x), 125.5, 129.3, 132.8, 132.9, 140.1, 153.2. EIMS *m/z* 296.2 (M⁺, 86), 281.1 ([M - CH₃]⁺, 100]); HRMS calcd. for C₂₃H₂₀ 296.1565, found 296.1553. Anal. calcd. for C₂₃H₂₀; C, 93.20; H, 6.80. Found: C, 92.91; H, 6.91.

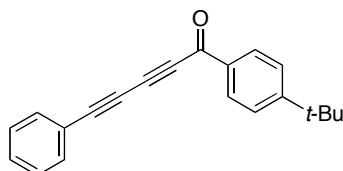
14

Compound 14. Dibromoolefin **6e** (390 mg, 1.00 mmol), BuLi (1.6 M in hexanes, 1.5 mL, 2.4 mmol), ZnCl₂ (0.5 M in THF, 2.5 mL, 1.3 mmol), *p*-iodotoluene (220 mg, 1.01 mmol), and Pd(PPh₃)₄ (57 mg, 0.049 mmol) were used as per the general procedure and yielded **14** (221 mg, 69%) as a white solid. Mp 69 °C. *R*_f = 0.7 (hexanes/CH₂Cl₂ 4:1). IR (CHCl₃, cast) 2891, 2178, 2072 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.11 (m, 21H), 2.37 (s, 3H), 7.14 (d, *J* = 8.4 H, 2H), 7.41 (d, *J* = 8.4 H, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 11.3, 18.5, 21.6, 60.8, 67.0, 73.8, 76.9, 86.4, 89.9, 117.7, 129.3, 133.0, 140.2. EIMS *m/z* 320.2 (M⁺, 34), 277.1 ([M - iPr]⁺, 100); HRMS calcd. for C₂₂H₂₈Si 320.1960, found 320.1958. Anal. calcd. for C₂₂H₂₈Si: C, 82.43; H, 8.80. Found: C, 82.60; H, 8.83.



Compound 16. Dibromoolefin **6b** (310 mg, 1.00 mmol), BuLi (1.6 M in hexanes, 1.5 mL, 2.1 mmol), ZnCl₂ (0.5 M in THF, 2.5 mL, 1.3 mmol), iodoacetylene **15**¹⁹ (251 mg, 1.15 mmol), and Pd(PPh₃)₄ (53.5 mg, 0.046 mmol) were used as per the general procedure and yielded **16** (90.0 mg, 34%) as a yellow solid. Mp 93–94 °C. *R*_f = 0.6 (hexanes/CH₂Cl₂ 4:1). IR (CHCl₃, cast) 2200, 2130 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 3H), 7.13 (d, *J* = 7.9 Hz, 2H), 7.32 (t, *J* = 7.2 Hz, 2H), 7.39 (t, *J* = 7.2 Hz,

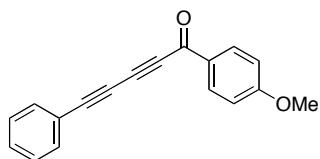
19. Synthesized as reported by Luithle, J.E.A.; Pietruszka, J. *Eur. J. Org. Chem.* **2000**, 2557-2562, with spectroscopic data consistent with that reported by Lee, G. C. M.; Tobias, B.; Holmes, J.M.; Harcourt, D.A.; Garst, M.E. *J. Am. Chem. Soc.* **1990**, *112*, 9330-9336.


1H), 7.42 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H); ^{13}C NMR (100 MHz, CDCl_3) δ 21.7, 63.5, 63.9, 66.9, 67.3, 73.9, 74.5, 77.6, 78.1, 117.3, 120.6, 128.5, 129.4, 130.0, 133.2 (2x), 140.6. HRMS calcd. for $\text{C}_{21}\text{H}_{12}$ 264.0939, found 264.0936. Anal. calcd for $\text{C}_{21}\text{H}_{12}$: C, 95.42; H, 4.58. Found: C, 95.66; H, 4.62.

General procedure for the FBW-Stille method. A solution of **6a, b** (0.70 mmol) in toluene (3.0 mL) was cooled to -40 °C under N_2 atmosphere. To this solution with stirring, BuLi (2.5 M in hexanes, 0.65 mL, 1.6 mmol) was added by a syringe over a period of ca. 5 min. The reaction mixture was allowed to slowly warm to -20 °C. The reaction mixture was cooled to -40 °C again. To this mixture with stirring, Bu_3SnCl (0.45 mL, ρ = 1.2, 0.54 g, ca 1.2 mmol) was added by a syringe over a period of 5 min. The reaction mixture was allowed to slowly warm to rt and stirred for 2 h. Acid chloride (0.70 mmol) and $\text{PdCl}_2(\text{PPh}_3)_2$ (25 mg, 0.035 mmol) in CH_2Cl_2 (15 mL) were added, and this mixture was refluxed overnight. The reaction mixture was cooled to rt. Aqueous KF solution (30 mL) and ether (30 mL) were added and stirred vigorously for 15 minutes. This solution was filtered by using a Celite column. The organic phase was separated, washed with water, and dried over MgSO_4 . After the solvent was removed under reduced pressure, the residue was purified by column chromatography (silica gel, hexanes/ CH_2Cl_2) to give the target compound **18a-e**.

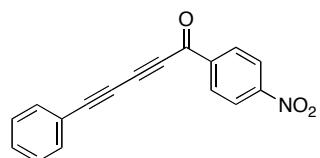
18a

Compound 18a.^{20,21} Dibromoolefin **6a** (143 mg, 0.501 mmol), BuLi (1.6 M in hexanes, 0.70 mL, 1.1 mmol), Bu_3SnCl (0.30 mL, 0.36 mg, 0.80 mmol), benzoyl chloride (73.2 mg, 0.521 mmol), and $\text{PdCl}_2(\text{PPh}_3)_2$ (18 mg, 0.025 mmol) were used as per the general procedure and yielded **18a** (86.8 mg, 75%) as an orange oil. ^1H NMR (400 MHz, CDCl_3) δ 8.17–8.15 (m, 2H), 7.66–7.57 (m, 3H), 7.53–7.43 (m, 3H), 7.40–7.36 (m, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 176.8, 136.5, 134.4, 133.0, 130.5, 129.6, 128.6 (2x), 120.1, 86.3, 77.8, 77.4, 72.4.



18b

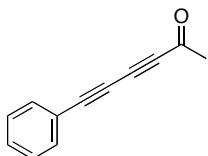
20. Müller, E.; Segnitz, A. *Synth. Commun.* **1970**, 147-149.


21. Nash, B. W.; Thomas, D. A.; Warburton, W. K.; Williams, T. D. *J. Chem. Soc.* **1965**, 2983-2988.

Compound 18b. Dibromoolefin **6a** (199 mg, 0.696 mmol), BuLi (1.6 M in hexanes, 1.0 mL, 1.6 mmol), Bu₃SnCl (0.42 mL, 0.50 g, 1.1 mmol), *p*-*tert*-butylbenzoyl chloride (142 mg, 0.723 mmol), and PdCl₂(PPh₃)₂ (26 mg, 0.036 mmol) were used as per the general procedure and yielded **18b** (142 mg, 71%) as a pale yellow solid. Mp 94 °C. R_f = 0.5 (hexanes/CH₂Cl₂ 1:1). IR (microscope) 3066, 2965, 2211, 2139, 1639 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.34 (s, 9H), 7.35 (t, J = 7.6 Hz, 2H), 7.42 (t, J = 7.6 Hz, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 8.07 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 30.9, 35.2, 72.5, 76.9, 78.0, 86.0, 120.1, 125.6, 128.5, 129.5, 130.4, 132.9, 134.1, 158.4, 176.4. EIMS *m/z* 286.1 (M⁺, 81), 271.1 ([M - CH₃]⁺, 100); HRMS calcd. for C₂₁H₁₈O 286.1358, found 286.1354. Anal. calcd. for C₂₁H₁₈O: C, 88.08; H, 6.34. Found: C, 87.90; H, 6.37.

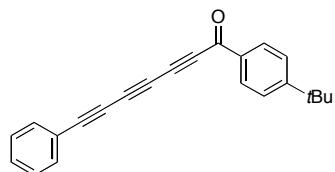
18c

Compound 18c.²² Dibromoolefin **6a** (193 mg, 0.676 mmol), BuLi (2.5 M in hexanes, 0.65 mL, 1.6 mmol), Bu₃SnCl (0.45 mL, 0.54 g, 1.2 mmol), *p*-methoxybenzoyl chloride (120 mg, 0.703 mmol), and PdCl₂(PPh₃)₂ (25 mg, 0.035 mmol) were used as per the general procedure and yielded **18c** (125 mg, 71%) as a pale yellow solid. Mp 96–97 °C. R_f = 0.2 (hexanes/CH₂Cl₂ 1:1). IR (CHCl₃, cast) 3064, 3037, 3020, 2213, 2139, 1607 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.89 (s, 3H), 6.97 (d, J = 6.8 Hz, 2H), 7.38 (t, J = 6.8 Hz, 2H), 7.43 (t, J = 6.8 Hz, 1H), 7.57 (d, J = 7.0 Hz, 2H), 8.12 (d, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 72.6, 76.6, 77.9, 85.8, 113.9, 120.3, 128.6, 130.0, 130.4, 132.0, 133.0, 164.8, 175.4. HRMS calcd. for C₁₈H₁₂O₂ 260.0837, found 260.0834. Anal. calcd. for C₁₈H₁₂O₂: C, 83.06; H, 4.65. Found: C, 83.12; H, 4.66.



18d

Compound 18d. Dibromoolefin **6a** (193 mg, 0.676 mmol), BuLi (2.5 M in hexanes, 0.65 mL, 1.6 mmol), Bu₃SnCl (0.42 mL, 0.50 g, 1.1 mmol), *p*-nitrobenzoyl chloride (130 mg, 0.716 mmol), and PdCl₂(PPh₃)₂ (26 mg, 0.037 mmol) were used as per the general procedure and yielded **18d** (103 mg, 56%) as a pale yellow solid. Mp 127 °C (decomp). R_f = 0.3 (hexanes/CH₂Cl₂ 1:1). IR (CHCl₃, cast)


22. Fukumaru, T.; Awata, H.; Hamma, N.; Komatsu, T. *Agr. Biol. Chem.* **1975**, 39, 519–527.

3102, 2212, 2138, 1638 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 7.38 (t, $J = 7.2$ Hz, 2H), 7.46 (t, $J = 7.2$ Hz, 1H), 7.57 (d, $J = 7.6$ Hz, 2H), 8.30 (m, 4H); ^{13}C NMR (100 MHz, CDCl_3) δ 72.1, 77.1, 79.6, 88.1, 119.7, 123.8, 128.7, 130.4, 130.9, 133.1, 140.6, 151.0, 174.8. EIMS m/z 275.1 (M^+ , 24), 150.1 ($[\text{C}_7\text{H}_4\text{NO}_3]^+$, 74); HRMS calcd. for $\text{C}_{17}\text{H}_9\text{NO}_3$ 275.0583, found 275.0583. Anal. calcd. for $\text{C}_{17}\text{H}_9\text{NO}_3$: C, 74.18; H, 3.30; N 5.09. Found: C, 74.49; H, 3.31; N, 5.11.

18e

Compound 18e.^{20,21} Dibromoolefin **6a** (196 mg, 0.685 mmol), BuLi (1.6 M in hexanes, 1.0 mL, 1.6 mmol), Bu_3SnCl (0.42 mL, 0.50 g, 1.1 mmol), acetyl chloride (61.1 mg, 0.778 mmol), and $\text{PdCl}_2(\text{PPh}_3)_2$ (27 mg, 0.039 mmol) were used as per the general procedure and yielded **18e** (38 mg, 33%) as an unstable orange oil (previously reported as a low temperature melting solid, 38-39 °C), see ref. 20). ^1H NMR (400 MHz, CDCl_3) δ 7.55–7.53 (m, 2H), 7.44 (t, $J = 7.4$ Hz, 1H), 7.36 (t, $J = 7.4$ Hz, 2H), 2.40 (s, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 183.3, 133.0, 130.5, 128.6, 120.1, 86.5, 78.7, 75.0, 72.1, 32.6.

19

Compound 19. Dibromoolefin **6b** (210 mg, 0.648 mmol), BuLi (2.5 M in hexanes, 0.65 mL, 1.6 mmol), Bu_3SnCl (0.45 mL, 0.54 g, 1.7 mmol), 4-*tert*-butylbenzoyl chloride (0.141 g, 0.717 mmol), and $\text{PdCl}_2(\text{PPh}_3)_2$ (24 mg, 0.035 mmol) were used as per the general procedure. While the reaction progressed as for **18b**, with **19** seemingly formed based on TLC analysis, decomposition during workup, isolation, and purification was observed, and compound **19** could not be purified or characterized.

tl-iv-16-me-ac-dibro-ac-H 500 MHz 1D in CDCl₃ (ref. to CDCl₃ @ 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe

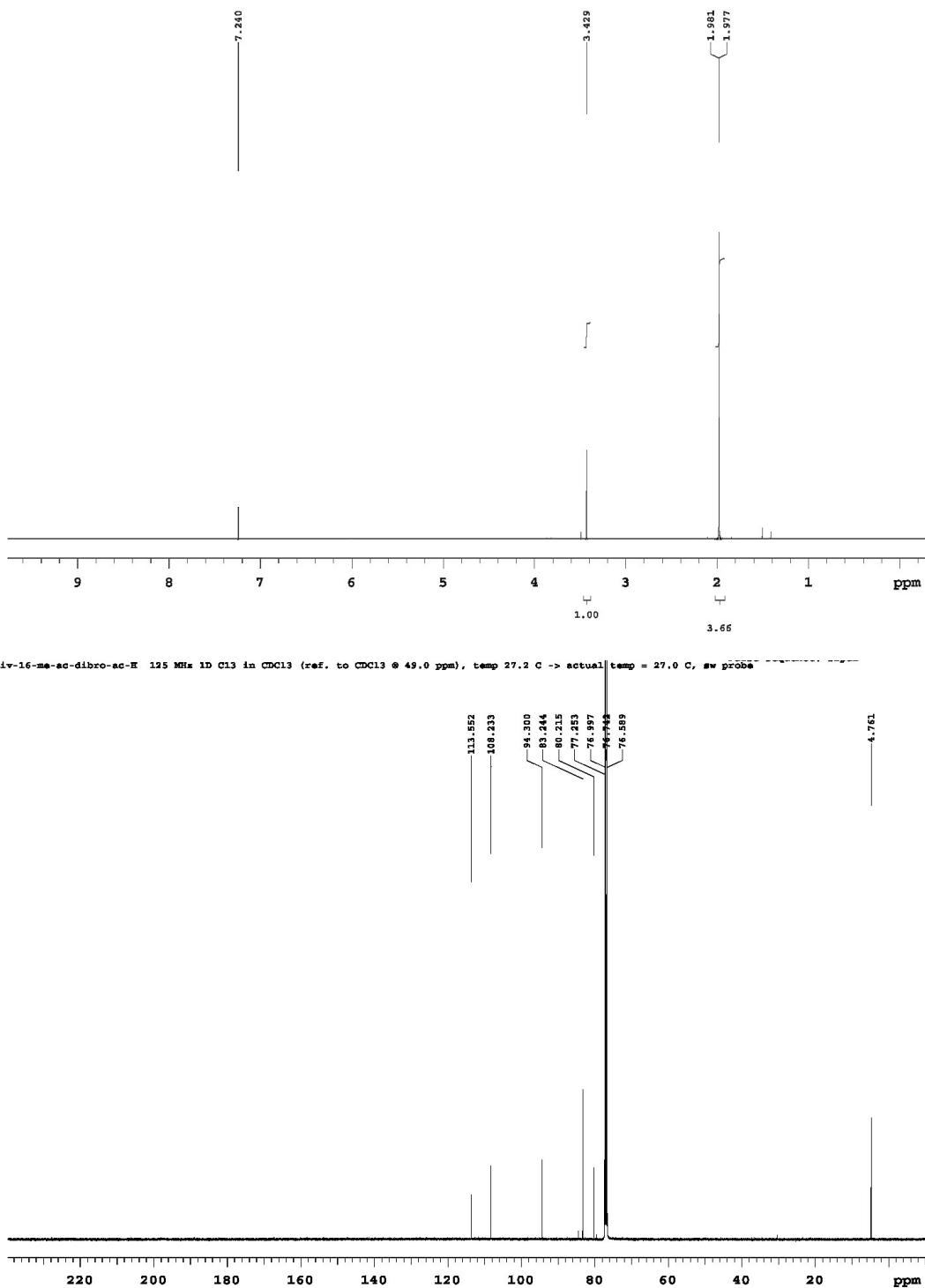


Figure S1-¹H/¹³C NMR spectra of 6c

t1-iii-137-tips-ac-dibr-ac-H 500 MHz 1D in CDCl₃ (ref. to CDCl₃ @ 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe

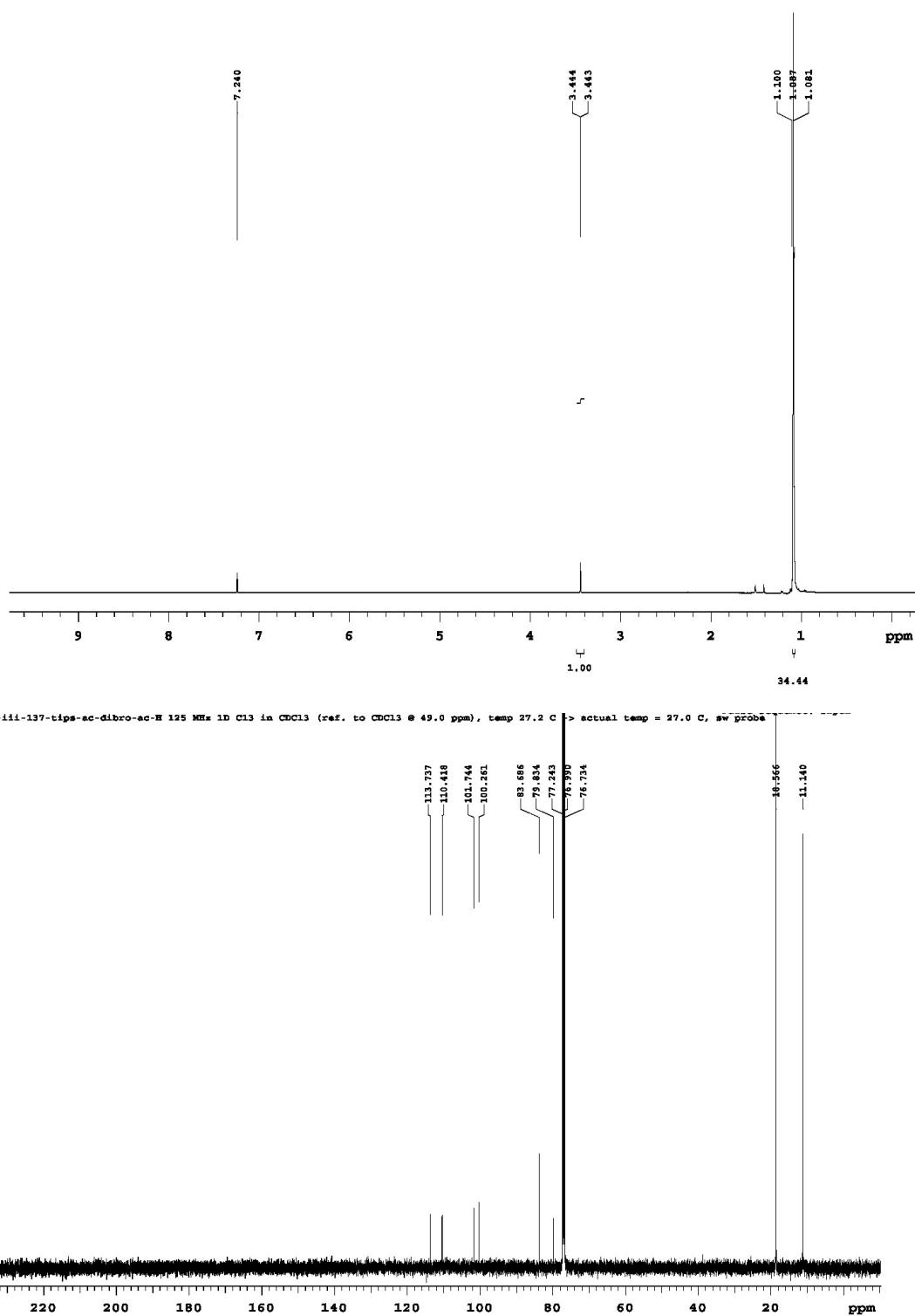
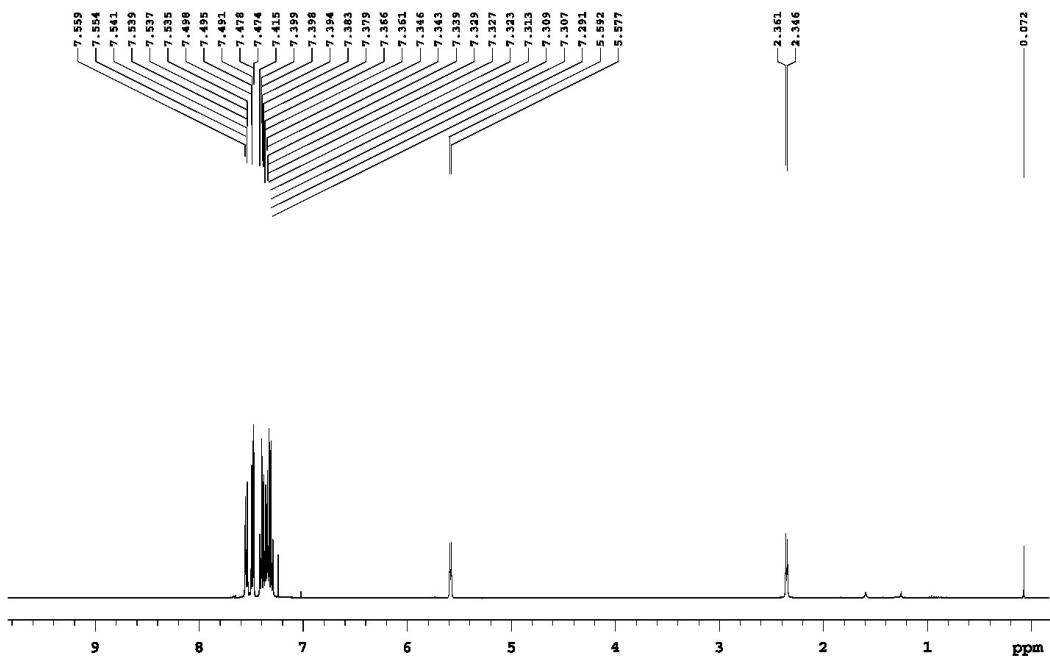



Figure S2-¹H/¹³C NMR spectra of **6e**

tl-iv-42-phe-diac-oh-ph 400 MHz 1D in CDCl₃ (ref. to CDCl₃ @ 7.26 ppm), temp 26.8 C -> actual temp = 27.0 C, asw400 probe

tl-iv-42-phe-diac-oh-phs 100 MHz 1D C13 in CDCl₃ (ref. to CDCl₃ @ 77.0 ppm), temp 26.8 C -> actual temp = 27.0 C, asw400 probe

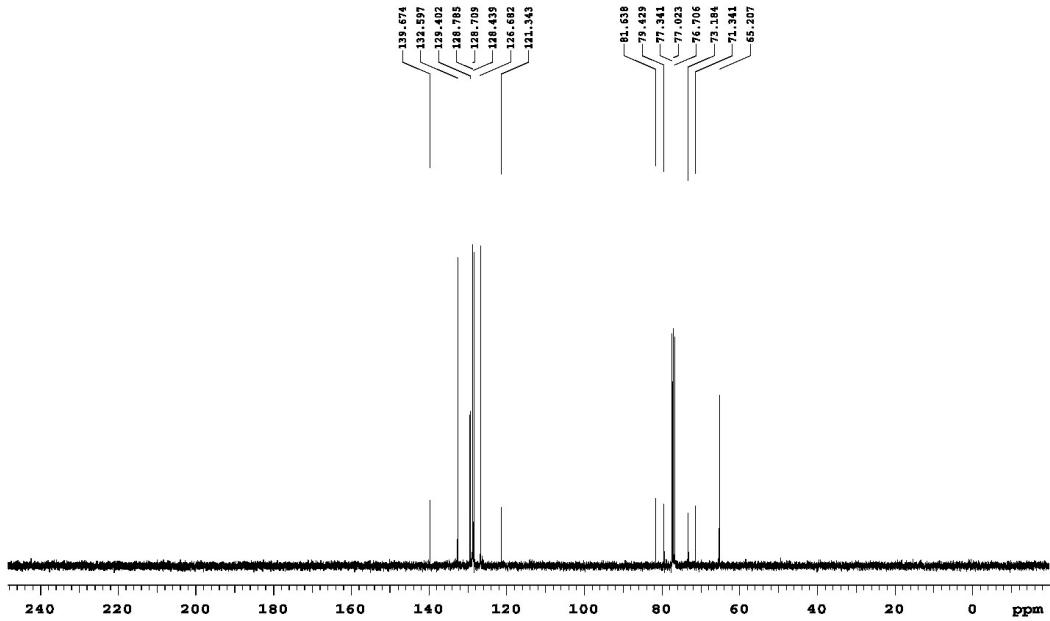


Figure S3-¹H/¹³C NMR spectra of **8a**

tl-iv-48-phe-diaice-oh-phe-meo 400 MHz 1D in CDCl₃ (ref. to CDCl₃ @ 7.26 ppm), temp 26.8 C -> actual temp = 27.0 C, asw=400 probe

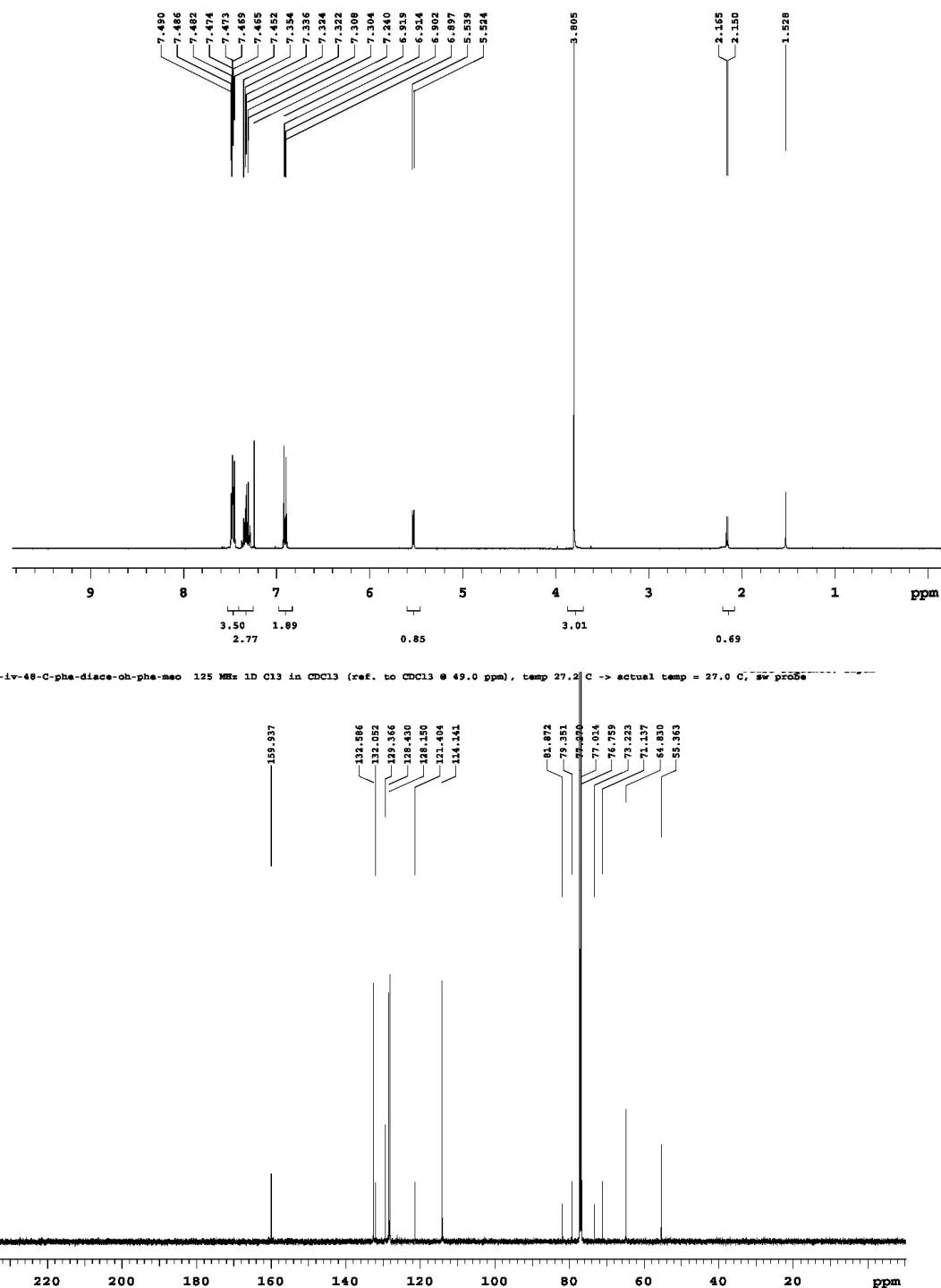


Figure S4-¹H/¹³C NMR spectra of **8c**

tl-v-09-phe-diace-coh-ac-tips 400 MHz 1D in CDCl₃ (ref. to CDCl₃ @ 7.26 ppm), temp 26.6 C -> actual temp = 27.0 C, asw400 probe

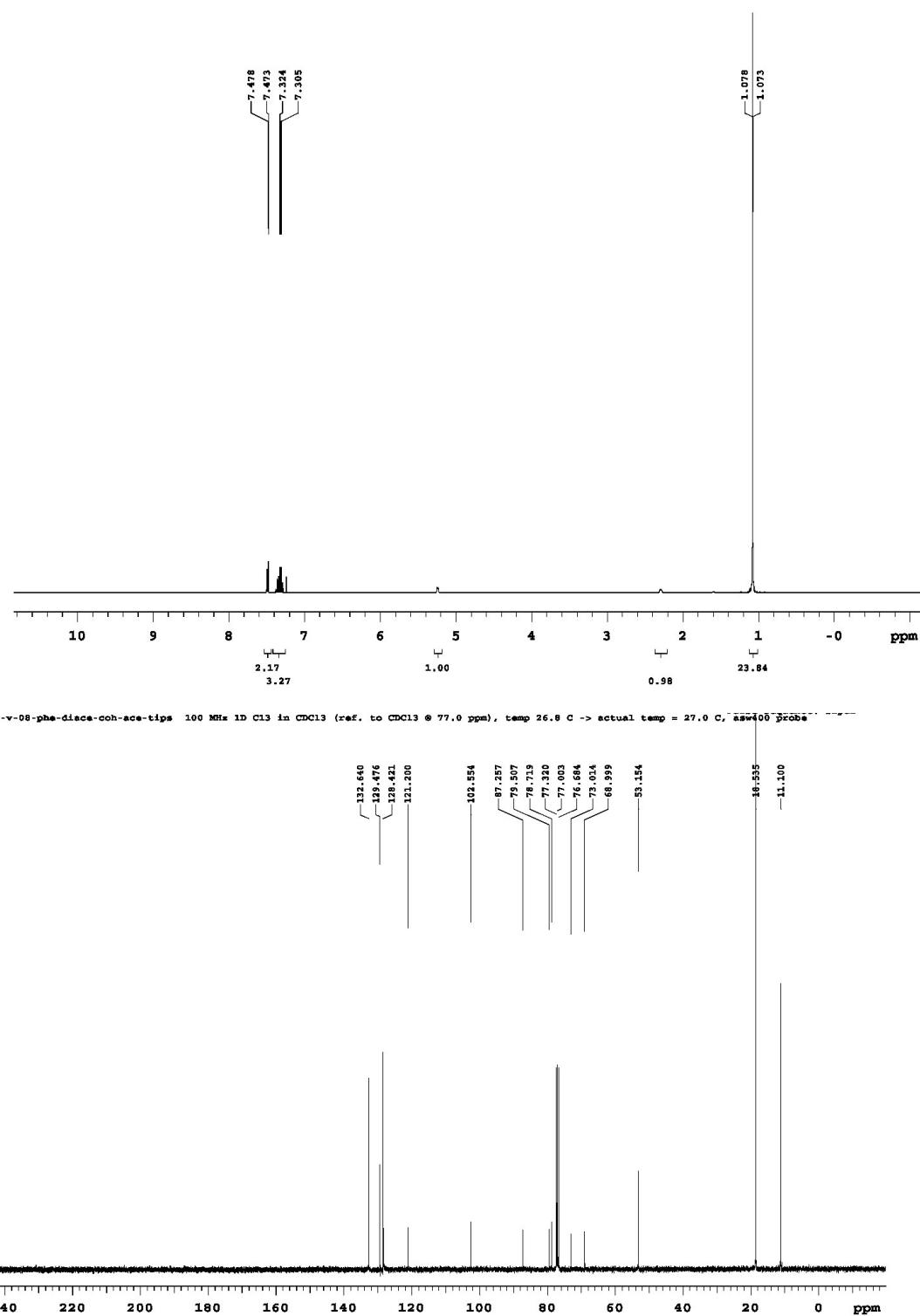


Figure S5-¹H/¹³C NMR spectra of **8e**

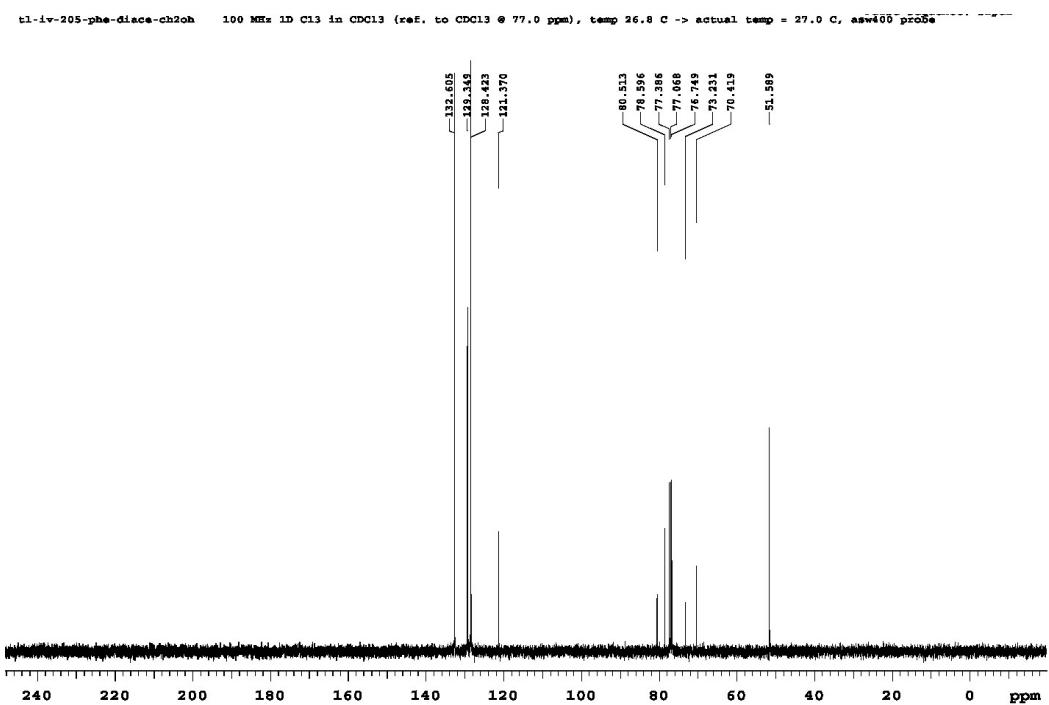
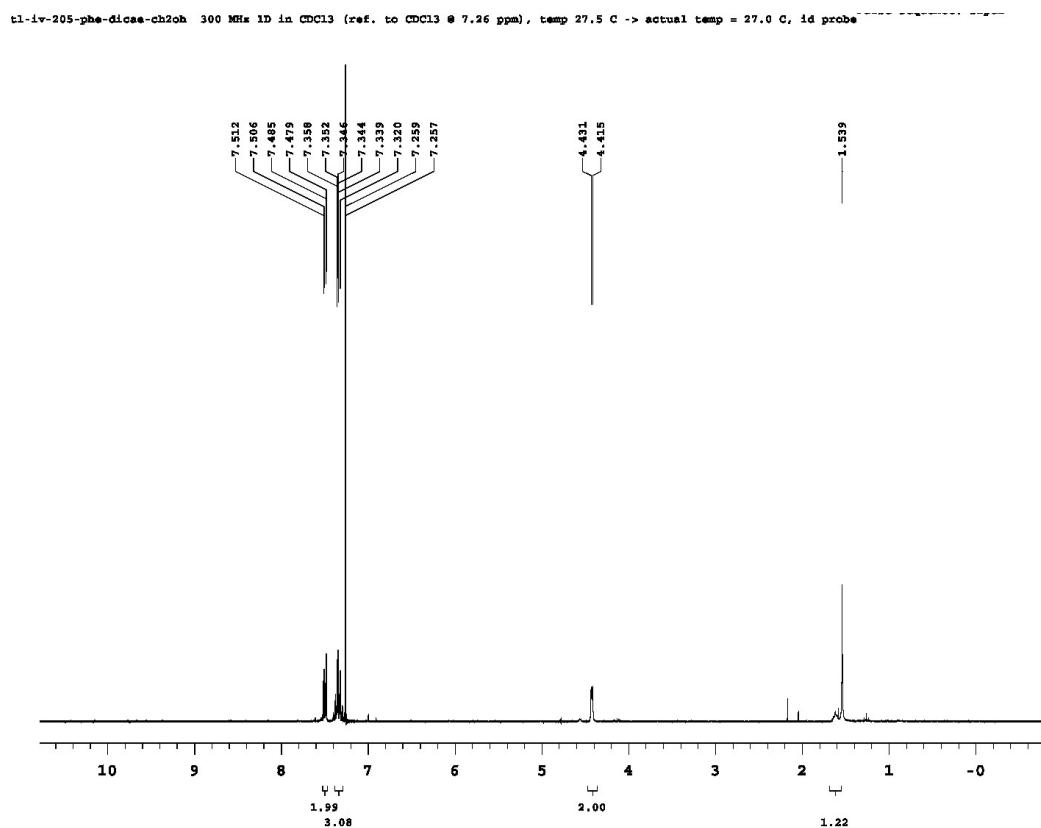



Figure S6-¹H/¹³C NMR spectra of **8f**

t1-6-173-phe-diace-coh-bis-ace-tips 300 MHz 1D in CDCl₃ (ref. to CDCl₃ @ 7.26 ppm), temp 27.5 C -> actual temp = 27.0 C, 1D probe

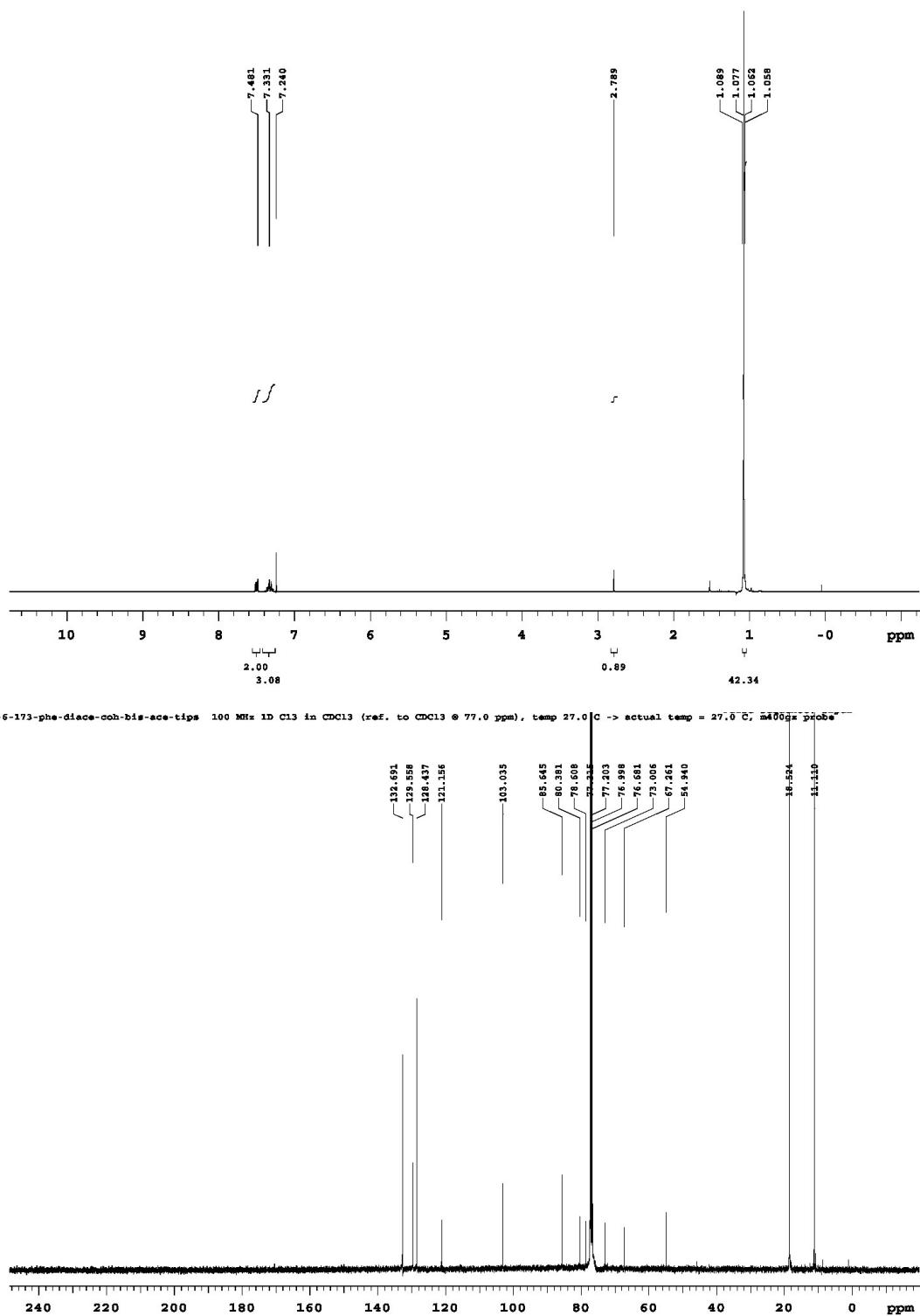


Figure S7-¹H/¹³C NMR spectra of **8g**

tl-v-68-phe-triace-coh-phe 400 MHz 1D in CDCl₃ (ref. to CDCl₃ @ 7.26 ppm), temp 26.8 C -> actual temp = 27.0 C, asw400 probe

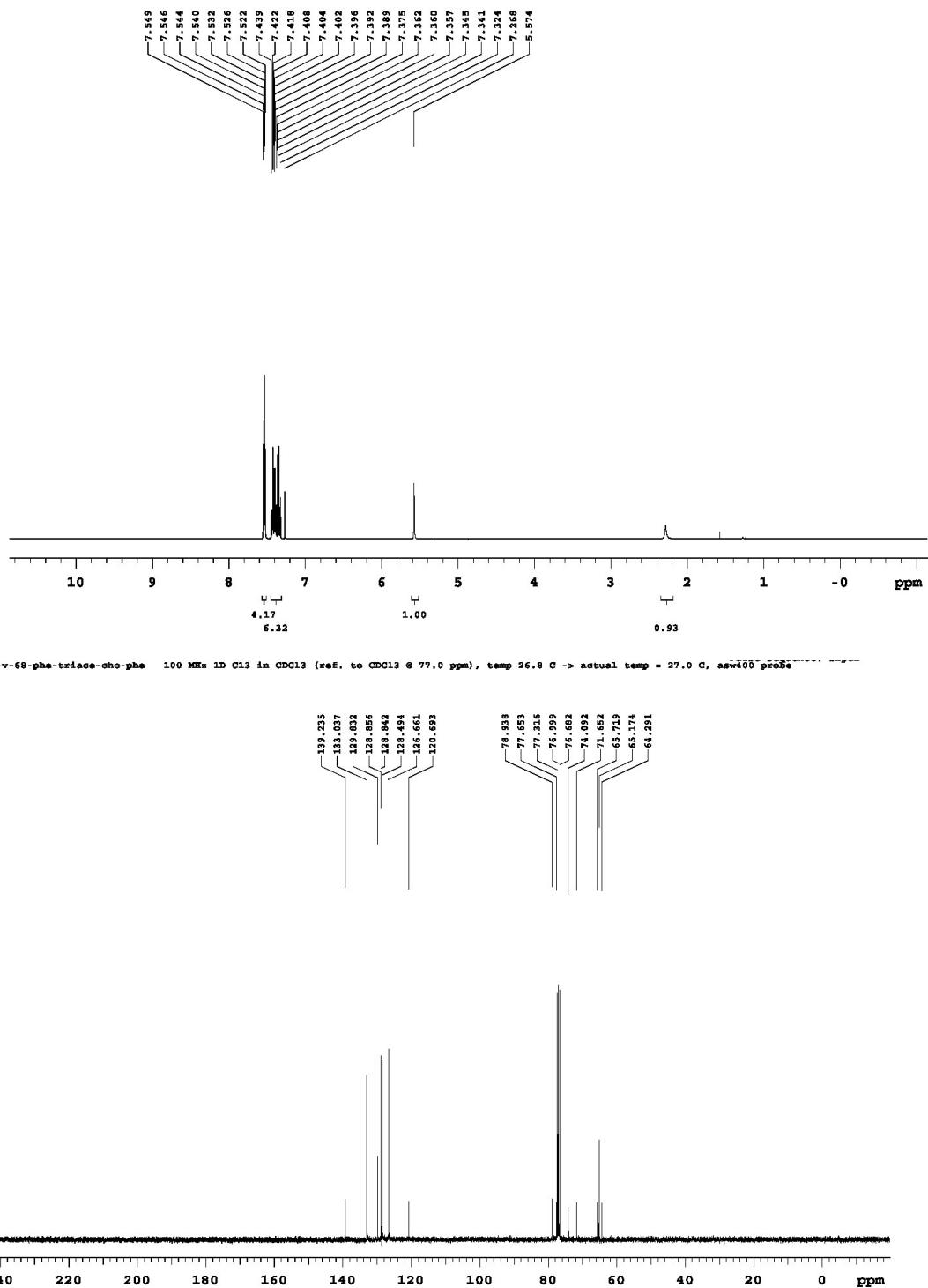
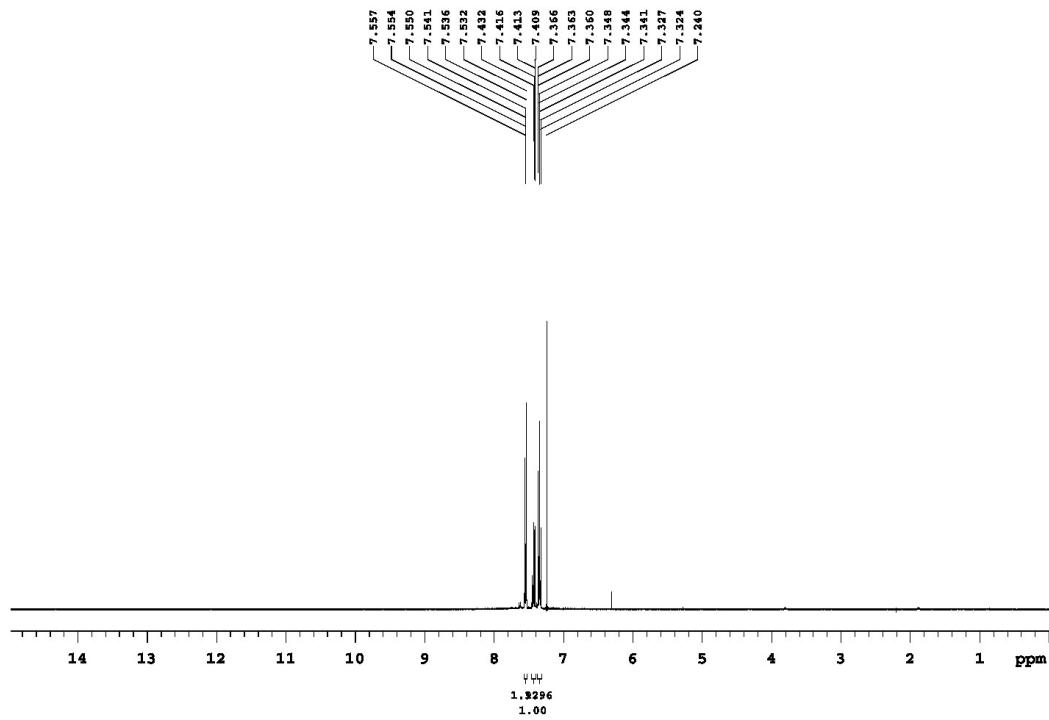



Figure S8-¹H/¹³C NMR spectra of **9a**

tl-iv-198-phe-triace-cooh 400 MHz 1D in CDCl₃ (ref. to CDCl₃ @ 7.26 ppm), temp 26.8 C -> actual temp = 27.0 C, asw400 proba

tl-iv-198-phe-triace-cooh 125 MHz 1D C13 in CDCl₃ (ref. to CDCl₃ @ 49.0 ppm), temp 27.2 C -> actual temp = 27.0 C, sw proba

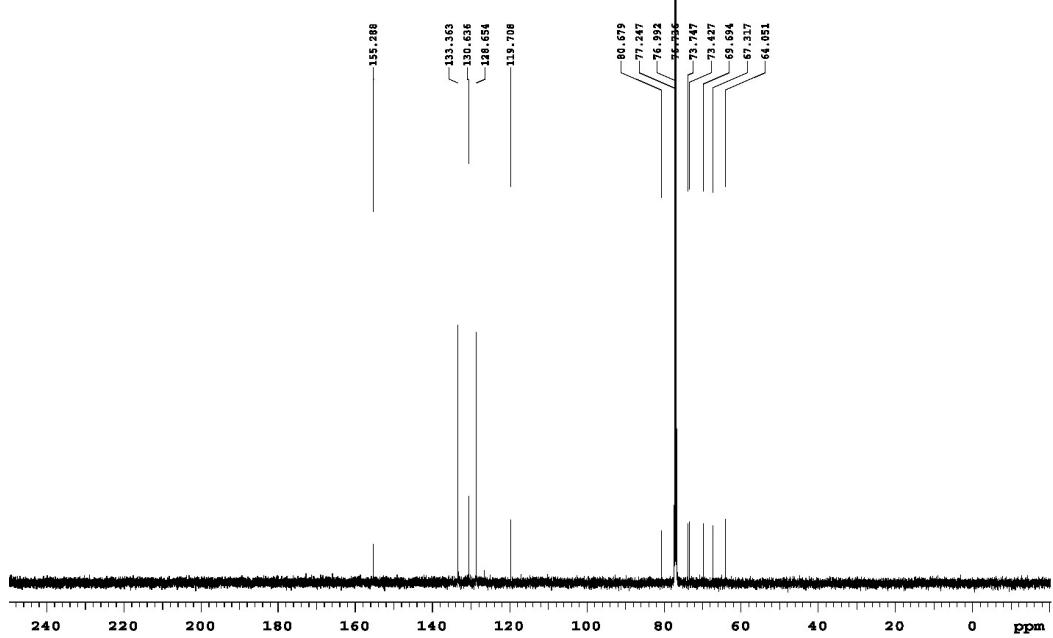
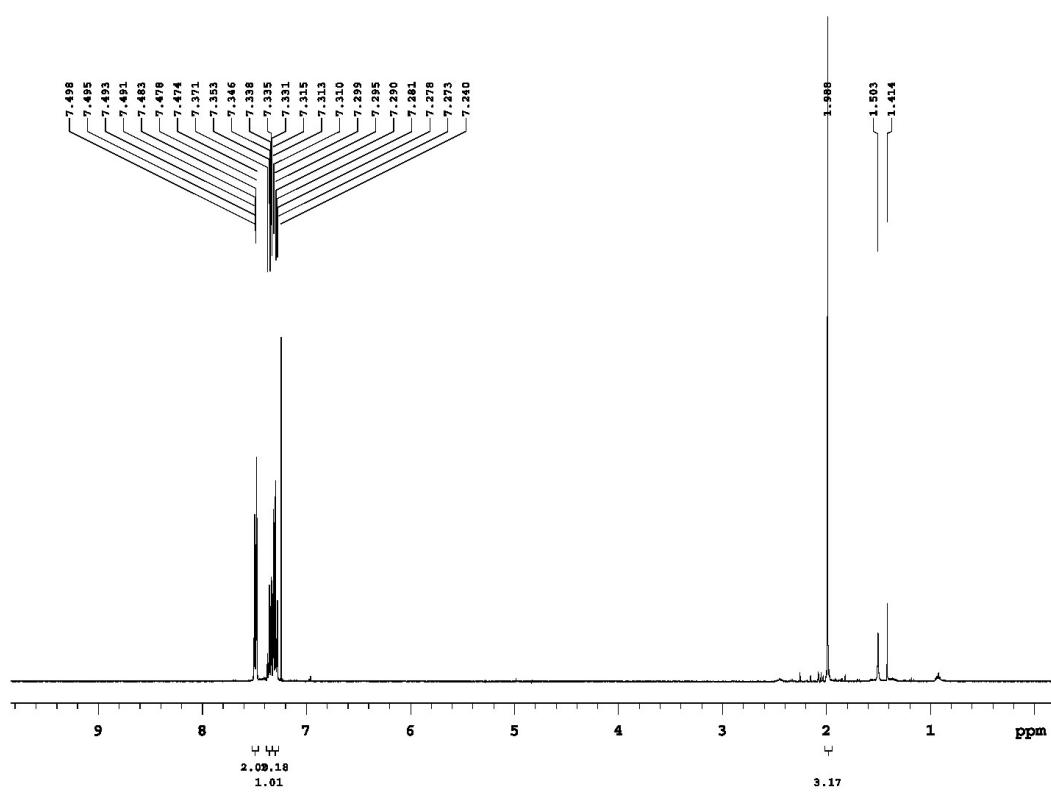



Figure S9-¹H/¹³C NMR spectra of **9b**

tl-iv-170-phe-triace-me 400 MHz 1D in CDCl₃ (ref. to CDCl₃ @ 7.26 ppm), temp 26.8 C -> actual temp = 27.0 C, asw400 probe

tl-iv-170-phe-triace-me 100 MHz 1D C13 in CDCl₃ (ref. to CDCl₃ @ 77.0 ppm), temp 26.8 C -> actual temp = 27.0 C, asw400 probe

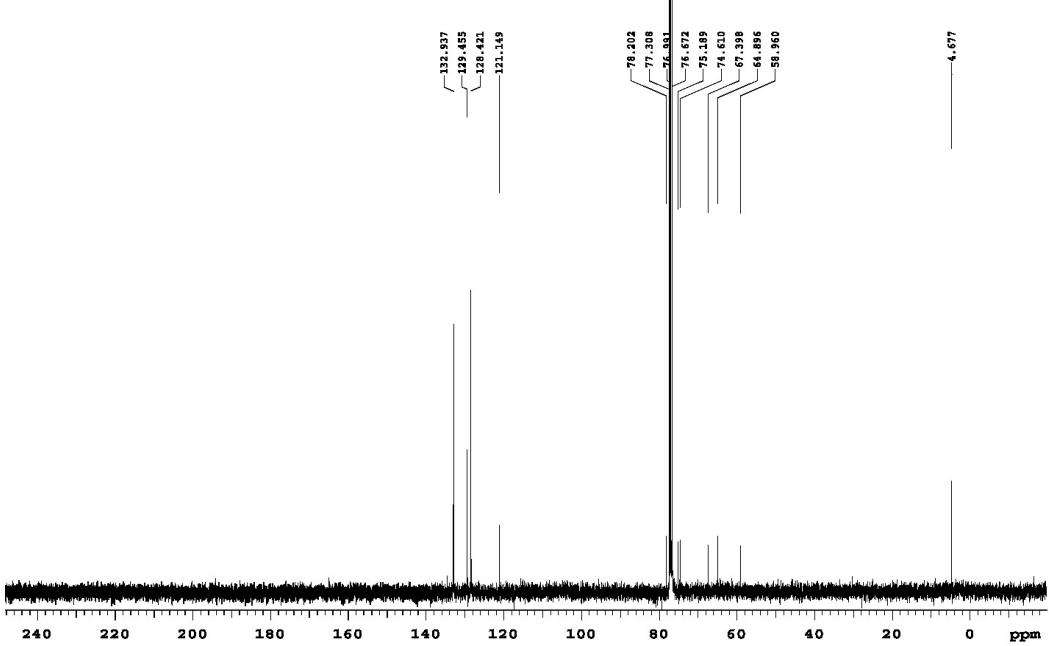
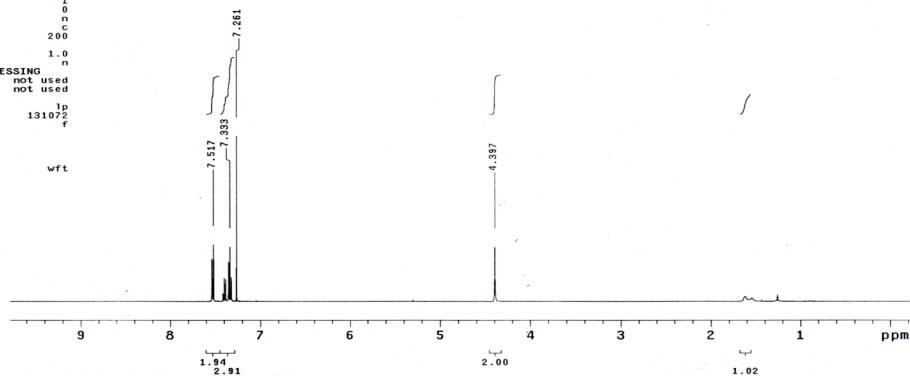



Figure S10-¹H/¹³C NMR spectra of **9c**

tl-ii-178 phenyl-triace-pro-OH 500 MHz 1
D in CDCl₃ (ref. to CDCl₃ @ 7.26 ppm), t
exp 29.2 C → actual temp = 27.0 C, sw50
0 probe

exp1 s2pul
SAMPLE DEC. & VT
date Apr 27 2004 dfreq 498.122
solvent CDCl₃ dn H1
f1 13C 200.122 pw1 3
ACQUISITION d1f1 0
sfrq 498.122 dof mnn
in 1.897 d1m 6
at 1.897 dmf 200
np 32 d1sw 1.0
sw 5006.3 dres 1.0
fb not used homo
bs temp 27.2
ss 2 d1sw2 DEC2
tpwr 50 dfrq2 0
pw 5.6 d1sw3 1
d1 3.000 d1sw2 1
tof -100.1 d1sw2 0
nt 18 d1sw2 0
ct 16 dmm2 c
alock 32 dse2 200
gain 32 dse2 200
FLAGS dres2 1.0
il n homo2 n
in n d1sw3 0
dp y dfrq3 0
hs n y dfrq3 0
DISPLAY 132.7 d1sw3 1
wp 5006.2 d3 0
vs 44 dmm3 c
sc 32 dse2 200
wc 200 dse3 0
hzmm 25.37 dres3 1.0
is 200.37 homo3 0
rf1 3739.2 g PROCESSING
rfp 3600.0 of not used
th 12 w1file 1p
ins 2.000 fn 131072
nm ph math f
werr
wexp
wbs
wnt wft

Thanh Luu TL-II-178
125.7 MHz ¹³C[1H] in CDCl₃

exp2 s2pul
SAMPLE DEC. & VT
date Apr 28 2004 dfreq 499.829
solvent CDCl₃ dn H1
f1 13C 200.122 pw1 42
nmrdata/4000.0 d1sw 0
APRIL2004/ap28u5 T- dm YYY
L-II-178_13C.fid dmm w
ACQUISITION d1f1 8333
sfrq 125.683 d1sw1
in 13C dres 1.0
at 2.000 homo n
np 100000 d1f1 0
sw 2500.0 dfrq2 DEC2
fb 13800 dn2 0
bs 4 d1sw2 1
ss 2 d1f2 0
tpwr 60 d1sw2 0
pw 3.0 dmm2 c
d1 0 dmf2 10000
tof 100000 dse2 1.0
ct 3232 homo2 n
alock 32 d1sw2 n
gain not used 1b 0.50
FLAGS w1file ft
il n w1file ft
in nn fn 262144
dp y math f
hs nn
DISPLAY werr
sp -582.9 wexp
wp 23250.9 wbs
vs 151.0 wnt
sc 0
wc 185
hzmm 2.25
is 500.00
rf1 10267.9
rfp 9685.0
th 5
ins 100.000
nm cdc ph

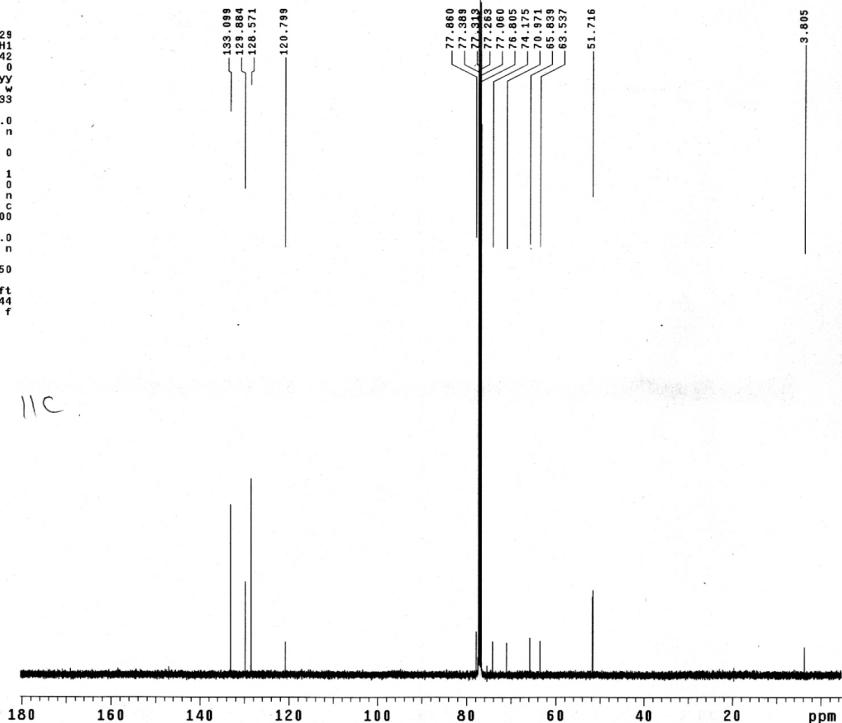


Figure S11-¹H/¹³C NMR spectra of 9d

tl-iv-20-me-triace-pro-OH 400 MHz 1D in CDCl₃ (ref. to CDCl₃ @ 7.26 ppm), temp 26.8 C -> actual temp = 27.0 C, asw400 probe

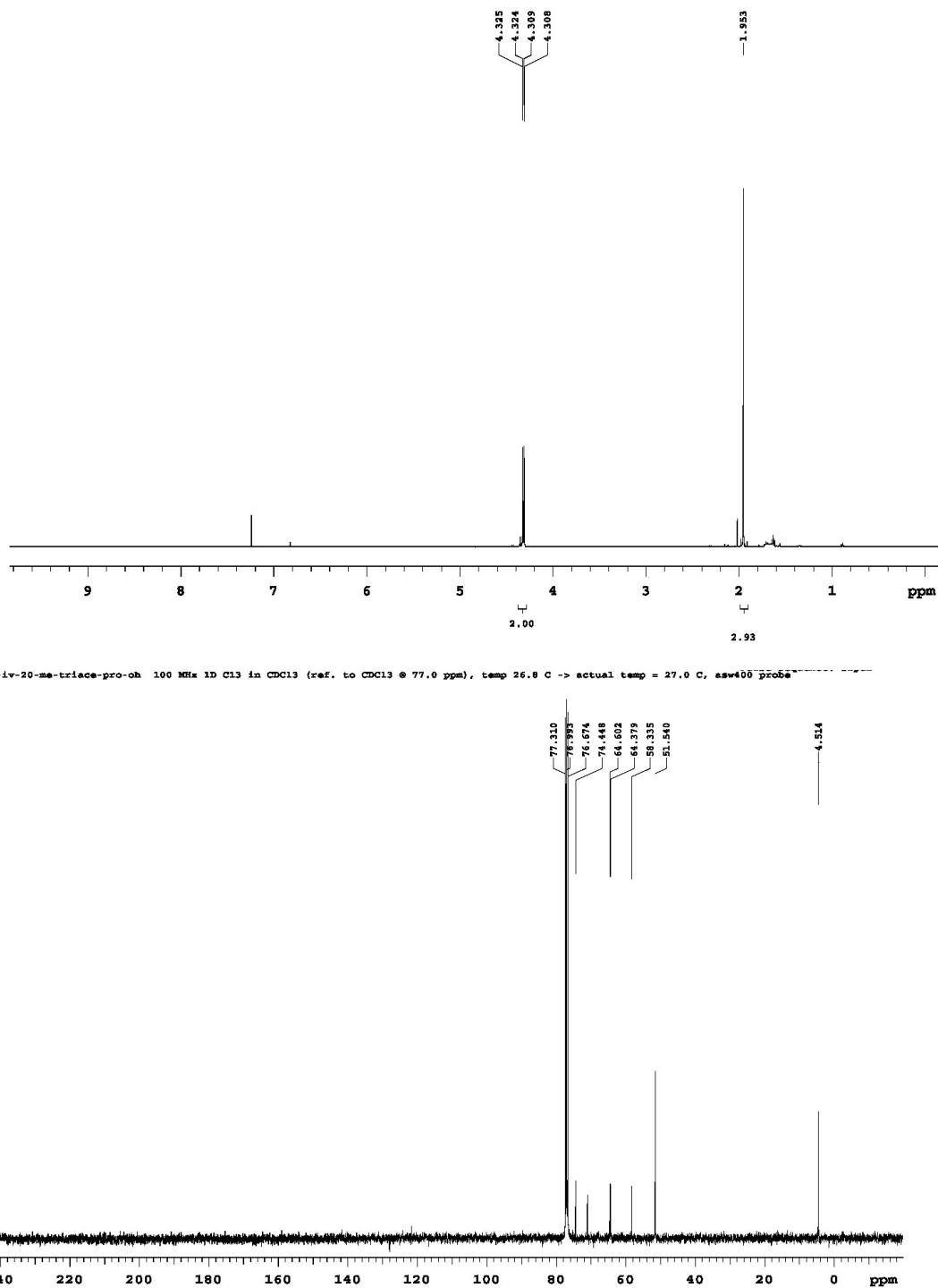


Figure S12-¹H/¹³C NMR spectra of **10**

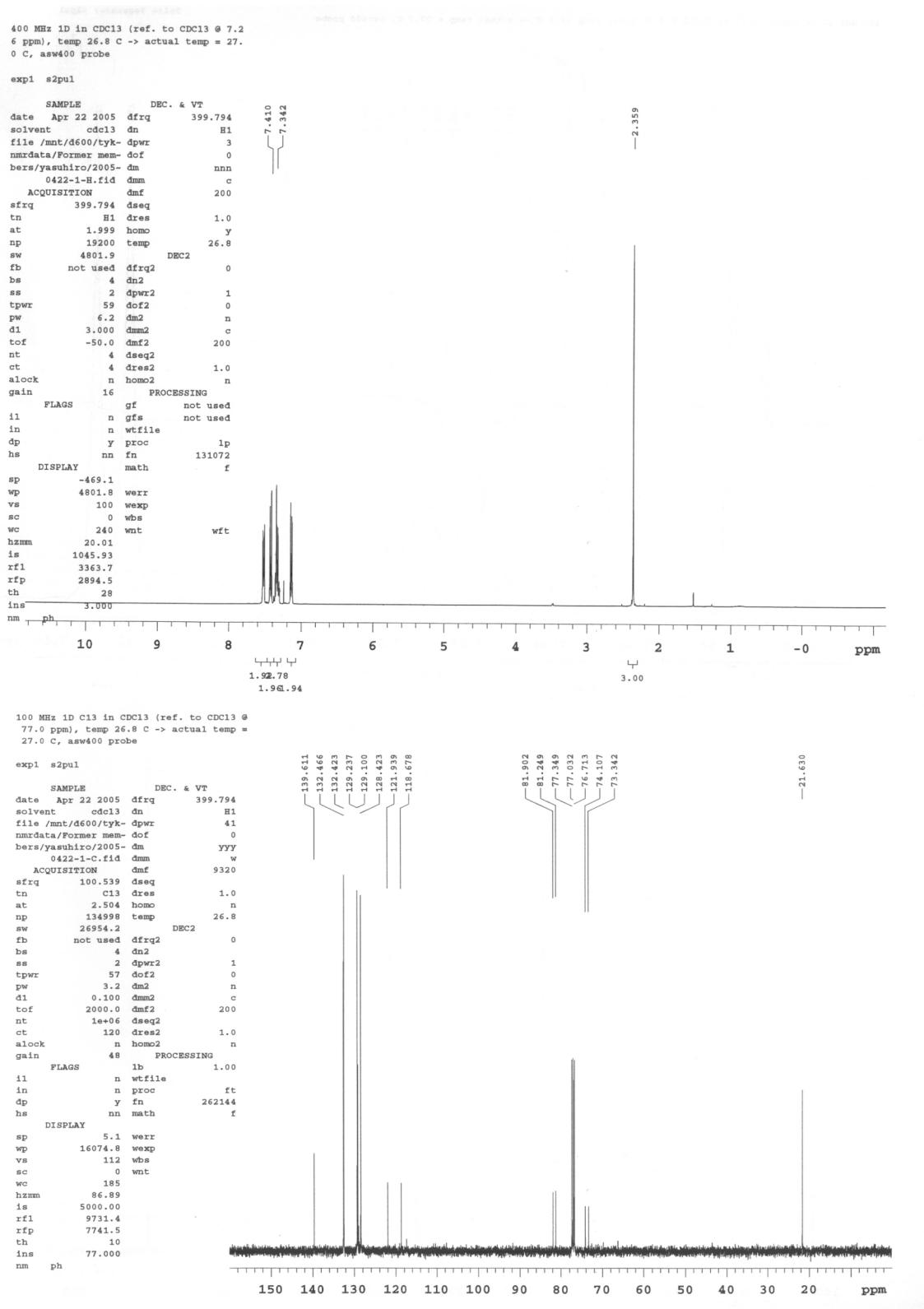
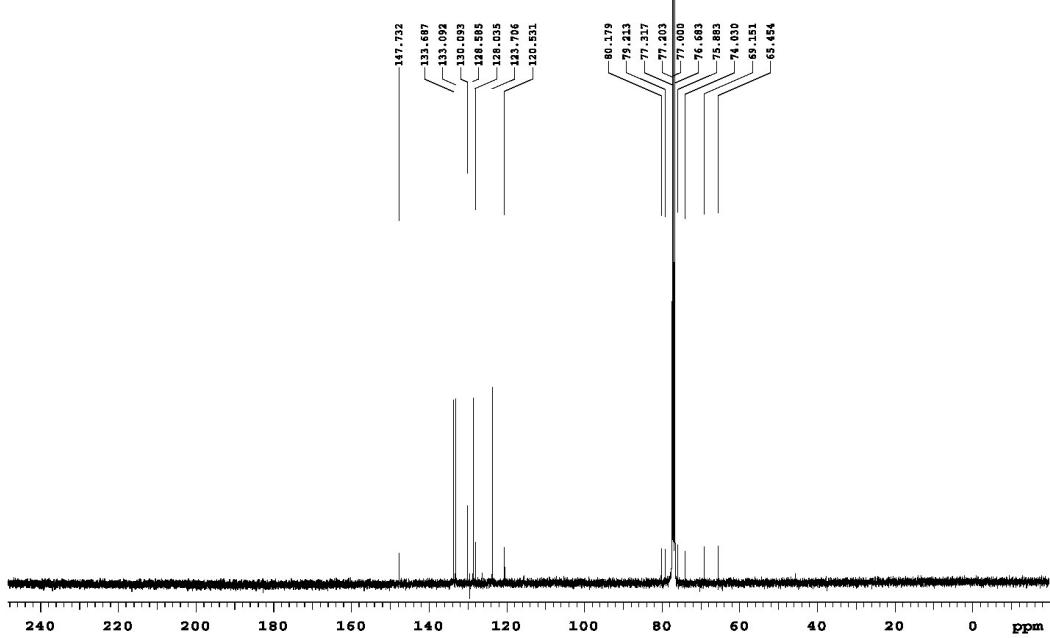
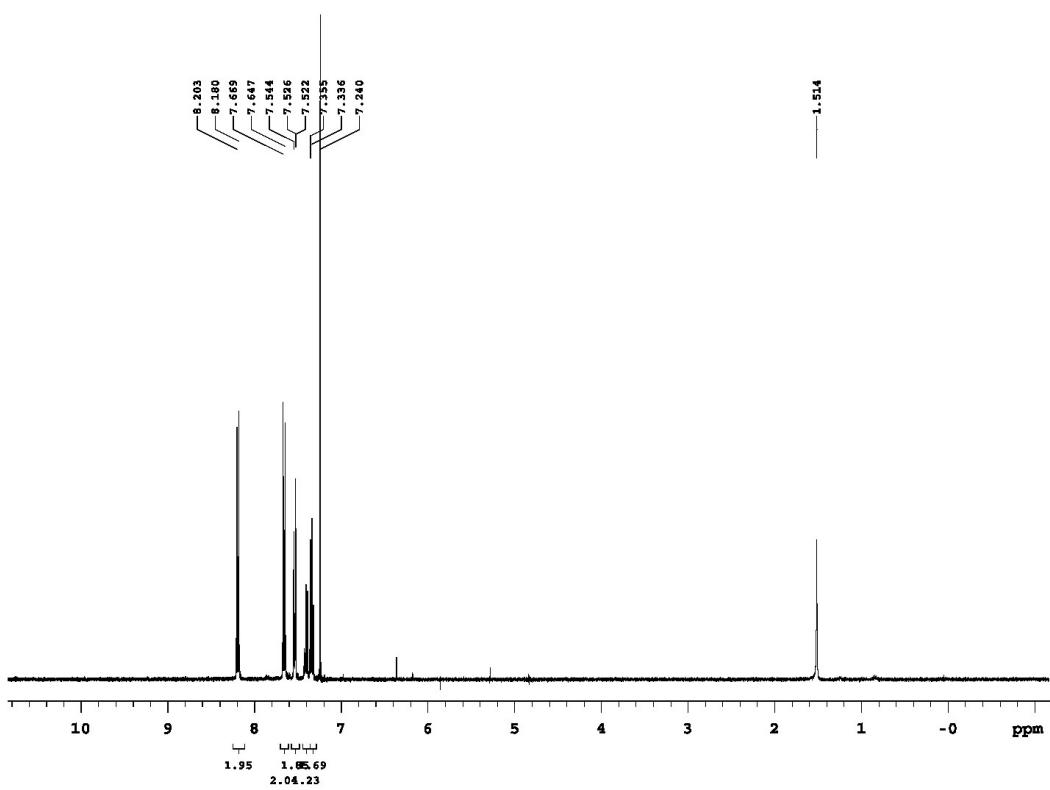




Figure S13-¹H/¹³C NMR spectra of **11**

t1-6-187-T 400 MHz 1D in CDCl₃ (ref. to CDCl₃ @ 7.26 ppm), temp 26.8 C -> actual temp = 27.0 C, asw400 probe

400 MHz 1D in CDCl₃ (ref. to CDCl₃ @ 7.26 ppm), temp 27.0 C -> actual temp = 27.0 C, m400gx probe

100 MHz 1D C13 in CDCl₃ (ref. to CDCl₃ @ 77.0 ppm), temp 27.0 C -> actual temp = 27.0 C, m400gx probe

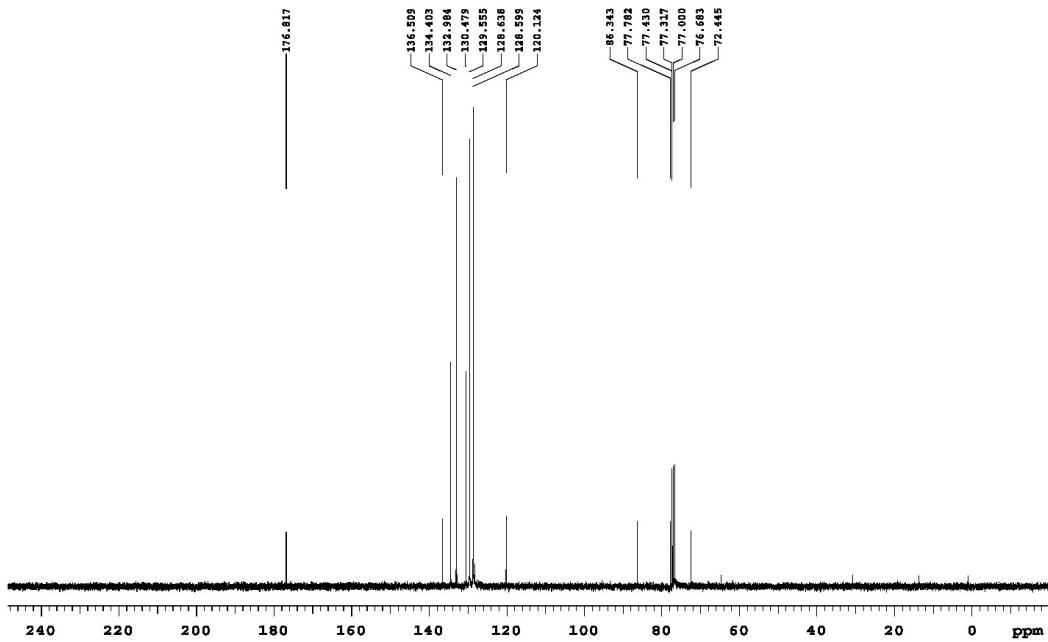


Figure S15-¹H/¹³C NMR spectra of **18a**

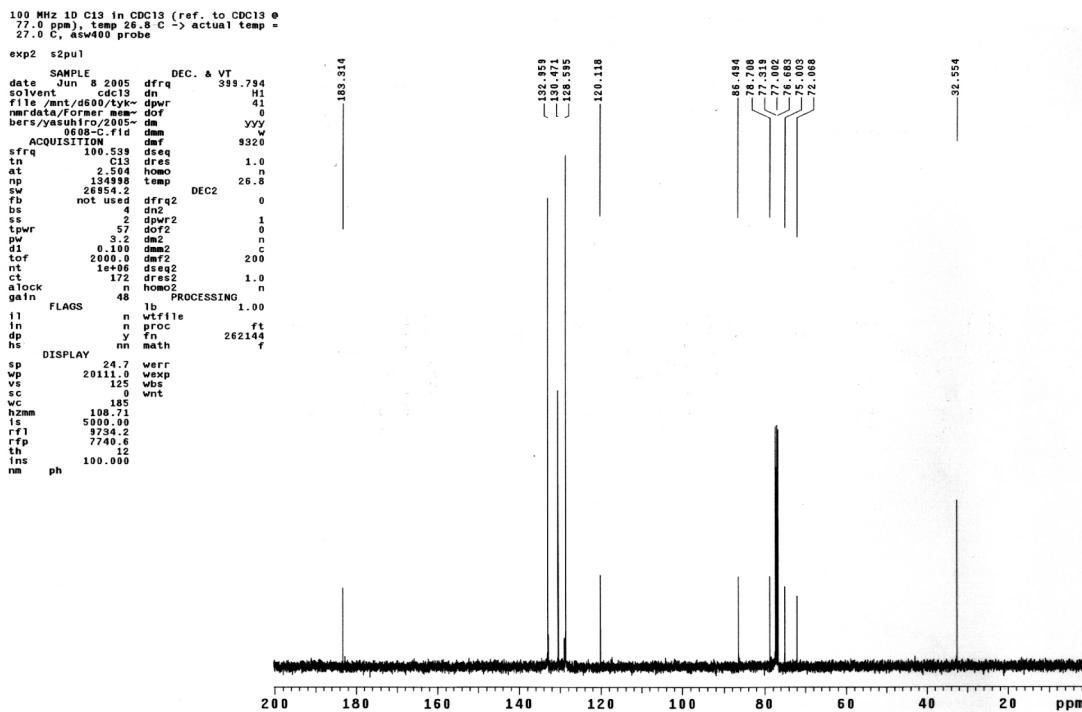
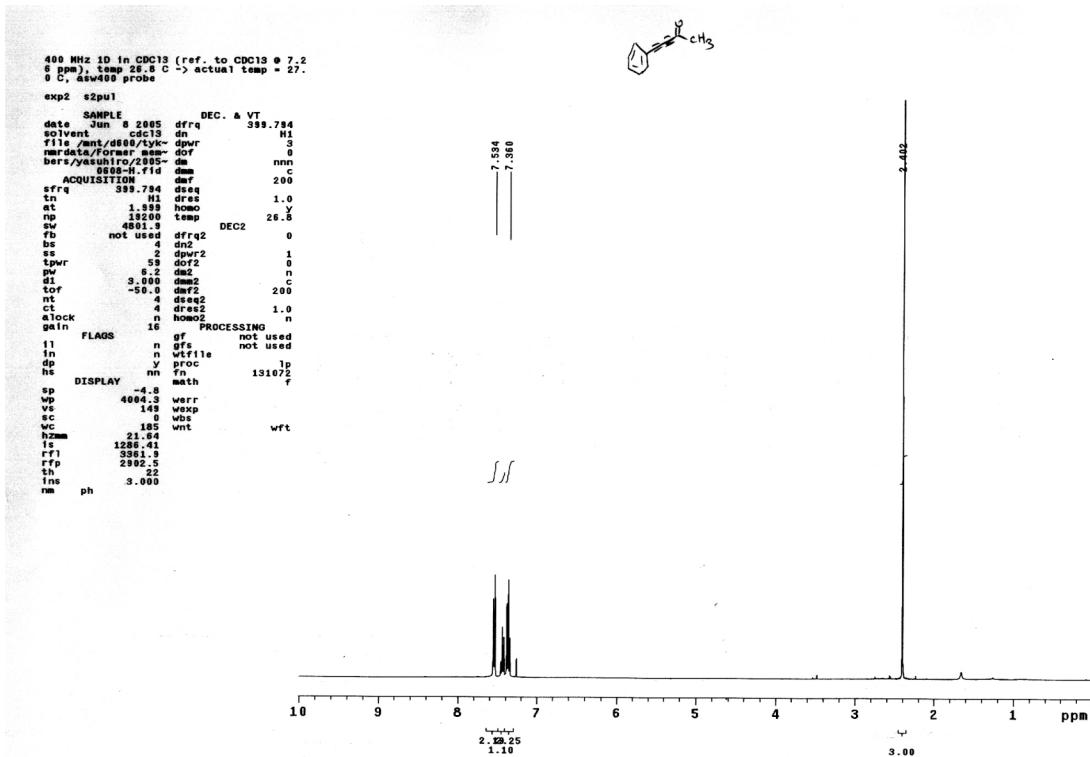



Figure S16- $^1\text{H}/^{13}\text{C}$ NMR spectra of **18e**