Hydrogen peroxide-promoted Mizoroki-Heck reactions of phenyldiazenes with acrylates, acrylamides and styrenes

Roman Lasch, Stefanie K. Fehler and Markus R. Heinrich*.

Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen, Germany. Markus.Heinrich@fau.de

Table of contents:

1.1	General remarks	2
1.2	General procedures	11
1.3	Synthesis of cinnamic esters and amides	12
1.4	Synthesis of stilbenes	31
1.5	Two-step functionalization of <i>N</i> -acetyl tyrosine:	38
1.6	References	42
1.7	Copies of ¹ H and ¹³ C spectra	43

1.1 General remarks

Solvents and reagents were obtained from commercial sources and used as received. NMR spectra were recorded on *Bruker* Avance 600 (1 H: 600 MHz, 13 C: 151 MHz) and *Bruker* Avance 360 (1 H: 360 MHz, 13 C: 91 MHz). For 1 H-NMR CDCl₃ and CD₃OD, and are used as solvents referenced to TMS ($\delta = 0.00$ ppm), CDCl₃ ($\delta = 7.26$ ppm) or CD₃OD ($\delta = 3.31$ ppm). For 13 C-NMR CDCl₃ and CD₃OD are used as solvents with CDCl₃ ($\delta = 77.0$ ppm), and CD₃OD ($\delta = 49.0$ ppm) as standards. Chemical shifts are reported in parts per million (ppm). Coupling constants are in Hertz (*J* Hz). The following abbreviations are used for the description of signals: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and bs (broad singlet). Mass spectra were recorded using electron impact (EI). A sector field mass was used for HRMS measurements.

Analytical TLC was carried out on *Merck* silica gel plates using short wave (254 nm) UV light, KMnO₄ [3.0 g KMnO₄, 20 g potassium carbonate, 5.0 mL aqueous sodium hydroxide (5% *w/w*) in 300 mL H₂O] and ninhydrin [200 mg ninhydrin in 100 mL ethanol] to visualize components. For flash column chromatography silica gel (Kieselgel 60, grain size 40 - 63 μm, *Merck*) was used. The phenylazocarboxylic esters **1a-1k** have been previously characterized¹ and were prepared according to established procedures.

Table S1. Experiments with *tert*-butyl 2-(4-fluorophenyl)azocarboxylate: variation of solvent, base and ligand.

	Conditions						Yield [%] ^a	
Entry	Atmos- phere	Solvent	Ligand	Base (1.0 equiv)	Acrylate (equiv)	В	\mathbf{A}^{b}	
1	Argon	МеОН	-	-	2	6	89	
2	Argon	МеОН	-	NEt_3	2	25	41	
3	Air	МеОН	-	NEt ₃	4	28	6	
4	Air	CH ₃ CN	-	NEt ₃	4	2	86	
5	Air	МеОН	PPh ₃ (10 mol%)	NEt ₃	4	29	3	
6	Argon	МеОН	PPh ₃ (10 mol%)	K_2CO_3	4	5	-	

^a Yields determined by ¹H-NMR using dimethyl terephthalate (0.1 mmol, δ = 8.1 (s, 4 H)) as internal standard; ^b recovered starting material **A**

 Table S2. Experiments with tert-butyl 2-(4-fluorophenyl)azocarboxylate: variation of Pd

E	_	C		Yield [%] ^a		
	Entry	Pd-salt	Ligand	Base (1.0 equiv)	В	\mathbf{A}^{b}
	1	Pd[(C ₆ H ₅) ₃ P] ₄ (5 mol%)	-	NEt_3	19	-
	2	PdCl ₂ (10 mol%)	PPh ₃ (10 mol%)	NEt_3	43	17
	3	PdCl ₂ (10 mol%)	PPh ₃ (20 mol%)	NEt_3	42	6
	4	PdCl ₂ (10 mol%)	PPh ₃ (20 mol%)	K_2CO_3	16	-

^a Yields determined by ¹H-NMR using dimethyl terephthalate (0.1 mmol, $\delta = 8.1$ (s, 4 H)) as internal standard;

source, base and additive.

^b recovered starting material **A**

Table S3. Experiments with *tert*-butyl 2-(4-fluorophenyl)azocarboxylate: variation of catalyst loading and amount of additive.

For a conditions NEt₃ (1.0 equiv)

A (1.0 equiv)

(4.0 equiv)

$$(4.0 \text{ equiv})$$

Entire		Yield [%] ^a			
Entry	Atmosphere	PdCl ₂ (mol%)	PPh ₃ (mol%)	В	\mathbf{A}^{b}
1	Argon	8	16	48	-
2	Argon	5	10	35	9
3	Argon	3	6	30	15
4	Argon	1	2	12	21
5	Air	1	2	12	9

^a Yields determined by ¹H-NMR using dimethyl terephthalate (0.1 mmol, δ = 8.1 (s, 4 H)) as internal standard; ^b recovered starting material **A**

Table S4. Experiments with *tert*-butyl 2-(4-fluorophenyl)azocarboxylate: variation of solvent and temperature.

_		Conditions	Conditions			Yield [%] ^a		
Entry	Solvent	Temperature	Styrene (equiv)	C	D	\mathbf{A}^{b}	Ratio C/D	
1	МеОН	RT	4	61	20	17	3/1	
2	МеОН	$0^{\circ}\text{C} \to \text{RT}$	4	55	22	12	2.5/1	
3	EtOH	RT	4	6	2	72	3/1	
4	dioxan	RT	4	-	-	66	-	
5	DMF	RT	4	-	-	86	-	
6	CH ₃ CN	RT	4	10	-	90	1/0	

 $[^]a$ Yields determined by $^1\!H$ -NMR using dimethyl terephthalate (0.1 mmol, δ = 8.1 (s, 4 H)) as internal standard; b recovered starting material \boldsymbol{A}

Table S5. Experiments with tert-butyl 2-(4-fluorophenyl)azocarboxylate: variation of solvent

Enter	Colvent		Yield [%] ^a	
Entry	Solvent	C	D	\mathbf{A}^{b}
1	CH₃CN	12	-	58
2	$CH_3CN / H_2O (5\%)$	12	1	65
3	CH ₃ CN / H ₂ O (10%)	14	1	41

^a Yields determined by ¹H-NMR using dimethyl terephthalate (0.1 mmol, δ = 8.1 (s, 4 H)) as internal standard; ^b recovered starting material **A**

Table S6. Experiments with *tert*-butyl 2-(4-fluorophenyl)azocarboxylate: variation of catalyst loading and phosphine additive

		Cor	Conditions		•	Yield [%]	Ratio	
Entry	Atmos- phere	PdCl ₂ [mol%]	Ligand	Styrene (equiv)	C	D	$\mathbf{A}^{[b]}$	C/D
1	Argon	5.5	Dppf (5 mol%)	4	22	10	-	2.2/1
2	Argon	8	Dppp (8 mol%)	10	48	11	13	4.4/1
3	Air	8	P(o-tol) ₃ (16 mol%)	4	48	8	6	6/1
4	Argon	8	P(Cy) ₃ (16 mol%)	10	26	1	-	26/1
5	Air	8	-	4	8	-	74	1/0

^a Yields determined by ¹H-NMR using dimethyl terephthalate (0.1 mmol, δ = 8.1 (s, 4 H)) as internal standard; ^b recovered starting material **A**

Table S7. Experiments with tert-butyl 2-(4-fluorophenyl)azocarboxylate: further additives

F	Conditio	ns		Yield [%]	Ratio	
Entry	Additive	PPh ₃	C	D	\mathbf{A}^{b}	C/D
1	CuCl ₂ (8 mol%)	16 mol%	30	5	-	6/1
2	I ₂ (8 mol%)	-	10	-	82	1/0
3	NaBr (0.5 eq)	16 mol%	41	12	4	3.4/1

^a Yields determined by ¹H-NMR using dimethyl terephthalate (0.1 mmol, $\delta = 8.1$ (s, 4 H)) as internal standard;

Table S8. Experiments with *tert*-butyl 2-(4-fluorophenyl)azocarboxylate: dilution of the reaction mixture

	Enter	Concentration of A in	Yield [%] ^a				
	Entry	МеОН	C	D	\mathbf{A}^{b}		
	1	standard conc.: 0.1 mol/L	61	20	17		
	2	0.2 mol/L	4	1	84		
	3	0.03 mol/L	56	15	14		

 $[^]a$ Yields determined by lH -NMR using dimethyl terephthalate (0.1 mmol, δ = 8.1 (s, 4 H)) as internal standard; b recovered starting material \bm{A}

^b recovered starting material **A**

Scheme S1. Experiments with *tert*-butyl 2-(4-fluorophenyl)azocarboxylate: yields after purification with column chromatography

Scheme S2. Preparation of methyl 2-(4-fluorophenyl)azocarboxylate

Table S9. Experiments with methyl 2-(4-fluorophenyl)azocarboxylate: variation of solvent and atmosphere.

Enter	Condit	Conditions Y		Yield [%] ^[a]	Datia C/D
Entry	Atmosphere	Solvent	C	D	$\mathbf{E}^{ ext{[b]}}$	- Ratio C/D
1	Argon	МеОН	26	8	-	3.3/1
2	Air	МеОН	33	5	-	6.6/1
3	Argon	CH ₃ CN	26	-	73	1/0

^a Yields determined by ¹H-NMR using dimethyl terephthalate (0.1 mmol, δ = 8.1 (s, 4 H)) as internal standard; ^b recovered starting material **E**

Table S10. Preliminary optimization experiments with 1a on a 175 µmol scale

Bu₄NOH
$$=$$
 2a: $X = O^{\bigcirc} \oplus NBu_4$ $=$ 1a: $X = OtBu$ $=$ CO₂Me $=$ CO₂

Entry	Variation of conditions ^a (equiv)	Yield ^b 4aa (%)
1	Bu ₄ NOH (2.0), AgOAc (2.5), Pd(OAc) ₂ (0.38), 3a (15), 30 min, CH ₃ CN/AcOH (1 mL/0.25 mL)	68%
2	Bu ₄ NOH (2.0), AgOAc (2.5), Pd(OAc) ₂ (0.1), 3a (15), 30 min, CH ₃ CN/AcOH (1 mL/0.25 mL)	63%
3	Bu ₄ NOH (2.0), AgOAc (2.5), Pd(OAc) ₂ (0.1), 3a (15), 30 min, CH ₃ CN/AcOH (0.75 mL/0.75 mL)	68%
4	Bu ₄ NOH (1.5), AgOAc (2.5), Pd(OAc) ₂ (0.1), 3a (5), 30 min, CH ₃ CN/AcOH (1 mL/0.2 mL)	76%
5	Bu ₄ NOH (1.5), AgOAc (2.5), Pd(OAc) ₂ (0.05), 3a (5), 45 min, CH ₃ CN/AcOH (1 mL/0.2 mL)	61%
6	Bu ₄ NOH (1.5) AgOAc (2.5), 3a (5), 45 min, CH ₃ CN/AcOH (1 mL/0.2 mL)	0%
7	Bu ₄ NOH (1.5), AgOAc (3.0), Pd(OAc) ₂ (0.1), 3a (5), 45 min, CH ₃ CN/AcOH (1 mL/0.1 mL)	66%
8	Bu ₄ NOH (1.5), AgOAc (2.0), Pd(OAc) ₂ (0.1), 3a (5), 45 min, CH ₃ CN/AcOH (1 mL/0.2 mL)	73%
9	Bu ₄ NOH (1.5), AgOAc (0.1), Pd(OAc) ₂ (0.1), 3a (5), 45 min, CH ₃ CN/AcOH (1 mL/0.2 mL)	25%
10	Bu ₄ NOH (1.5), Pd(OAc) ₂ (0.1), 3a (5), 45 min, CH ₃ CN/AcOH (1 mL/0.2 mL)	51%
11	Bu ₄ NOH (1.5), Pd(OAc) ₂ (0.1), 3a (20), 60 min, CH ₃ CN/AcOH (1 mL/0.2 mL)	23%
12	Bu ₄ NOH (1.5), AgOAc (2.0), Pd(OAc) ₂ (0.1), 3a (5), 45 min, AcOH (1.2 mL)	75%
13	Bu ₄ NOH (1.5), AgOAc (2.5), Pd(OAc) ₂ (0.1), 3a (5), 45 min, MeOH/AcOH (1 mL/0.2 mL)	60%

^aReaction conditions: Tetrabutylammonium hydroxide (262-300 μmol) and **1a** (175 μmol) in CH₃CN (1.0 mL) 5 min; then slow addition of **2a** (over 30-60 min, see table) to **3a** (0.875-3.5 mmol), AgOAc (17.5-525 μmol), Pd(OAc)₂ (0-67 μmol), solvent (see table), rt. ^bYields determined by ¹H-NMR using 1,3,5-trimethoxybenzene as internal standard.

Table S11. Preliminary optimization experiments with 1a on a 0.5 mmol scale

Entry	Variation of conditions ^a (equiv)	Yield ^b 4aa (%)
1	Bu ₄ NOH (1.5), AgOAc (2.0), Pd(OAc) ₂ (0.1), 3a (20), 120 min, CH ₃ CN/AcOH (3 mL/0.6 mL)	61%
2	Bu ₄ NOH (1.5), AgOAc (2.0), Pd(OAc) ₂ (0.1), 3a (5), 45 min, CH ₃ CN/AcOH (3 mL/0.6 mL)	57%
3	Bu ₄ NOH (1.5), AgOAc (2.0), Pd(OAc) ₂ (0.1), 3a (5), 45 min, CH ₃ CN/AcOH/H ₂ O (1 mL/1 mL/1 mL)	55%
4	Bu ₄ NOH (1.5), AgOAc (2.0), Pd(OAc) ₂ (0.1), 3a (5), 45 min, AcOH (3 mL)	72%
5	Bu ₄ NOH (1.5), AgOAc (2.0), Pd(OAc) ₂ (0.1), 3a (5), 45 min, AcOH (3 mL), reaction at 60°C	53%
6	Bu ₄ NOH (1.5), AgOAc (2.0), Pd(OAc) ₂ (0.1), PPh ₃ (0.1), 3a (5), 45 min, AcOH (3 mL)	75%
7	Bu ₄ NOH (1.5), H ₂ O ₂ (2.0) instead of AgOAc, Pd(OAc) ₂ (0.1), 3a (5), 45 min, AcOH (3 mL)	83%

^aReaction conditions: Tetrabutylammonium hydroxide (0.75 mmol) and **1a** (0.5 mmol) in CH₃CN (1.4 mL), 5 min; then slow addition of **2a** (over 45-120 min, see table) to **3a** (2.5-10 mmol), AgOAc (1.0 mmol), Pd(OAc)₂ (0.05 mmol), solvent (see table), rt (if not otherwise mentioned in table). ^bYields determined by ¹H-NMR using 1,3,5-trimethoxybenzene as internal standard.

Table S12. Qualitative screening for suitable oxidants

Entry	Variation of conditions ^a (equiv)	Qualitative TLC analysis referenced to 4aa
1	Bu ₄ NOH (1.5), MnO ₂ (2.0), Pd(OAc) ₂ (0.1), 3a (5), 30 min,	4aa as major product,
	AcOH (0.5 mL)	few side products
2	Bu ₄ NOH (1.5), KMnO ₄ (2.0), Pd(OAc) ₂ (0.1), 3a (5), 30 min,	traces of 4aa, many side
	AcOH (0.5 mL)	products
3	Bu ₄ NOH (1.5), Cu(OTf) ₂ (2.0), Pd(OAc) ₂ (0.1), 3a (5), 30 min,	traces of 4aa, many
	AcOH (0.5 mL)	side products
4	Bu ₄ NOH (1.5), H ₂ O ₂ (2.0), Pd(OAc) ₂ (0.1), 3a (5), 30 min,	4aa as major product,
	AcOH (0.5 mL)	no side products

^aReaction conditions: Tetrabutylammonium hydroxide (188 μmol) and **1a** (125 μmol) in CH₃CN (0.5 mL) 5 min; then slow addition of **2a** (over 30min) to **3a** (0.625 mmol), oxidant (0.25 mmol, see table), $Pd(OAc)_2$ (12.5 μmol), AcOH (0.5 mL), rt.

1.2 General procedures

General procedure for method A (GPA)

Tetrabutylammonium hydroxide solution (1.5 M in H₂O, 0.75 mmol, 0.5 mL) is added to a solution of *tert*-butyl phenylazocarboxylate (0.5 mmol) in CH₃CN (1.4 mL) and stirred for 5 min. This mixture is added to a suspension of palladium(II) acetate (50.0 μmol), silver(I) acetate (1.0 mmol), triphenylphosphane (50.0 μmol) and the acrylate or acrylamide (2.5 mmol) in acetic acid (3.0 mL) over 45 min with a syringe pump. The reaction mixture is stirred for additional 10 min and CH₂Cl₂ (25 mL) is added. The organic phase is washed with water (5 mL), a saturated aqueous solution of sodium chloride (5 mL) and dried over sodium sulfate. The solvent is removed under reduced pressure and the residue is subjected to column chromatography on silica gel.

General procedure for method B (GP B)

Tetrabutylammonium hydroxide solution (1.5 M in H₂O, 750 μmol, 0.5 mL) is added to a solution of *tert*-butyl phenylazocarboxylate (0.5 mmol) in CH₃CN (1.4 mL) and stirred for 5 min. This mixture is added to a suspension of palladium(II) acetate (50.0 μmol), hydrogen peroxide solution (1.0 mmol, 30% in H₂O) and the acrylate, acrylamide or styrene (2.5 mmol) in acetic acid (3.0 mL) over 45 min with a syringe pump. The reaction mixture is stirred for additional 10 min and CH₂Cl₂ (25 mL) is added. The organic phase is washed with water (5 mL), a saturated aqueous solution of sodium chloride (5 mL) and dried over sodium sulfate. The solvent is removed under reduced pressure and the residue is subjected to column chromatography on silica gel.

1.3 Synthesis of cinnamic esters and amides

1.3.1 Methyl 4-bromocinnamate (4aa)

Compound **4aa** is prepared from *tert*-butyl 2-(4-bromophenyl)azocarboxylate (**1a**) (500 μ mol, 142 mg) and methyl acrylate (**3a**) (2.50 mmol, 223 μ L) according to general procedure GP A and GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 9:1) to give the title compound **4aa** (375 μ mol, 90.4 mg, 75%, GP A), (402 μ mol, 96.9 mg, 80%, GP B) as a white solid.

In a modified version tetrabutylammonium hydroxide solution (1.5 M in H₂O, 263 μ mol, 175 μ L) is added to a solution of *tert*-butyl 2-(4-bromophenyl)azocarboxylate (**1a**) (175 μ mol, 50.0 mg) in CH₃CN (0.8 mL) and stirred for 5 min. This mixture is added to a solution of palladium(II) acetate (17.5 μ mol, 4.00 mg), methyl acrylate **3a** (875 μ mol, 78.0 μ L) and hydrogen peroxide solution (350 μ mol, 30% in H₂O) in acetic acid (1.4 mL). The reaction mixture is stirred for one hour and concentrated under reduced pressure. The yield of **4aa** (112 μ mol, 64%) is determined with an internal standard of 1,3,5-trimethoxybenzene

Experiment on 3 mmol scale:

Compound **4aa** is prepared from *tert*-butyl 2-(4-bromophenyl)azocarboxylate (**1a**) (3.00 µmol, 855 mg) and methyl acrylate (**3a**) (15.0 mmol, 1.35 mL) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 10:1) to give the title compound **4aa** (2.58 mmol, 622 mg, 86%) as a white solid.

 R_f 0.4 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 3.81 (3 H), 6.42 (d, J = 16.0 Hz, 1 H), 7.38 (d, J = 8.4 Hz, 2 H), 7.52 (d, J = 8.4 Hz, 2 H), 7.62 (d, J = 16.0 Hz, 1 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 51.7 (CH₃), 118.5 (CH), 124.5 (C_q), 129.4 (2 × CH), 132.1 (2 × CH), 133.3 (C_q), 143.4 (CH), 167.1 (C_q).

Analytical data is in agreement with those reported in literature².

1.3.2 Methyl 2-bromocinnamate (4ba)

Compound **4ba** is prepared from *tert*-butyl 2-(2-bromophenyl)azocarboxylate (**1b**) (500 μ mol, 142 mg) and methyl acrylate (**3a**) (2.50 mmol, 223 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 10:1) to give the title compound **4ba** (299 μ mol, 72.0 mg, 60%) as a white solid.

 R_f 0.5 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 3.82 (3 H), 6.39 (d, J = 16.0 Hz, 1 H), 7.20-7.25 (m, 1 H), 7.30-7.35 (m, 1 H), 7.61 (dt, J = 1.4 Hz, J = 8.1 Hz, 2 H), 8.06 (d, J = 16.0 Hz, 1 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 51.8 (CH₃), 120.7 (CH), 125.3 (C_q), 127.7 (CH), 127.7 (CH), 131.2 (CH), 133.4 (CH), 134.5 (C_q), 143.1 (CH), 166.7 (C_q).

Analytical data is in agreement with those reported in literature³.

1.3.3 Methyl 4-fluorocinnamate (4ca)

Compound **4ca** is prepared from *tert*-butyl 2-(4-fluorophenyl)azocarboxylate (**1c**) (500 μ mol, 112 mg) and methyl acrylate (**3a**) (2.50 mmol, 223 μ L) according to general procedure GP A and GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 9:1) to give the title compound **4ca** (381 μ mol, 68.7 mg, 76%, GP A), (365 μ mol, 65.8 mg, 73%, GP B) as a white solid.

 R_f 0.4 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 3.81 (3 H), 6.37 (d, J = 16.0 Hz, 1 H), 7.10 (t, J = 8.6 Hz, 2 H), 7.51 (dd, J_{HF} = 5.4 Hz, J = 8.6 Hz, 2 H), 7.66 (d, J = 16.0 Hz, 1 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 51.7 (CH₃), 116.0 (d, J_{CF} = 22.0 Hz, 2 × CH), 117.6 (d, J_{CF} = 2.4 Hz, CH), 129.9 (d, J_{CF} = 8.5 Hz, 2 × CH), 130.7 (d, J_{CF} = 3.4 Hz, C_q), 143.5 (d, J_{CF} = 0.8 Hz, CH), 163.9 (d, J_{CF} = 251.4 Hz, C_q), 167.3 (C_q).

Analytical data is in agreement with those reported in literature⁴

1.3.4 Methyl 4-chlorocinnamate (4da)

Compound **4da** is prepared from *tert*-butyl 2-(4-chlorophenyl)azocarboxylate (**1d**) (500 μ mol, 120 mg) and methyl acrylate (**3a**) (2.50 mmol, 223 μ L) according to general procedure GP A and GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 10:1) to give the title compound **4da** (375 μ mol, 73.7 mg, 75%, GP A), (390 μ mol, 76.7 mg, 78%, GP B) as a white solid.

 R_f 0.4 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 3.81 (3 H), 6.41 (d, J = 16.0 Hz, 1 H), 7.36 (d, J = 8.4 Hz, 2 H), 7.45 (d, J = 8.4 Hz, 2 H), 7.64 (d, J = 16.0 Hz, 1 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 52.8 (CH₃), 118.4 (CH), 129.2 (2 × CH), 129.2 (2 × CH), 132.9 (C_q), 136.2 (C_q), 143.4 (CH), 167.1 (C_q).

Analytical data is in agreement with those reported in literature⁴

1.3.5 Methyl 2,4-dichlorocinnamate (4ea)

Compound **4ea** is prepared from *tert*-butyl 2-(2,4-dichlorophenyl)azocarboxylate (**1e**) (500 μ mol, 138 mg) and methyl acrylate (**3a**) (2.50 mmol, 223 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 12:1) to give the title compound **4ea** (304 μ mol, 72.2 mg, 61%) as a white solid.

 R_f 0.5 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 3.82 (3 H), 6.39 (d, J = 16.0 Hz, 1 H), 7.20-7.25 (m, 1 H), 7.30-7.35 (m, 1 H), 7.61 (dt, J = 1.4 Hz, J = 8.1 Hz, 2 H), 8.06 (d, J = 16.0 Hz, 1 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 51.9 (CH₃), 120.9 (CH), 127.6 (CH), 128.3 (CH), 130.0 (CH), 131.3 (C_q), 135.5 (C_q), 136.4 (C_q), 139.4 (CH), 166.6 (C_q).

Analytical data is in agreement with those reported in literature⁵

1.3.6 Methyl 4-iodocinnamate (4fa)

Compound **4fa** is prepared from *tert*-butyl 2-(4-iodophenyl)azocarboxylate (**1f**) (500 μ mol, 166 mg) and methyl acrylate (**3a**) (2.50 mmol, 223 μ L) according to general procedure GP A and GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 9:1) to give the title compound **4fa** (239 μ mol, 68.8 mg, 48%, GP A), (158 μ mol, 45.5 mg, 32%, GP B) as a white solid.

 R_f 0.4 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 3.81 (3 H), 6.43 (d, J = 16.0 Hz, 1 H), 7.24 (d, J = 8.4 Hz, 2 H), 7.60 (d, J = 16.0 Hz, 1 H), 7.72 (d, J = 8.4 Hz, 2 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 51.7 (CH₃), 96.5 (C_q), 118.6 (CH), 129.5 (2 × CH), 133.9 (C_q), 138.1 (2 × CH), 143.6 (CH), 167.1 (C_q).

Analytical data is in agreement with those reported in literature⁶

1.3.7 Methyl 4-cyanocinnamate (4ga)

Compound **4ga** is prepared from *tert*-butyl 2-(4-cyanophenyl)azocarboxylate (**1g**) (500 μ mol, 166 mg) and methyl acrylate (**3a**) (2.50 mmol, 223 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 5:1) to give the title compound **4ga** (278 μ mol, 52.0 mg, 56%) as a white solid.

 R_f 0.3 (hexane / ethyl acetate = 6:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 3.83 (3 H), 6.52 (d, J = 16.0 Hz, 1 H), 7.61 (d, J = 8.3 Hz, 2 H), 7.67 (d, J = 16.0 Hz, 1 H), 7.68 (d, J = 8.3 Hz, 2 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 52.0 (CH₃), 113.4 (C_q), 118.3 (C_q), 121.4 (CH), 128.4 (2 × CH), 132.6 (2 × CH), 138.6 (C_q), 142.4 (CH), 166.5 (C_q).

Analytical data is in agreement with those reported in literature⁷

1.3.8 Methyl 4-nitrocinnamate (4ha)

Compound **4ha** is prepared from *tert*-butyl 2-(4-nitrophenyl)azocarboxylate (**1h**) (500 μ mol, 126 mg) and methyl acrylate (**3a**) (2.50 mmol, 223 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 4:1) to give the title compound **4ha** (243 μ mol, 50.4 mg, 49%) as a white solid.

 R_f 0.1 (hexane / ethyl acetate = 3:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 3.84 (3 H), 6.56 (d, J = 16.1 Hz, 1 H), 7.67 (d, J = 8.6 Hz, 2 H), 7.72 (d, J = 16.1 Hz, 1 H), 8.25 (d, J = 8.6 Hz, 2 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 52.0 (CH₃), 122.1 (CH), 124.2 (2 × CH), 128.6 (2 × CH), 140.5 (C_q), 141.9 (CH), 148.5 (C_q), 166.4 (C_q).

Analytical data is in agreement with those reported in literature³.

1.3.9 Methyl 4-methoxycinnamate (4ia)

Compound **4ia** is prepared from *tert*-butyl 2-(4-methoxyphenyl)azocarboxylate (**1i**) (500 μ mol, 118 mg) and methyl acrylate (**3a**) (2.50 mmol, 223 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 12:1) to give the title compound **4ia** (278 μ mol, 53.4 mg, 56%) as a white solid.

 R_f 0.x (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 3.79 (3 H), 3.84 (3 H), 6.31 (d, J = 16.0 Hz, 1 H), 6.91 (d, J = 8.6 Hz, 2 H), 7.47 (d, J = 8.6 Hz, 2 H), 7.65 (d, J = 16.0 Hz, 1 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 51.5 (CH₃), 55.4 (CH₃), 114.3 (2 × CH), 115.3 (CH), 127.2 (C_q), 129.7 (2 × CH), 144.5 (CH), 161.4 (C_q), 167.7 (C_q).

Analytical data is in agreement with those reported in literature⁴

1.3.10Methyl 4-(4-fluorophenoxy)cinnamate (4ja)

Compound **4ja** is prepared from *tert*-butyl 2-(4-fluorophenoxyphenyl)azocarboxylate (**1j**) (500 μ mol, 158 mg) and methyl acrylate (**3a**) (2.50 mmol, 223 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 10:1) to give the title compound **4ja** (439 μ mol, 119 mg, 88%) as a white solid.

 R_f 0.5 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 3.80 (3 H), 6.34 (d, J = 16.0 Hz, 1 H), 6.94 (d, J = 8.6 Hz, 2 H), 7.00-7.08 (m, 4 H), 7.48 (d, J = 8.6 Hz, 2 H), 7.66 (d, J = 16.0 Hz, 1 H).

13C-NMR (91 MHz, CDCl₃): δ (ppm) = 51.6 (CH₃), 116.5 (d, J_{CF} = 23.0 Hz, 2 × CH), 116.5 (CH), 117.9 (2 × CH), 121.3 (d, J_{CF} = 8.3 Hz, 2 × CH), 129.2 (C_q), 129.8 (2 × CH), 144.0 (CH), 151.8 (d, J_{CF} = 2.7 Hz, C_q), 159.3 (d, J_{CF} = 242.8 Hz, C_q), 159.8 (d, J_{CF} = 0.7 Hz, C_q), 167.5 (C_q).

MS (EI) m/z (%): 272.1 [M⁺].

HRMS (ESI) calcd. for $C_{16}H_{13}FO_3$ [M⁺ + Na⁺]: 295.0741, found: 295.0743.

1.3.11 Ethyl 4-bromocinnamate (4ab)

Compound **4ab** is prepared from *tert*-butyl 2-(4-bromophenyl)azocarboxylate (**1a**) (500 μ mol, 138 mg) and ethyl acrylate (**3b**) (2.50 mmol, 270 μ L) according to general procedure GP A. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 20:1) to give the title compound **4ab** (388 μ mol, 99.1 mg, 78%) as a white solid.

 R_f 0.3 (hexane / ethyl acetate = 20:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 1.34 (t, J = 7.1 Hz, 3 H), 4.27 (q, J = 7.1 Hz, 2 H), 6.42 (d, J = 16.0 Hz, 1 H), 7.38 (d, J = 8.3 Hz, 2 H), 7.52 (d, J = 8.3 Hz, 2 H), 7.61 (d, J = 16.0 Hz, 1 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 14.3 (CH₃), 60.6 (CH₂), 119.0 (CH), 124.4 (C_q), 129.4 (2 × CH), 132.1 (2 × CH), 133.4 (C_q), 143.2 (CH), 166.7 (C_q).

Analytical data is in agreement with those reported in literature⁸

1.3.12 *tert*-Butyl 4-fluorocinnamate (4cc)

Compound **4cc** is prepared from *tert*-butyl 2-(4-fluorophenyl)azocarboxylate (**1c**) (500 μ mol, 112 mg) and *tert*-butyl acrylate (**3c**) (2.50 mmol, 366 μ L) according to general procedure GP A. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 10:1) to give the title compound **4cc** (386 μ mol, 85.7 mg, 77%) as a white solid.

 R_f 0.6 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 1.53 (s, 9 H), 6.29 (dd, J_{HF} = 0.5 Hz, J = 16.0 Hz, 1 H), 7.06 (d, J = 8.6 Hz, 2 H), 7.49 (dd, J_{HF} = 5.4 Hz, J = 8.6 Hz, 2 H), 7.54 (d, J = 16.0 Hz, 1 H).

13C-NMR (91 MHz, CDCl₃): δ (ppm) = 28.2 (3 × CH₃), 80.6 (C_q), 115.9 (d, J_{CF} = 21.9 Hz, 2 × CH), 120.0 (d, J_{CF} = 2.4 Hz, CH), 129.7 (d, J_{CF} = 8.4 Hz, 2 × CH), 130.9 (d, J_{CF} = 3.4 Hz, C_q), 142.2 (d, J_{CF} = 0.7 Hz, CH), 163.7 (d, J_{CF} = 250.7 Hz, C_q), 166.1 (C_q).

Analytical data is in agreement with those reported in literature⁹

1.3.13Methyl (*E*)-3-(4-bromophenyl)-3-methylacrylate (**4ad**) and methyl 2-(4-bromobenzyl)acrylate (**4ad**)

Compounds **4ad** and **4ad**' are prepared from *tert*-butyl 2-(4-bromophenyl)azocarboxylate (**1a**) (500 μ mol, 142 mg) and methyl methacrylate (**3d**) (2.50 mmol, 270 μ L) according to general procedure GP A and GP B. The yield of the isomers **4ad** (13%) and **4ad**' (42%) from GP A is determined with an internal standard of 1,3,5-trimethoxybenzene. The crude product from GP B is subjected to column chromatography (silica gel, hexane / ethyl acetate = 10:1) to give the title compounds **4ad** (75.6 μ mol, 21.3 mg, 15%, GP B) and **4ad**' (248 μ mol, 68.8 mg, 50%, GP B) as colorless oils.

Methyl (*E*)-3-(4-bromophenyl)-3-methylacrylate (4ad)

 R_f 0.6 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 2.09 (d, J = 1.5 Hz, 3 H), 3.82 (s, 3 H), 7.26 (d, J = 8.2 Hz, 2 H), 7.52 (d, J = 8.2 Hz, 2 H), 7.61 (s, 1 H).

Methyl 2-(4-bromobenzyl)acrylate (4ad')

 R_f 0.6 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 3.58 (bs, 2 H), 3.73 (s, 3 H), 5.48 (q, J = 1.4 Hz, 1 H), 6.24 (mc, 1 H), 7.08 (d, J = 8.5 Hz, 2 H), 7.41 (d, J = 8.5 Hz, 2 H).

Analytical data is in agreement with those reported in literature¹⁰

1.3.14Methyl (*E*)-3-(4-fluorophenyl)-3-methylacrylate (**4ce**)

Compound **4ce** is prepared from *tert*-butyl 2-(4-fluorophenyl)azocarboxylate (**1c**) (500 μ mol, 112 mg) and methyl crotonate (**3e**) (2.50 mmol, 270 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 14:1) to give the title compound **4ce** (318 μ mol, 61.8 mg, 64%) as a colorless oil.

 R_f 0.6 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (360 MHz, CDCl₃): δ (ppm) = 2.56 (d, J = 1.3 Hz, 3 H), 3.75 (s, 3 H), 6.09 (q, J = 1.3 Hz, 1 H), 7.06 (t, J = 8.6 Hz, 2 H), 7.45 (dd, J_{HF} = 5.4 Hz, J = 8.6 Hz, 2 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 18.0 (CH₃), 51.1 (CH₃), 115.5 (d, J_{CF} = 21.5 Hz, 2 × CH), 116.6 (d, J_{CF} = 1.3 Hz, C_q), 128.1 (d, J_{CF} = 8.3 Hz, 2 × CH), 138.2 (d, J_{CF} = 3.4 Hz, C_q), 154.6 (CH), 163.2 (d, J_{CF} = 249.1 Hz, C_q), 167.1 (C_q).

Analytical data is in agreement with those reported in literature¹¹

1.3.15 4-Fluorocinnamide (4cf)

Compound **4cf** is prepared from *tert*-butyl 2-(4-fluorophenyl)azocarboxylate (**1c**) (500 μ mol, 112 mg) and acrylamide (**3f**) (2.50 mmol, 178 mg) according to general procedure GP A and GP B. The crude product is subjected to column chromatography (silica gel, chloroform / methanol = 20:1) to give the title compound **4cf** (435 μ mol, 71.8 mg, 87%, GP A), (416 μ mol, 68.7 mg, 83%, GP B) as a white solid.

 R_f 0.1 (chloroform / methanol = 20:1) [UV].

¹**H-NMR** (600 MHz, CD₃OD): δ (ppm) = 6.58 (d, J = 15.8 Hz, 1 H), 7.13 (d, J = 8.6 Hz, 2 H), 7.53 (d, J = 15.8 Hz, 1 H), 7.61 (dd, J_{HF} = 5.5 Hz, J = 8.6 Hz, 2 H).

¹³C-NMR (91 MHz, CD₃OD): δ (ppm) = 116.0 (d, J_{CF} = 21.9 Hz, 2 × CH), 119.3 (CH), 129.6 (d, J_{CF} = 8.5 Hz, 2 × CH), 130.7 (d, J_{CF} = 3.4 Hz, C_q), 141.0 (CH), 163.6 (d, J_{CF} = 250.6 Hz, C_q), 168.5 (C_q).

Analytical data is in agreement with those reported in literature¹²

1.3.16*N*-Butyl 4-bromocinnamide (4ag)

Compound **4ag** is prepared from *tert*-butyl 2-(4-bromophenyl)azocarboxylate (**1a**) (500 μ mol, 142 mg) and *n*-butylacrylamide (**3g**) (2.50 mmol, 318 mg) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 3:1) to give the title compound **4ag** (460 μ mol, 85.7 mg, 92%) as a white solid.

 R_f 0.2 (hexane / ethyl acetate = 3:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.94 (t, J= 7.4 Hz, 3 H), 1.39 (qd, J= 7.4 Hz, J= 14.7 Hz, 2 H), 1.59 (mc, 2 H), 3.45-3.42 (m, 2 H), 5.87 (bs, NH), 6.40 (d, J= 16.0 Hz, 1 H), 7.35 (d, J= 8.4 Hz, 2 H), 7.48 (d, J= 8.4 Hz, 2 H), 7.56 (d, J= 16.0 Hz, 1 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 13.7 (CH₃), 20.1 (CH₂), 31.7 (CH₂), 39.6 (CH₂), 121.4 (CH), 123.7 (C_q), 129.1 (2 × CH), 132.0 (2 × CH), 133.8 (C_q), 139.6 (CH), 165.6 (C_q).

MS (EI) m/z (%): 282.0 [MH⁺].

HRMS (ESI) calcd. for $C_{13}H_{16}BrNO [M^+ + Na^+]$: 304.0307, found: 304.0303.

1.3.17(*E*)-4-(4-Fluorophenyl)but-3-en-2-one (**4ah**) and 4-(4-fluorophenyl)butan-2-one (**4ah**')

Compounds **4ah** and **4ah**' are prepared from *tert*-butyl 2-(4-fluorophenyl)azocarboxylate (**1c**) (500 μ mol, 112 mg) and methyl vinyl ketone (**3h**) (2.50 mmol, 211 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 6:1) to give the title compounds **4ah** (171 μ mol, 28.1 mg, 34%) and **4ah**' (239 μ mol, 39.7 mg, 48%) as colorless oils.

In a modified version tetrabutylammonium hydroxide solution (1.5 M in H₂O, 263 μ mol, 175 μ mol) is added to a solution of *tert*-butyl 2-(4-fluorophenyl)azocarboxylate (**1c**) (175 μ mol, 39.2 mg) in CH₃CN (0.8 mL) and stirred for 5 min. This mixture is added to a solution of palladium(II) acetate (17.5 μ mol, 4.00 mg) and methyl vinyl ketone (875 μ mol, 94.0 μ L) in formic acid (1.4 mL) over 45 min with a syringe pump. The reaction mixture is stirred for additional 10 min and concentrated under reduced pressure. The yield of **4ah**' (136 μ mol, 22.4 mg, 78%) is determined with an internal standard of 1,3,5-trimethoxybenzene.

(E)-4-(4-Fluorophenyl)but-3-en-2-one (4ah)

 R_f 0.4 (hexane / ethyl acetate = 6:1) [UV].

¹**H-NMR** (360 MHz, CDCl₃): δ (ppm) = 2.38 (s, 3 H), 6.65 (d, J = 16.3 Hz, 1 H), 7.10 (t, J = 8.6 Hz, 2 H), 7.48 (d, J = 16.3 Hz, 1 H), 7.54 (dd, J_{HF} = 5.4 Hz, J = 8.6 Hz, 2 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 27.6 (CH₃), 116.2 (d, J_{CF} = 22.0 Hz, 2 × CH), 126.9 (d, J_{CF} = 2.4 Hz, CH), 130.1 (d, J_{CF} = 8.6 Hz, 2 × CH), 130.7 115.2 (d, J_{CF} = 3.5 Hz, C_q), 142.0 (CH), 164.0 (d, J_{CF} = 251.8 Hz, C_q), 198.0 (C_q).

4-(4-Fluorophenyl)butan-2-one (4ah')

 R_f 0.4 (hexane / ethyl acetate = 6:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 2.13 (s, 3 H), 2.74 (t, J = 7.6 Hz, 2 H), 2.87 (t, J = 7.6 Hz, 2 H), 6.96 (t, J = 8.7 Hz, 2 H), 7.13 (dd, J_{HF} = 5.4 Hz, J = 8.7 Hz, 2 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 28.9 (CH₂), 30.1 (CH₃), 45.2 (CH₂), 115.2 (d, $J_{CF} = 21.2 \text{ Hz}, 2 \times \text{CH}$), 129.7 (d, $J_{CF} = 7.8 \text{ Hz}, 2 \times \text{CH}$), 136.6 (d, $J_{CF} = 3.2 \text{ Hz}$, C_q), 161.4 (d, $J_{CF} = 243.9 \text{ Hz}, \text{C_q}$), 207.6 (C_q).

Analytical data is in agreement with those reported in literature¹³

1.4 Synthesis of stilbenes

1.4.1 (*E*)-4-Chlorostilbene (**4di**)

Compound **4di** is prepared from *tert*-butyl 2-(4-chlorophenyl)azocarboxylate (**1d**) (500 μ mol, 120 mg) and styrene (**3i**) (2.50 mmol, 280 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 9:1) to give the title compound **4di** (352 μ mol, 75.7 mg, 71%) as a pale yellow solid.

 R_f 0.8 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 7.05 (d, J = 16.3 Hz, 1 H), 7.08 (d, J = 16.3 Hz, 1 H), 7.26-7.29 (m, 1 H), 7.32 (d, J = 8.5 Hz, 2 H), 7.36 (t, J = 7.7 Hz, 2 H), 7.44 (d, J = 8.5 Hz, 2 H), 7.50-7.51 (m, 2 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 126.5 (2 × CH), 127.4 (CH), 127.6 (2 × CH), 127.9 (CH), 128.7 (2 × CH), 128.7 (2 × CH), 129.3 (CH), 133.2 (C_q), 135.8 (C_q), 137.0 (C_q).

Analytical data is in agreement with those reported in literature¹⁴

1.4.2 (*E*)-4-Chloro-4'-fluorostilbene (**4dj**)

Compound **xx** is prepared from *tert*-butyl 2-(4-chlorophenyl)azocarboxylate (**1d**) (500 μ mol, 120 mg) and 4-fluorostyrene (**3j**) (2.50 mmol, 298 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 10:1) to give the title compound **4dj** (350 μ mol, 81.4 mg, 70%) as a pale yellow solid.

 R_f 0.7 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 6.95 (d, J = 16.3 Hz, 1 H), 7.01-7.07 (m, 3 H), 7.32 (d, J = 8.5 Hz, 2 H), 7.42 (d, J = 8.5 Hz, 2 H), 7.46 (dd, J_{HF} = 5.4 Hz, J = 8.5 Hz, 2 H).

¹³C-NMR (151 MHz, CDCl₃): δ (ppm) = 115.7 (d, J_{CF} = 21.8 Hz, 2 × CH), 127.2 (d, J_{CF} = 2.5 Hz, CH), 127.5 (2 × CH), 128.1 (d, J_{CF} = 7.9 Hz, 2 × CH), 128.1 (C_q), 128.9 (2 × CH), 133.2 (d, J_{CF} = 3.4 Hz, C_q), 133.2 (C_q), 135.7 (CH), 162.4 (d, J_{CF} = 247.7 Hz, C_q).

Analytical data is in agreement with those reported in literature¹⁵

1.4.3 (*E*)-4,4'-Dichlorostilbene (**4dk**)

Compound **xx** is prepared from *tert*-butyl 2-(4-chlorophenyl)azocarboxylate (**1d**) (500 μ mol, 120 mg) and 4-chlorostyrene (**3k**) (2.50 mmol, 320 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 14:1) to give the title compound **4dk** (399 μ mol, 99.4 mg, 80%) as a pale yellow solid.

 R_f 0.7 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 7.01 (s, 2 H), 7.32 (d, J = 8.7 Hz, 4 H), 7.42 (d, J = 8.7 Hz, 4 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 127.7 (4 × CH), 127.9 (2 × CH), 128.9 (4 × CH), 133.4 (2 × C_q), 135.5 (2 × CH).

Analytical data is in agreement with those reported in literature¹⁶

1.4.4 (*E*)-4-chloro-4'-cyanostilbene (**4dl**)

Compound **xx** is prepared from *tert*-butyl 2-(4-chlorophenyl)azocarboxylate (**1d**) (500 μ mol, 120 mg) and 4-cyanostyrene (**3l**) (2.50 mmol, 322 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 14:1) to give the title compound **4dl** (305 μ mol, 72.6 mg, 61%) as a pale yellow solid.

 R_f 0.5 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 7.06 (d, J = 16.3 Hz, 1 H), 7.16 (d, J = 16.3 Hz, 1 H), 7.36 (d, J = 8.5 Hz, 2 H), 7.46 (d, J = 8.3 Hz, 2 H), 7.58 (d, J = 8.3 Hz, 2 H), 7.64 (d, J = 8.5 Hz, 2 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 110.9 (C_q), 118.9 (C_q), 126.9 (2 × CH), 127.3 (CH), 128.0 (2 × CH), 129.1 (2 × CH), 131.0 (CH), 132.5 (2 × CH), 134.3 (C_q), 134.7 (C_q), 141.5 (C_q).

Analytical data is in agreement with those reported in literature 17

1.4.5 1-Chloro-4-(2-phenylallyl)benzene (4dm')

Compound **xx** is prepared from *tert*-butyl 2-(4-chlorophenyl)azocarboxylate (**1d**) (500 μ mol, 120 mg) and α -methylstyrene **3m** (2.50 mmol, 325 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 25:1) to give the title compound **4dm'** (71.2 μ mol, 16.3 mg, 14%) as a highly viscous brown oil.

 R_f 0.5 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 3.80 (bs, 2 H), 5.03 (q, J = 1.3 Hz, 1 H), 5.49 (td, J = 0.5 Hz, J = 1.3 Hz, 1 H), 7.15 (d, J = 8.8 Hz, 2 H), 7.21-7.33 (m, 5 H), 7.40 (d, J = 8.8 Hz, 2 H).

Analytical data is in agreement with those reported in literature¹⁸

1.4.6 (*E*)-1-Chloro-4-(1-phenylprop-1-en-2-yl)benzene (**4dn**)

Compound **xx** is prepared from *tert*-butyl 2-(4-chlorophenyl)azocarboxylate (**1d**) (500 μ mol, 120 mg) and β -methylstyrene (**3n**) (2.50 mmol, 325 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 10:1) to give the title compound **4dn** (280 μ mol, 64.0 mg, 49%) as a colorless oil.

 R_f 0.5 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 2.26 (d, J = 1.4 Hz, 3 H), 6.82 (s, 1 H), 7.24-7.28 (m, 1 H), 7.34 (d, J = 8.8 Hz, 2 H), 7.35-7.40 (m, 4 H), 7.46 (d, J = 8.8 Hz, 2 H).

¹³C-NMR (91 MHz, CDCl₃): δ (ppm) = 17.4 (CH₃), 126.7 (CH), 127.3 (2 × CH), 128.1 (CH), 128.2 (2 × CH), 128.4 (2 × CH), 129.1 (2 × CH), 132.9 (C_q), 136.2 (C_q), 138.0 (C_q), 142.4 (C_q).

Analytical data is in agreement with those reported in literature¹⁹

1.4.7 (*E*)-4-Fluoro-4'-chlorostilbene (**4ck**)

Compound **xx** is prepared from *tert*-butyl 2-(4-fluorophenyl)azocarboxylate (**1c**) (500 μ mol, 112 mg) and 4-chlorostyrene (**3k**) (2.50 mmol, 320 μ L) according to general procedure GP B. The crude product is subjected to column chromatography (silica gel, hexane / ethyl acetate = 9:1) to give the title compound **4ck** (367 μ mol, 85.4 mg, 73%) as a pale yellow solid.

 R_f 0.7 (hexane / ethyl acetate = 9:1) [UV].

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 6.96 (d, J = 16.3 Hz, 1 H), 7.02-7.07 (m, 3 H), 7.32 (d, J = 8.5 Hz, 2 H), 7.42 (d, J = 8.5 Hz, 2 H), 7.46 (dd, J_{HF} = 5.4 Hz, J = 8.6 Hz, 2 H).

13C-NMR (91 MHz, CDCl₃): δ (ppm) = 115.7 (d, $J_{CF} = 21.7$ Hz, $2 \times CH$), 127.2 (d, $J_{CF} = 2.5$ Hz, CH), 127.6 (2 × CH), 128.0 (d, $J_{CF} = 8.0$ Hz, $2 \times CH$), 128.1 (d, $J_{CF} = 1.0$ Hz, C_q), 128.9 (2 × CH), 133.2 (d, $J_{CF} = 3.3$ Hz, C_q), 133.2 (C_q), 135.7 (CH), 162.4 (d, $J_{CF} = 247.7$ Hz, C_q).

Analytical data is in agreement with those reported in literature¹⁵

1.5 Two-step functionalization of *N*-acetyl tyrosine:

1.5.1 (*S*,*E*)-2-Acetamido-3-(4-(4-((*tert*-butoxycarbonyl)diazenyl)phenoxy)-phenyl)propanoic acid (**6**)

A mixture of K_2CO_3 (5.00 mmol, 691 mg) and 18-crown-6 (5.00 mmol, 1.32 g) in dry DMF (15 mL) is stirred under argon for 15 min. *N*-Acetyl-*L*-tyrosine (**5**) (1.20 mmol, 268 mg) is added and stirred for 30 min. After the addition of *tert*-butyl 2-(4-nitrophenyl)azocarboxylate (**1h**) (1.00 mmol, 251 mg) the mixture is stirred for 3 h. Under cooling with ice, the reaction is quenched with water and an aqueous solution of hydrogen chloride (1 M, 15 mL) is added. The resulting mixture is extracted with ethyl acetate (2×25 mL). The combined organic phases are washed with a saturated aqueous sodium chloride solution and dried over sodium sulphate. The crude product is purified by column chromatography (chloroform / methanol = 20:1) to give the title compound **6** (0.82 mmol, 352 mg, 82%) as an orange solid.

 R_f 0.2 (chloroform / methanol = 9:1) [UV].

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 1.65 (s, 9 H), 2.02 (s, 3 H), 3.12 (dd, J = 5.9 Hz, J = 14.1 Hz, 1 H), 3.25 (dd, J = 5.5 Hz, J = 14.1 Hz, 1 H), 4.87 (dd, J = 5.8 Hz, J = 13.2 Hz, 1 H), 6.34 (d, J = 7.5 Hz, NH), 7.00 (d, J = 8.5 Hz, 2 H), 7.02 (d, J = 8.5 Hz, 2 H), 7.20 (d, J = 8.5 Hz, 2 H), 7.90 (d, J = 8.9 Hz, 2 H).

¹³C-NMR (75 MHz, CDCl₃): δ (ppm) = 22.9 (CH₃), 27.8 (3 × CH₃), 36.7 (CH₂), 53.4 (CH), 84.8 (C_q), 117.8 (2 × CH), 120.4 (2 × CH), 125.9 (2 × CH), 131.0 (2 × CH), 132.4 (C_q), 146.9 (C_q), 154.4 (C_q), 161.1 (C_q), 162.4 (C_q), 170.9 (C_q), 173.6 (C_q).

MS (ESI) m/z (%): 426 [M-H⁻].

HRMS (ESI) calcd. for $C_{22}H_{25}N_3O_6$ [M⁺ + Na⁺]: 450.1636, found: 450.1636.

1.5.2 (*S*,*E*)-2-Acetamido-3-(4-(4-(3-methoxy-3-oxoprop-1-en-1-yl)phenoxy)phenyl)propanoic acid (7)

Tetrabutylammonium hydroxide solution (1.5 M in H_2O , 1.05 mmol, 0.7 mL) is added to a solution of (*E*)-2-acetamido-3-(4-(4-((*tert*-butoxycarbonyl)-diazenyl)phenoxy)phenyl)-propanoic acid (**6**) (351 µmol, 150 mg) in CH₃CN (1.4 mL) and stirred for 5 min. This mixture is added to a suspension of palladium(II) acetate (35.0 µmol, 7.80 mg), hydrogen peroxide solution (0.7 mmol, 30% in H_2O) and methyl acrylate (**3a**) (1.75 mmol, 160 µL) in acetic acid (3.0 mL) over 45 min with a syringe pump. The reaction mixture is stirred for additional 10 min and ethyl acetate (25 mL) is added. The organic phase is washed with water (5 mL), a saturated aqueous solution of sodium chloride (5 mL) and dried over sodium sulfate. The solvent is removed under reduced pressure and the residue is subjected to column chromatography (silica gel, chloroform / methanol = 20:1) to give the title compound **7** (228 µmol, 87.4 mg, 65%) as a viscous brown oil.

 R_f 0.1 (chloroform / methanol = 9:1) [UV].

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 2.02 (s, 3 H), 3.04-3.31 (m, 2 H), 3.80 (s, 3 H), 4.87 (bs, 1 H), 6.15 (bs, 1 H), 6.34 (d, J = 16.0 Hz, 1 H), 6.90-7.04 (m, 4 H), 7.16 (d, J = 8.3 Hz, 2 H), 7.47 (d, J = 8.7 Hz, 2 H), 7.65 (d, J = 16.0 Hz, 1 H).

¹³C-NMR (75 MHz, CDCl₃): δ (ppm) = 23.0 (CH₃), 36.6 (CH₂), 51.7 (CH₃), 53.4 (CH), 116.5 (CH), 118.5 (2 × CH), 119.6 (2 × CH), 129.4 (C_q), 129.8 (2 × CH), 130.8 (2 × CH), 131.4 (C_q), 144.1 (C_q), 155.3 (C_q), 159.2 (C_q), 167.7 (C_q), 170.9 (C_q). One signal missing.

MS (ESI) m/z (%): 384 [MH⁺].

HRMS (ESI) calcd. for $C_{21}H_{21}NO_6$ [M⁺ + Na⁺]: 406.1261, found: 406.1262.

Scheme S3. Silver(I)-induced fragmentation of phenylazocarboxylate salts

To a solution of solution of silver(I) nitrate (438 μ mol, 74.4 mg) in CH₃CN (1.0 mL) a prestirred mixture of tetrabutylammonium hydroxide solution (1.5 M in H₂O, 350 μ mol, 233 μ L) and *tert*-butyl 2-(4-bromophenyl)azocarboxylate (**1a**) (175 μ mol, 50.0 mg) in CH₃CN (0.5 mL) is added over 15 min with a syringe pump. The solvent is removed under reduced pressure. The yield of 4,4'-dibromobiphenyl (52.5 μ mol, 30%) is determined with an internal standard of 1,3,5-trimethoxybenzene and verified by GC-MS analysis.

¹**H-NMR** (360 MHz, CDCl₃): δ (ppm) = 7.41 (d, J = 8.7 Hz, 4 H), 7.56 (d, J = 8.7 Hz, 4 H).

MS (EI) m/z (%): .312.0 [M⁺].

Competition experiment with acrylonitrile:

Tetrabutylammonium hydroxide solution (1.5 M in H₂O, 750 μ mol, 0.5 mL) is added to a solution of *tert*-butyl 2-(4-fluorophenyl)azocarboxylate (**1c**) (500 μ mol, 112 mg) in CH₃CN (1.4 mL) and stirred for 5 min. This mixture is added to a solution of palladium(II) acetate (50.0 μ mol, 11.3 mg), methyl acrylate (2.50 mmol, 223 μ L), acrylonitrile (2.50 mmol, 165 μ L) and hydrogen peroxide solution (1.00 mmol, 30% in H₂O) in acetic acid (3.0 mL) over 45 min with a syringe pump. The reaction mixture is stirred for additional 10 min and concentrated under reduced pressure. The yield of **4ca** (235 μ mol, 47%) is determined with an internal standard of 1,3,5-trimethoxybenzene. (*E*)-3-(4-Fluorophenyl)acrylonitrile cannot be detected.

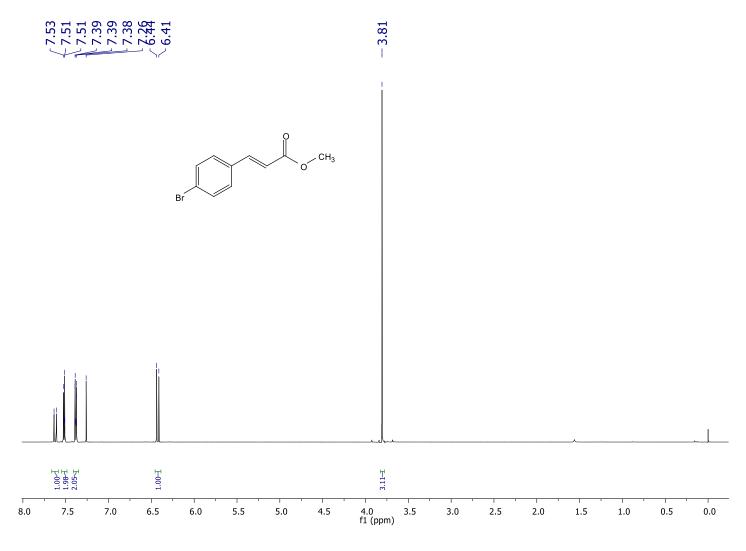
Competition experiment with 2,5-dimethylfuran – trapping of phenyldiazene:

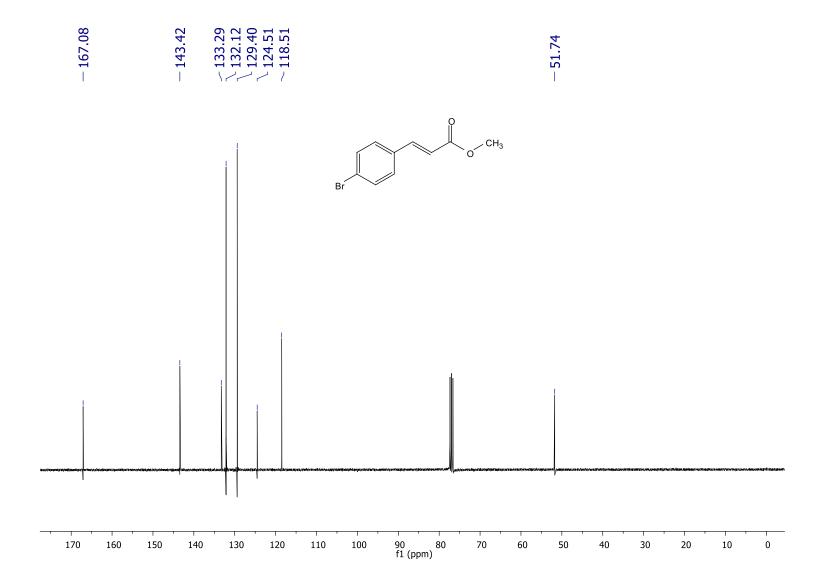
A solution of tetrabutylammonium hydroxide (1.5 M in H_2O , 263 μ mol), *tert*-butyl 2-(4-bromophenyl)azocarboxylate (**1a**) (175 μ mol, 50.0 mg) and palladium(II) acetate (17.5 μ mol, 4.00 mg) in CH₃CN (2.0 mL) is stirred for 5 min. To this mixture a solution of methyl acrylate (700 μ mol, 190 μ L), 2,5-dimethylfuran (700 μ mol, 74.0 μ L) and trifluoroacetic acid (100 μ L) in CH₃CN (0.5 mL) is added and stirred for 10 minutes. The solvent is removed under reduced pressure. 1-(4-Bromophenyl)-3,6-dimethylpyridazinium trifluoroacetate is obtained in quantitative yield. Trace amounts of **4aa** can be identified in ¹H-NMR and GC-MS analysis.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 2.77 (s, 3 H), 2.81 (s, 3 H), 7.42 (d, J = 8.9 Hz, 2 H), 7.82 (d, J = 8.9 Hz, 2 H), 8.22 (d, J = 8.7 Hz, 1 H), 8.36 (d, J = 8.7 Hz, 2 H).

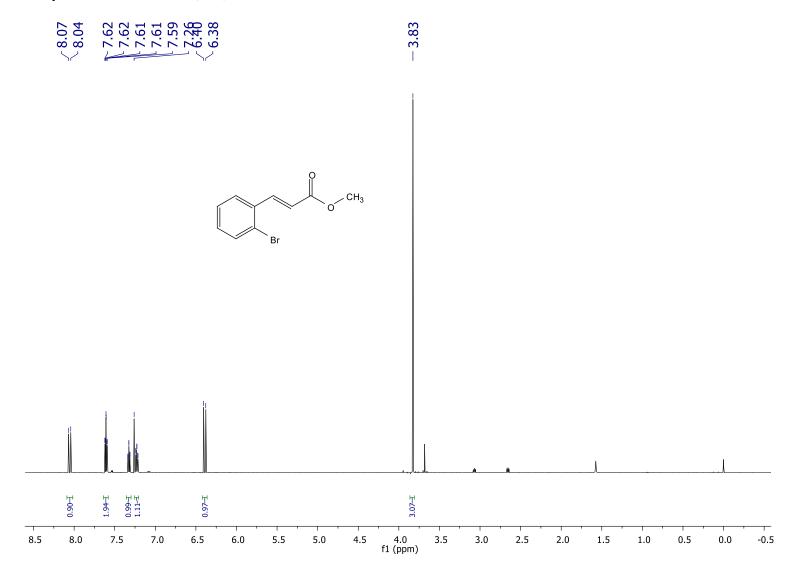
Analytical data is in agreement with those reported in literature¹

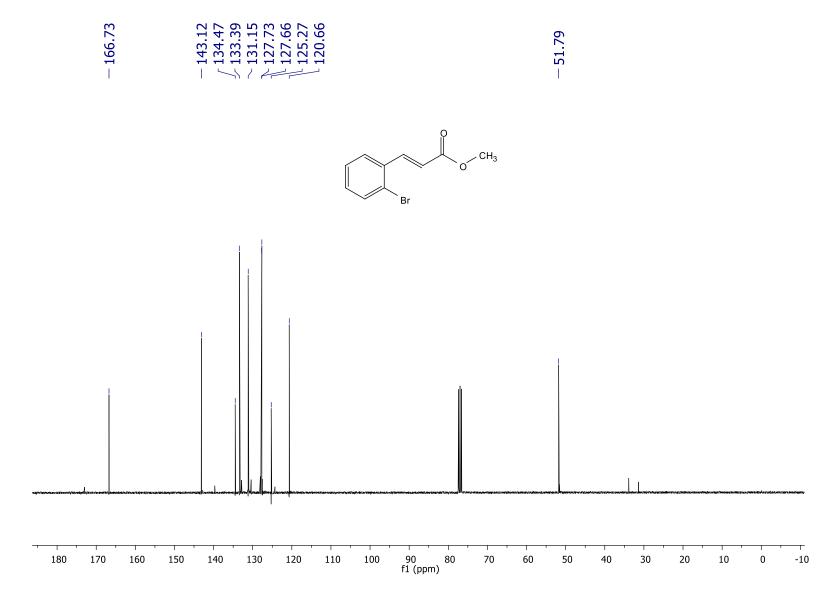
Experiment with excess of benzene:

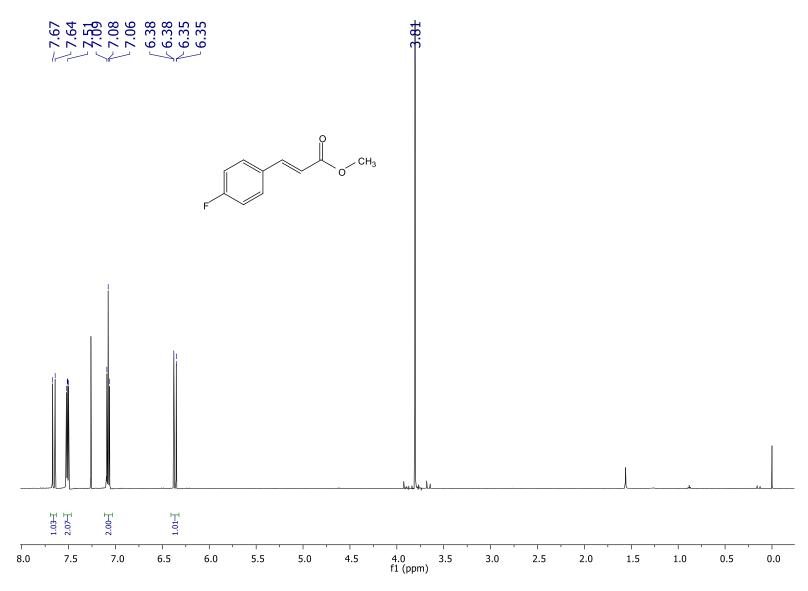

Tetrabutylammonium hydroxide solution (1.5 M in H₂O, 263 μmol) is added to a solution of *tert*-butyl 2-(4-bromophenyl)azocarboxylate (**1a**) (175 μmol, 50.0 mg) in CH₃CN (0.8 mL) and stirred for 5 min. This mixture is added to a solution of silver(I) acetate (350 μmol, 58.0 mg), palladium(II) acetate (17.5 μmol, 4.00 mg) and benzene (1.0 mL) in CH₃CN/acetic acid (0.2 mL/1.0 mL) over 45 min with a syringe pump. The solvent is removed under reduced pressure. 4-Bromobiphenyl could not be detected via GC-MS and NMR analysis.

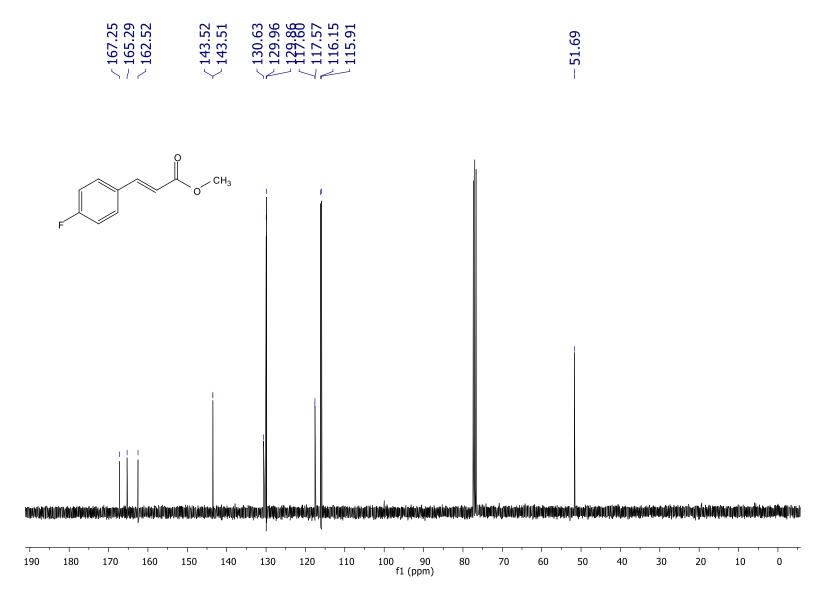

1.6 References

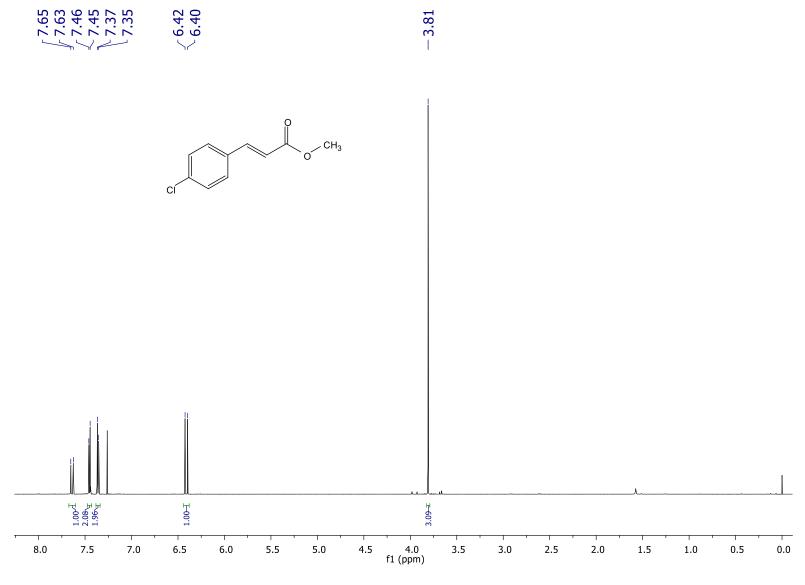
- (a) Fehler, S.K.; Pratsch, G.; Heinrich, M. R. Angew. Chem. Int. Ed. 2014, 53, 11361.
 (b) Lasch, R.; Heinrich, M. R. Tetrahedron 2015, 71, 4282. (c) Zhao, D.; Vásquez-Céspedes, S.; Glorius, F. Angew. Chem. Int. Ed. 2015, 54, 1657.
- [2] Kelly, C. B.; Ovian, J. M.; Cywar, R. M.; Gosselin, T. R.; Wiles, R. J.; Leadbeater, N. E. *Org. Biomol. Chem.* **2015**, *13*, 4255.
- [3] Le Callonnec, F.; Fouquet, E.; Felpin, F.-X. Org. Lett. 2011, 13, 2646.
- [4] Hota, P. K.; Vijaykumar, G.; Pariyar, A.; Sau, S. C.; Sen, T. K.; Mandal, S. K. *Adv. Synth. Catal.* **2015**, *357*, 3162.
- [5] Day, J. A.; Cohen, S. M. J. Med. Chem. 2013, 56, 7997.
- [6] Yang, J.; Dudley, G. B. *Tetrahedron Lett.* **2007**, *48*, 7887.
- [7] Schmidt, B.; Berger, R. Adv. Synth. Catal. 2013, 355, 463.
- [8] Wang, Y.; Gu, C.-Z.; Xing, F.; Dai, B.; He, L. *Tetrahedron* **2016**, *72*, 472.
- [9] Bakouri, O. E.; Fernández, M.; Brun, S.; Pla-Quintana, A.; Roglans, A. *Tetrahedron* **2013**, *69*, 9761.
- [10] Ramachary, D. B.; Venkaiah, C.; Reddy, V. Org. Biomol. Chem. 2014, 12, 5400.
- [11] Dubbaka, S. R.; Vogel, P. Chem. Eur. J. 2005, 11, 2633.
- [12] Sun, C.; Qu, P.; Li, F. Catal. Sci. Technol. 2014, 4, 988.
- [13] (a) Hu, J.; Chen, S.; Yang, J.; Rao, Y. *Org. Lett.* **2012**, *14*, 5030. (b) Li, X.; Li, L.; Tang, Y.; Zhong, L.; Zhu, J.; Liao. J.; Deng, J. *J. Org. Chem.* **2010**, *75*, 2981.
- [14] McNulty, J.; McLeod, D. Chem. Eur. J. 2011, 8794.
- [15] Liu, X.; Zhao, X.; Lu, M. J. Organomet. Chem. 2014, 23.
- [16] Saiyed, A. S.; Patel, K. N.; Kamath, B. V.; Bedekar, A. V. *Tetrahedron Lett.* **2012**, *53*, 4692.
- [17] Mariaca, R.; Labat, G.; Behrnd, N.-R.; Bonin, M.; Helbling, F.; Eggli, P.; Couderc, G.; Neels, A.; Stoeckli-Evans, H.; Hulliger, J. *J. Fluorine. Chem.* **2009**, *130*, 175.
- [18] Beller, M.; Riermeier, T. H. Eur. J. Inorg. Chem. 1998, 29.
- [19] Sha, Q.; Wei, Y. Synthesis **2014**, 46, 2353.
- [20] Cheng, G.; Luo, M. Eur. J. Org. Chem. 2011, 2011, 2519.

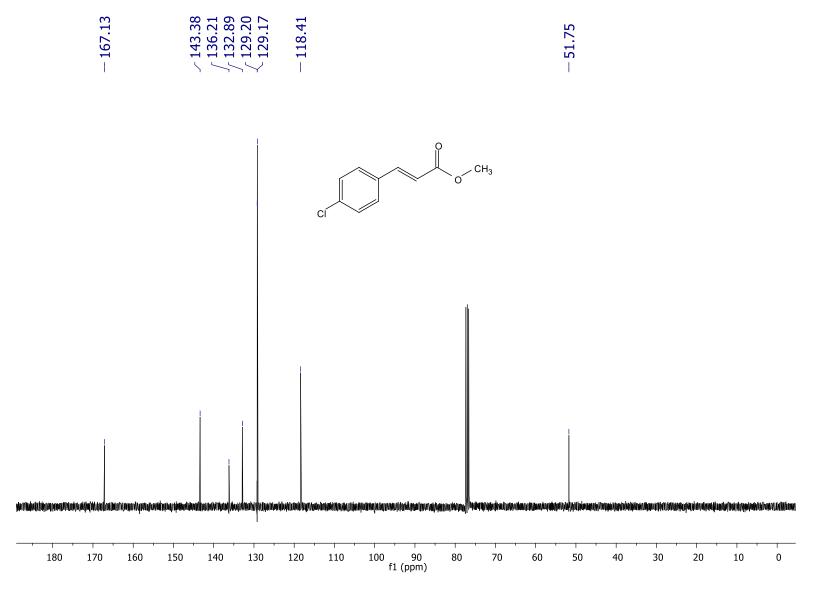

1.7 Copies of ¹H and ¹³C spectra

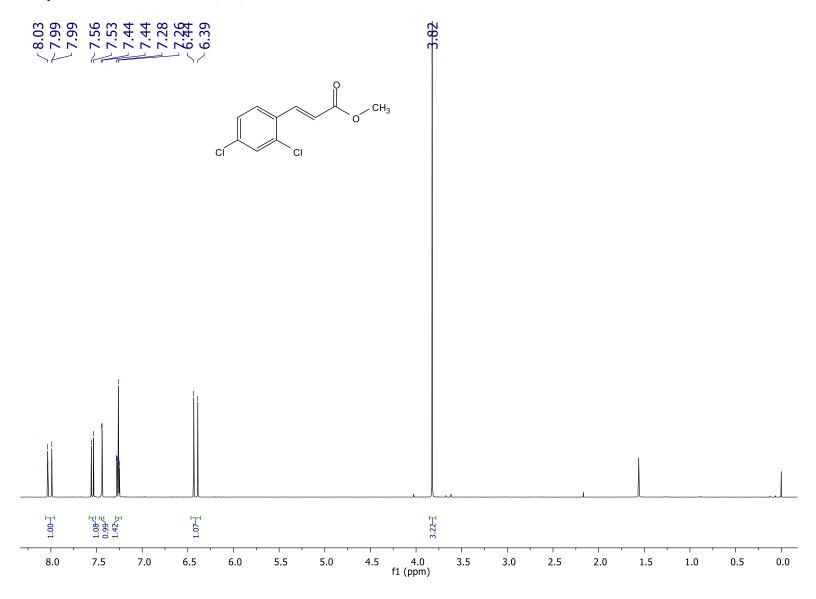

Methyl 4-bromocinnamate (4aa)

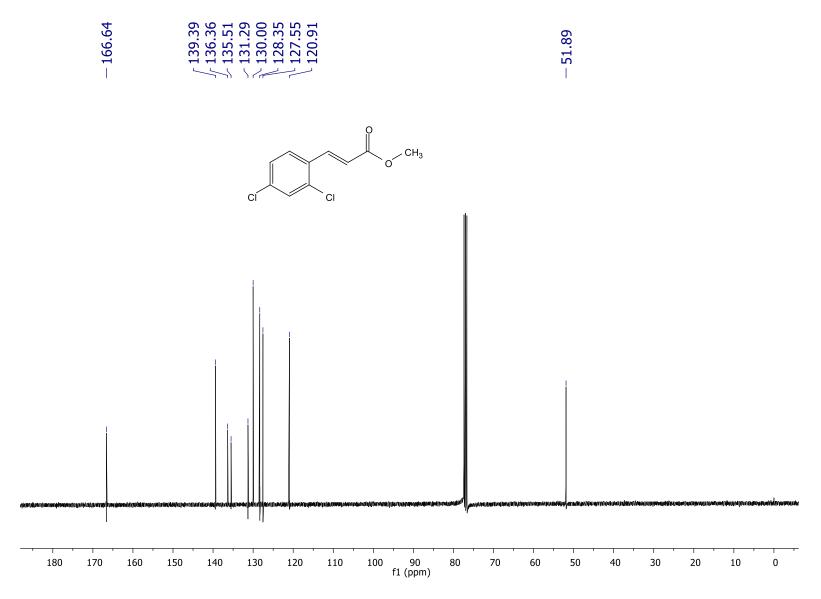


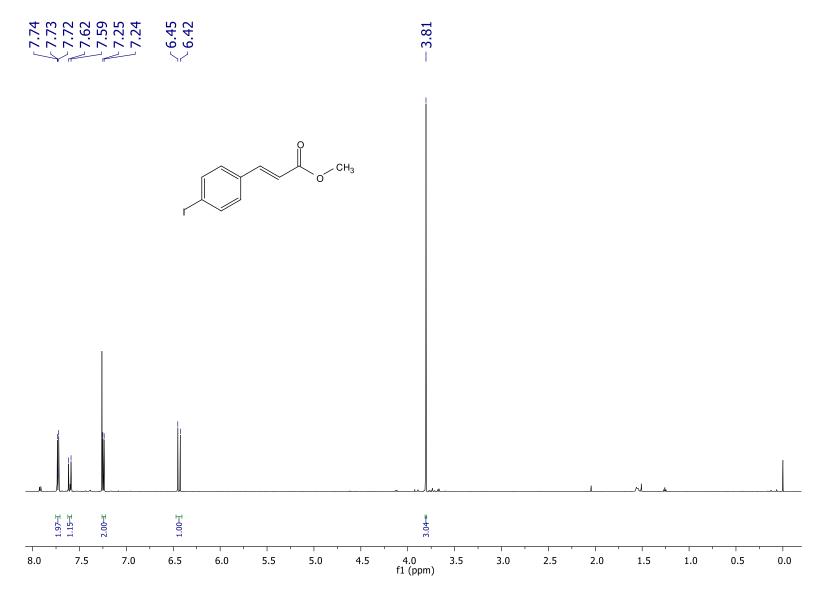

Methyl 2-bromocinnamate (4ba)

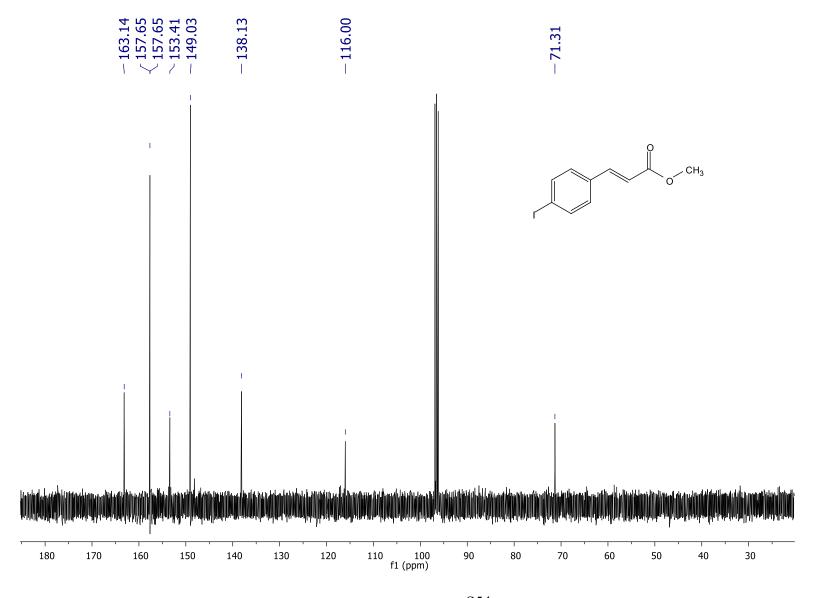


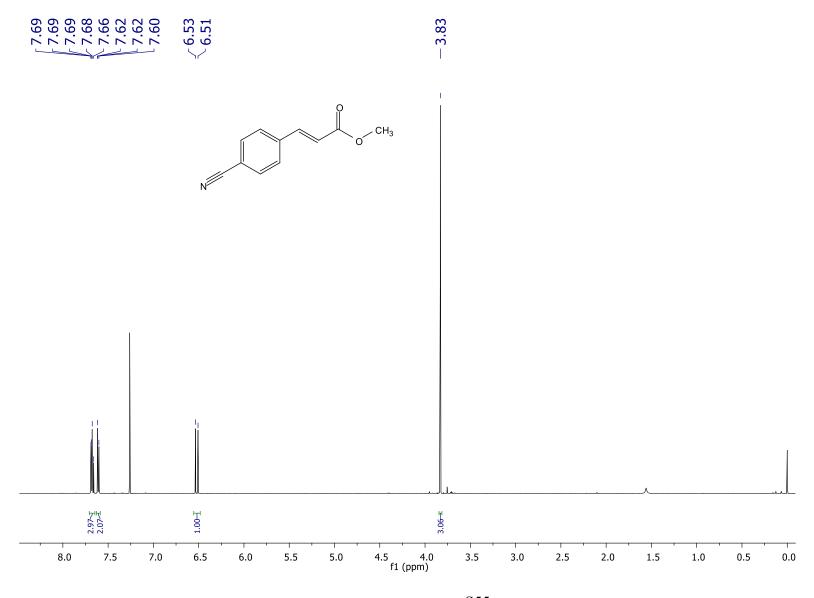

Methyl 4-fluorocinnamate (4ca)

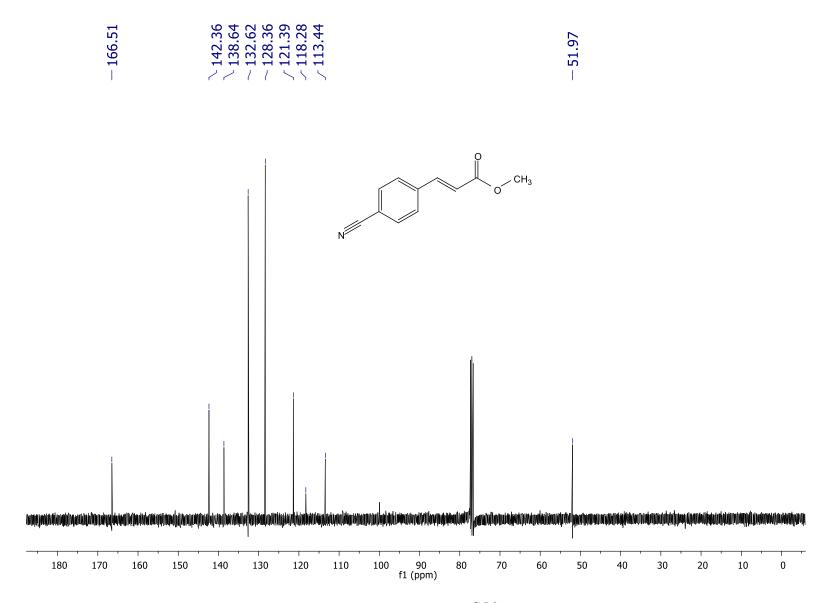


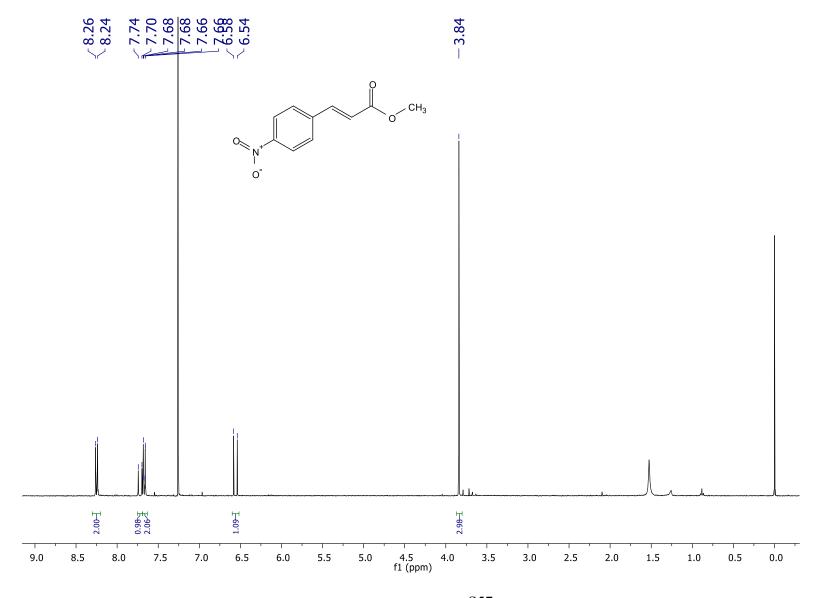

Methyl 4-chlorocinnamate (4da)



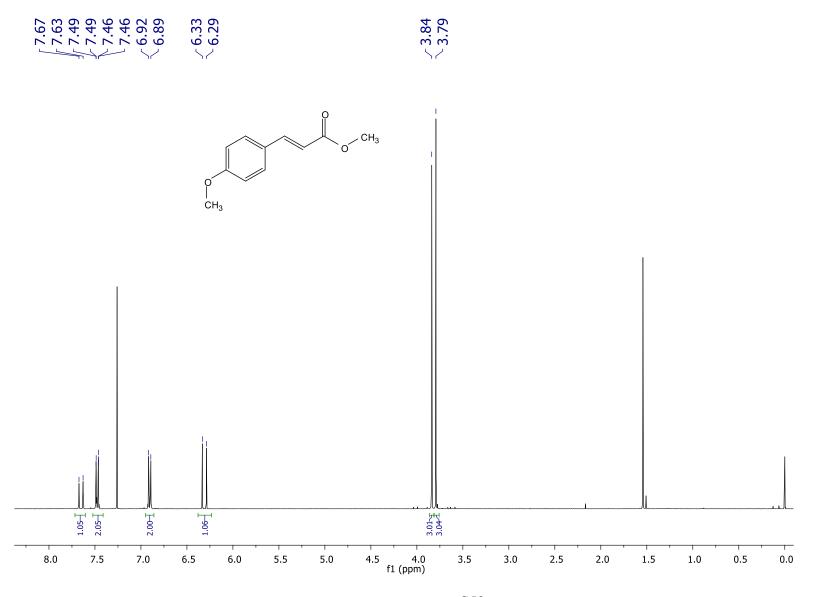

Methyl 2,4-dichlorocinnamate (**4ea**)

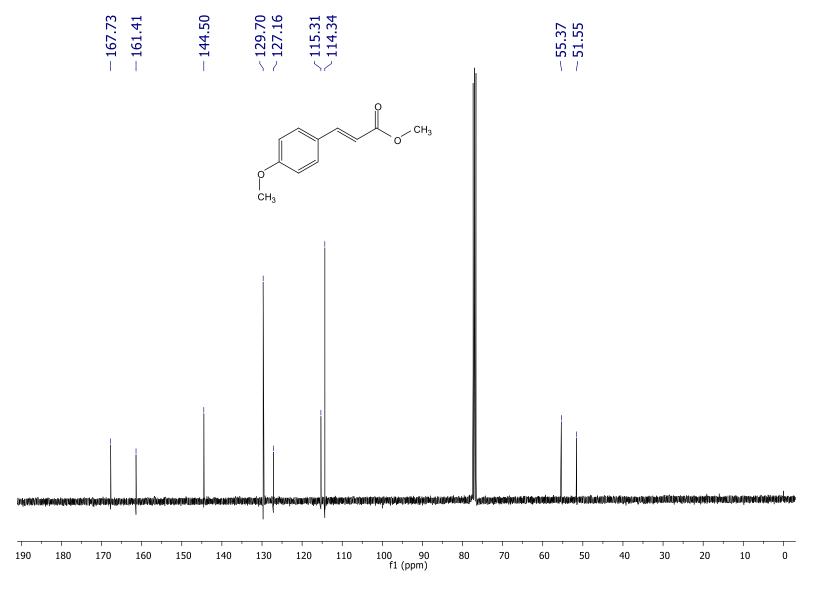


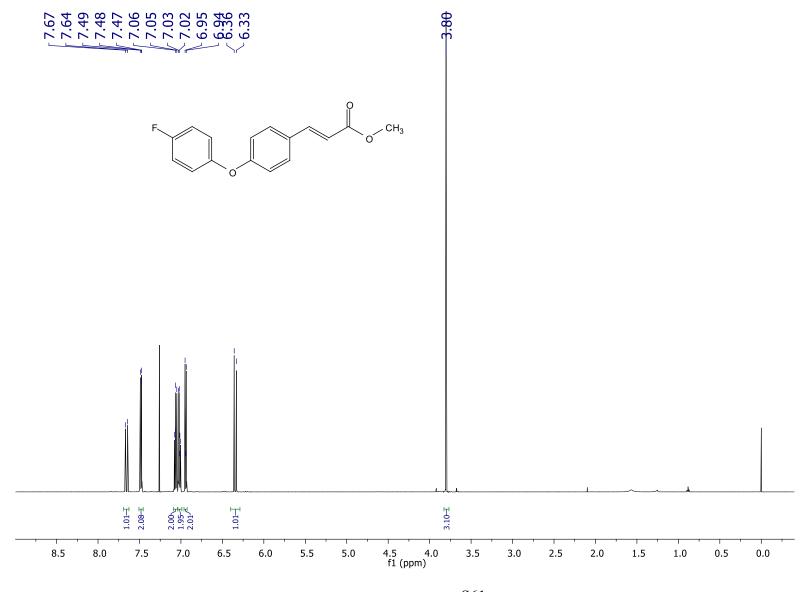

Methyl 4-iodocinnamate (4fa)

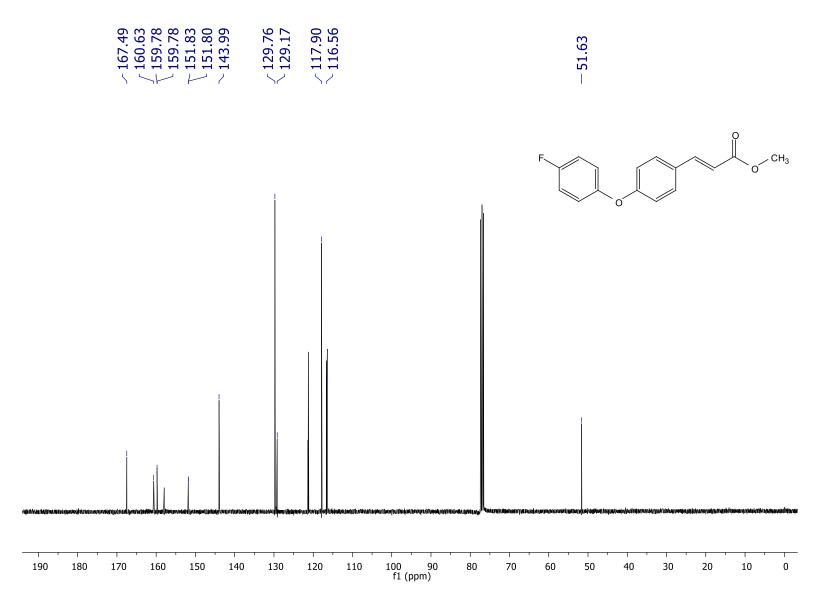


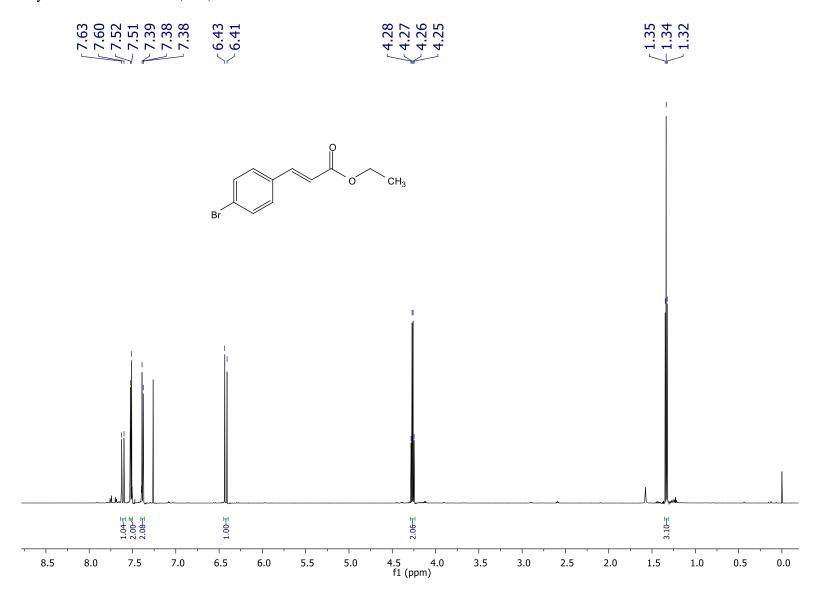

Methyl 4-cyanocinnamate (4ga)

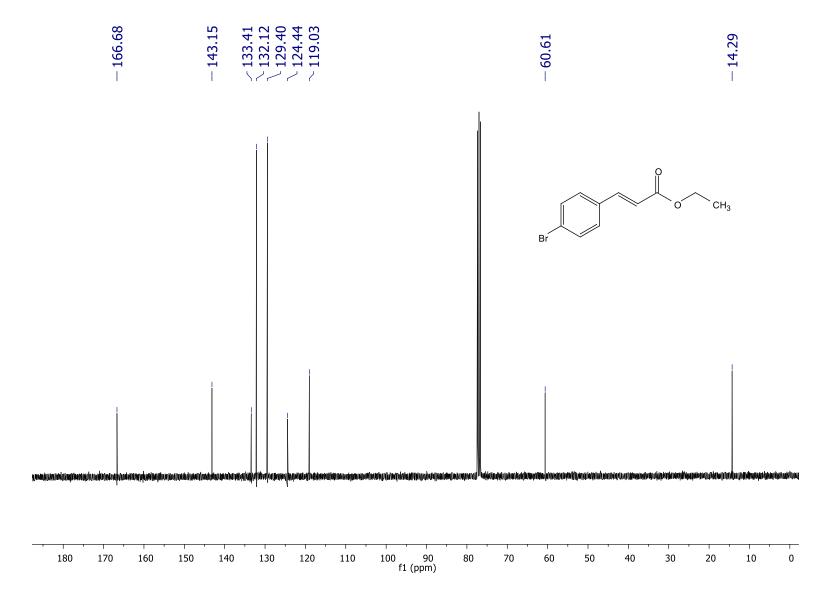


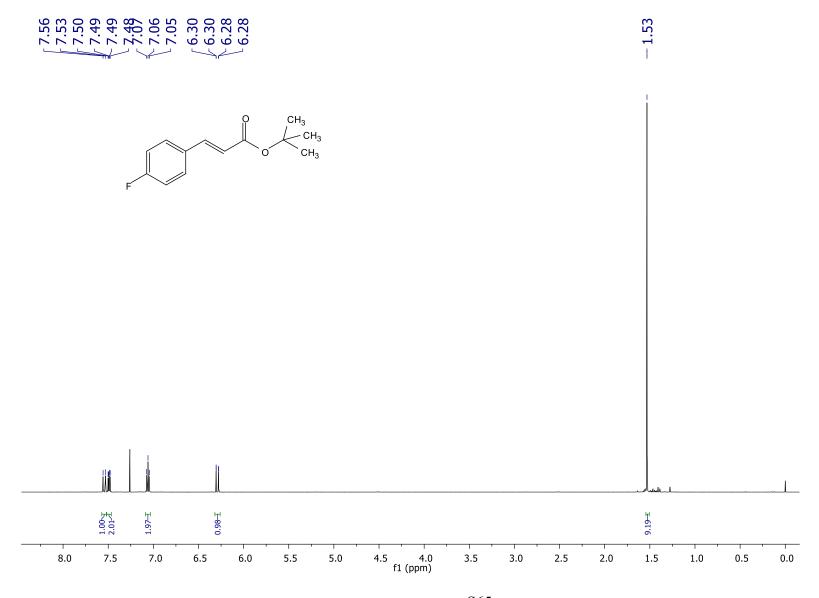

Methyl 4-nitrocinnamate (**4ha**)

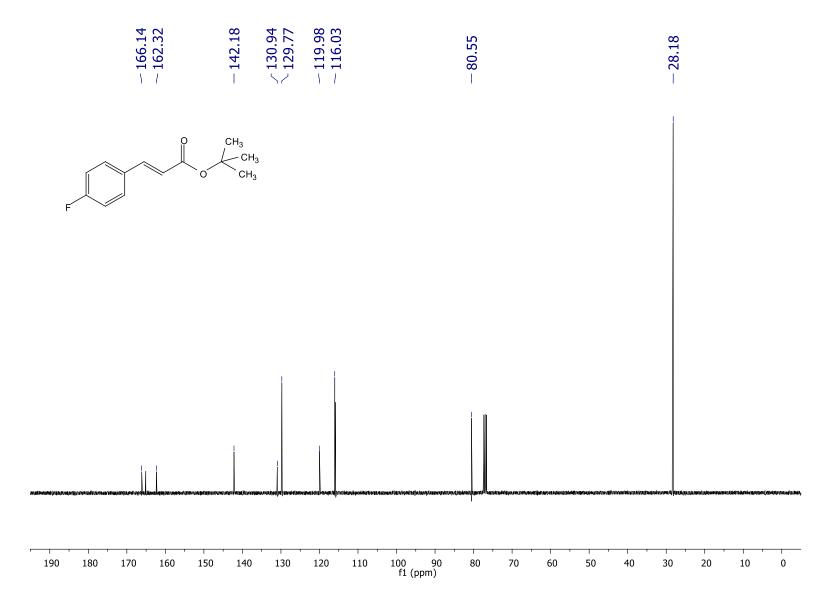



Methyl 4-methoxycinnamate (4ia)

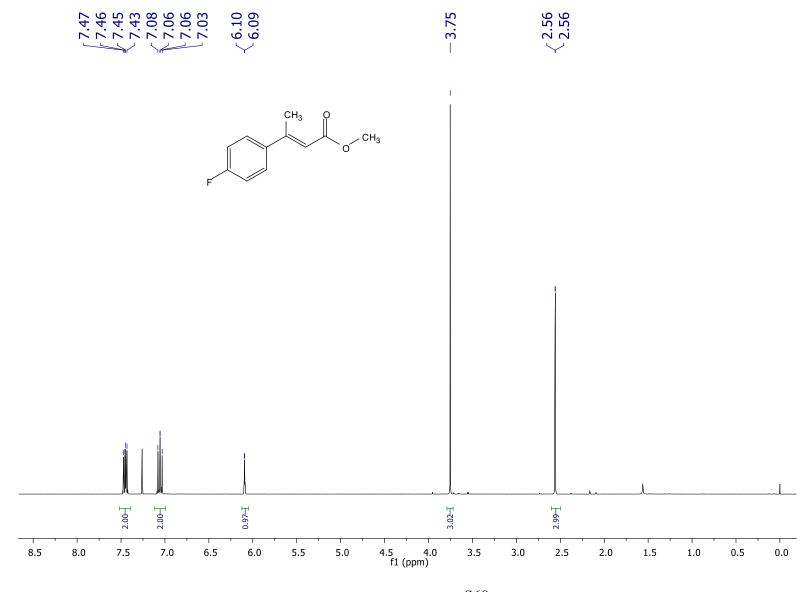


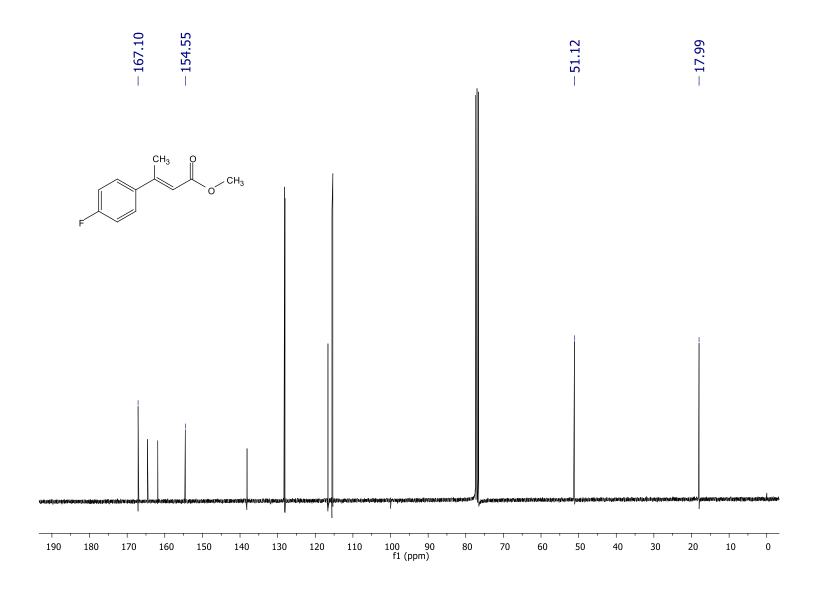

Methyl 4-(4-fluorophenoxy)cinnamate (**4ja**)




Ethyl 4-bromocinnamate (**4ab**)

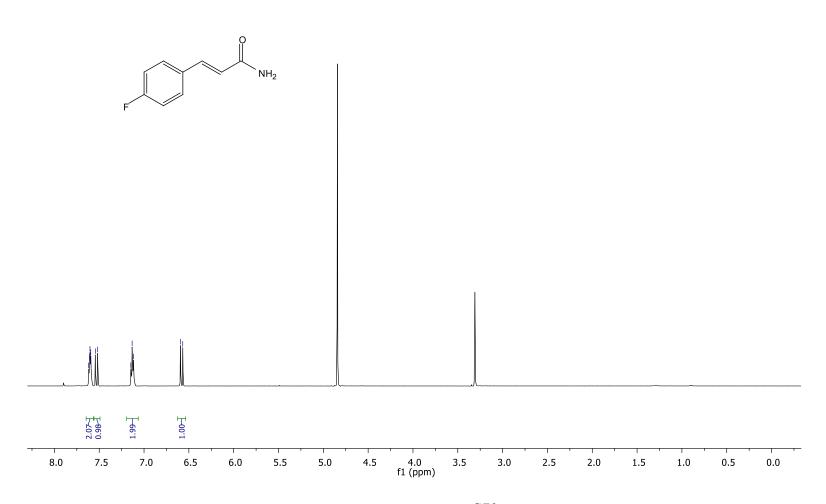
tert-Butyl 4-fluorocinnamate (4cc)

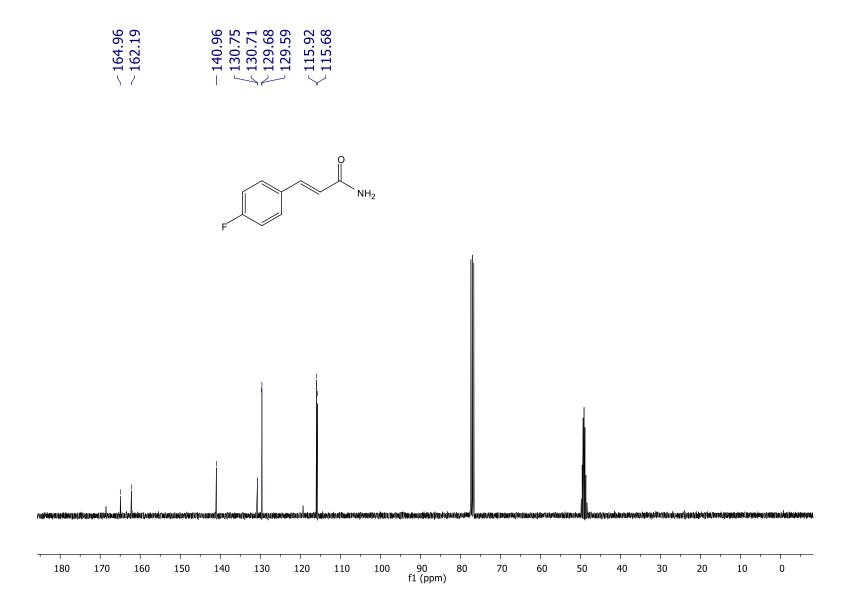




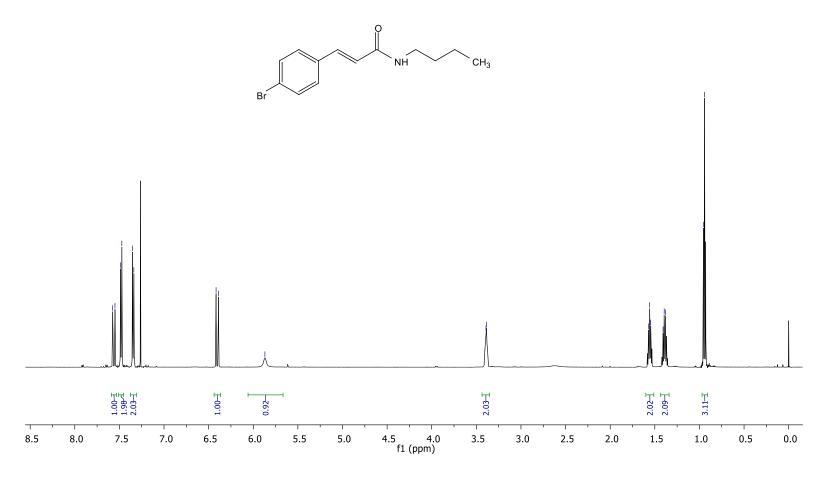
Methyl 2-(4-bromobenzyl) acrylate ($4ad^4$) and methyl (E)-3-(4-bromophenyl)-3-methylacrylate (4ad)

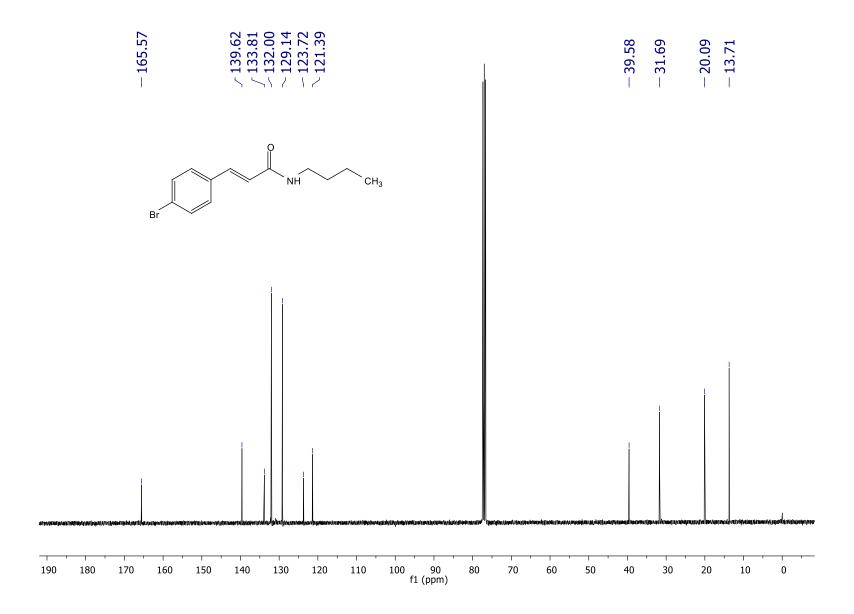


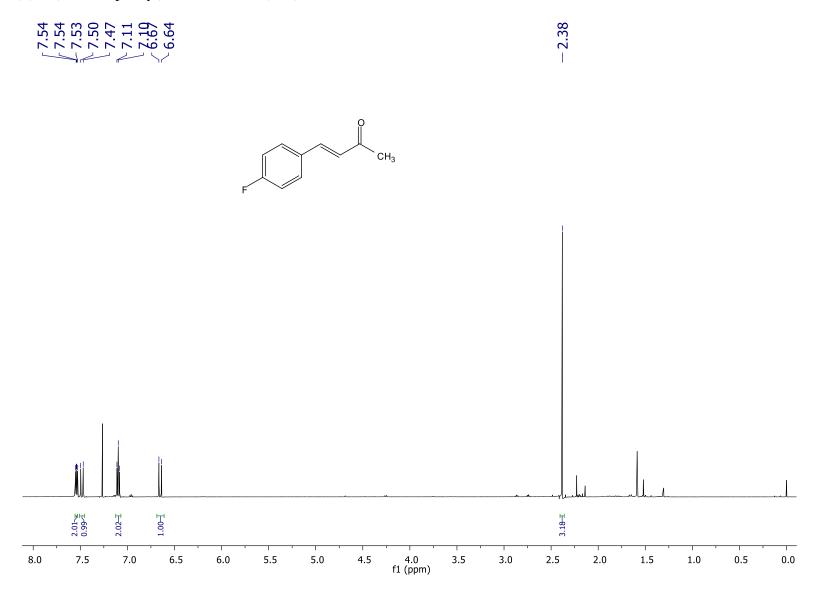

Methyl (E)-3-(4-fluorophenyl)-3-methylacrylate (**4ce**)

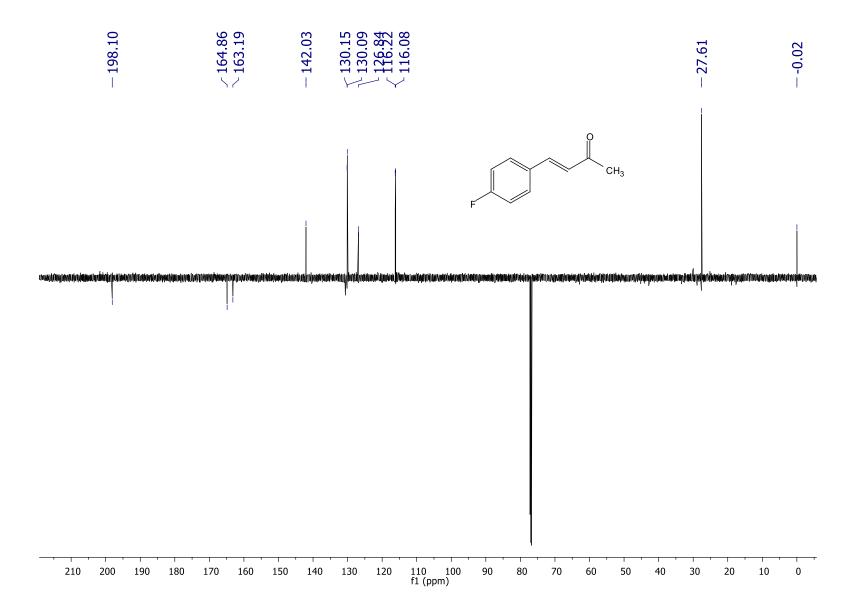


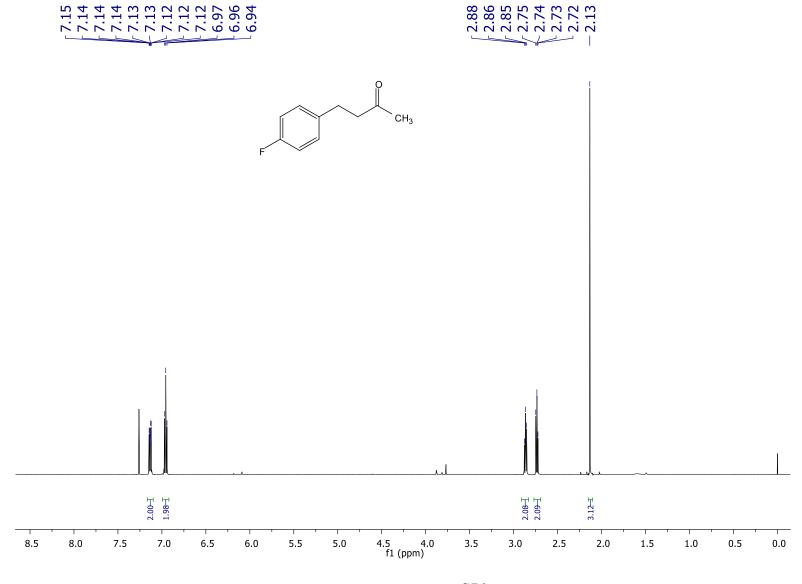
4-Fluorocinnamide (**4cf**)

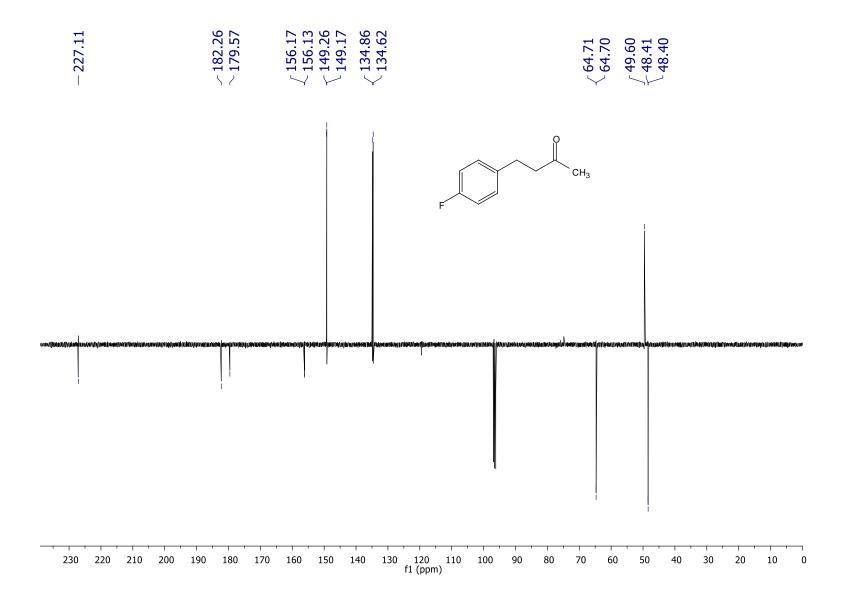


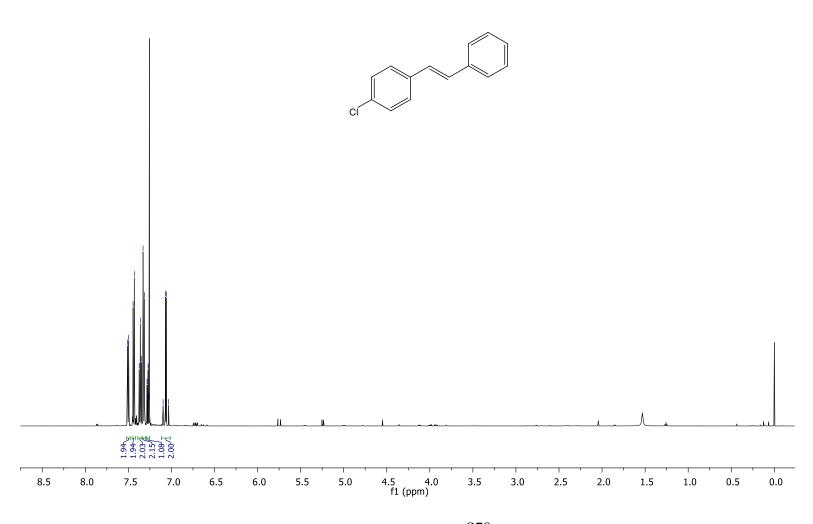


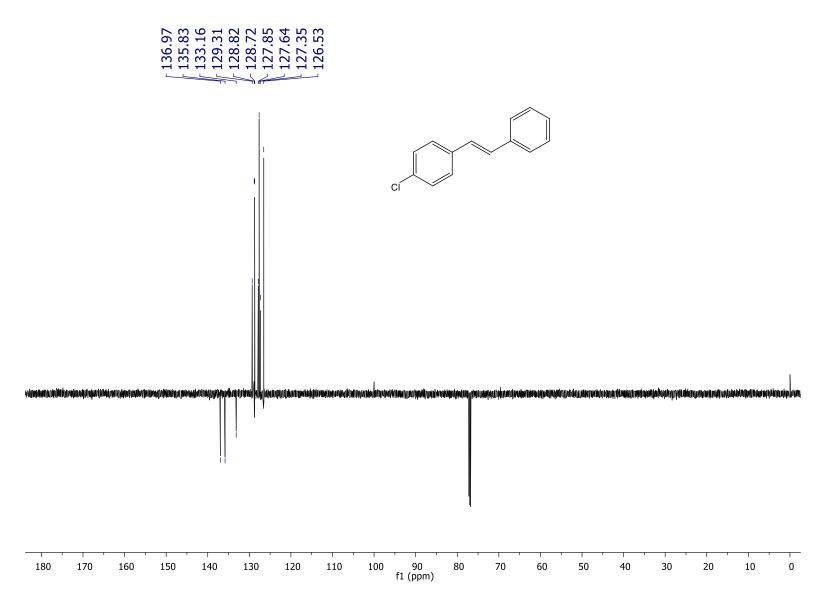

N-Butyl 4-bromocinnamide (**4ag**)



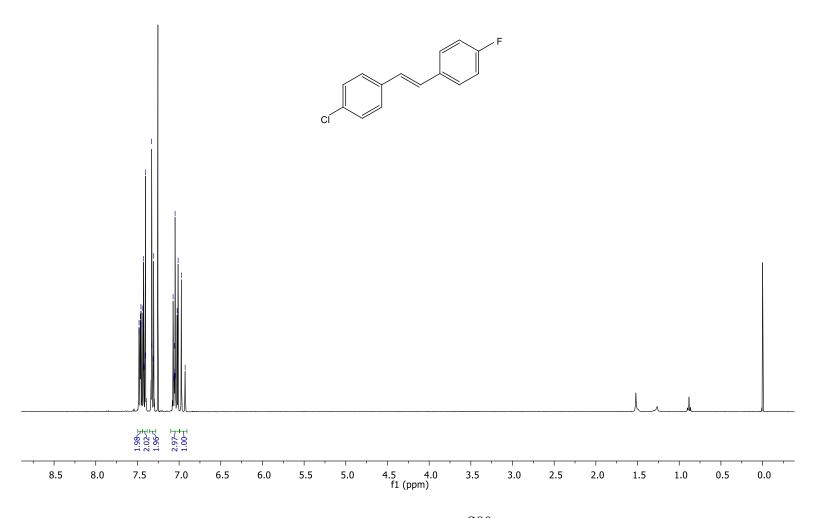


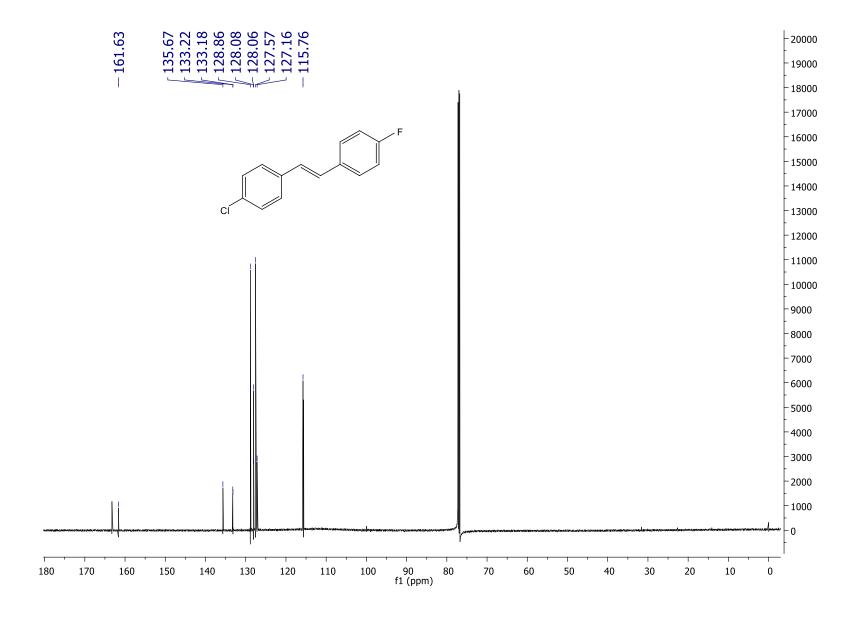

(E)-4-(4-Fluorophenyl)but-3-en-2-one (**4ah**)

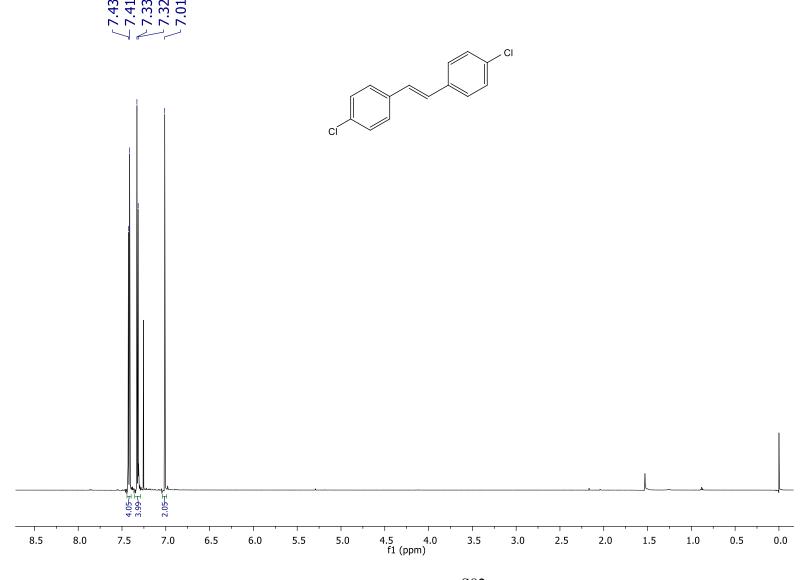

4-(4-Fluorophenyl)butan-2-one (4ah')

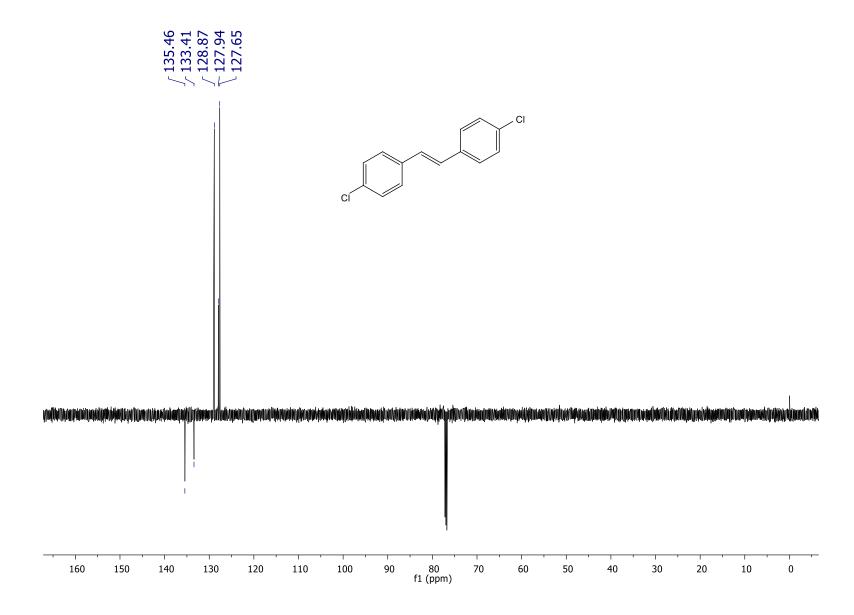


(*E*)-4-Chlorostilbene (**4di**)

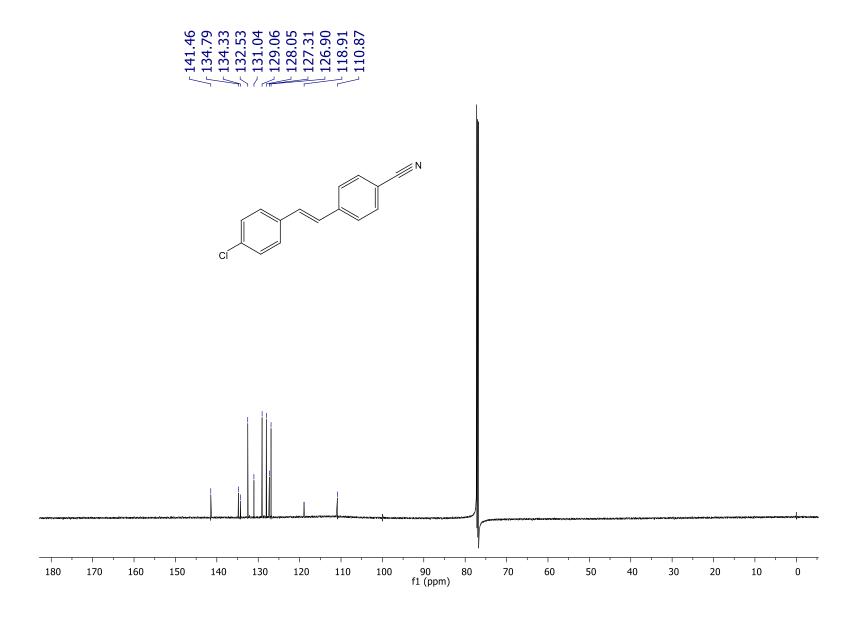

7.51 7.50 7.50 7.43 7.34 7.35 7.35 7.35 7.35 7.28 7.28 7.28 7.26 7.20 7.20 7.00

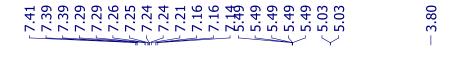


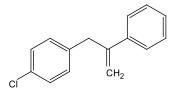

(*E*)-4-Chloro-4'-fluorostilbene (**4dj**)

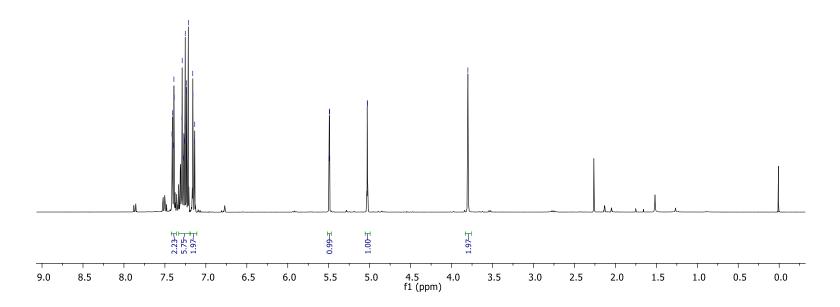


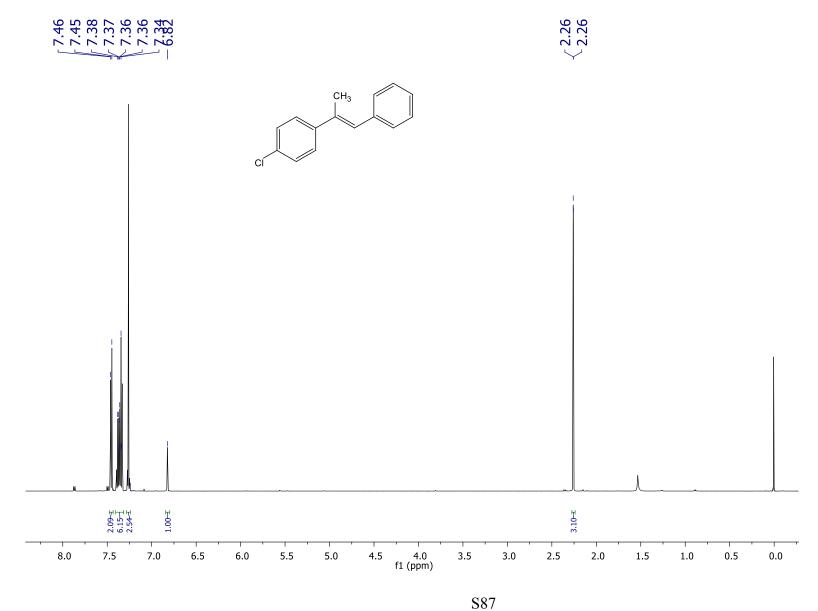

(*E*)-4,4'-Dichlorostilbene (**4dk**)

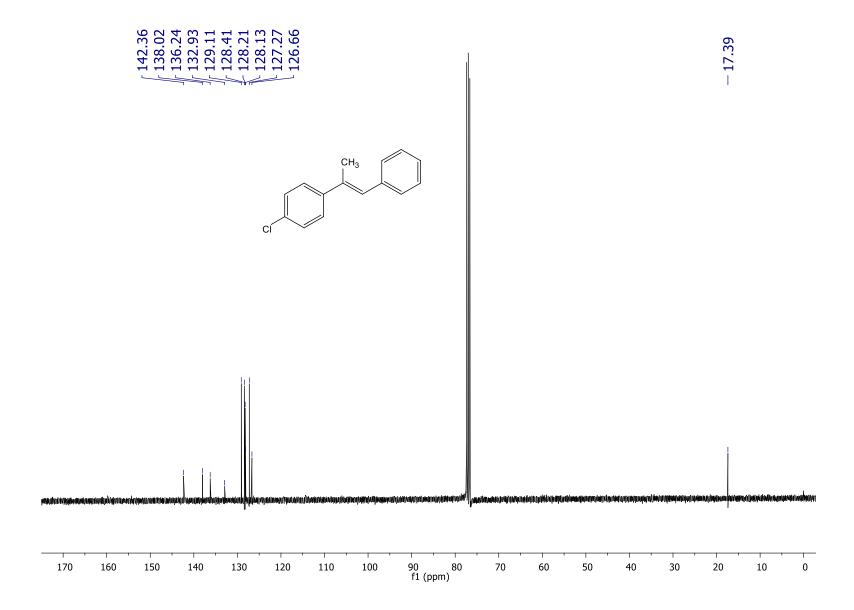


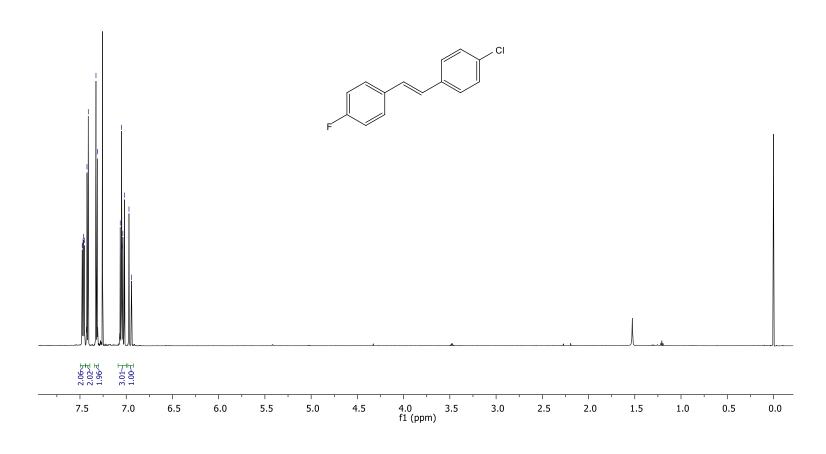

(E)-4-Chloro-4'-cyanostilbene (**4dl**)

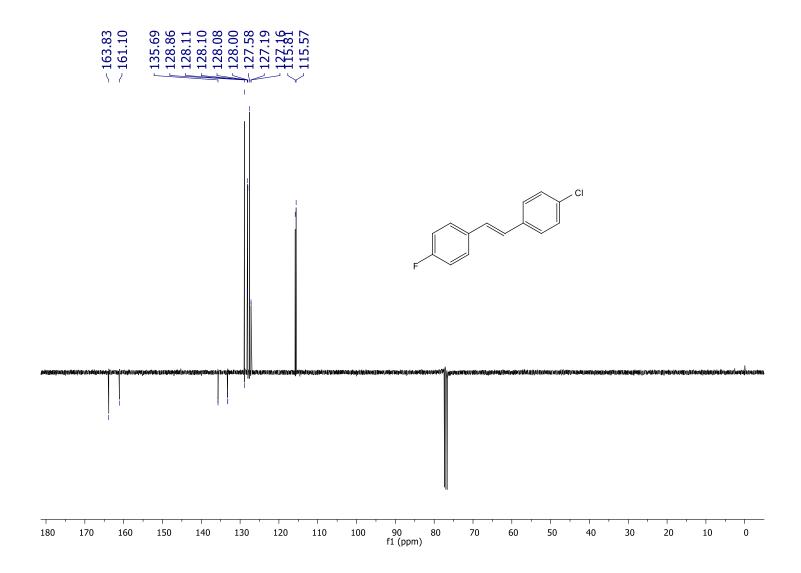


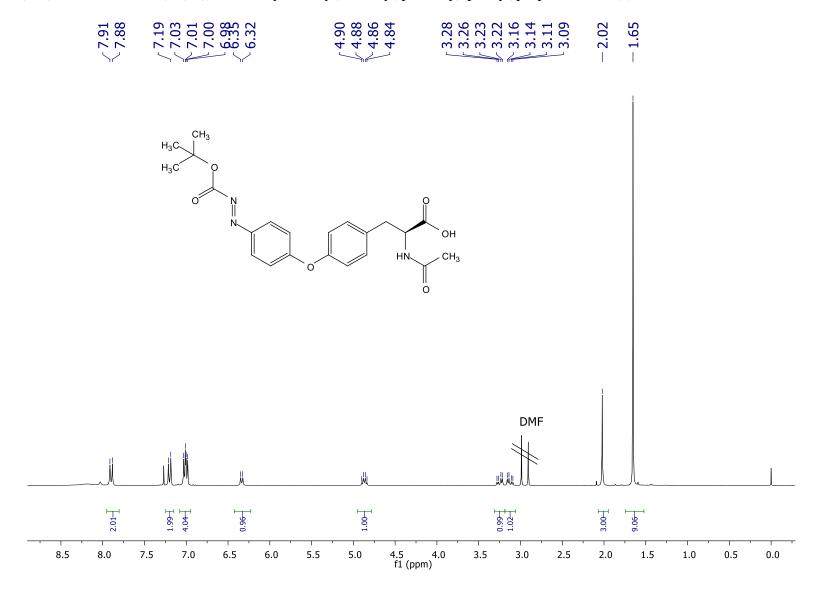


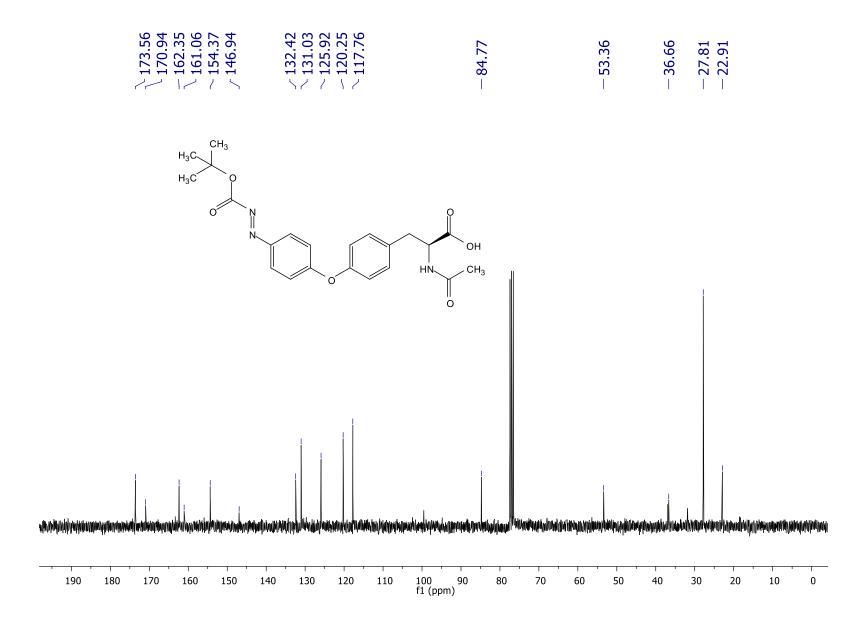

1-Chloro-4-(2-phenylallyl)benzene (4dm')

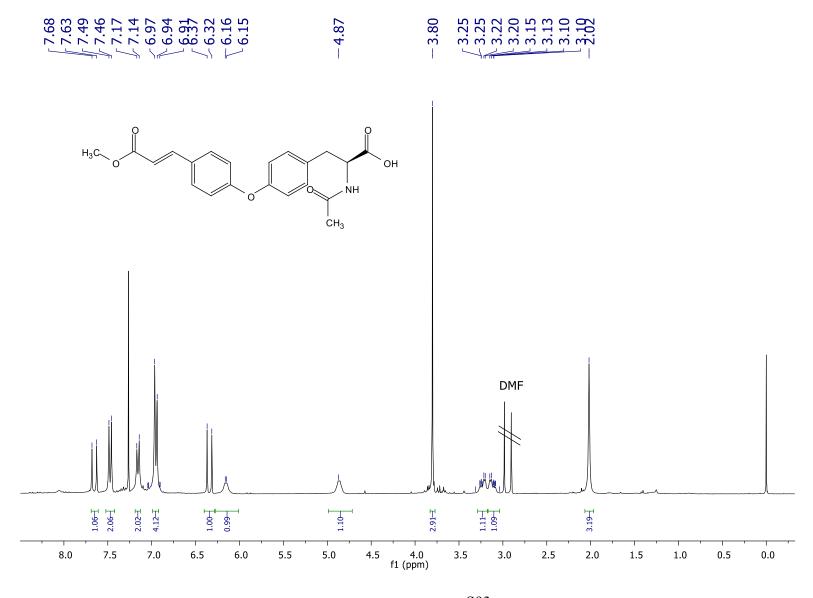


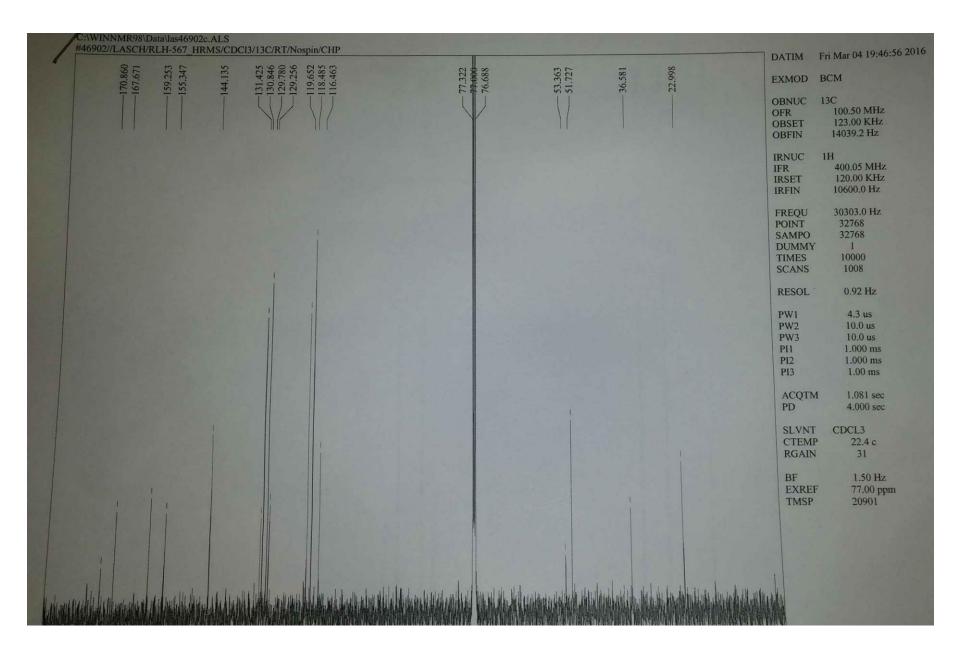

(E)-1-Chloro-4-(1-phenylprop-1-en-2-yl)benzene (4dn)




(E)-4-Chloro-4'-fluorostilbene (**4dj**)






(S,E)-2-Acetamido-3-(4-(4-((tert-butoxycarbonyl)diazenyl)phenoxy)-phenyl)propanoic acid (6)

(*S*,*E*)-2-acetamido-3-(4-(4-(3-methoxy-3-oxoprop-1-en-1-yl)phenoxy)phenyl)propanoic acid (**7**)

