

Supporting Information

2 Quantification of Short-Chain Chlorinated Paraffins by

3 Deuterodechlorination Combined with Gas

4 Chromatography–Mass Spectrometry

5 Yuan Gao, Haijun Zhang, Lili Zou, Ping Wu, Zhengkun Yu, Xianbo Lu and
6 Jiping Chen*

7 *Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China*

8

9

10

*** Corresponding Author**

12 Jiping Chen: Phone/Fax: (+86) 411-8437-9562; E-mail: chenjp@dicp.ac.cn

13

14

15

16 The Supporting Information contains 26 pages, and includes 8 Figures and 12 Tables.

17

18

19

30

Contents:	Page
1. Chemicals and reagents	S2
2. Synthesis of the calibration standards for method development	S3
3. Sample collection and pretreatment	S5
4. Instrumental analysis	S6
5. Condition optimization for the deuterodechlorination reaction of SCCPs	S8
6. Generation of deuterated <i>n</i> -alkenes and low-chlorinated deuterated <i>n</i> -alkanes during the deuterodechlorination reaction of SCCPs with LiAlD ₄	S9
7. Calculation of the deuterodechlorination rates during condition optimization	S11
8. Fractionation and MS detection	S12
9. Interferences from deuterated <i>n</i> -alkenes, low-chlorinated deuterated <i>n</i> -alkanes and ¹³ C isotope	S13
10. Performance evaluation of the extraction internal standard in sample extraction and cleanup procedure	S14
11. Method development for the quantification of SCCP congeners by deuterodechlorination combined HRGC–EI/HRMS	S15
12. Method selectivity and linearity.	S20
13. Instrumental detection limit (IDL) of <i>n</i> -alkanes and method detection limit (MDL) of SCCPs.	S21
14. Repeatability and Precision.	S21
15. Calculation of the recoveries.	S23
16. Concentrations and congener profiles of SCCPs in commercial CPs, sediment and biota samples.	S24

23 **1. Chemicals and reagents.**

24 Three kinds of SCCP mixture stock standard solutions (C_{10–13}; 51% Cl, 55.5% Cl and
 25 63% Cl; 100 ng/μL in cyclohexane) together with four kinds of SCCP homologue stock
 26 standard solutions (C₁₀-CPs, 60.09% Cl; C₁₁-CPs, 55.2% Cl; C₁₂-CPs, 65.08% Cl; C₁₃-CPs,

27 65.18% Cl; 10 ng/μL in cyclohexane) were obtained from Dr. Ehrenstorfer GmbH (Augsburg,
28 Germany). $^{13}\text{C}_6$ - α -hexachlorocyclohexane ($^3\text{C}_6$ - α -HCH) and $^{13}\text{C}_6$ -hexachlorobenzene
29 ($^{13}\text{C}_6$ -HCB) were all purchased from Cambridge Isotope Laboratories (CIL, Andover, USA).
30 Phenanthrene (purity 99%) was obtained from Merck (Darmstadt, Germany).
31 Dichloromethane (DCM) and *n*-hexane of pesticide residue grade were purchased from J. T.
32 Baker (Phillipsburg, USA). Nonane (purity >99.0% GC grade) was purchased from Fluka
33 (Munich, Germany). Ethylene glycol diethyl ether (EGDE, Aladdin, Shanghai, China) was
34 used as the solvent for the reduction of SCCPs with LiAlD₄ (Sigma-Aldrich, St. Louis, USA).
35 Three commercial CP mixtures (CP-42, CP52 and CP-70) with chlorine contents of
36 approximately 42%, 52% and 70% were obtained from a CP manufacturer in the northeast of
37 China. Anhydrous Na₂SO₄ (Damao, China) was cleaned with *n*-hexane in an ultrasonic bath
38 for 30 min and was dried at 300 °C for 2 h. Silica gel (63–100 μm) and basic alumina
39 (Activity Super I, 63–200 μm, pH = 10) for column chromatography were purchased from
40 Sunchrom (Friedrichshafen, Germany) and MP Biomedicals (Eschwege, Germany),
41 respectively. Prior to use, the silica gel basic alumina were extracted with DCM by
42 accelerated solvent extraction (ASE 350, Dionex, USA) at the temperature of 120 °C for three
43 cycles, and then activated at 130 °C for 10 h. Acid silica gel was prepared by mixing 200 g
44 activated silica gel and 56.4 g concentrated sulfuric acid, and stored in desiccator.

45 **2. Synthesis of the calibration standards for method development**

46 **Table S1.** Information on the synthetic SCCP calibration standards.

No.	Category	Carbon-chain length	Chlorine content (%)	Reaction time (min)
1	calibration standard	straight-chain C ₁₀	41.1	60
2	calibration standard	straight-chain C ₁₀	49.3	90
3	calibration standard	straight-chain C ₁₀	57.8	120
4	calibration standard	straight-chain C ₁₀	62.6	240

5	calibration standard	straight-chain C ₁₀	66.2	480
6	calibration standard	straight-chain C ₁₁	44.8	60
7	calibration standard	straight-chain C ₁₁	51.0	70
8	calibration standard	straight-chain C ₁₁	57.7	120
9	calibration standard	straight-chain C ₁₁	59.8	240
10	calibration standard	straight-chain C ₁₁	67.7	480
11	calibration standard	straight-chain C ₁₂	45.6	60
12	calibration standard	straight-chain C ₁₂	52.2	90
13	calibration standard	straight-chain C ₁₂	59.7	120
14	calibration standard	straight-chain C ₁₂	63.1	300
15	calibration standard	straight-chain C ₁₂	66.4	480
16	calibration standard	straight-chain C ₁₃	44.0	55
17	calibration standard	straight-chain C ₁₃	55	90
18	calibration standard	straight-chain C ₁₃	59.9	120
19	calibration standard	straight-chain C ₁₃	65.4	300
20	calibration standard	straight-chain C ₁₃	69.6	480
21	internal standard	branched-chain C ₁₀	58.7	240
22	internal standard	branched-chain C ₁₂	55.4	240

47

48 The chlorine content of the prepared SCCP calibration standards were calculated by the
 49 weight difference between the substrate alkane and the generated chlorinated alkane. The loss
 50 of starting materials or by-products could occur during the synthesis procedure. Therefore, we
 51 also determined the total chlorine of the synthetic SCCPs by oxygen flask combustion
 52 combined with ionic chromatogram.¹ In brief, 20 mg of the synthetic SCCPs was weighed on
 53 an ash-free filter. The filter was folded and fixed with a platinum wire. A flask containing 10
 54 mL of deionized water was fed with oxygen for 1 min. Fire the filter and insert it in the flask
 55 immediately. The flask was then upended avoiding gas in the flask escaping. After the flame
 56 went out, deionized water was added as absorption liquid. A mixed solution containing

57 Na_2CO_3 and NaHCO_3 was used as eluent on an anion separation column. We determined four
58 SCCP standards with chlorine contents ranging from 41.1–67.7%, and found that there are
59 only small differences (0.5–1%) between chlorine contents determined by ionic
60 chromatogram and those calculated from the weight loss. Therefore, the chlorine contents
61 calculated from the weight differences were adopted in this manuscript for consistency.

62 **3. Sample collection and pretreatment.**

63 Three commercial CP mixtures (CP-42, CP-52 and CP-70) with labelled chlorine
64 contents of 42%, 52% and 70% were obtained from a CP manufacturer in the northeast of
65 China. Sediment and biological samples were all collected from the Liaohe River Basin. The
66 collected samples were put into the precleaned self-sealing bags, and transported with ice to
67 laboratory. Samples were freeze-dried, ground, homogenized and stored in amber glass
68 bottles at -20°C until analysis. Approximate 20 g of sediment sample were Soxhlet extracted
69 with 250 mL of hexane /acetone (1:1, v/v) for 24 h. For biological samples, about 1.5 g of
70 sample was homogenized with 2 g of anhydrous Na_2SO_4 , and Soxhlet extracted as above.
71 Prior to extraction, 5 μL of extraction internal standard (branched C_{10} -CPs with the
72 concentration of 1 $\mu\text{g}/\mu\text{L}$ nonane) was spiked into the sample. The extract was concentrated
73 to about 2 mL using an evaporator, and then pretreated by gel permeation chromatography
74 (GPC) for the removal of lipids and toxaphene.² DCM was used as the mobile phase at a flow
75 rate of 5 mL/min. Silica gel column and subsequent basic alumina column were used for the
76 further cleanup. Fractionation on silica gel column, packing with 5 g of anhydrous Na_2SO_4 , 2
77 g of silica gel, 4.5 g of acid silica gel and 6 g of anhydrous Na_2SO_4 from bottom to top, was
78 conducted with the solvent sequence: 50 mL of hexane, 100 mL of hexane/DCM (1:1) and 50
79 mL of hexane/DCM (1:2). The second and third fractions containing SCCPs were collected.
80 A further fractionation was carried out on alumina column, packing with 5 g of anhydrous

81 Na₂SO₄, 5 g of alumina and 6 g of anhydrous Na₂SO₄ from bottom to top, with 60 mL of
82 hexane and 90 mL of DCM. The DCM fraction containing all SCCPs was collected,
83 concentrated to about 1 mL using an evaporator, and transferred to a micro-reaction vial. 5
84 μ L of the reaction internal standard (branched C₁₂-CPs with the concentration of 1 μ g/ μ L
85 nonane) was spiked into the micro-reaction vial, and then concentrated to near dryness by a
86 gentle stream of N₂.

87 **4. Instrumental analysis.**

88 In order to develop and validate the deuterodechlorination combined with
89 HRGC–EI/HRMS method for SCCP analysis, SCCPs in some samples were also analyzed by
90 the traditional HRGC–ECNI/LRMS method, carbon skeleton reaction GC with flame
91 ionisation detection (FID) method and the deuterodechlorination combined with
92 HRGC–EI/LRMS method. The detailed conditions for instrumental analysis are shown as
93 follows.

94 (1) HRGC–ECNI/LRMS method³

95 The chromatographic separation of SCCPs was performed on a Trace GC Ultra gas
96 chromatograph (Thermo, USA) equipped with a capillary DB-5 column (15 m \times 0.25 mm i.d.
97 \times 0.25 μ m film thickness, J&W Scientific, USA). A sample volume of 1 μ L was injected in
98 the splitless mode with an injector temperature of 260 °C. Helium was used as the carrier gas
99 at a flow rate of 0.8 mL/min. The oven temperature program was as follows: 100 °C,
100 isothermal for 1 min, then 7 °C/min to 260 °C, and then isothermal for 8 min. A Trace DSQ
101 II mass spectrometer (Thermo, USA) in ECNI mode was used to identify SCCPs with
102 methane (99.995% purity) as reagent gas at a flow rate of 2 mL/min. The electron energy was
103 70 eV, and the emission current was 100 μ A. The ion source and transfer line temperatures
104 were kept at 150 °C and 260 °C, respectively. The two most abundant isotopes of the

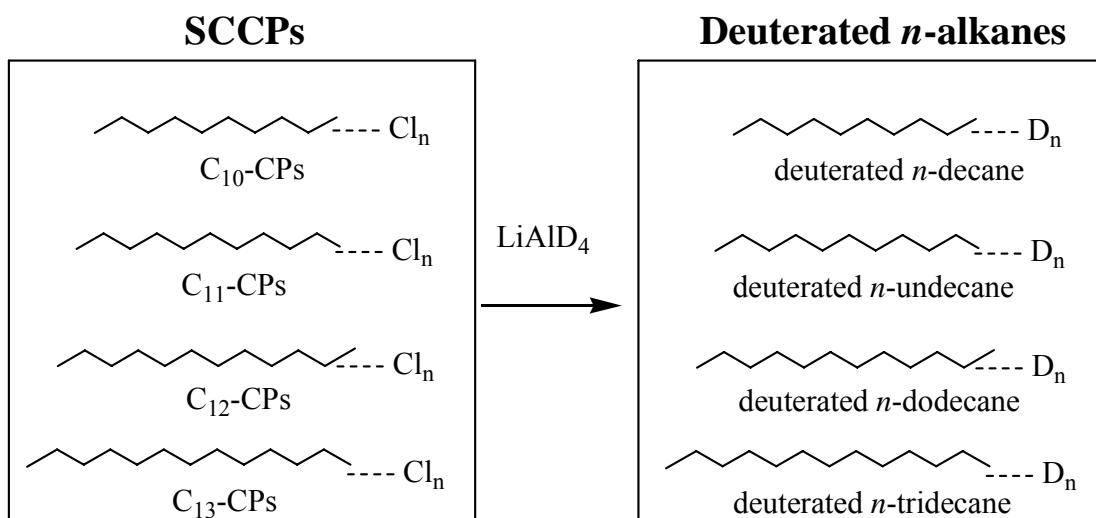
105 [M–HCl][–] cluster for each SCCP congener (5–10 chlorine atoms) were monitored. The dwell
106 time in the selected ion monitoring (SIM) mode was set to 75 ms for each ion.

107 The quantification of SCCPs by ECNI/LRMS followed the procedure described by Reth
108 *et al.*⁴, using linear correlation between the total response factors and chlorine contents.

109 (2) Carbon skeleton reaction with GC/FID method

110 A Hewlett-Packard GC (HP 5890 Series II) equipped with a capillary DB-5 column (30
111 m × 0.32 mm i.d. × 0.25 µm film thickness, J&W Scientific, USA) and FID detector was
112 used. The Pd catalyst was prepared and installed in the GC injector as described in Koh *et al.*⁵
113 Temperature program was as followed: maintain an initial oven temperature of 50 °C for 3
114 min, rise to 280 °C at the rate of 10 °C/min, and keep 14 min. The temperatures of the
115 detector and injector were 280 and 300 °C, respectively.

116 (3) HRGC–EI/LRMS method


117 Trace GC Ultra gas chromatograph (Thermo, USA) equipped with a capillary DB-5
118 column (60 m × 0.25 mm i.d. × 0.25 µm film thickness, J&W Scientific, USA). A sample
119 volume of 1 µL was injected in the splitless mode with an injector temperature of 260 °C.
120 Helium was used as the carrier gas at a flow rate of 0.8 mL/min. The oven temperature
121 program was as follows: 50 °C, isothermal for 0.5 min, then 20 °C/min to 80 °C, keeping 8
122 min, then 5 °C/min to 280 °C, and final isothermal for 20 min. The electron energy was 70
123 eV, and the emission current was 100 µA. The ion source and transfer line temperatures were
124 kept at 220 °C and 260 °C, respectively. The most abundant isotopes of the molecular ions
125 [M][–] (Table S2) for each deuterated *n*-alkane were monitored in selected ion monitoring (SIM)
126 mode.

127 **Table S2.** The m/z values of the molecular ions [M]⁺ for the deuterated alkanes generated from the
128 deuterodechlorination of SCCPs.

Number of D	m/z values
-------------	------------

atoms	deuterated decane	deuterated undecane	deuterated dodecane	deuterated tridecane
13	155.2538	169.2694	183.2851	197.3007
12	154.2475	168.2631	182.2788	196.2944
11	153.2412	167.2568	181.2725	195.2881
10	152.2349	166.2506	180.2662	194.2819
9	151.2286	165.2443	179.2599	193.2756
8	150.2224	164.2380	178.2537	192.2693
7	149.2161	163.2317	177.2474	191.2630
6	148.2098	162.2255	176.2411	190.2568
5	147.2035	161.2192	175.2348	189.2505
4	146.1973	160.2129	174.2286	188.2442
3	145.1910	159.2066	173.2223	187.2379
2	144.1847	158.2004	172.2160	186.2317
1	143.1784	157.1941	171.2097	185.2254

129 **5. Condition optimization for the deuterodechlorination reaction of SCCPs.**

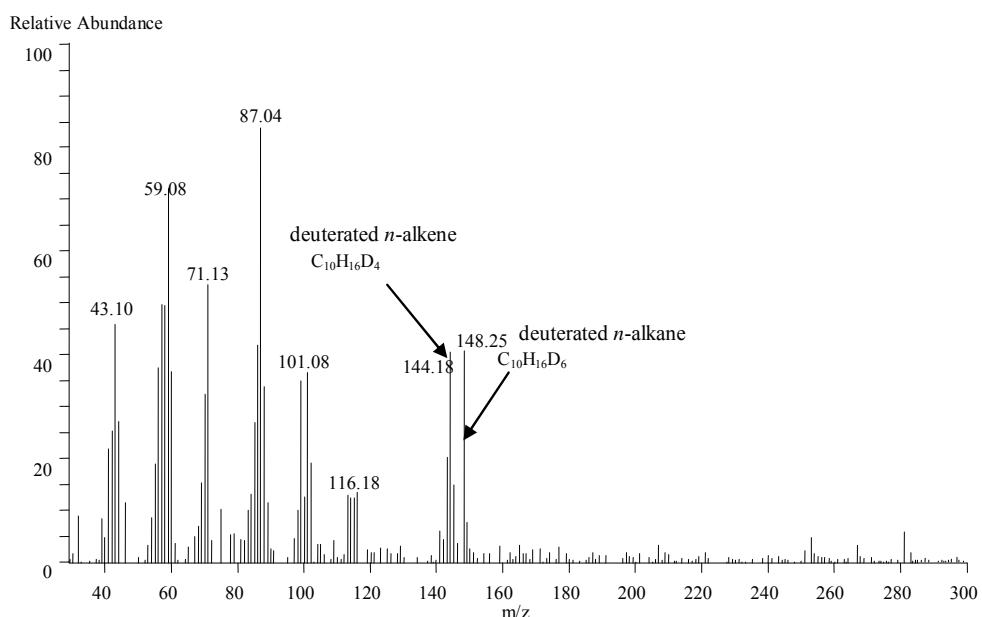
130 **Figure S1.** Reduction of SCCPs with LiAlD₄. C₁₀-CPs, C₁₁-CPs, C₁₂-CPs, and C₁₃-CPs represent the four
131 groups of SCCP homologues with chlorine atom substitution (n) from 1 to 13. The generated
132 corresponding deuterated n-alkanes consist of deuterated n-decane (C₁₀), deuterated n-undecane (C₁₁),
133 deuterated n-dodecane (C₁₂), deuterated n-tridecane (C₁₃). D_n represent the deuterium atom number from 1
134 to 13.
135

136

137 **Table S3.** Deuterodechlorination rate and calculated chlorine content of SCCPs in the mixture standard
138 with chlorine content of 51% under different reaction conditions.

Entry	Reaction temperature (°C)	Reaction time (h)	Deuterodechlorination rate (%)	Calculated chlorine content (%)
1	110	4	10.7	49.6
2	110	15	9.5	49
3	110	72	18.1	50.3
4	90	4	5.9	48.1
5	90	13	11.3	50.2
6	90	25	37.9	50.4
7	90	48	36.6	50.2
8	90	54	50.2	50.8
9	90	96	56.4	50

139

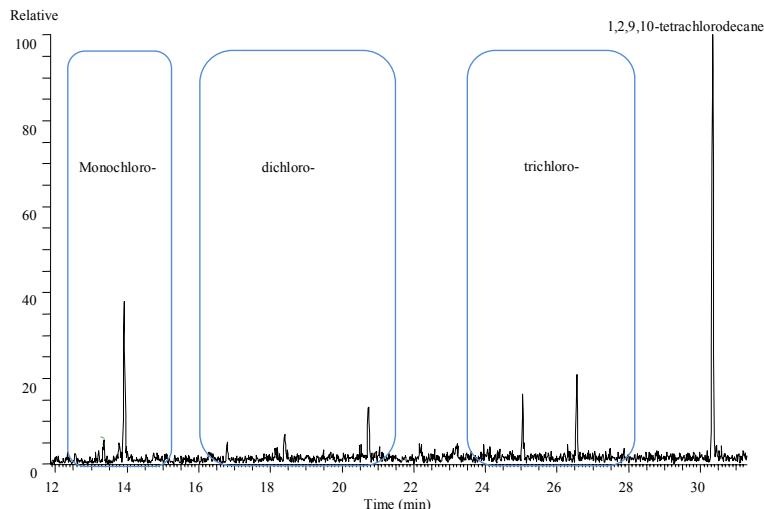

140 **Table S4.** Deuterodechlorination rate and calculated chlorine content of SCCPs in the mixture standard
141 with chlorine content of 63% under different reaction conditions.

Entry	Reaction temperature (°C)	Reaction time (h)	Deuterodechlorination rate (%)	Calculated chlorine content (%)
1	110	4	17.3	61.5
2	110	15	7.1	58.9
3	110	25	14.4	61
4	110	72	15.4	61.8
5	90	4	15	57.5
6	90	13	9.9	59.1
7	90	25	13.5	59
8	90	48	24.5	61
9	90	54	43.6	60.1
10	90	96	48	60.6

142 **6. Generation of deuterated *n*-alkenes and low-chlorinated deuterated *n*-alkanes during
143 the deuterodechlorination reaction of SCCPs with LiAlD₄.**

144 During the deuterodechlorination reaction of SCCPs with LiAlD₄, deuterated *n*-alkenes
145 were generated (Figure S2), suggesting chlorine elimination also occurred. With chlorinated
146 *n*-alkanes manufactured by free-radical chlorination of *n*-alkane feedstocks,⁶ chlorine for
147 hydrogen substitution at a secondary carbon atom was discriminated against although low
148 positional selectivity⁷. However, vicinal chlorines must be present as the chlorine contents

149 increase, which is apt to yield olefinic bonds during the reaction. In Figure S2,
150 1,2,5,6,9,10-hexachlorodecane was used to react with LiAlD₄ at 110 °C for 4 h. It was
151 indicated that olefinic bonds (C₁₀H₁₆D₄) had been generated. The relative abundance of the
152 deuterated *n*-alkenes decreased with the decreasing of the reaction temperature.



153
154 **Figure S2** Mass spectra of the products from the deuterodechlorination of 1,2,5,6,9,10-hexachlorodecane
155 with LiAlD₄ at 110 °C for 4 h.

156

157 Meanwhile, a small quantity of low chlorinated deuterated *n*-alkanes can be also generated
158 during the deuterodechlorination reaction. Figure S3 showed the HRGC-EI/LRMS
159 chromatogram of the products from 1,2,9,10-tetrachlorodecane reacted with LiAlD₄ at 60 °C
160 for 72 h. Monochloro-, dichloro- and trichloro- decanes were detected out.

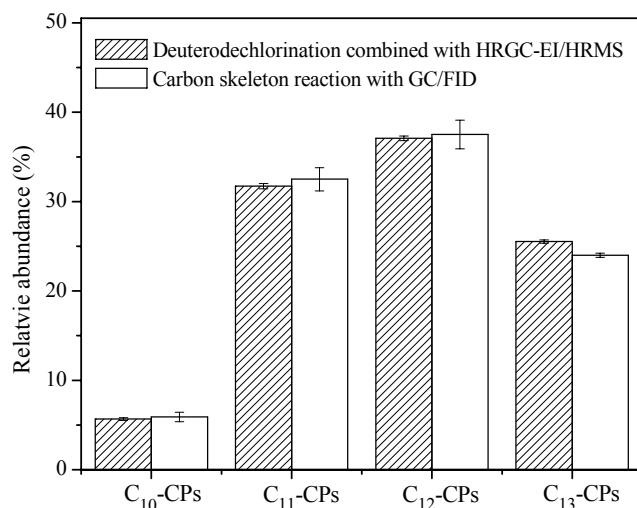
161 To increase the yielding efficiencies of deuterated *n*-alkanes and depress the other products,
162 deuterodechlorination conditions for SCCPs have been optimized as described above.

163

164 **Figure S3** HRGC-EI/LRMS chromatogram of the products from the deuterodechlorination of
165 1,2,9,10-hexachlorodecane with LiAlD₄ at 60 °C for 72 h.

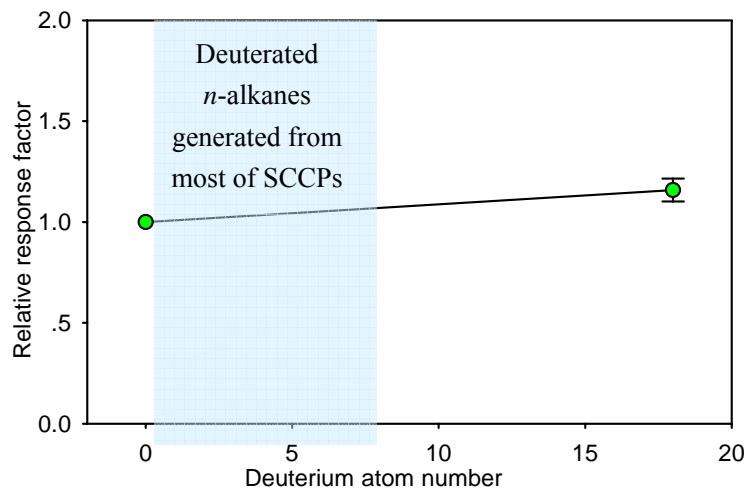
166 **7. Calculation of the deuterodechlorination rates during condition optimization.**

167 Preliminary experiments were carried out in order to investigate the influences of
168 reaction temperature and reaction period on the deuterodechlorination rates of SCCPs. The
169 generated deuterated *n*-alkanes were determined by external calibration using
170 HRGC-EI/LRMS analysis. As illustrated in Figure S2, similar response factors between
171 *n*-alkanes and deuterated *n*-alkanes were found in EI mode. Therefore, the calibration curves
172 of individual *n*-alkanes (C₁₀–C₁₃) have been used by means of linear regression ($r^2 > 0.99$).
173 Naphthalene was used as the injection internal standard before the instrumental analysis. The
174 deuterodechlorination rate was calculated as the percentage of SCCPs reacted to the
175 corresponding deuterated *n*-alkanes by the following equations:


176
$${}^{th}Q_{d-alk} = Q_{SCCP} \times \left(1 - \frac{M_{Cl} - M_D}{M_{Cl}} \times K_{SCCP}\right) \quad (1)$$

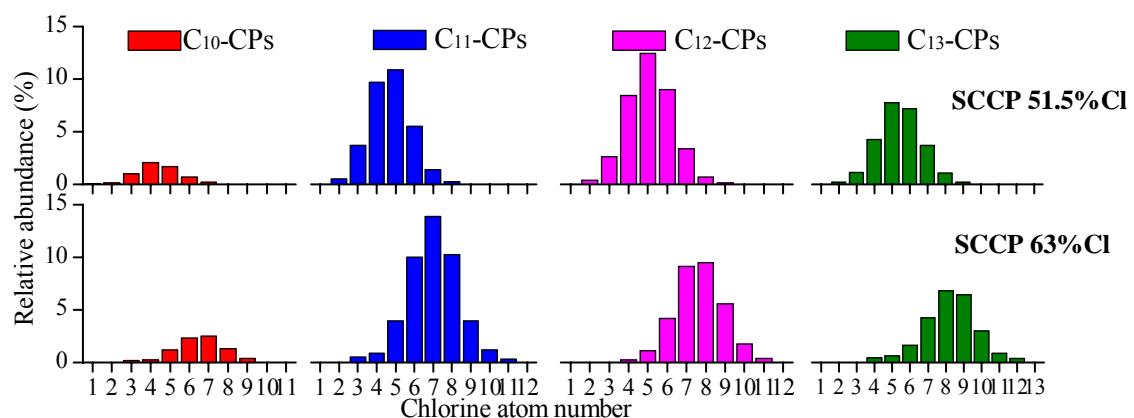
177
$${}^{ex}Q_{d-alk} = \sum_i^{10-13} {}^{ex}Q_{d-alk-i} \quad (2)$$

178
$$Deuterodechlorination\ rate = \frac{{}^{ex}Q_{d-alk}}{{}^{th}Q_{d-alk}} \times 100\% \quad (3)$$


179 where ${}^{\text{th}}Q_{\text{d-alk}}$ and ${}^{\text{ex}}Q_{\text{d-alk}}$ are the theoretical and experimental determined masses of the total
180 deuterated *n*-alkanes generated from SCCPs, respectively; ${}^{\text{ex}}Q_{\text{d-alk-i}}$ is the experimental
181 determined mass of the individual deuterated *n*-alkanes (C₁₀–C₁₃); Q_{SCCP} is the mass of
182 SCCPs; M_{Cl} and M_{D} are the molecular weights of Cl atom (average: 35.5) and D atom,
183 respectively; and K_{SCCP} is the chlorine content (mass percentage) of SCCPs.

184 **8. Fractionation and MS detection.**

185
186 **Figure S4.** Comparison of the SCCP homologue profiles in the tested SCCP mixture standard (51% Cl)
187 determined by deuterodechlorination combined with HRGC–EI/HRMS and by carbon skeleton reaction
188 with GC/FID, respectively.


189

190

191 **Figure S5.** The relative response factors of *n*-octane and *n*-octane-d₁₈ determined in EI mode, and the
 192 speculated variation range of the relative response factors for deuterated *n*-alkanes generated from SCCPs
 193 generally with 3–10 chlorine atoms.

194

195

196 **Figure S6.** Relative abundances of individual SCCP congeners in two tested mixture standards with
 197 chlorine content of 51% and 63%, respectively, determined by deuterodechlorination combined with
 198 HRGC–EI/HRMS.

199 **9. Interferences from deuterated *n*-alkenes, low-chlorinated deuterated *n*-alkanes and**
 200 **¹³C isotope.**

201 In order to avoid the interferences from deuterated *n*-alkenes and low-chlorinated
 202 deuterated *n*-alkanes, HRGC–EI/HRMS was used because of the ultrahigh mass accuracy,
 203 and the molecular ion clusters [M]⁺ of the formed deuterated alkanes were monitored in SIM
 204 mode. Therefore, both the deuterated *n*-alkenes and low-chlorinated deuterated *n*-alkanes

205 were not detected out in this SIM mode. In addition, the retention times of deuterated
206 *n*-alkenes and low-chlorinated deuterated *n*-alkanes were different from those of deuterated
207 *n*-alkanes. However, background peaks, mainly originating from unknown chemicals and
208 electrical signals, might appear in the SIM chromatogram due to the relatively low
209 concentrations of the SCCP congeners (D₁₋₃-*n*-alkanes in Figure 1).

210 In addition, ¹³C isotopes of C₁₀₋₁₃ alkanes might interfere with [M+1]⁺ at 10% of [M]⁺
211 when monitoring the molecular ion clusters by LRMS. In order to avoid the possible
212 interference, the HRGC-EI/HRMS was adopted, and conducted in SIM mode with a mass
213 accuracy of 0.001. The difference of the m/z values of the molecular ion between
214 ¹²C_{n-1}¹³CH_{2n+2-m}D_m and ¹²C_nH_{2n+1-m}D_{m+1} was 0.00292, where n and m are the numbers of
215 carbon atoms and deuterium atoms. Therefore, the analytical interferences of ¹³C isotopes of
216 alkanes were prevented by HRMS. No obvious interference has been seen in the SIM
217 chromatogram of the deuterated alkanes in Figure 1a. Some other peaks around
218 D₁₋₃-*n*-alkanes might come from the background interferences, mainly originating from
219 unknown chemicals and electrical signals. The relative signal intensities of background
220 interferences can be largely reduced through increasing the concentration of deuterated
221 *n*-alkanes and the mass resolution. However, some congeners in low concentrations could not
222 be detected out with ultrahigh mass resolution. Based on the above, a mass resolution of 5000
223 was used in our study considering both the sensitivity and selectivity.

224 **10. Performance evaluation of the extraction internal standard in sample extraction and**
225 **cleanup procedure.**

226 Commercial CPs are produced by radical chlorination of *n*-alkanes via petroleum
227 feedstocks, so the amounts of branched SCCPs are very few. In recent years, we analyzed a
228 series of commercial CPs produced in China, including CP-42, CP-52 and CP-70, as well as

229 some petroleum feedstocks by carbon skeleton reaction with GC/FID. The amounts of
 230 branched alkanes were below the LOD values (15~19 µg/L at a S/N of 3: 1). Possibly
 231 because of the lack of industrial sources, the branched SCCPs have not been detected out in
 232 sediment and biota samples. The performance of the extraction internal standard in sample
 233 extraction and cleanup procedure has been evaluated. Four replicates of 5 g sodium sulfate
 234 spiked with the extraction internal standard at the mass fraction of 100 ng/g were pretreated
 235 by Soxhlet extraction, GPC and the two-step cleanup procedure, and then analyzed by the
 236 carbon skeleton reaction with GC/FID using external calibration. The average recoveries of
 237 branched C₁₀-CPs were calculated to be 92.5%.

238 **11. Method development for the quantification of SCCP congeners by**
 239 **deuterodechlorination combined HRGC–EI/HRMS.**

240 **Table S5.** Calculated chlorine content and RCF values of the synthetic SCCP calibration standards.

Carbon-chain length	Chlorine content (%)	Calculated chlorine content (%)	RCF values	Deuterodechlorination rate (%)
C ₁₀	41.1	41.3	13.15	66.8
C ₁₀	41.1	42.1	9.49	48.2
C ₁₀	41.1	42.0	9.12	48.3
C ₁₀	49.3	50.1	21.55	58.4
C ₁₀	49.3	52.8	14.93	58.1
C ₁₀	49.3	46.1	13.81	49.2
C ₁₀	57.8	58.5	16.61	59.3
C ₁₀	57.8	57.7	17.23	66.6
C ₁₀	57.8	57.1	19.34	68.3
C ₁₀	62.6	61.9	21.54	50.5
C ₁₀	62.6	62.0	22.90	49.1
C ₁₀	62.6	62.0	22.08	42.1
C ₁₀	66.2	64.3	17.76	69.7
C ₁₀	66.2	64.4	21.96	53.6
C ₁₀	66.2	64.6	20.33	58.2
Average RCF values	17.45	Relative standard deviation (RSD) of RCF values (%)		26.0
C ₁₁	44.8	44.7	16.00	66.8
C ₁₁	44.8	46.7	13.00	48.2

C ₁₁	44.8	46.0	14.01	48.3
C ₁₁	51.0	51.4	16.07	58.4
C ₁₁	51.0	51.8	16.59	58.1
C ₁₁	51.0	53.5	13.34	49.2
C ₁₁	57.7	55.7	23.17	59.3
C ₁₁	57.7	56.0	23.13	66.6
C ₁₁	57.7	55.6	20.59	68.3
C ₁₁	59.8	58.8	27.80	63.6
C ₁₁	59.8	58.8	27.45	64.0
C ₁₁	59.8	58.8	24.00	53.8
C ₁₁	67.7	65.0	18.05	69.7
C ₁₁	67.7	65.1	26.27	53.6
C ₁₁	67.7	65.1	20.17	58.2
Average RCF values	19.98	Relative standard deviation (RSD) of RCF values (%)		25.7
C ₁₂	45.6	43.7	13.61	66.8
C ₁₂	45.6	42.3	17.98	48.2
C ₁₂	45.6	42.3	17.91	48.3
C ₁₂	52.2	52.8	15.72	63.6
C ₁₂	52.2	52.8	17.02	64.0
C ₁₂	52.2	54.3	18.82	53.8
C ₁₂	59.7	56.4	23.10	59.3
C ₁₂	59.7	56.2	21.01	66.6
C ₁₂	59.7	56.0	17.50	68.3
C ₁₂	63.1	61.7	22.65	50.5
C ₁₂	63.1	61.6	22.64	49.1
C ₁₂	63.1	61.6	19.28	42.1
C ₁₂	66.4	62.4	13.50	69.7
C ₁₂	66.4	63.2	14.97	53.6
C ₁₂	66.4	63.2	12.93	58.2
Average RCF values	17.91	Relative standard deviation (RSD) of RCF values (%)		18.9
C ₁₃	44.0	42.6	25.11	69.9
C ₁₃	44.0	41.5	24.93	56.1
C ₁₃	44.0	41.1	30.98	69.2
C ₁₃	55.0	53.7	27.32	57.9
C ₁₃	55.0	54.1	31.01	53.6
C ₁₃	55.0	60.0	26.53	56.5
C ₁₃	59.9	60.2	24.88	59.3
C ₁₃	59.9	60.1	24.74	66.6
C ₁₃	59.9	62.2	18.75	68.3
C ₁₃	65.4	62.1	20.21	63.6
C ₁₃	65.4	62.0	23.20	64.0
C ₁₃	65.4	65.3	15.69	53.8

C ₁₃	69.6	65.4	21.31	69.7
C ₁₃	69.6	65.4	16.53	53.6
C ₁₃	69.6	44.7	13.15	58.2
Average RCF values	23.7	Relative standard deviation (RSD) of RCF values		

241

242 **Table S6.** The $R_{i,j}$ values for individual deuterated *n*-alkane generated from SCCPs in three commercial
243 CP mixtures (CP-42, CP-52 and CP-70).

CP-42	C ₁₀	C ₁₁	C ₁₂	C ₁₃
1Cl	0.145	0.161	0.126	0.093
2Cl	0.190	0.269	0.252	0.119
3Cl	0.189	0.290	0.258	0.231
4Cl	0.179	0.178	0.157	0.256
5Cl	0.119	0.074	0.119	0.209
6Cl	0.096	0.028	0.088	0.094
7Cl	0.058	0 [*]	0	0
8Cl	0.025	0	0	0
9Cl	0	0	0	0
10Cl	0	0	0	0
11Cl	0	0	0	0
12Cl	0	0	0	0
13Cl	0	0	0	0
14Cl				0
15Cl				0
CP-52	C ₁₀	C ₁₁	C ₁₂	C ₁₃
1Cl	0.006	0	0	0
2Cl	0.017	0.016	0.008	0.003
3Cl	0.057	0.052	0.079	0.032
4Cl	0.289	0.154	0.123	0.097
5Cl	0.308	0.301	0.226	0.189
6Cl	0.237	0.301	0.292	0.272
7Cl	0.074	0.139	0.194	0.245
8Cl	0.011	0.032	0.066	0.122
9Cl	0.001	0.004	0.012	0.034
10Cl	0	0	0.001	0.006
11Cl	0	0	0	0.001
12Cl	0	0	0	0
13Cl	0	0	0	0
14Cl				0

15Cl				0
CP-70	C ₁₀	C ₁₁	C ₁₂	C ₁₃
1Cl	0	0	0	0
2Cl	0	0	0	0
3Cl	0	0	0	0
4Cl	0	0	0	0
5Cl	0	0.119	0.027	0
6Cl	0.134	0.111	0.066	0
7Cl	0.152	0.184	0.203	0.054
8Cl	0.180	0.256	0.313	0.117
9Cl	0.250	0.177	0.163	0.127
10Cl	0.185	0.097	0.145	0.224
11Cl	0.068	0.046	0.057	0.255
12Cl	0.031	0.010	0.025	0.130
13Cl	0	0	0	0.067
14Cl				0.027
15Cl				0

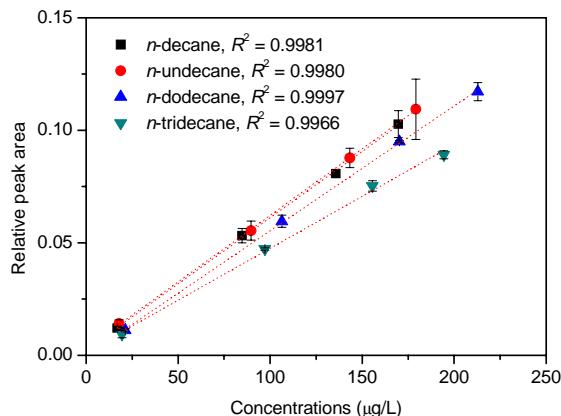
*congeners were not detected out.

244

245

246 **Table S7.** The $R_{i,j}$ values for individual deuterated *n*-alkane generated from SCCPs in sediment and biota
247 samples.

Sediment 1	C ₁₀	C ₁₁	C ₁₂	C ₁₃
1Cl	0*	0	0	0
2Cl	0	0.008	0.009	0.017
3Cl	0.041	0.098	0.104	0.129
4Cl	0.163	0.239	0.230	0.193
5Cl	0.344	0.232	0.198	0.178
6Cl	0.280	0.198	0.179	0.198
7Cl	0.117	0.139	0.172	0.161
8Cl	0.040	0.063	0.080	0.082
9Cl	0.011	0.018	0.023	0.031
10Cl	0.003	0.004	0.005	0.008
11Cl	0	0.001	0	0.002
12Cl	0	0	0	0
13Cl				0
14Cl				0
Sediment 2	C ₁₀	C ₁₁	C ₁₂	C ₁₃
1Cl	0	0	0	0


2Cl	0.003	0.011	0.021	0.017
3Cl	0.037	0.090	0.129	0.128
4Cl	0.291	0.251	0.252	0.206
5Cl	0.284	0.227	0.192	0.188
6Cl	0.230	0.190	0.163	0.184
7Cl	0.104	0.144	0.147	0.151
8Cl	0.037	0.063	0.070	0.083
9Cl	0.011	0.019	0.021	0.031
10Cl	0.003	0.004	0.005	0.009
11Cl	0.001	0.001	0	0.002
12Cl	0	0	0	0
13Cl				0
14Cl				0
Loach	C ₁₀	C ₁₁	C ₁₂	C ₁₃
1Cl	0	0	0	0
2Cl	0.018	0.033	0.078	0.062
3Cl	0.120	0.170	0.224	0.251
4Cl	0.368	0.360	0.377	0.369
5Cl	0.291	0.235	0.212	0.197
6Cl	0.104	0.108	0.072	0.073
7Cl	0.055	0.046	0.028	0.029
8Cl	0.033	0.030	0.007	0.013
9Cl	0.009	0.014	0.002	0.006
10Cl	0.002	0.004	0	0.001
11Cl	0	0	0	0
12Cl	0	0	0	0
13Cl				0
14Cl				0
Frog	C ₁₀	C ₁₁	C ₁₂	C ₁₃
1Cl	0	0	0	0
2Cl	0.034	0.019	0.099	0.036
3Cl	0.038	0.098	0.163	0.187
4Cl	0.207	0.198	0.313	0.309
5Cl	0.180	0.196	0.248	0.248
6Cl	0.140	0.131	0.115	0.124
7Cl	0.181	0.126	0.046	0.056
8Cl	0.149	0.133	0.014	0.025
9Cl	0.061	0.076	0.003	0.011

10Cl	0.009	0.020	0	0.003
11Cl	0	0.003	0	0.001
12Cl	0	0	0	0
13Cl				0
14Cl				0

248 ^{*}congeners were not detected out.

249 **12. Method selectivity and linearity.**

250 Sample preparation was conducted in a super clean laboratory to avoid background
 251 contamination, and the procedure blanks were run to verify the contamination of the solvents
 252 and glassware. Method performance of the whole analytical procedure was investigated
 253 according to EURACHEM and EPA guidelines.^{8, 9} During the deuterodechlorination of
 254 SCCPs, the individual deuterated *n*-alkanes are specifically formed by the reduction of
 255 LiAlD₄. The generated deuterated *n*-alkanes can be further identified by EI/HRMS in the SIM
 256 mode, which avoids the interferences from some undesired products, such as low chlorinated
 257 deuterated *n*-alkanes and deuterated alkenes. For environmental and biota extracts, the
 258 selectivity of the analytical method was further ensured by removing other organochlorine
 259 compounds using column cleanup procedure. The application of HRGC–EI/HRMS method
 260 in SIM mode can also prevent the interferences from the deuterated products generated from
 261 these organochlorine compounds. The *n*-alkanes and deuterated *n*-alkanes have similar
 262 behavior on the EI/HRMS detection, and thus the detection linearity range of the deuterated
 263 *n*-alkanes can be evaluated by the *n*-alkanes. Four kinds of *n*-alkanes with different carbon
 264 chain lengths, *n*-decane, *n*-undecane, *n*-dodecane and *n*-tridecane, were spiked with
 265 phenanthrene (as the injection internal standard), and then used to evaluate the detection
 266 linearity range. There was a good correlation ($R^2 > 0.99$) between the *n*-alkane concentrations
 267 (range: 17–212 μ g/L) and the relative peak area of the tested *n*-alkane to phenanthrene
 268 (Figure S7).

269
270 **Figure S7.** The linear correlation between the *n*-alkane concentrations and its relative peak areas
271 determined by HRGC–EI/HRMS.

272 **13. Instrumental detection limit (IDL) of *n*-alkanes and method detection limit (MDL)
273 of SCCPs.**

274 The blank sediment sample was matrix-matched, which was prepared using Soxhlet
275 extraction until no detectable quantities of SCCPs analyzed by HRGC–ECNI/LRMS method.
276 Eight replicates of blank sediment samples spiked with the internal standard solution were
277 pretreated by Soxhlet extraction and the subsequent column cleanup procedure. The
278 concentrated solution in the micro-reaction vial was spiked with the reaction internal standard,
279 and then treated with LiAlD₄ as described in the experimental section. The method detection
280 limit (MDL) for total SCCPs, calculated as 3-fold the standard deviation of SCCPs in blank
281 sediment samples, was 33 ng/g (n = 8). The value was a little higher than that by
282 ECNI/LRMS method (14 ng/g)³, which was undoubtedly sensitive for high chlorinated
283 SCCPs. The average chlorine content of SCCPs in blank sediment samples was calculated to
284 be 55.0%.

285 **14. Repeatability and Precision.**

286 **Table S8.** The quantitative results of SCCPs in different stock standard solutions.

Standard	Test times	Mass				Chlorine content				R_{re} (%) ^g
		Expected mass (μg)	Determined average mass (μg)	Relative standard deviation (%) ^a	Relative error (%) ^b	Labeled chlorine content (%) ^c	Calculated average chlorine content (%) ^d	Relative standard deviation (%) ^e	Relative error (%) ^f	
C ₁₀ -CPs	n = 2	0.5	0.58	--	16.2	60.09	60.7	--	1.0	88.3
C ₁₁ -CPs	n = 2	1	0.84	--	15.6	55.2	52.4	--	5.1	105.1
SCCP mixture	n = 3	10	12.0	8.9	20.1	51.5	49.7	0.9	3.5	84.7

287 ^a Relative standard deviation for the determined mass. ^b Relative error between the expected mass and the determined average mass. ^c Chlorine content labeled by producer (Dr. Ehrenstorfer
288 GmbH, Germany). ^d Chlorine content calculated from the determined chlorine distribution of SCCPs. ^e Relative standard deviation for the calculated chlorine content. ^f Relative error between the
289 labeled chlorine content and the calculated average chlorine content. ^g Recovery of the extraction internal standard (chlorinated 2-methylnonane) throughout the sample pretreatment.

290

291 **Table S9.** The quantitative results of SCCPs in blank sediment samples spiked with different SCCP homologues.

Spiked standard	Test times	Mass				Chlorine content				R_{ex} (%) ^g	R_{re} (%) ^h
		Expected mass (μg)	Determined average mass (μg)	Relative standard deviation (%) ^a	Relative error (%) ^b	Labeled chlorine content (%) ^c	Calculated average chlorine content (%) ^d	Relative standard deviation (%) ^e	Relative error (%) ^f		
C ₁₀ -CPs	n = 1	0.5	0.50	--	0.6	60.09	59.8	--	0.5	78.6	88.8
C ₁₁ -CPs	n = 2	1	1.20	--	19.9	55.2	53.4	--	3.2	83.6	79.2
C ₁₂ -CPs	n = 3	0.5	0.38	9.1	24.3	65.08	61.1	0.36	6.1	80.0	89.1
C ₁₃ -CPs	n = 1	0.5	0.37	--	25.9	65.18	61.3	--	6.0	78.6	88.8

292 ^a Relative standard deviation for the determined mass. ^b Relative error between the expected mass and the determined average mass. ^c Chlorine content labeled by producer (Dr. Ehrenstorfer
293 GmbH, Germany). ^d Chlorine content calculated from the determined chlorine distribution of SCCPs. ^e Relative standard deviation for the calculated chlorine content. ^f Relative error between the
294 labeled chlorine content and the calculated average chlorine content. ^g Recovery rate of the extraction internal standard (chlorinated 2-methylnonane) throughout the sample pretreatment. ^h
295 Recovery of the reaction internal standard (chlorinated 2-methylundecane) throughout the deuterodechlorination reaction.

296 **15. Calculation of the recoveries.**

297 Relative response factor (RRF_{ex}) for the extraction internal standard relative to the
298 reaction internal standard and relative response factor (RRF_{re}) for the reaction internal
299 standard relative to the injection internal standard can be calculated by eq. 4 and 5,
300 respectively:

301
$$RRF_{ex} = \frac{Q_{d-IS}}{Q_{d-RS}} \times \frac{TA_{d-IS}}{TA_{d-RS}} \quad (4)$$

302
$$RRF_{re} = \frac{Q_{inj}}{Q_{d-RS}} \times \frac{TA_{d-RS}}{A_{inj}} \quad (5)$$

303 where Q_{d-IS} and TA_{d-IS} are the theoretical mass and the actually determined total peak
304 area of deuterated 2-methylnonane generated from the extraction internal standard,
305 respectively; Q_{d-RS} and TA_{d-RS} are the theoretical mass and the actually determined total
306 peak area of deuterated 2-methylundecane generated from the reaction internal standard,
307 respectively; and Q_{inj} and A_{inj} are the theoretical mass and the actually determined peak
308 area of phenanthrene, respectively. Similar with RCF values, an average RRF_{ex} and RRF_{re}
309 were calculated as $(\overline{RRF_{ex}})$ and $(\overline{RRF_{re}})$ for the recovery confirmation. The recoveries of
310 the extraction and reaction internal standards (R_{ex} and R_{re}) can be calculated using the
311 following equations:

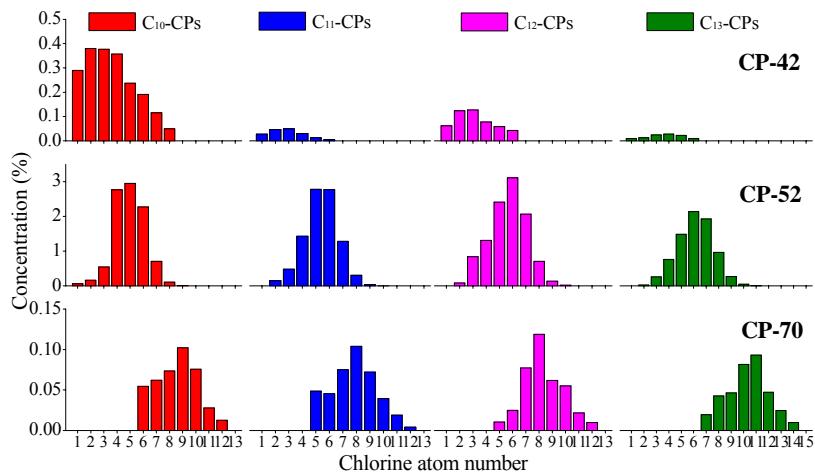
312

313
$$R_{ex} = \frac{Q_{d-RS}}{Q_{d-IS}} \times \frac{TA_{d-IS}}{RRF_{ex}} \times \frac{100\%}{TA_{d-RS}} \quad (6)$$

314
$$R_{re} = \frac{Q_{inj}}{Q_{d-RS}} \times \frac{TA_{d-RS}}{RCF_{re}} \times \frac{100\%}{A_{inj}} \quad (7)$$

315

316 **16. Concentrations and congener profiles of SCCPs in commercial CPs, sediment and**
 317 **biota samples.**


318 **Table S10.** Congener concentrations and calculated chlorine contents of SCCPs in commercial CP
 319 products determined by deuterated carbon skeleton reaction combined HRGC–EI/HRMS.

	Sample	CP-42	CP-52	CP-70
C ₁₀ -CPs	Concentrations (%)	2.3	10.3	0.5
	Chlorine content (%)	44.6	55.5	68.6
C ₁₁ -CPs	concentrations (%)	0.2	9.9	0.5
	Chlorine content (%)	37.6	55.1	60.8
C ₁₂ -CPs	concentrations (%)	0.5	10.7	0.4
	Chlorine content (%)	38.1	54.6	63.4
C ₁₃ -CPs	concentrations (%)	0.1	9.4	0.4
	Chlorine content (%)	40.1	54.2	67.6
Total concentrations (mg/g)		3.1	40.2	1.7
Average chlorine content (%)		42.9	54.9	65.2
R _{re} (%)		102.7	88.3	97.4

320

321 **Table S11.** Congener concentrations and calculated chlorine contents of SCCPs in sediment and biota
 322 samples determined by deuterated carbon skeleton reaction combined HRGC–EI/HRMS.

	Sample	Sediment 1#	Sediment 2#	Loach extracts	Frog extracts
C ₁₀ -CPs	Concentrations (μg/g)	0.34	0.46	0.93	1.14
	Chlorine content (%)	57.9	56.8	53.8	58.8
C ₁₁ -CPs	Concentrations (μg/g)	0.60	0.60	0.96	1.10
	Chlorine content (%)	54.4	54.4	50.5	55.9
C ₁₂ -CPs	concentrations (μg/g)	0.76	1.02	1.38	1.10
	Chlorine content (%)	52.7	51.5	45.7	46.9
C ₁₃ -CPs	concentrations (μg/g)	1.01	1.20	1.64	1.15
	Chlorine content (%)	50.6	50.5	44.0	46.5
Total concentrations (μg/g)	2.71	3.28	4.92	4.49	
Average chlorine content (%)	52.9	52.4	47.6	52.0	
R _{ex} (%)	88.0	94.7	74.9	80.7	
R _{re} (%)	79.3	78.1	84.6	88.1	

323

324 **Figure S8.** Congener profiles of SCCPs in three types of commercial CP products determined by the
 325 method of deuterodechlorination combined with HRGC–EI/HRMS.

326

327 **Table S12.** SCCP concentrations and their calculated chlorine contents in sediment and biota samples
 328 extracts analyzed by HRGC–ECNII/LRMS.

Sample	Concentrations ($\mu\text{g/g}$)	Chlorine content(%)
Sediment 1#	0.2	59.5
Sediment 2#	0.4	58.4
Loach extract	2.9	57.8
Frog extract	2.7	57.9

329

330

331 **References**

332 (1) Zhang, F.; Lin, Y. Determination of total chlorine in chlorinated paraffin by ionic
 333 chromatogram. *Guangzhou Chemistry* **2009**, *34*, 42–45 (in Chinese); DOI:
 334 10.1009-220X(2009)01-0042-04.

335 (2) Gao, Y.; Zhang, H. J.; Su, F.; Tian, Y. Z.; Chen, J. P. Environmental occurrence and
 336 distribution of short chain chlorinated paraffins in sediments and soils from the Liaohe
 337 River Basin, P.R. China. *Environ. Sci. Technol.* **2012**, *46*, 3771–3778; DOI
 338 10.1021/es2041256.

339 (3) Gao, Y.; Zhang, H. J.; Chen, J. P.; Zhang, Q.; Tian, Y. Z.; Qi, P. P.; Yu, Z. J.
340 Optimized cleanup method for the determination of short chain polychlorinated *n*-alkanes
341 in sediments by high resolution gas chromatography/electron capture negative ion-low
342 resolution mass spectrometry. *Anal. Chim. Acta.* **2011**, *703*, 187–193; DOI
343 10.1016/j.aca.2011.07.041.

344 (4) Reth, M.; Zencak, Z.; Oehme, M. New quantification procedure for the analysis of
345 chlorinated paraffins using electron capture negative ionization mass spectrometry. *J.*
346 *Chromatogr. A* **2005**, *1081*, 225–231; DOI 10.1016/j.chroma.2005.05.061.

347 (5) Koh, I. O.; Rotard, W.; Thiemann, W. H. P. Analysis of chlorinated paraffins in
348 cutting fluids and sealing materials by carbon skeleton reaction gas chromatography.
349 *Chemosphere* **2002**, *47*, 219–227; DOI 10.1016/S0045-6535(01)00293-4.

350 (6) De Boer, J.; El-Sayed Ali, T., Fiedler, H.; Legler, J.; Muir, D. C.; Nikiforov, V. A.;
351 Tomy, G. T.; Tsunemi, K. Chlorinated Paraffins. In *The handbook of Environmental*
352 *Chemistry, Chlorinated Paraffins*; De Boer, J., Ed.; Springer-Verlag Berlin: Berlin, 2010;
353 Vol. 10.

354 (7) Tomy, G. T.; Stern, G. A.; Muir, D.C.G.; Fisk, A. T.; Cymbalisty, C. D.; Westmore, J.
355 B. Quantifying C₁₀-C₁₃ polychloroalkanes in environmental samples by high-resolution
356 gas chromatography/electron capture negative ion high-resolution mass spectrometry.
357 *Anal. Chem.* **1997**, *69*, 2762–2771; DOI: 10.1021/ac961244y.

358 (8) EURACHEM Guide. The fitness for purpose of analytical methods: a laboratory guide
359 to method validation and related topics, LGC Teddington. 1998.

360 (9) U.S. Environmental Protection Agency Office of Water Engineering and Analysis
361 Division, Method 1613 Tetra- through octa-chlorinated dioxins and furans by isotope
362 dilution HRGC/HRMS, Washington, D. C. 1994.

363