

Supporting Information

Visible Light-Driven Oxidative Coupling Reactions of Amines by Photoactive WS₂ Nanosheets

Faizan Raza, Jung Hyun Park, Hye-Rim Lee, Hye-In Kim, Su-Ji Jeon and Jong-Ho Kim*

Department of Chemical Engineering, Hanyang University, Ansan 426-791, Republic of Korea

* To whom correspondence should be addressed: kjh75@hanyang.ac.kr

Contents of Supporting Information:

1. Materials -----	S3
2. Instrumentation -----	S3
3. PL response of WS ₂ nanosheets to benzylamine -----	S4
4. GC. Analysis -----	S4
5. General procedure for synthesis of imine products as GC standards -----	S4
6. Supplementary figures and tables -----	S5
Figure S1 -----	S5
Figure S2 -----	S6
Figure S3 -----	S7
Figure S4 -----	S8
Figure S5 -----	S9
Table S1 -----	S10
Figure S6 -----	S10
7. Characterization of pure imines products-----	S11

1. Materials

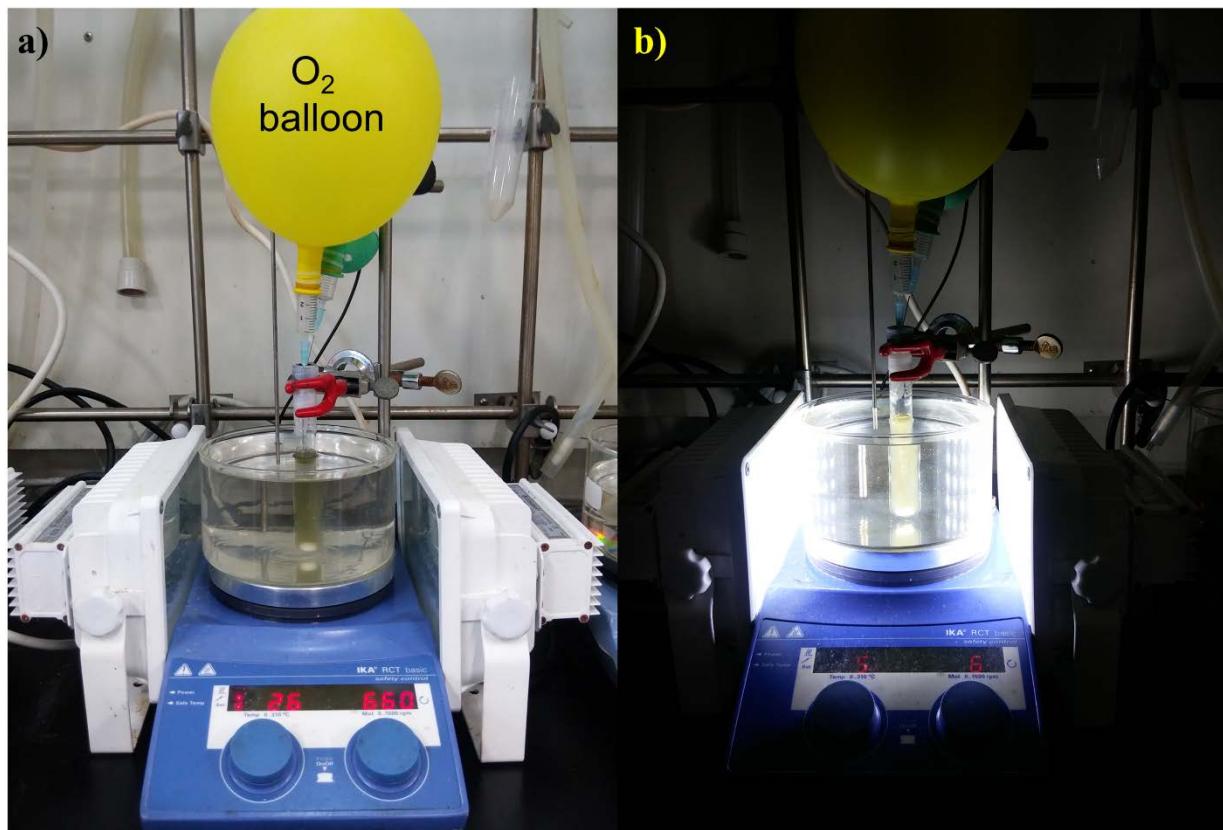
All reagents and solvents used were obtained commercially and used without further purification. Tungsten (IV) sulfide (WS₂), bromobenzene, benzyl amine, all primary, secondary and aliphatic amines were purchased from Sigma-Aldrich (St. Louis, MO, USA) and Tokyo Chemical Industry Co., LTD. (Tokyo, Japan). *N*-Methyl-2-pyrrolidone (NMP), acetonitrile (CH₃CN) and diethyl ether ((C₂H₅)₂O) were purchased from Dae-Jung Chemicals (Busan, Republic of Korea).

2. Instrumentation

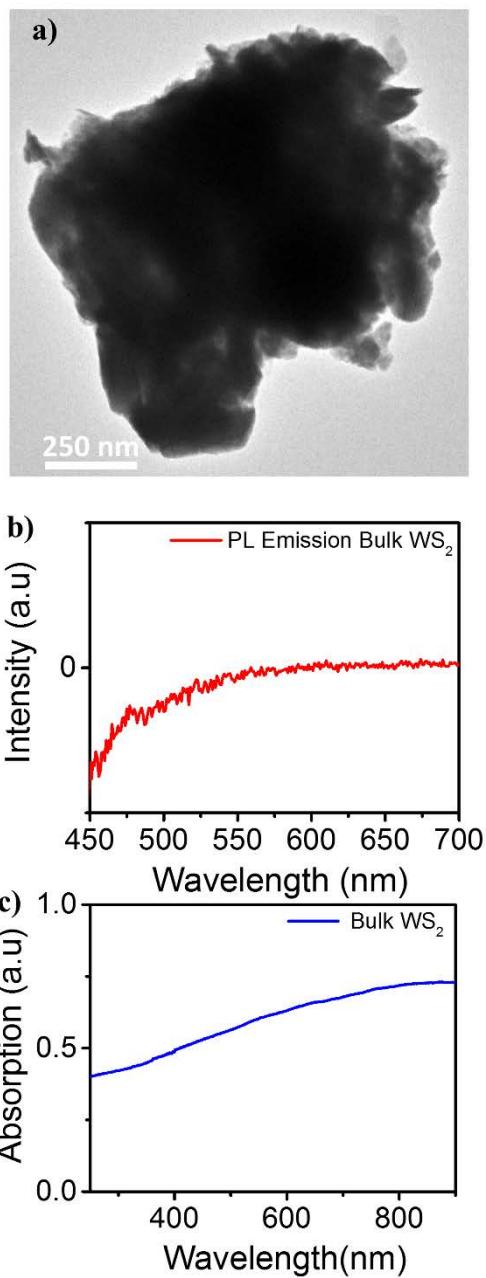
The morphology and size of WS₂ nanosheets were characterized by transmission electron microscope (TEM, JEOL-2100F) and atomic force microscope (AFM, XE-100, Park systems, Korea). Raman spectra were measured by Raman Microscope (RENISHAW, RM-100) at laser excitation of 514.5 nm. The UV/Vis absorption spectra of WS₂ were measured using a UV/Vis spectrometer (UV-2600, Shimadzu, Japan). The photoluminescence spectra were obtained by a spectrofluorometer (Nano Log®, Horiba Scientific, Tokyo, Japan). The amount of catalyst was quantified by inductive coupled plasma-atomic emission spectroscopy (ICP-AES, SPECTRO, SPECTRO ARCOS). The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra of the reaction mixture were recorded by a 400 MHz spectrometer (BRUKER Bio Spin AG, Bruker model digital ADVANCE III 400). The IR analysis of imines was analyzed by fourier transform-infra red spectroscopy (Smart iTRTM, Thermo Scientific).

3. PL response of WS₂ nanosheets to benzylamine

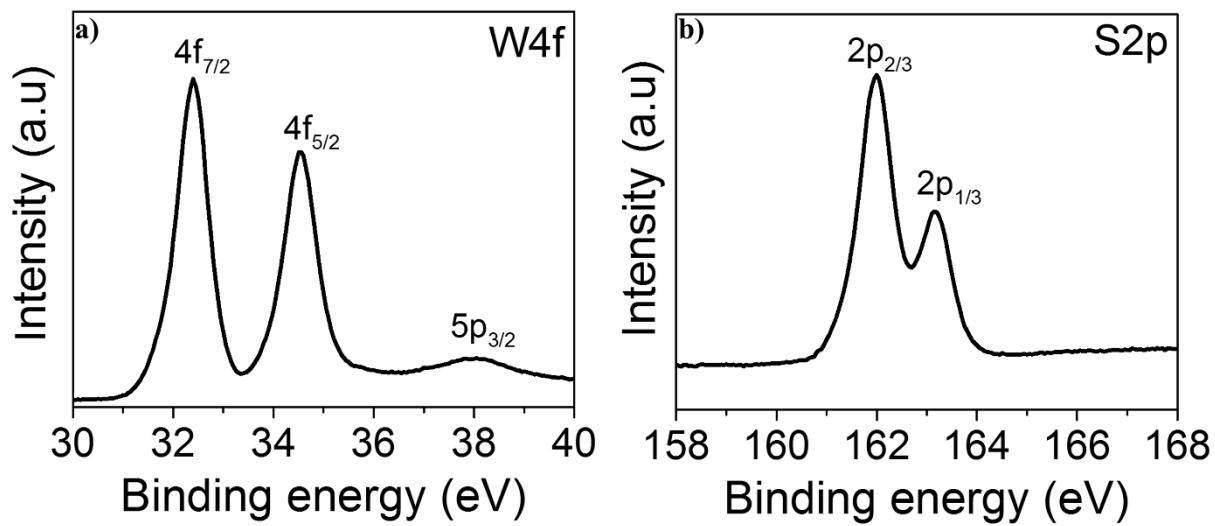
PL response of WS₂ nanosheets to benzylamine at various concentrations from 0.05 to 0.9 mM was measured by using a spectrofluorometric. A 5.46 μ L of benzylamine (0.05 mM) was added into a 1 mL portion of WS₂/NMP solution, which was then stirred vigorously for 5 min at 25°C. The PL spectrum of the resulting solution was taken at an excitation of 380 nm with an exposure time of 0.1 sec.

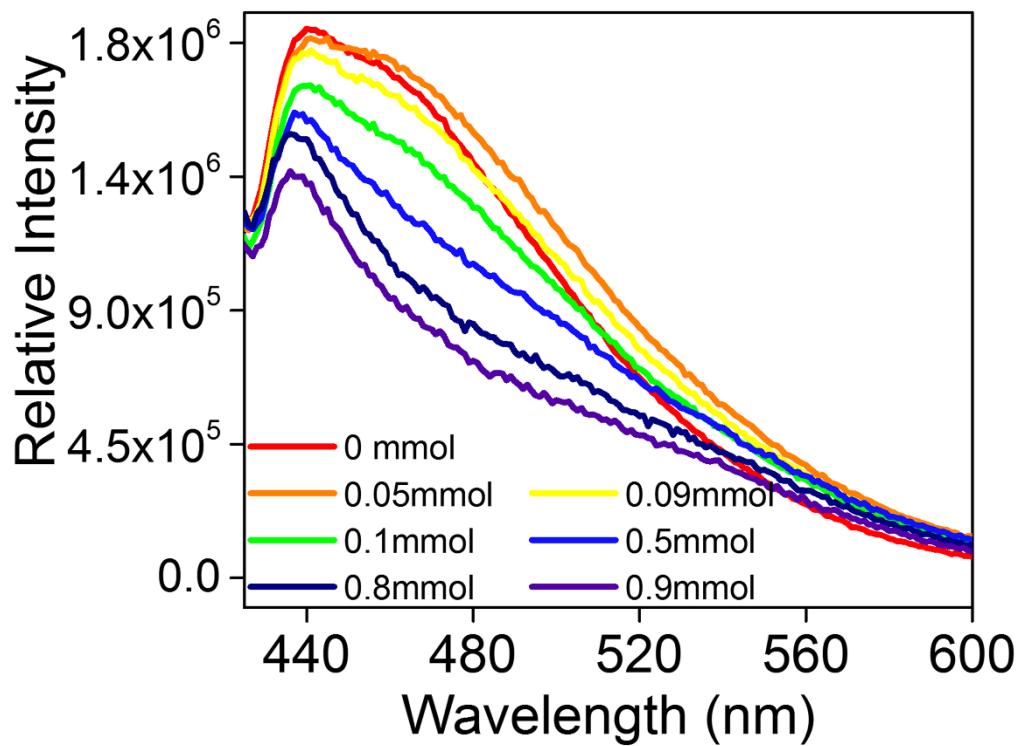

4. GC analysis

GC analysis was done by YL Instrument 6500GC equipped with FID detector and a HP-5 capillary column (5%-Phenyl-methylpolysiloxane, 30 m, 0.320 mm x 0.25 μ m, Agilent) using argon as a carried gas. Standard analysis condition: oven temperature 100 °C, injector temperature 280°C, FID detector temperature 300°C, column temperature program 10 °C/min, final temperature 280 °C (holding for 3 min).


5. General procedure for synthesis of imine products for calibration curves

All imine products as GC standards were readily synthesized via condensation of aldehydes and amines.¹ For *N*-benzylidene benzylamine, 5 mmol of benzylamine, 5 mmol of benzaldehyde, and 0.5 mg of anhydrous MgSO₄ were added into 5 mL of CH₂Cl₂, and then the resulting mixture was stirred at room temperature for 5 h. After filtering out solid MgSO₄, the solvent was vaporized by using a rotary evaporator. Unreacted benzaldehyde and benzylamine were further removed under vacuum at 60°C. Other imine products were also obtained in the same way.


6. Supplementary Figures and Tables


Figure S1. Photos of an experimental set-up for photocatalysis. a) Before, and b) After visible light irradiation.

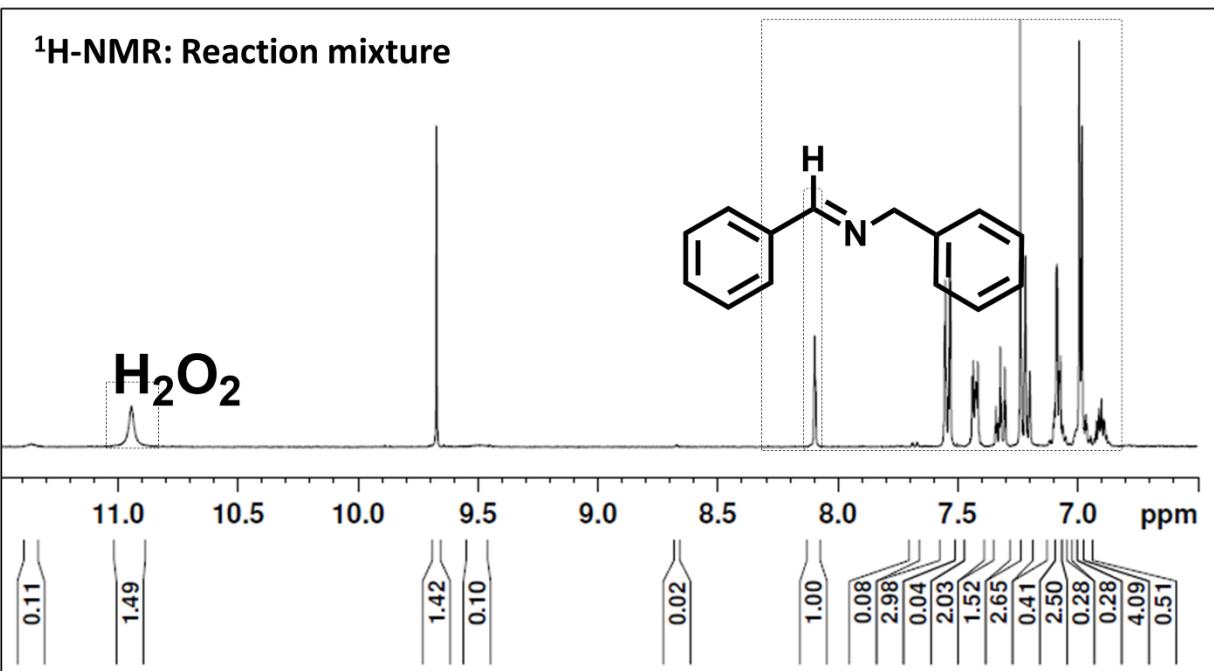

Figure S2. a) TEM image, b) fluorescence spectra and c) UV-Vis absorption of bulk WS_2 .

Figure S3. XPS spectra of 2H-WS₂ Nanosheets: (a) W4f spectrum, showing strong peaks of W4f_{7/2} and W4f_{5/2} at 32.4 and 34.55 eV, respectively, and a weak peak of W5p_{3/2} at 37.9 eV. (b) S2p spectrum, showing two peaks of S2p_{3/2} and S2p_{1/3} at 161.9 and 163.2 eV.²

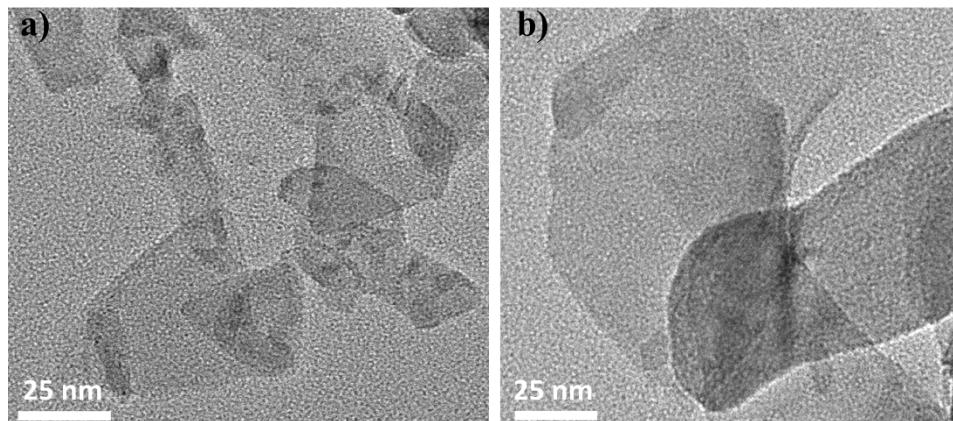
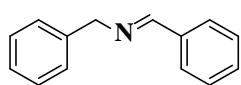

Figure S4. PL response of WS₂ nanosheets to benzylamine at various concentrations, showing that the WS₂ PL was gradually quenched by benzylamine as its concentration increased.

Figure S5. ¹H NMR spectrum of the reaction mixture for the oxidative coupling reaction of benzylamine photocatalyzed by WS₂ nanosheets, showing the peak of H₂O₂ (10.95 ppm) formed as a byproduct during the reaction.


Table S1. Recovered amount of WS_2 nanosheets after each round of oxidative coupling reaction of benzylamine

Cycles	Initial amount	1 st	2 nd	3 rd	4 th
Amount recovered after each cycle	1.2 mg	0.795 mg	0.536 mg	0.415 mg	0.482 mg

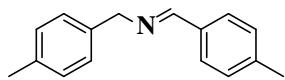
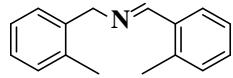
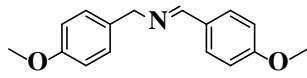
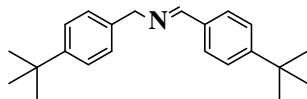
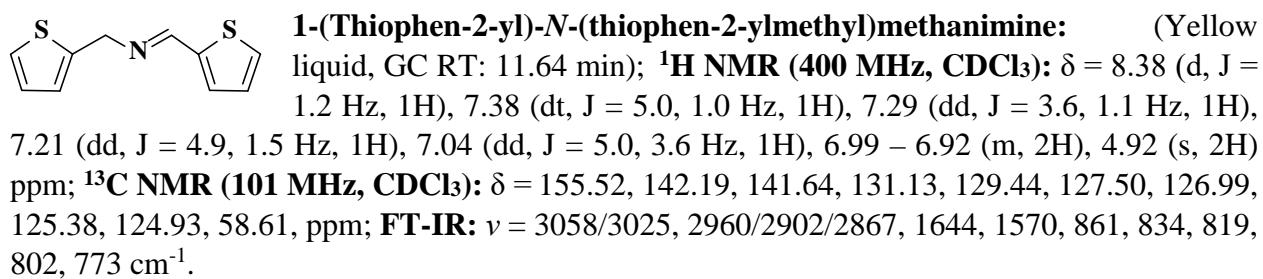
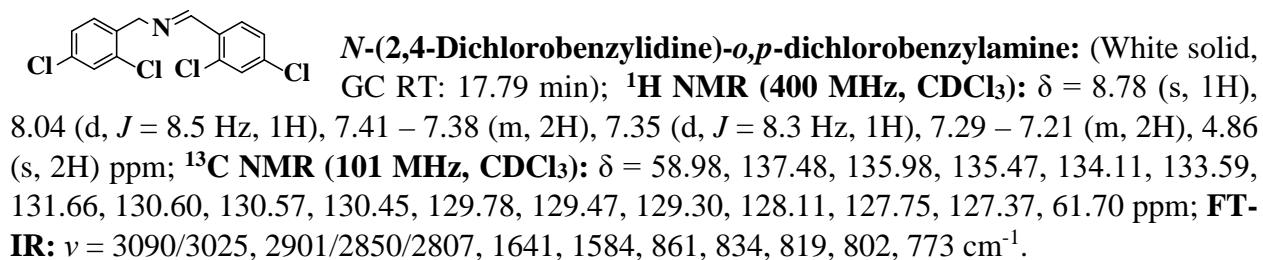
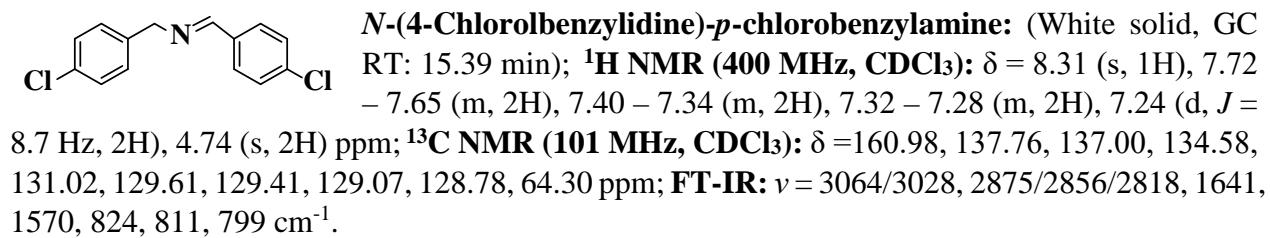
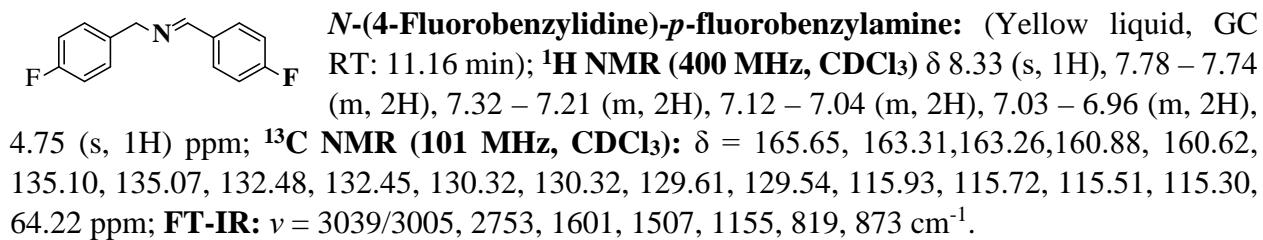
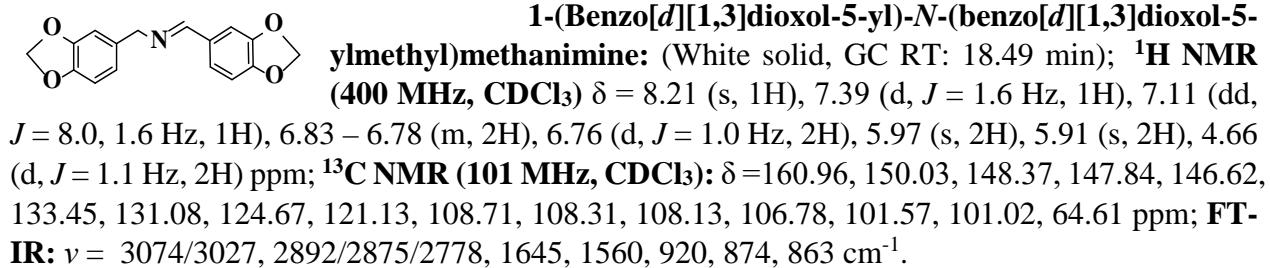


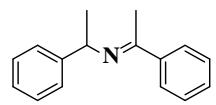
Figure S6. TEM images of WS_2 nanosheets (a) before and (b) after recycling them five times in the oxidative coupling of benzylamine.


7. Characterization of pure imine products

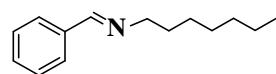

***N*-Benzylidene-*p*-benzylamine:** (Yellow liquid, GC RT: 11.29 min); **¹H NMR (400 MHz, CDCl₃):** δ = 8.35 (s, 1H), 7.79 – 7.74 (m, 2H), 7.39 (d, J = 2.2 Hz, 3H), 7.32 (d, J = 4.4 Hz, 4H), 7.24 (s, 1H), 4.80 (d, J = 1.3 Hz, 2H) ppm; **¹³C NMR (101 MHz, CDCl₃):** δ = 162.09, 139.40, 136.25, 130.88, 128.72, 128.61, 128.39, 128.09, 127.10, 65.16 ppm; **FT-IR:** ν = 3027/3085, 2840/2872/2732, 1643, 1580 cm⁻¹.


***N*-(4-Methylbenzylidene)-*p*-methylbenzylamine:** (Yellow solid, GC RT: 13.66 min); **¹H NMR (400 MHz, CDCl₃):** δ = 8.30 (s, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.4, 2H), 7.18 (d, J = 8.0, 2H), 7.12 (d, J = 8.0 Hz, 2H), 4.74 (s, 2H), 2.34 (s, 3H), 2.31 (s, 3H) ppm; **¹³C NMR (101 MHz, CDCl₃):** δ = 161.18, 141.06, 136.57, 136.45, 133.70, 129.41, 129.26, 128.37, 128.07, 64.87, 21.61, 21.22 ppm; **FT-IR:** ν = 3048/3022, 2913/2854/2732, 1638, 1571, 811, 794 cm⁻¹.






***N*-(2-Methylbenzylidene)-*o*-methylbenzylamine:** (Yellow liquid, GC RT: 13.29 min); **¹H NMR (400 MHz, CDCl₃):** δ = 8.63 (s, 1H), 7.92 (dd, J = 7.6, 1.4 Hz, 1H), 7.32 – 7.10 (m, 7H), 4.80 (s, 2H), 2.47 (s, 3H), 2.37 (s, 3H) ppm; **¹³C NMR (101 MHz, CDCl₃):** δ = 160.66, 137.84, 137.73, 136.20, 134.34, 130.93, 130.37, 130.23, 128.40, 127.84, 127.17, 126.30, 126.20, 63.41, 19.52, 19.42 ppm; **FT-IR:** ν = 3063/3021, 2920/2879/2864, 1635, 1570, 754, 741 cm⁻¹.



***N*-(4-Methoxybenzylidene)-*p*-methoxybenzylamine:** (Yellow liquid, GC RT: 16.64 min); **¹H NMR (400 MHz, CDCl₃):** δ = 8.26 (s, 1H), 7.72 – 7.66 (m, 2H), 7.23 (d, J = 8.8 Hz, 2H), 6.93 – 6.83 (m, 4H), 4.70 (s, 2H), 3.79 (s, 3H), 3.75 (s, 3H) ppm; **¹³C NMR (101 MHz, CDCl₃):** δ = 161.72, 160.99, 158.70, 131.74, 129.89, 129.24, 114.03, 113.95, 64.49, 55.40, 55.33 ppm; **FT-IR:** ν = 3034/3006, 2957/2909/2835, 1640, 1577, 869, 830, 814 cm⁻¹.



***N*-(4-(tert-Butyl)benzylidene)-*p*-(tert-butyl)benzylamine:** (Yellow liquid, GC RT: 17.83 min); **¹H NMR (400 MHz, CDCl₃):** δ = 8.35 (s, 1H), 7.73 – 7.69 (m, 2H), 7.44 – 7.40 (m, 2H), 7.37 – 7.33 (m, 2H), 7.28 – 7.23 (m, 2H), 4.77 (s, 2H), 1.33 (s, 2H), 1.31 (s, 9H), 1.30 (s, 9H) ppm; **¹³C NMR (101 MHz, CDCl₃):** δ = 161.77, 154.18, 149.87, 136.61, 133.73, 129.83, 128.23, 127.89, 127.82, 125.65, 125.50, 64.97, 35.03, 34.60, 31.56, 31.38, 31.22 ppm; **FT-IR:** ν = 3058/3025, 2960/2902/2867, 1644, 1570, 848, 827, 803 cm⁻¹.

1-Phenyl-*N*-(1-phenylethyl)ethan-1-imine: (Yellow liquid, GC RT: 11.83 min,); **¹H NMR (400 MHz, CDCl₃):** δ = 7.99 – 7.91 (m, 2H), 7.59 – 7.49 (m, 1H), 7.45 (ddt, J = 8.2, 6.6, 1.1 Hz, 2H), 7.39 – 7.26 (m, 4H), 7.26 – 7.17 (m, 1H), 4.10 (q, J = 6.6 Hz, 1H), 2.59 (s, 3H), 1.37 (d, J = 6.6 Hz, 3H) ppm; **¹³C NMR (101 MHz, CDCl₃)** δ = 165.03, 137.15, 133.17, 129.48, 128.63, 128.53, 128.43, 128.37, 128.23, 126.87, 126.85, 126.74, 125.75, 59.90, 25.19, 15.66 ppm; **FT-IR:** ν = 3060/3025, 2962/2923/2866, 1684, 1581, 759, 700, 690 cm⁻¹.

***N*-heptyl-1-phenylmethanimine:** (Yellow liquid, GC RT: 10.14 min); **¹H NMR (400 MHz, CDCl₃):** δ = 8.26 (s, 1H), 7.74-7.70 (m, 2H), 7.44 – 7.35 (m, 3H), 3.62-3.58 (m, 2H), 1.72-1.69 (m, 2H), 1.31-1.24 (m, 8H), 0.88 (t, J = 6.6 Hz, 3H) ppm; **¹³C NMR (101 MHz, CDCl₃):** δ = 160.88, 136.47, 130.59, 128.71, 128.17, 61.97, 31.99, 31.09, 29.30, 27.49, 22.82, 14.28 ppm; **FT-IR:** ν = 3063/3025, 2956/2926/2853, 1646, 1580, 826, 753, 692 cm⁻¹.

- (1) Liu, L.; Zhang, S.; Fu, X.; Yan, C.-H., *Chem. Commun.* **2011**, 47, 10148-10150.
- (2) Lee, Y.-H.; Yu, L.; Wang, H.; Fang, W.; Ling, X.; Shi, Y.; Lin, C.-T.; Huang, J.-K.; Chang, M.-T.; Chang, C.-S.; Dresselhaus, M.; Palacios, T.; Li, L.-J.; Kong, J., *Nano Lett.* **2013**, 13, 1852-1857.