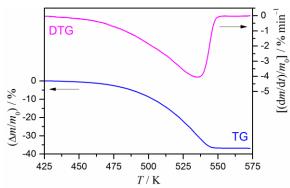

Thermal Decomposition of Silver Acetate: Physico-Geometrical Kinetic Features and Formation of Silver Nanoparticles


Masayoshi Nakano, Takayuki Fujiwara, and Nobuyoshi Koga*

Department of Science Education, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan

S1. Sample Characterization

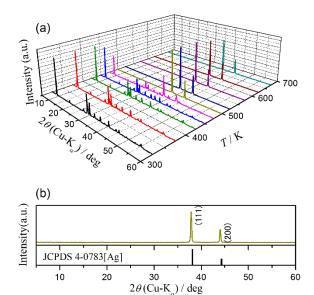
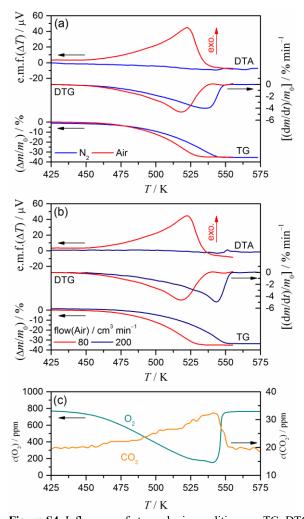


Figure S1. (a) XRD pattern and (b) FT-IR spectrum of asreceived silver acetate sample.


Figure S2. Typical TG–DTG curves for thermal decomposition of as-received silver acetate sample ($m_0 = 1.96$ mg) at a $\beta = 5$ K min⁻¹ in flowing N₂ (80 cm³ min⁻¹).

S2. Thermal Decomposition Process

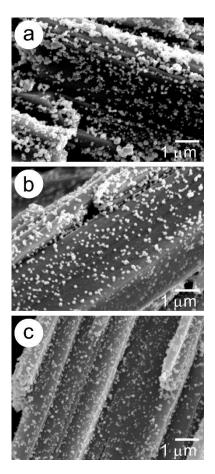
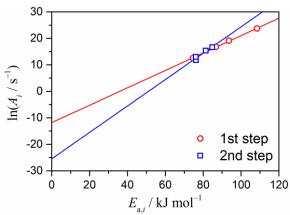


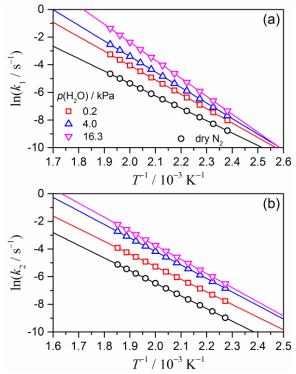
Figure S3. Changes in XRD patterns during stepwise isothermal heating of silver acetate in flowing N_2 (100 cm³ min⁻¹): (a) changes in XRD patterns with temperature and (b) XRD pattern of solid product.

^{*}nkoga@hiroshima-u.ac.jp

Figure S4. Influences of atmospheric conditions on TG–DTG–DTA curves for thermal decomposition of silver acetate ($m_0 = 2.02 \pm 0.04$ mg) at $\beta = 5$ K min⁻¹: (a) comparison of curves obtained in flowing N₂ and air (80 cm³ min⁻¹), (b) comparison of curves obtained in flowing air at flow rates of 80 and 200 cm³ min⁻¹, and (c) curves obtained in flowing N₂–air mixture ($c(O_2) = 800$ ppm) at rate of 500 cm³ min⁻¹ and changes in concentrations of O₂ and CO₂ in outlet gas during reaction.


Figure S5. SEM images of partially decomposed samples ($\alpha = 0.3$) obtained by heating under isothermal conditions in flowing N₂ (80 cm³ min⁻¹): (a) 438 K, (b) 453 K, and (c) 468 K.

S3. Impact of Atmospheric Water Vapor on the Kinetics


Table S1. Initial kinetic parameters for the kinetic deconvolution analysis of thermal decomposition of silver acetate in flowing N_2 – H_2O with controlled $p(H_2O)$

1120 With Controlled p(1120)								
p(H ₂ O) / kPa	i	Ci	$E_{\mathrm{a},i}$ / kJ mol ^{-1, a}	A_i / s ⁻¹	SB(m, n, p)			
		.,			m_i	n_i	p_i	
0.2	1	0.20	84.6	2.0×10^{7}	0	1	0	
	2	0.80	78.1	5.0×10^{5}	0	1	0	
4.0	1	0.20	91.6	2.0×10^{8}	0	1	0	
	2	0.80	85.2	5.0×10^6	0	1	0	
16.3	1	0.20	108.0	2.0×10^{10}	0	1	0	
	2	0.80	88.3	2.0×10^{7}	0	1	0	

^a average values at different α (1st step: $0.05 \le \alpha \le 0.10$, 2nd step: $0.20 \le \alpha \le 0.70$).

Figure S6. Mutual dependence of E_a and $\ln A$ values determined under different $p(H_2O)$.

Figure S7. Comparisons of Arrhenius plots for the reactions under different $p(H_2O)$ simulated using E_a and A values determined by kinetic deconvolution analysis: (a) first reaction step and (b) second reaction step.