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Figure S1. Powder XRD pattern of the as-prepared β-Ni(OH)2 nanoplate precursor. 

 
 
 

 
Figure S2. Phase composition analysis of the NixPy-T catalysts: (a) NixPy-275 (b) NixPy-325 (c) NixPy-375 

(d) NixPy-475. 
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Figure S3. TEM image of as-prepared (a) NixPy-275, (b) NixPy-375 and (c) NixPy-475. 

 
 
 
 
 
 
 

 

Figure S4. Derived exchange current densities of the NixPy-325 catalysts in various pH environments by 

applying extrapolation method to the Tafel plots. 

 



 S4

TOF calculation: 

An electrochemical cyclic voltammetry test was employed to quantify the active sites of the 

NixPy-T nanocatalysts in 1.0 M PBS (pH=7.0) with a potential window from −0.2 to 0.6 V vs RHE 

at a scan rate of 50 mV/s (Figure S3).1 Assuming one electron redox process, the integrated charge over 

the whole potential range was divided by two. Then, the value was divided by the Faraday constant to get 

the number of active sites for different samples. The turnover frequency (s-1) can be estimated according to 

this equation2:  

TOF = I/2nF 

where I represents the current density for different samples during the LSV measurement in 0.5 M H2SO4, 

F is the Faraday constant (C/mol), and n is the number of the active sites (mol) for different samples. 

 

 

Figure S5. The cyclic voltammetries for the NixPy-T catalysts in 1.0 M PBS at a scan rate of 50 mV/s. 

 
 

 
Figure S6. The calculated TOF curves for the NixPy-T catalysts in 0.5 M H2SO4 electrolyte. 
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Figure S7. Nyquist plots for the NixPy-T catalysts in 0.5 M H2SO4 electrolyte. The scattered symbols 

represent the experimental results and the solid lines are simulation fitted results. The inset at the top shows 

the equivalent circuit for the simulation. Electrochemical impedance spectroscopy of the catalysts was 

carried out on an electrochemistry workstation (AUTOLAB PGSTAT204) under an overpotential of 

10 mV within a frequency window of 100 kHz to 0.1 Hz. 

 

 

Figure S8. The pH monitoring in 0.5 M H2SO4 electrolyte after the HER catalytic durability 

measurement for the NixPy-325. 
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Figure S9. The pH monitoring in 1.0 M KOH electrolyte after the HER and OER catalytic durability 

measurement for the NixPy-325. 

 

 

 

 

Figure S10. The XRD patterns (a) and XPS spectra of Ni 2p region (b) for the NixPy-325 catalyst before 

and after HER in alkaline (1.0 M KOH) and acid (0.5 M H2SO4) media respectively. 
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Figure S11. (a) XRD patterns of the NixPy-325 catalyst before and after OER in 1.0 M KOH. The XPS 

spectra of (b) Ni 2p and (c) P 2p region of the NixPy-325 catalyst before and after OER in 1.0 M KOH. 

 

 

 

 
 

Figure S12. A photograph of the NixPy-325║NixPy-325 water electrolyzer.  
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Table S1. Comparison of HER performance of NixPy-325 in acid environment with the nickel- and 

cobalt-based phosphides. 

 

Catalyst 

 

 

ηηηη20 (mV) 

 

Tafel slope (mV/dec) 

Exchange 

current density 

(mA/cm
2
) 

 

References 

Ni2P 
nanoparticles 

130  46 3.3×10−3 3 

Ni5P4 
nanocrystals 

175 42 0.057 4 

Ni12P5 
nanoparticles 

141 63  − 5 

Ni5P4-Ni2P 
nanosheet 

140 79.1 0.116 6 

Ni2P NPs/Ti 138 60 − 7 

Ni2P/C 115 54 − 8 

CoP 
nanoparticles 

85 50 0.14 9 

CoP 
nanowires 

100 51 0.288 2 

CoP/CNT 160 54 0.13 10 

Co2P 
nanorods  

167 51.7 − 11 

Ni5P4 
nanocrystals 

35 33 − 12 

Ni5P4 films ~ 180 ~ 40 − 13 

NixPy-325 62 46.1 0.275 This work 
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Table S2. Comparison of HER performance of NixPy-325 in acid environment with other non-Pt HER 

catalysts. 

 

Catalyst 

 

 

ηηηη20 (mV) 

 

Tafel slope (mV/dec) 

Exchange 

current density 

(mA/cm
2
) 

 

References 

Defect-rich MoS2 
nanosheets 

214 50 8.9×10−3 14 

MoS2/rGO 176 41 − 15 

MoS@Au − 69 9.3×10−3 16 

WS2 nanosheets 275 55 − 17 

MoP 151 54 0.086 18 

CoSe2 − 42.4 6.5×10−5 19 

Ni-Mo nanopower 80 − − 20 

Bulk Mo2C 224 56 1.3×10−3 21 

Cu2MoS4 − 95 − 22 

Fe0.9Co0.1S2/CNT 120 46 − 23 

FeP nanosheets ~300 67 − 24 

Co0.6Mo1.4N2 267 − 2.3×10−4 25 

NixPy-325 62 46.1 0.275 This work 
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Table S3. Comparison of HER performance of NixPy-325 in alkaline environment with other non-precious 

HER catalysts. 

 

Catalyst 

 

 

ηηηη20 (mV) 

 

Tafel slope (mV/dec) 

 

References 

CoP nanowire 335 129 2 

Co-NRCNTs 476 − 26 

Ni0.33Co0.67S2 129 118 27 

NiCo2S4 194 141 28 

CoOx/CN 352 114 29 

Ni5P4 films ~ 180 ~ 53 13 

Ni2P 255 − 30 

NiFe LDH/NF 250 − 31 

MoCx/C > 175 59 32 

Ni2P nanoparticles 205 − 3 

NixPy-325 160 107.3 This work 
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Table S4. Comparison of OER performance of NixPy-325 in alkaline environment with the state-of the-art 

OER catalysts 

 

Catalyst 

 

Electrolyte 

 

ηηηη10 (mV) 

 

References 

Ni–Co binary oxides 1.0 M KOH 325 33 

Co0.5Fe0.5S@N-MC 1.0 M KOH 410 34 

CoNi SUNOE 1.0 M KOH 450 35 

NiCo LDH 1.0 M KOH 367 36 

NixCo3−xO4 NWs/Ti 1.0 M KOH 370 37 

Co3O4/ NiCo2O4 DSNCs 1.0 M KOH 340 38 

Ni5P4 films 1.0 M KOH 290 13 

Ni2P 1.0 M KOH 290 30 

Fe-Ni oxide 1.0 M KOH >375 39 

CoSe2 0.1 M KOH 320 40 

NiCo-NS 1.0 M KOH 334 41 

Co-P film 1.0 M KOH 345 42 

MnCo2Ox 1.0 M KOH > 410 43 

NixPy-325 1.0 M KOH 320 This work 
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Table S5. Fitting parameter values of the EIS data of NixPy-T catalysts for HER. 

Sample Rs (Ω) R1 (Ω) n1 CPE1 R2 (Ω) n2 CPE2 CDL (F) 

NixPy-275 5.5 29.9 0.89 4.5×10-5 2501 0.70 9.0×10-4 1.81×10-5 

NixPy-325 4.8 17.9 0.90 5.1×10-5 699 0.95 8.9×10-4 1.91×10-5 

NixPy-375 4.2 21.8 0.87 4.1×10-5 1105 0.90 7.9×10-4 1.94×10-5 

NixPy-475 5.8 24.1 0.85 8.0×10-5 2047 0.83 6.1×10-4 1.99×10-5 
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