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Figure S1. Powder XRD pattern of the as-prepared f-Ni(OH), nanoplate precursor.
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Figure S2. Phase composition analysis of the Ni,Py-T catalysts: (a) Ni,Py-275 (b) NiPy-325 (¢) NiPy-375
(d) Ni Py-475.
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Figure S3. TEM image of as-prepared (a) NiPy-275, (b) Ni,Py-375 and (¢) Ni,Py-475.

0.5
| ——NixPy-325 (pH=0)
—e— NixPy-325 (pH=14)
0.4
S 0.3
Ll
v
o 0-2-
>
Ll
0.1
0.0 Y
-2 -1 2

log (|(mA/cm?)|)
Figure S4. Derived exchange current densities of the Ni,P,-325 catalysts in various pH environments by

applying extrapolation method to the Tafel plots.
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TOF calculation:

An electrochemical cyclic voltammetry test was employed to quantify the active sites of the
NixP,-T nanocatalysts in 1.0 M PBS (pH=7.0) with a potential window from —0.2 to 0.6 V vs RHE
at a scan rate of 50 mV/s (Figure S3).' Assuming one electron redox process, the integrated charge over
the whole potential range was divided by two. Then, the value was divided by the Faraday constant to get
the number of active sites for different samples. The turnover frequency (s™) can be estimated according to
this equation’:

TOF = I/2nF
where / represents the current density for different samples during the LSV measurement in 0.5 M H,SOy,

F is the Faraday constant (C/mol), and # is the number of the active sites (mol) for different samples.

100
504
— 04
g !
2 -50 4
E
= -1004 —— NixPy-275
1 —— NixPy-325
-1504 —— NixPy-375
—— NixPy-475
-200 ——— e .
-0.2 0.0 0.2 0.4 0.6
E vs RHE (V)

Figure SS. The cyclic voltammetries for the Ni,P,-T catalysts in 1.0 M PBS at a scan rate of 50 mV/s.
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Figure S6. The calculated TOF curves for the Ni,P,-T catalysts in 0.5 M H,SO, electrolyte.
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Figure S7. Nyquist plots for the NiP,-T catalysts in 0.5 M H,SOj4 electrolyte. The scattered symbols
represent the experimental results and the solid lines are simulation fitted results. The inset at the top shows
the equivalent circuit for the simulation. Electrochemical impedance spectroscopy of the catalysts was
carried out on an electrochemistry workstation (AUTOLAB PGSTAT204) under an overpotential of

10 mV within a frequency window of 100 kHz to 0.1 Hz.
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Figure S8. The pH monitoring in 0.5 M H,SO4 electrolyte after the HER catalytic durability

measurement for the NiPy-325.
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Figure S9. The pH monitoring in 1.0 M KOH electrolyte after the HER and OER catalytic durability

measurement for the NiPy-325.
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Figure S10. The XRD patterns (a) and XPS spectra of Ni 2p region (b) for the Ni,P,-325 catalyst before
and after HER in alkaline (1.0 M KOH) and acid (0.5 M H,SO,) media respectively.
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Figure S11. (a) XRD patterns of the NiP-325 catalyst before and after OER in 1.0 M KOH. The XPS

spectra of (b) Ni 2p and (c¢) P 2p region of the Ni,Py-325 catalyst before and after OER in 1.0 M KOH.

Figure S12. A photograph of the Ni,Py-325 " Ni,P,-325 water electrolyzer.
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Table S1. Comparison of HER performance of NicPy-325 in acid environment with the nickel- and

cobalt-based phosphides.

Exchange
Catalyst 120 (mV) Tafel slope (mV/dec) current density  References
(mA/cm’)
NP 130 46 3.3x10°73 3
nanoparticles
NisPs 175 0 0.057 4
nanocrystals
Nii2Ps 141 63 - 5
nanoparticles
NisP4-NizP 140 79.1 0.116 6
nanosheet
Ni,P NPs/Ti 138 60 - 7
Ni,P/C 115 54 - 8
CoP 85 50 0.14 9
nanoparticles
CoP 100 51 0.288 2
nanowires
CoP/CNT 160 54 0.13 10
CozP 167 51.7 - 1
nanorods
NisPy 35 33 — 12
nanocrystals
NisP, films ~ 180 ~ 40 - 13
Ni,P,-325 62 46.1 0.275 This work
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Table S2. Comparison of HER performance of NiPy-325 in acid environment with other non-Pt HER

catalysts.
Exchange
Catalyst 720 (MmV) Tafel slope (mV/dec) current density References
(mA/cm?)
Defect-rich MoS, 214 50 8 9x107? 14
nanosheets
MoS,/rGO 176 41 - 15
MoS@Au - 69 9.3x107° 16
WS, nanosheets 275 55 - 17
MoP 151 54 0.086 18
CoSe;, - 424 6.5x10° 19
Ni-Mo nanopower 80 - - 20
Bulk Mo,C 224 56 1.3x107° 21
CUQMOS4 - 95 - 22
Fe()AQCO()A]Sz/CNT 120 46 - 23
FeP nanosheets ~300 67 - 24
CopsMo; 4N, 267 - 2.3x107* 25
NiP,-325 62 46.1 0.275 This work
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Table S3. Comparison of HER performance of NicPy-325 in alkaline environment with other non-precious

HER catalysts.
Catalyst 120 (mV) Tafel slope (mV/dec)  References
CoP nanowire 335 129 2
Co-NRCNTs 476 - 26
Ni33C00.67S2 129 118 27
NiCo,S4 194 141 28
CoO,/CN 352 114 29
NisP4 films ~ 180 ~53 13
Ni,P 255 - 30
NiFe LDH/NF 250 - 31
MoC,/C > 175 59 32
Ni,P nanoparticles 205 - 3

Ni,Py-325 160 107.3 This work
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Table S4. Comparison of OER performance of Ni,Py-325 in alkaline environment with the state-of the-art

OER catalysts

Catalyst Electrolyte 10 (MmV) References

Ni—Co binary oxides 1.0 M KOH 325 33

CopsFepsS@N-MC 1.0 M KOH 410 34

CoNi SUNOE 1.0 M KOH 450 35

NiCo LDH 1.0 M KOH 367 36

NixCoz«O4 NWs/Ti 1.0 M KOH 370 37

Co0304/ NiCo0,04 DSNCs 1.0 M KOH 340 38

NisP4 films 1.0 M KOH 290 13

Ni,P 1.0 M KOH 290 30

Fe-Ni oxide 1.0 M KOH >375 39

CoSe; 0.1 M KOH 320 40

NiCo-NS 1.0 M KOH 334 41

Co-P film 1.0 M KOH 345 42

MnCo,04 1.0 M KOH >410 43
Ni,P,-325 1.0 M KOH 320 This work
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Table SS. Fitting parameter values of the EIS data of NicPy-T catalysts for HER.

Sample  R,(Q) R(Q) n CPE, R (Q) m CPE, Cor, (F)
NisP,-275 5.5 29.9 0.89  4.5x107 2501 0.70  9.0x10*  1.81x107
NiPy-325 4.8 17.9 0.90  5.1x107 699 0.95  89x10*  1.91x10”
NiP,-375 4.2 21.8 0.87  4.1x10° 1105 090  7.9x10*  1.94x107

NiPy-475 5.8 24.1 0.85 8.0x10” 2047 0.83 6.1x10™ 1.99x10”
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