

Synthesis of Rumphellaone A and Hushinone by a Gold-Catalyzed [2+2] Cycloaddition

Beatrice Ranieri, Carla Obradors, Mauro Mato, and Antonio M. Echavarren*

Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain

E-mail: aechavarren@iciq.es

Supporting Information

Table of contents

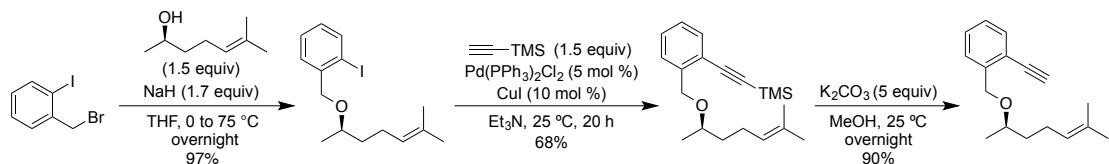
1. General information
2. Procedures for the preparation of the substrates and characterizations
3. NMR spectra
4. Chiral GC-MS traces
5. Chiral HPLC traces
6. Gold-catalysed [2+2] cycloaddition postulated transition states

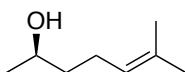
1. General Information

Unless otherwise stated, reactions were carried out under argon atmosphere in solvents dried by passing through an activated alumina column on a PureSolvTM solvent purification system (Innovative Technologies, Inc., MA). Analytical thin layer chromatography was carried out using TLC-aluminum sheets with 0.2 mm of silica gel (Merck GF234) using UV light as the visualizing agent and an acidic solution of vanillin in ethanol as the developing agent. Chromatographic purifications were carried out using flash grade silica gel (SDS Chromatogel 60 ACC, 40-63 μ m). Silver nitrate-impregnated silica was prepared dissolving 40 g of AgNO_3 in 400 mL of water for 213 g of silica and, after removal of water by rotary evaporation, the silica was heated at 130 °C under vacuum overnight. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

NMR spectra were recorded at 298 K on a Bruker Avance 300 Ultrashield, Bruker Avance 400 Ultrashield and Bruker Avance 500 Ultrashield apparatuses. Spectra were referenced to the solvent residual signal (28.0 ppm of CDCl_3). ^1H and ^{13}C NMR assignments are corroborated by 1D and 2D experiments (gCOSY, gHSQC and DEPTq135 sequences).

Mass spectra were recorded on a Waters Micromass LCT Premier (ESI), Waters Micromass GCT (EI, CI) and Bruker Daltonics Autoflex (MALDI) spectrometers.


HPLC analysis was carried out in an Agilent Technologies instrument HPLC 1200 series with DAD detector. Chiral GC analysis was carried out in an Agilent 6890N (GC) 5973(MSD) instrument with Electron impact (EI) ionization mode. Specific rotation was measured using Jasco P1030 polarimeter in the indicated solvents, concentrations and temperature. Chemicals were purchased from Sigma Aldrich, TCI, Alfa Aesar, Fluorochem and used without further purification unless otherwise reported. The catalyst [IPrAu(PhCN)]BARF was synthesized according reported procedure.¹ (S)-BINOL was purchased from Fluka and put under vacuum prior to use. Tetraallyltin was purchased from TCI, $\text{Ti}(\text{O}i\text{Pr})_4$ was purchased from Sigma Aldrich stored in the glovebox and used without further purification.


¹ Huguet, N.; Leboeuf, D.; Echavarren, A. M. *Chem. Eur. J.* **2013**, *19*, 6581–6585.

2. Procedures for the preparation of the substrates and characterizations

Synthesis of (*R*)-6-(2-ethynyl)-benzyloxy-2-methylhept-2-ene (6)

(*R*)-6-methylhept-5-en-2-ol

The alcohol is commercially available (common suppliers) but it can be prepared according to a published procedure.² The enantiomeric excess was determined by chiral GC-MS analysis (Betadex 120 30 \times 0.25mm, 0.25 μm ; Tinj/aux 280 °C; flow 1.5mL/min; split 100:1 (0.2 μL); isotherm 130 °C; sample in DCM); t_{R} (minor) 53.923 min, t_{R} (major) 56.381 min, 98% ee.

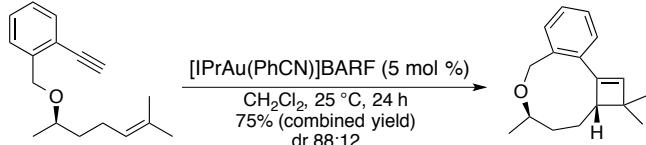
(*R*)-6-(2-ethynyl)-benzyloxy-2-methylhept-2-ene (6)

To a slurry of sodium hydride (1 g, 26.9 mmol) in THF (81 mL) at 0 °C, a solution of (*R*)-6-methylhept-5-en-2-ol (2.6 g, 20.2 mmol) in THF (81 mL) was added dropwise and stirred for 15 min. Thereafter, 1-(bromomethyl)-2-iodobenzene (5 g, 16.8 mmol) in THF (81 mL) was added over 10 minutes. The mixture was then stirred for 30 min at 0 °C and subsequently the temperature was increased to 75 °C and further stirred for 17 h. The reaction was quenched by addition of methanol followed by water and acidification with HCl 10 %. After complete evaporation of solvents and water, the residue was filtered through a plug of silica and washed with dichloromethane. (*R*)-6-(2-iodo)-benzyloxy-2-methylhept-2-ene was used as it was in the next step (97% yield).

To a solution of (*R*)-6-(2-iodo)-benzyloxy-2-methylhept-2-ene (5.65 g, 16.41 mmol) in triethylamine (15.7 mL, 113 mmol) was added bis(triphenylphosphine)palladium dichloride (0.58 g, 0.82 mmol) and copper(I) iodide (0.313 g, 1.64 mmol) under argon and the mixture was degassed. Ethynyltrimethylsilane (3.5 mL, 24.62 mmol) was then added to the reaction mixture. The solution was stirred at room temperature overnight. After filtration over a pad of silica, the solvent was removed by rotary evaporation. The crude product was purified using CombiFlash chromatographer (100% to 98:2 cyclohexane:diethyl ether) to give (*R*)-6-[2-(trimethylsilyl)ethynyl]-benzyloxy-2-methylhept-2-ene (3.5 g, 68% yield, orange oil).

² Chatterjee, S.; Ghadigaonkar, S.; Sur, P.; Sharma, A.; Chatopadhyay, S. *J. Org. Chem.* **2014**, 79, 8067–8076.

To a solution of (*R*)-6-[2-(trimethylsilyl)ethynyl]-benzyloxy-2-methylhept-2-ene (3.45 g, 11.48 mmol) in methanol (29 mL) was added potassium carbonate (7.9 g, 57.4 mmol). The reaction mixture was stirred at 24 °C overnight and then quenched with saturated NH₄Cl and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over magnesium sulfate and filtered. The solvent was removed by rotary evaporation. Purification using CombiFlash chromatographer (100% to 95:5 cyclohexane: diethyl ether) gave (*R*)-6-(2-ethynyl)-benzyloxy-2-methylhept-2-ene (**6**) (2.35 g, 90% yield, orange oil).


¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.54 (m, 1H), 7.51 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.38 (td, *J* = 7.6, 1.4 Hz, 1H), 7.25 (td, *J* = 7.6, 1.4 Hz, 1H), 5.15 – 5.12 (m, 1H), 4.77 (d, *J* = 12.8 Hz, 1H), 4.65 (d, *J* = 12.8 Hz, 1H), 3.63 – 3.55 (m, 1H), 3.31 (s, 1H), 2.21 – 2.02 (m, 2H), 1.75 – 1.66 (m and s, 1H + 3H), 1.63 (s, 3H), 1.51 (dd, *J* = 13.6, 9.0, 6.8, 5.4 Hz, 1H), 1.25 (d, *J* = 6.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 141.7 (Cq), 132.6 (CH, Ar), 131.6 (Cq), 128.9 (CH, Ar), 127.6 (CH, Ar), 127.0 (CH, Ar), 124.4 (CH), 120.4 (Cq), 81.6 (CH), 81.5 (Cq), 74.9 (CH), 68.2 (CH₂), 36.8 (CH₂), 25.7 (CH₃), 24.2 (CH₂), 19.7 (CH₃), 17.7 (CH₃).

[\alpha]_D (CHCl₃, *c* 0.23, 25 °C) = –18.4 °

HRMS (ESI+) calculated for [C₁₇H₂₂ONa]⁺ *m/z* 265.1563; found [M + Na]⁺ *m/z* 265.1561

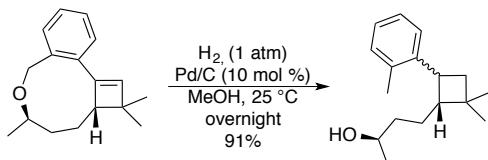
(2a*S*,5*R*)-2,2,5-trimethyl-2,2a,3,4,5,7-hexahydrobenzo[*c*]cyclobuta[*e*]oxonine (7)

Inside the glove box, to a solution of (*R*)-6-(2-ethynyl)-benzyloxy-2-methylhept-2-ene (**6**) (650 mg, 2.68 mmol) in CH₂Cl₂ (18 ml) at 23 °C was added catalyst **D** (208 mg, 0.134 mmol). The solution was stirred for 24 h. The reaction was quenched with NEt₃ (500 µL) and the solvent removed under reduced pressure. Separation of the major isomer was obtained by purification on AgNO₃-impregnated silica gel (slow elution 300:1 cyclohexane: diethyl ether). (75% overall yield, four runs average).

Data for the major isomer

Physical aspect: light yellow oil

¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.50 (m, 1H), 7.36 – 7.31 (m, 1H), 7.30 – 7.27 (m, 2H), 6.51 (s, 1H), 5.01 (d, *J* = 12.3 Hz, 1H), 4.49 (d, *J* = 12.4 Hz, 1H), 3.38 (pd, *J* = 6.4, 2.4 Hz, 1H), 3.08 (dd, *J* = 11.6, 1.7 Hz, 1H), 1.97 – 1.89 (m, 1H), 1.83 (ddt, *J* = 15.0, 5.4, 2.6 Hz, 1H), 1.69 (dd, *J* = 14.9, 12.3, 6.7, 2.6 Hz, 1H), 1.45 – 1.37 (m, 1H), 1.26 (s, 3H), 1.15 (d, *J* = 6.3 Hz, 3H), 1.13 (s, 3H).

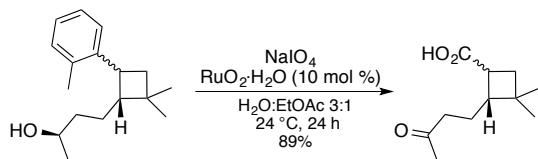

¹³C NMR (125 MHz, CDCl₃) δ 148.0 (Cq), 140.0 (CH), 136.1 (Cq), 133.7 (Cq), 131.2 (CH, Ar), 127.8 (CH, Ar), 127.7 (CH, Ar), 127.6 (CH, Ar), 71.6 (CH), 66.4 (CH₂), 57.2 (CH), 42.6 (Cq), 37.1 (CH₂), 28.7 (CH₂), 27.1 (CH₃), 22.6 (CH₃), 22.36 (CH₃).

[\alpha]_D (CHCl₃, *c* 0.48, 25 °C) = -158.7 °

HRMS (ESI+) calculated for [C₁₇H₂₂ONa]⁺ *m/z* 265.1563; found [M + Na]⁺ *m/z* 265.1568

HPLC Chiralcel OD-H (4.6 mm × 250 mm); hexane:IPA 98:2; 0.8 mL/min; λ = 254 nm, 1 μL injection; t_R (major) 15.263 min, t_R (minor) 16.363 min, 95% *ee*.

(*R*)-4-[(*R*)-2,2-dimethyl-4-(*o*-tolyl)cyclobutyl]butan-2-ol (10)

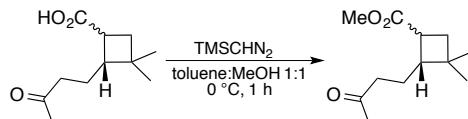

To a solution of compound 7 (350 mg, 1.44 mmol) in MeOH (17.2 mL) was added palladium on carbon (184 mg, 0.17 mmol). The resulting suspension was stirred at 26 °C under H₂ atmosphere (balloon) overnight. The mixture was filtered through a pad of celite, washed with EtOAc, and the solvent was removed under reduced pressure. Purification on silica gel flash column chromatography (4:1 cyclohexane: ethyl acetate) delivered (*R*)-4-[(*R*)-2,2-dimethyl-4-(*o*-tolyl)cyclobutyl]butan-2-ol (**10**) (91% three runs average, colorless resin). Rotamer of the major diastereoisomer (*cis*) is also visible due to high rotational energy barrier.

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.30 (m, 0.44H), 7.26 – 7.18 (m, 2.43H), 7.16 – 7.08 (m, 2.79H), 3.85 (dt, *J* = 10.7, 8.4 Hz, 1H), 3.75 (q, *J* = 6.1 Hz, 0.42H), 3.57 – 3.45 (m, 1H), 3.17 (q, *J* = 9.5 Hz, 0.41H), 2.30 (s, 1.75H), 2.27 (s, 3H), 2.25 – 2.17 (m, 1.27H), 2.12 (ddd, *J* = 10.6, 8.5, 0.8 Hz, 0.45H), 1.86 (ddd, *J* = 11.1, 8.2, 3.2 Hz, 1H), 1.64 – 1.48 (m, 1.32H), 1.41 – 1.35 (m, 4H), 1.28 – 1.21 (m, 1.46H), 1.21 – 1.13 (m, 4.47H), 1.07 – 1.03 (m, 3.72H), 0.99 (d, *J* = 6.2 Hz, 3H), 0.95 (d, *J* = 6.2 Hz, 0.77H), 0.93 – 0.80 (m, 1.93H).

¹³C NMR (125 MHz, CDCl₃) δ 143.0 (Cq *trans*), 139.5 (Cq *cis*), 136.9 (Cq *cis*), 136.8 (Cq rotamer), 135.8 (Cq *trans*), 129.9 (CH *trans*), 129.6 (CH *cis*), 129.5 (CH rotamer), 126.8 (CH *cis*), 126.75 (rotamer), 125.9 (CH *trans*), 125.8 (CH *cis*), 125.78 (CH rotamer), 125.55 (CH *trans*), 125.53 (CH rotamer), 125.51 (CH *cis*), 125.4 (CH *trans*), 68.4 (CH *trans*), 68.2 (CH rotamer), 68.19 (CH *cis*), 49.9 (CH₃ *trans*), 47.7 (CH₃ rotamer), 47.6 (CH₃ *cis*), 41.51 (CH₂ *trans*), 38.1 (CH *trans*), 30.0 (CH₂ *cis*), 37.9 (CH₂ rotamer), 37.6 (CH₂ *trans*), 35.1 (CH₂ *cis*), 35.08 (rotamer), 34.62 (rotamer), 34.61 (CH *cis*), 34.1 (Cq *trans*), 33.9 (rotamer), 33.89 (Cq *cis*), 31.2 (CH₃ *trans*), 30.3 (CH₃ *cis*), 26.9 (CH₂ *trans*), 25.0 (rotamer), 24.98 (CH₃ *cis*), 23.3 (CH₃ *trans*), 23.28 (CH *cis*), 23.13 (rotamer), 23.1 (CH₂ *cis*), 22.4 (CH *trans*), 19.7 (CH₃ *trans*), 19.66 (CH₃ *cis*). Some peaks of the *cis* rotamer are missing for overlapping.

HRMS (ESI+) calculated for [C₁₇H₂₆ONa]⁺ *m/z* 269.1876; found [M + Na]⁺ *m/z* 269.1863

(2*R*)-3,3-dimethyl-2-(3-oxobutyl)cyclobutane-1-carboxylic acid (11)

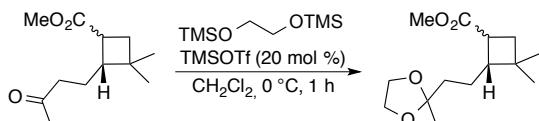

To a round 500 mL round bottom flask (*R*)-4-[(*R*)-2,2-dimethyl-4-(*o*-tolyl)cyclobutyl]butan-2-ol (**10**) (356 mg, 1.44 mmol) dissolved in ethyl acetate (40 ml) was added followed by water (168 ml). The biphasic system was cooled down to 0 °C. Sodium periodate (4.6 g, 21.67 mmol) and ruthenium(IV) oxide hydrate (21.8 mg, 0.14 mmol) were added sequentially. The reaction was stirred vigorously (1200 rpm) for 24 h at 24 °C. The reaction was initially extracted with EtOAc (100 mL × 4) and concentrated to a minimum amount of EtOAc (10 mL). The organic layer was washed with a solution of brine: aqueous saturated solution of Na₂SO₃ 10:1 (10 mL). The aqueous layer was separated and acidified with conc. HCl to pH=2 and extracted with EtOAc (10 mL × 4). The combined organic layers were washed with aqueous saturated solution of Na₂CO₃ (20 mL) followed by extraction in DCM (20 mL × 1). The aqueous phases were acidified again with conc. HCl conc. to pH=2 and extracted with EtOAc (20 mL × 5). The organic layer was dried over Na₂SO₄, filtered and evaporated under reduced pressure. Compound **11** was used for the next step without further purification (89% three runs average, orange resin).

¹H NMR (400 MHz, CDCl₃) δ 3.23 (ddd, *J* = 10.2, 8.9, 6.0 Hz, 1H), 2.70 (q, *J* = 9.3 Hz, 1H), 2.57 – 2.28 (m, 6H), 2.15 (s, 6H), 2.13 – 2.09 (m, 1H), 1.97 – 1.81 (m, 3H), 1.80 – 1.64 (m, 3H), 1.14 (s, 3H), 1.10 (s, 3H), 1.07 (s, 3H), 1.06 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 209.3 (Cq. Ketone), 209.2 (Cq, ketone), 181.4 (Cq, COOH), 180.5 (Cq, COOH), 47.7 (CH), 46.4 (CH), 42.0 (Cq), 41.2 (CH₂), 39.1 (CH), 36.4 (CH), 35.9 (CH₂), 35.8 (CH₂), 34.5 (Cq), 33.8 (CH₂), 31.0 (CH₃), 30.1 (CH₃), 29.9 (CH₃), 29.9 (CH₃), 23.9 (CH₂), 23.2 (CH₃), 22.3 (CH₃), 21.4 (CH₂).

HRMS (ESI+) calculated for [C₁₁H₁₇O₃]⁺ *m/z* 197.1183; found [M + H]⁺ *m/z* 197.1190

Methyl (2*R*)-3,3-dimethyl-2-(3-oxobutyl)cyclobutane-1-carboxylate

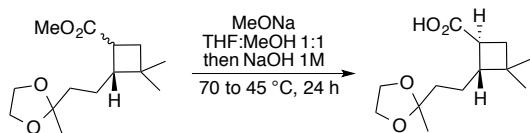

(2*R*)-3,3-dimethyl-2-(3-oxobutyl)cyclobutane-1-carboxylic acid **11** (250 mg, 1.26 mmol) was dissolved in a mixture of toluene (3.3 ml) and methanol (3.3 ml) under argon. The solution was cooled down to 0 °C and trimethylsilyldiazomethane (2.5 ml, 5.04 mmol) was added dropwise. The reaction was stirred at the same temperature for 1.5 h and then concentrated under vacuum. Methyl (2*R*)-3,3-dimethyl-2-(3-oxobutyl)cyclobutane-1-carboxylate was used in the next step without further purification (98% three runs average, colorless resin).

¹H NMR (300 MHz, CDCl₃) δ 3.71 – 3.58 (2s, 3 + 1.28H), 3.16 (ddd, *J* = 10.0, 8.9, 6.2 Hz, 1H), 2.63 (q, *J* = 9.3 Hz, 0.42H), 2.39 – 2.22 (m, 4.28H), 2.15 – 2.03 (m, 6H), 1.95 – 1.72 (m, 2H), 1.69 – 1.61 (m, 2.8H), 1.11 (s, 2.83H), 1.05 (s, 1.25H), 1.04 – 1.02 (m, 4.35H).

¹³C NMR (75 MHz, CDCl₃) δ 208.6 (Cq, ketone *trans*), 208.4 (Cq, ketone *cis*), 175.8 (Cq, ester *trans*), 175.0 (Cq, ester *cis*), 51.6 (CH₃ *trans*), 51.4 (CH₃ *cis*), 47.6 (CH, *trans*), 46.2 (CH *cis*), 41.9 (CH₂ *cis*), 41.3 (CH₂ *trans*), 39.1 (CH, *trans*), 36.2 (CH *cis*), 36.0 (Cq *trans*), 35.6 (Cq *cis*), 34.5 (CH₂ *trans*), 34.0 (CH₂ *cis*), 31.0 (CH₃ *cis*), 30.1 (CH₃ *trans*), 29.9 (CH₃ *trans*), 29.86 (CH₃ *cis*), 23.9 (CH₂ *trans*), 23.2 (CH₃ *cis*), 22.2 (CH₃ *trans*), 21.5 (CH₂ *cis*).

HRMS (ESI+) calculated for [C₁₂H₂₀O₃Na]⁺ *m/z* 235.1305; found [M + Na]⁺ *m/z* 235.1300

Methyl (2*R*)-3,3-dimethyl-2-[2-(2-methyl-1,3-dioxolan-2-yl)ethyl]cyclobutane-1-carboxylate (12)


Methyl (2*R*)-3,3-dimethyl-2-(3-oxobutyl)cyclobutane-1-carboxylate (268 mg, 1.26 mmol) was dissolved in CH₂Cl₂ (3.3 mL) under argon and cooled down to 0 °C. Trimethylsilyl trifluoromethanesulfonate (45.6 μl, 0.25 mmol) and 2,2,7,7-tetramethyl-3,6-dioxa-2,7-disilaoctane (619 μl, 2.52 mmol) were added in this order. The reaction was stirred at 0 °C for 1.5 h then quenched with pyridine. The solution was diluted with CH₂Cl₂, washed with saturated aqueous solution of NaHCO₃, CuSO₄ 10% and water sequentially. The organic layers were dried over Na₂SO₄, filtrated and concentrated under reduced pressure. Compound **12** was used in the next step without further purification (95% three runs average, yellow oil).

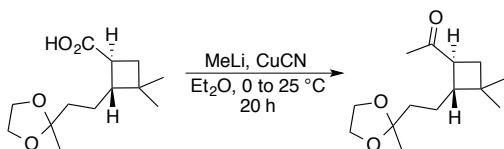
¹H NMR (400 MHz, CDCl₃) δ 4.01 – 3.84 (m, 6H), 3.67 (s, 3H), 3.66 (s, 1.5H), 3.18 (ddd, *J* = 9.8, 8.8, 6.4 Hz, 1H), 2.62 (q, *J* = 9.2 Hz, 0.45H), 2.31 – 2.22 (m, 1H), 2.16 – 2.10 (m, 1.5H), 1.94 – 1.84 (m, 0.48H), 1.85 – 1.73 (m, 1.5H), 1.57 – 1.43 (m, 6.2H), 1.33 – 1.28 (m, 4.7H), 1.13 (s, 3H), 1.08 (s, Hz, 1.4H), 1.06 (s, 3H), 1.04 (s, 1.7H).

¹³C NMR (100 MHz, CDCl₃) δ 175.9 (Cq *trans*), 175.1 (Cq *cis*), 109.9 (Cq *cis*), 109.86 (Cq *trans*), 64.6 (2CH₂ *cis*), 64.58 (2CH₂ *trans*), 51.5 (CH₃ *trans*), 51.2 (CH₃ *cis*), 48.3 (CH *trans*), 47.0 (CH *cis*), 39.3 (CH *trans*), 37.5 (CH₂ *cis*), 36.7 (CH₂ *trans*), 36.4 (CH *cis*), 35.9 (CH₂ *trans*), 35.6 (Cq *cis*), 34.5 (Cq *trans*), 33.9 (CH₂ *cis*), 31.2 (CH₃ *cis*), 30.4 (CH₃ *trans*), 24.7 (CH₂ *trans*), 23.7 (CH₃ *trans*), 23.7 (CH₃ *cis*), 23.3 (CH₃ *cis*), 22.2 (CH₃ *trans*), 21.9 (CH₂ *cis*).

HRMS (ESI+) calculated for [C₁₄H₂₄O₄Na]⁺ *m/z* 279.1567; found [M + Na]⁺ *m/z* 279.1560

(1*S*,2*R*)-3,3-dimethyl-2-[2-(2-methyl-1,3-dioxolan-2-yl)ethyl]cyclobutane-1-carboxylic acid (13)

Inside the glovebox, methyl (2R)-3,3-dimethyl-2-[2-(2-methyl-1,3-dioxolan-2-yl)ethyl]cyclobutane-1-carboxylate (**12**) (145 mg, 0.57 mmol) was dissolved in THF (1.2 mL) in a microwave vial. Then sodium methoxide (33.7 mg, 0.62 mmol) and MeOH (1.2 mL) were added and the vial was sealed. The resulting mixture was stirred outside the glovebox for 20 h at 70 °C (the reaction monitored by GC-MS). An aqueous solution of sodium hydroxide 1M (1.1 mL, 1.13 mmol) was then added and the reaction stirred at 45 °C until consumption of the starting material (TLC 1:1 cyclohexane:ethyl acetate; 2-3 h). The reaction was cooled down to 0 °C, diluted with EtOAc (10 mL) and quenched with aqueous saturated solution of NH₄Cl and extracted with EtOAc (5 × 10 mL). The aqueous solutions were acidified with HCl 1M to pH = 6/5 (warning: lower pH caused the acetal cleavage) and extracted with EtOAc (5 × 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and evaporated under reduced pressure. Compound **13** was used in the next step without further purification (86% three runs average, brown resin).


¹H NMR (300 MHz, CDCl₃) δ 10.87 (brs, 1), 4.02 – 3.85 (m, 4H), 2.65 (q, *J* = 9.2 Hz, 1H), 2.22 – 2.14 (m, 1H), 2.00 – 1.74 (m, 2H), 1.66 – 1.45 (m, 4H), 1.31 (s, 3H), 1.09 (s, 3H), 1.05 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 181.5 (Cq, CO), 109.9 (Cq), 64.6 (2CH₂), 48.3 (CH), 39.2 (CH), 36.6 (CH₂), 35.8 (CH₂), 34.5 (Cq), 30.4 (CH₃), 24.7 (CH₂), 23.7 (CH₃), 22.2 (CH₃).

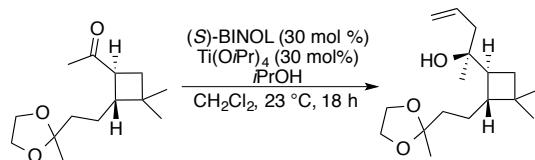
[α]_D (acetone, *c* 0.15, 25 °C) = –149.9 °

HRMS (ESI–) calculated for [C₁₃H₂₁O₄][–] *m/z* 241.1445; found [M – H][–] *m/z* 241.1438

1-{(1*S*,2*R*)-3,3-dimethyl-2-[2-(2-methyl-1,3-dioxolan-2-yl)ethyl]cyclobutyl}ethan-1-one (8)

To a flame dried (under *vacuum*) 25 mL round-bottomed flask equipped with stirbar under argon atmosphere was added solid cyanocuppper (444 mg, 4.95 mmol) followed by diethyl ether (1.7 ml). The flask was cooled down to 0 °C and a methylolithium (6.6 mL, 9.90 mmol) was added dropwise *via* syringe. The reaction was stirred for 5 min at 0 °C and a solution of (1*S*,2*R*)-3,3-dimethyl-2-[2-(2-methyl-1,3-dioxolan-2-yl)ethyl]cyclobutane-1-carboxylic acid **13** (240 mg, 0.99 mmol) in diethyl ether (5 ml) was added dropwise at a rate of approximately 1 mL/min. The reaction was allowed to warm to 25 °C over a period of 1 hour, and was stirred at the same temperature for 14 hours. The reaction was determined to be completed by TLC analysis (TLC 1:1 cyclohexane:ethyl acetate; 2-3 h), and was quenched with aqueous saturated solution of NH₄Cl. The biphasic mixture was transferred to a separatory funnel, and

the aqueous layer was extracted with CH_2Cl_2 (3×10 mL). The combined organic layers were dried over MgSO_4 , filtered, and concentrated under reduced pressure. Compound **8** was purified by silica gel flash column chromatography (7:3 cyclohexane: ethyl acetate) (65% two runs average, light yellow oil).


^1H NMR (300 MHz, CDCl_3) δ 4.06 – 3.81 (m, 4H), 2.74 (q, $J = 9.2$ Hz, 1H), 2.15 – 2.07 (m, 4H), 1.80 – 1.75 (m, 2H), 1.59 – 1.40 (m, 4H), 1.30 (s, 3H), 1.05 (s, 6H).

^{13}C NMR (75 MHz, CDCl_3) δ 210.1 (Cq, CO), 109.8 (Cq), 64.6 (2 CH_2), 47.4 (CH), 46.8 (CH), 37.0 (CH₂), 36.1 (CH₂), 33.8 (Cq), 30.5 (CH₃), 28.3 (CH₃), 24.9 (CH₂), 23.7 (CH₃), 22.4 (CH₃).

$[\alpha]_D$ (CHCl_3 , c 0.21, 23 °C) = +499.0 °

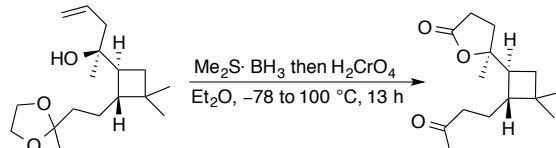
HRMS (ESI+) calculated for $[\text{C}_{14}\text{H}_{24}\text{O}_3\text{Na}]^+$ m/z 263.1618; found $[\text{M} + \text{Na}]^+$ m/z 263.1623

(S)-2-{(1*S*,2*R*)-3,3-dimethyl-2-[2-(2-methyl-1,3-dioxolan-2-yl)ethyl]cyclobutyl}pent-4-en-2-ol (9)

Titanium(IV) isopropoxide (47.5 μl , 0.16 mmol) was added to a solution of (S)-[1,1'-binaphthalene]-2,2'-diol (46.5 mg, 0.16 mmol) in CH_2Cl_2 (1300 μl) and the orange solution was stirred at 25 °C for several minutes. Propan-2-ol (828 μl , 10.82 mmol) was added, followed by 1-[(1*S*,2*R*)-3,3-dimethyl-2-[2-(2-methyl-1,3-dioxolan-2-yl)ethyl]cyclobutyl]ethan-1-one (**8**) (130 mg, 0.54 mmol) and tetraallylstannane (195 μl , 0.81 mmol). After an initial induction period, the color of the solution lightened from orange to yellow. After 16 h stirring at the same temperature, the reaction was quenched with aqueous saturated solution of NH_4Cl and extracted in CH_2C_2 (4×10 mL). After removal of the solvent under reduced pressure, the resulting oily residue was extracted with cyclohexane, dried over Na_2SO_4 , filtered through celite and concentrated under reduced pressure. Purification by AgNO_3 -impregnated silica gel flash column chromatography (slow elution 6:4 cyclohexane: diethyl ether) afforded pure **9** and a minor fraction of a mixture of both isomers (combined yield 80%).

Data for the major isomer

Physical aspect: light yellow oil


^1H NMR (400 MHz, CDCl_3) δ 5.84 (ddt, $J = 17.5, 10.3, 7.5$ Hz, 1H), 5.19 – 5.05 (m, 2H), 4.02 – 3.89 (m, 4H), 2.20 – 2.02 (m, 2H), 1.95 – 1.82 (m, 2H), 1.69 – 1.46 (m, 6H), 1.32 (s, 3H), 1.12 (s, 3H), 1.07 – 1.06 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 134.2 (CH), 118.4 (CH₂), 110.0 (Cq), 72.0 (Cq), 64.6 (2CH₂), 45.0 (CH₂), 44.9 (CH), 44.5 (CH), 37.6 (CH₂), 33.6 (CH₂), 33.0 (Cq), 31.2 (CH₃), 26.2 (CH₂), 25.1 (CH₃), 23.5 (CH₃), 22.5 (CH₃).

[\alpha]_D (acetone, *c* 0.27, 23 °C) = +351.6 °

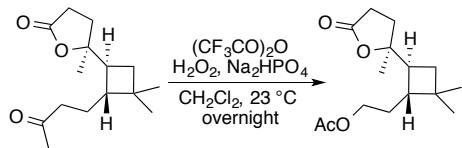
HRMS (ESI+) calculated for [C₁₇H₃₀O₃Na]⁺ *m/z* 305.2087; found [M + Na]⁺ *m/z* 305.2094

(S)-5-[(1*S*,2*R*)-3,3-dimethyl-2-(3-oxobutyl)cyclobutyl]-5-methyldihydrofuran-2(3*H*)-one (rumphellaone A) (1)

To a stirred solution of (S)-2-[(1*S*,2*R*)-3,3-dimethyl-2-[2-(2-methyl-1,3-dioxolan-2-yl)ethyl]cyclobutyl]pent-4-en-2-ol (**9**) (81 mg, 0.29 mmol) in diethyl ether (290 μl), cooled to -78 °C was added BMS (186 μl, 0.37 mmol). The mixture was allowed to warm up to 25 °C (warning: hydrogen formation) and was stirred at the same temperature for 12 h. A solution chromic acid (1 mL, 0.86 mmol) [prepared from Na₂Cr₂O₇·H₂O 2.6 g, conc. H₂SO₄ 1.9 ml and then diluted to volume (10 mL) with water] was added dropwise to the mixture at 0 °C. The mixture was refluxed for 1 h and cooled down to 25 °C. The reaction was diluted with ethyl acetate, the organic phase was and the aqueous layer were extracted with ethyl acetate (3 × 5 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. Purification by silica gel flash column chromatography (6:4 diethyl ether:cyclohexane) afforded compound **1** (38 mg, 53%, colorless resin which solidified upon standing).

¹H NMR (300 MHz, CDCl₃) δ 2.72 – 2.48 (m, 2H), 2.42 – 2.33 (m, 2H), 2.17 – 1.98 (s + m, 5H), 1.94 – 1.81 (m, 2H), 1.74 – 1.53 (m, 3H), 1.51 – 1.38 (m, 1H), 1.32 (s, 3H), 1.07 – 1.04 (m, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 208.5 (Cq), 176.9 (Cq), 87.2 (Cq), 44.5 (CH), 44.2 (CH), 42.0 (CH₂), 33.5 (CH₂), 33.0 (Cq), 30.9 (CH₃), 30.6 (CH₂), 29.9 (CH₃), 29.1 (CH₂), 25.1 (CH₂), 24.9 (CH₃), 22.5 (CH₃).


[\alpha]_D (CHCl₃, *c* 1.11, 25 °C) = +65.6 °; lit.³ [\alpha]_D (CHCl₃, *c* 1.11, 30 °C) = +75.8 °

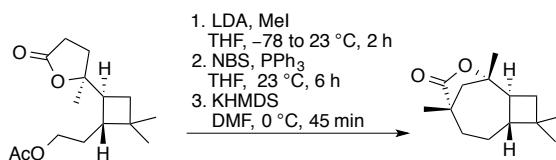
HRMS (ESI+) calculated for [C₁₅H₂₅O₃]⁺ *m/z* 253.1798; found [M + H]⁺ *m/z* 253.1806

Chiral GC-MS analysis (HP5-MS 30m × 0.25mm, 0.25μm Tinj/Aux 280 °C; flow 1.5mL/min split 50:1 (1μL); method: 50-325(5')/10 °C min; sample in DCM); t_R (minor) 15.580 min, t_R (major) 15.646 min, 97% *ee*.

(S)-5-[(1*S*,2*R*)-2-(2-acetoxyethyl)-3,3-dimethylcyclobutyl]-5-methyldihydrofuran-2(3*H*)-one (14)

³ Hirokawa, T.; Nagasawa, T.; Kuwahara, S. *Tetrahedron Lett.* **2012**, 53, 705–706.

Trifluoroacetic anhydride (121 μ l, 0.86 mmol) was added to a suspension of hydrogen peroxide (35.0 μ l, 0.57 mmol) in CH_2Cl_2 (274 μ l) at 0 °C. The resulting solution was stirred for 5 min at 0 °C, and then sodium phosphate dibasic (122 mg, 0.86 mmol) was added followed by a solution of 5-[(1*R*,2*S*)-3,3-dimethyl-2-(3-oxobutyl)cyclobutyl]-5-methyldihydrofuran-2(3*H*)-one (18 mg, 0.07 mmol) in CH_2Cl_2 (274 μ l) (plus rinse 0.2 mL \times 2). The resulting suspension was stirred at 23 °C overnight, poured into 1 mL of saturated NaHCO_3 and extracted with EtOAc (3 \times 2 mL). The organic extracts were dried over MgSO_4 , filtered, and evaporated under reduced pressure. Purification by silica gel flash column chromatography (35:15 cyclohexane: ethyl acetate) afforded compound **14** (60%, three runs average, colorless resin).


^1H NMR (400 MHz, CDCl_3) δ 4.07 – 3.89 (m, 2H), 2.74 – 2.45 (m, 2H), 2.14 – 1.99 (m and s, 6H), 1.97 – 1.71 (m, 3H), 1.60 (dd, J = 10.7, 7.8 Hz, 1H), 1.55 – 1.43 (m, 1H), 1.33 (s, 3H), 1.07 (m, 3H + 3H).

^{13}C NMR (100 MHz, CDCl_3) δ 176.8 (Cq), 171.0 (Cq), 87.1 (Cq), 63.0 (CH_2), 43.9 (CH), 42 (CH), 33.6 (CH_2), 33.1 (Cq), 30.7 (CH_2), 30.6 (CH_3), 30.3 (CH_2), 29.2 (CH_2), 24.8 (CH_3), 22.7 (CH_3), 21.0 (CH_3).

$[\alpha]_D$ (CHCl_3 , c 0.42, 26 °C) = +65.5 °

HRMS (ESI+) calculated for $[\text{C}_{15}\text{H}_{24}\text{O}_4\text{Na}]^+$ m/z 291.1567; found $[\text{M} + \text{Na}]^+$ m/z 291.1574

(1*S*,2*S*,5*R*,8*S*)-1,4,4,8-tetramethyl-10-oxatricyclo[6.2.1.0^{2,5}]undecan-9-one (hushinone) (2)

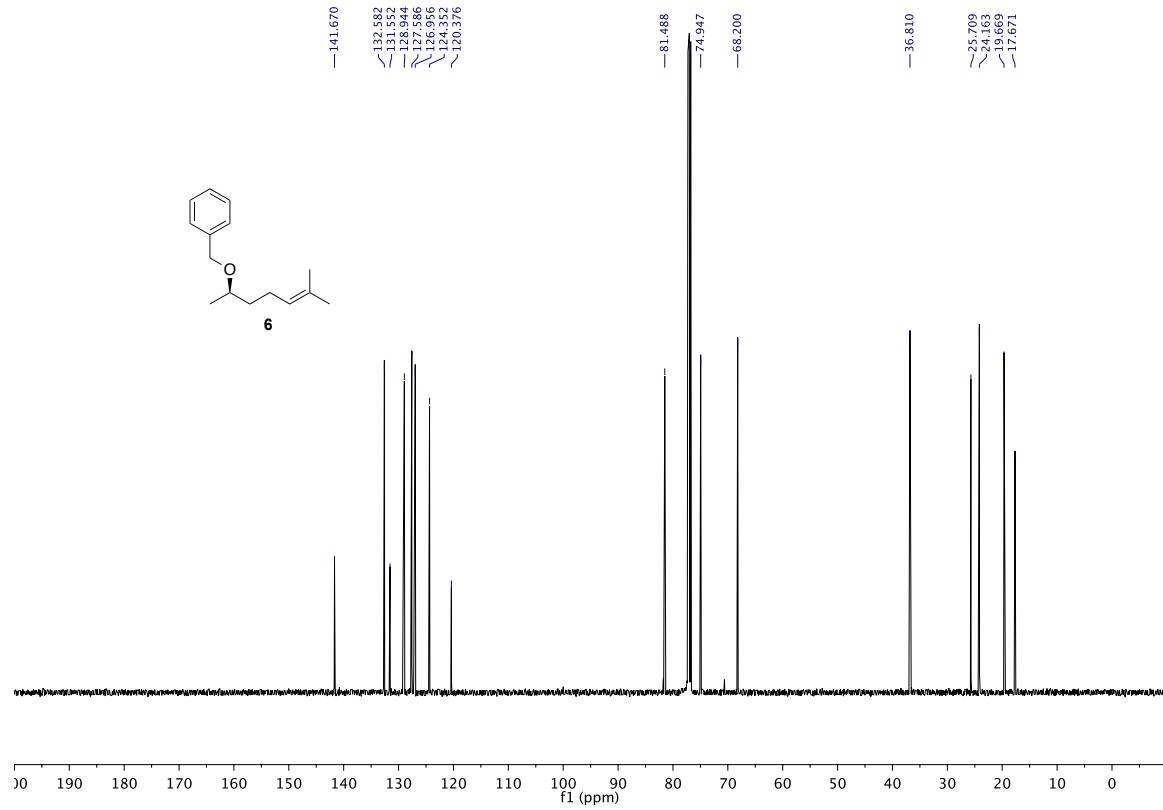
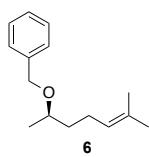
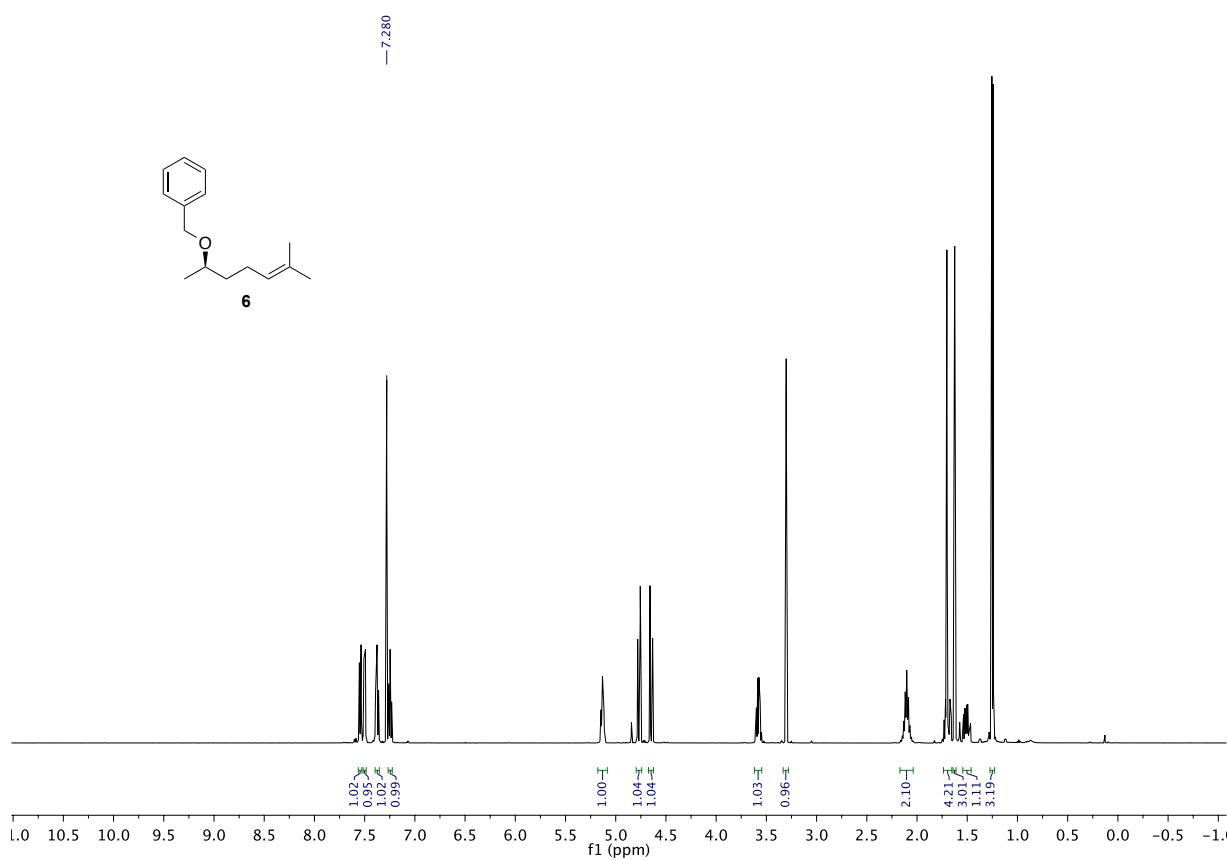
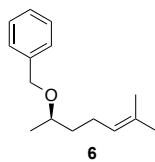
To a solution of diisopropylamine (17.8 μ l, 0.125 mmol) in dry THF (145 μ l) at 0 °C was added *n*-butyllithium (44.7 μ l, 0.125 mmol) dropwise. The solution was stirred at 0 °C 5 min and then cooled down to –78 °C at which time (5)-5-[(1*S*,2*R*)-2-(2-acetoxyethyl)-3,3-dimethylcyclobutyl]-5-methyldihydrofuran-2(3*H*)-one (**14**) (32 mg, 0.12 mmol) in dry THF (145 μ l \times 2) was added over 10 min. The mixture was stirred at –78 °C for 20 min then iodomethane (8.2 μ l, 0.11 mmol) was added in one portion. The mixture was allowed to warm to 23 °C, stirred for 2 h and then partitioned between EtOAc and saturated aqueous solution of NH_4Cl . The phases were separated, and the organic layer was washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure. Purification by silica gel flash column chromatography (1:1 cyclohexane: ethyl acetate) afforded 5-[(1*S*,2*R*)-2-(2-

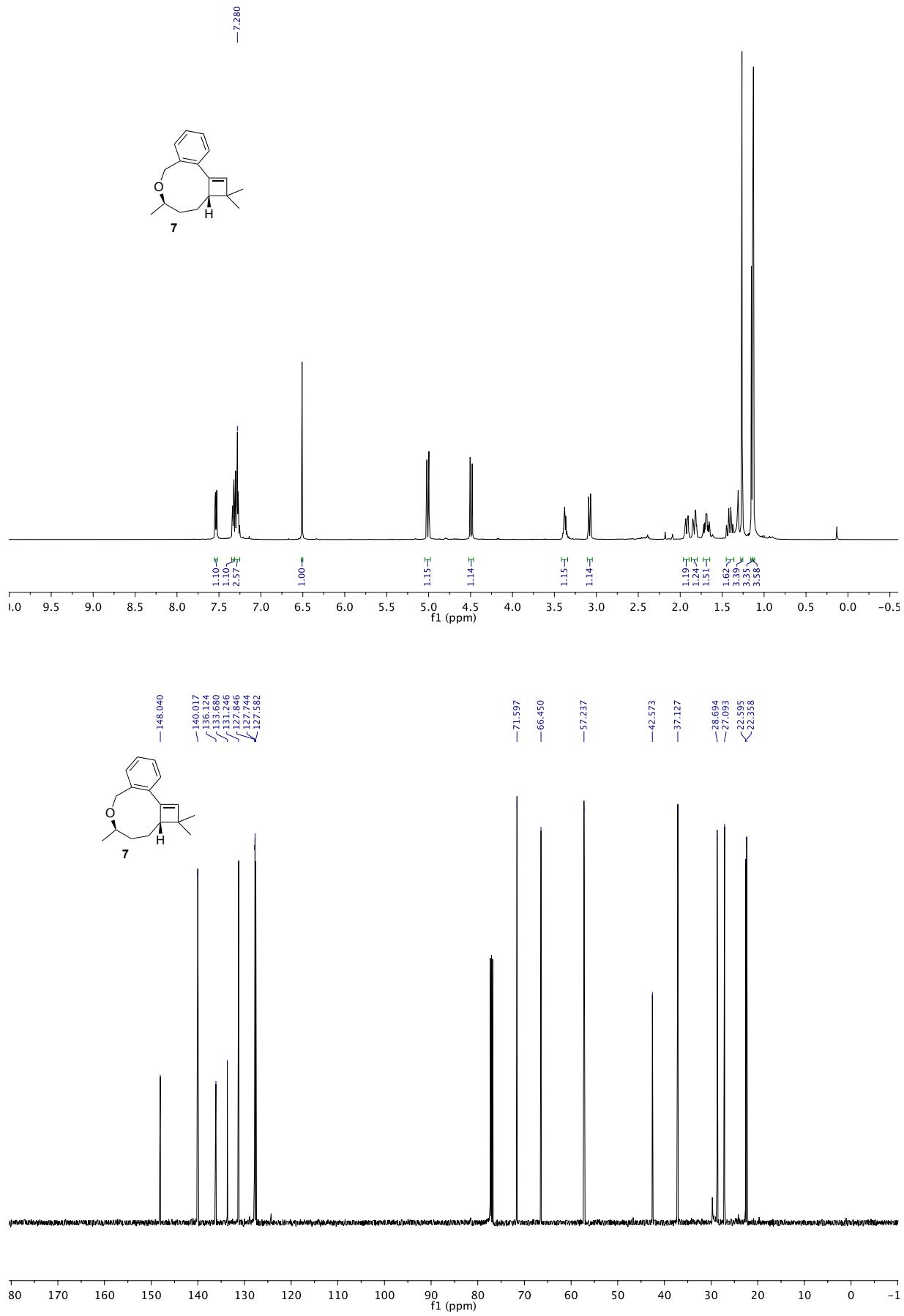
hydroxyethyl)-3,3-dimethylcyclobutyl]-3,5-dimethyldihydrofuran-2(3*H*)-one (34%, colorless resin). The NMR spectra matched with those previously reported in the literature.⁴

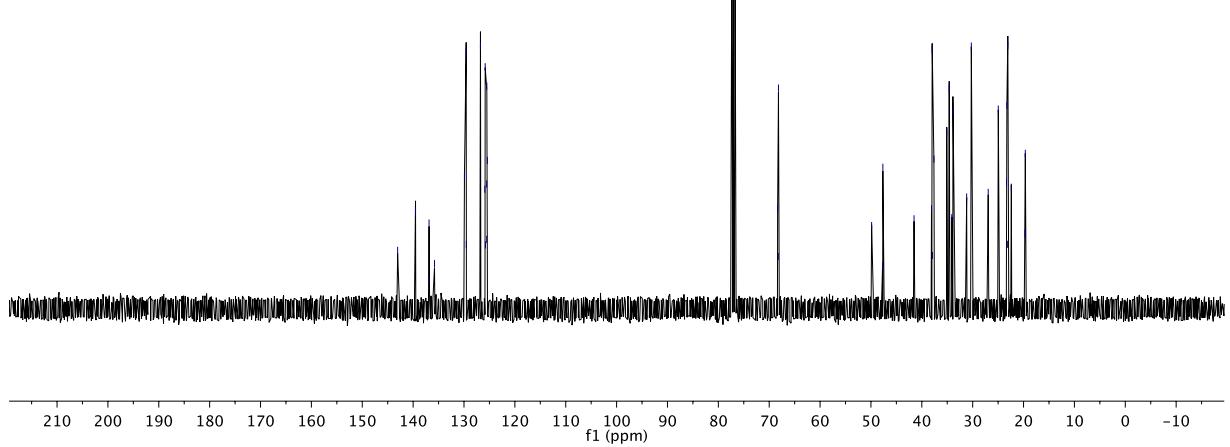
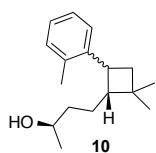
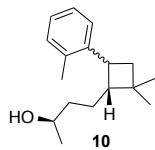
To a stirred solution of 5-[(1*S*,2*R*)-2-(2-hydroxyethyl)-3,3-dimethylcyclobutyl]-3,5-dimethyldihydrofuran-2(3*H*)-one (9.7 mg, 0.04 mmol) and triphenylphosphine (15 mg, 0.06 mmol) in THF (404 μ L) was added N-bromosuccinimide (9.3 mg, 0.05 mmol) at 23 °C. After 6 h, the mixture was quenched with water and extracted with EtOAc (3 \times 2 mL). The organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. Purification by silica gel flash column chromatography (5:1 cyclohexane: ethyl acetate) afforded 5-[(1*S*,2*R*)-2-(2-bromoethyl)-3,3-dimethylcyclobutyl]-3,5-dimethyldihydrofuran-2(3*H*)-one (61%, colorless resin). The NMR spectra matched with those previously reported in the literature.⁴

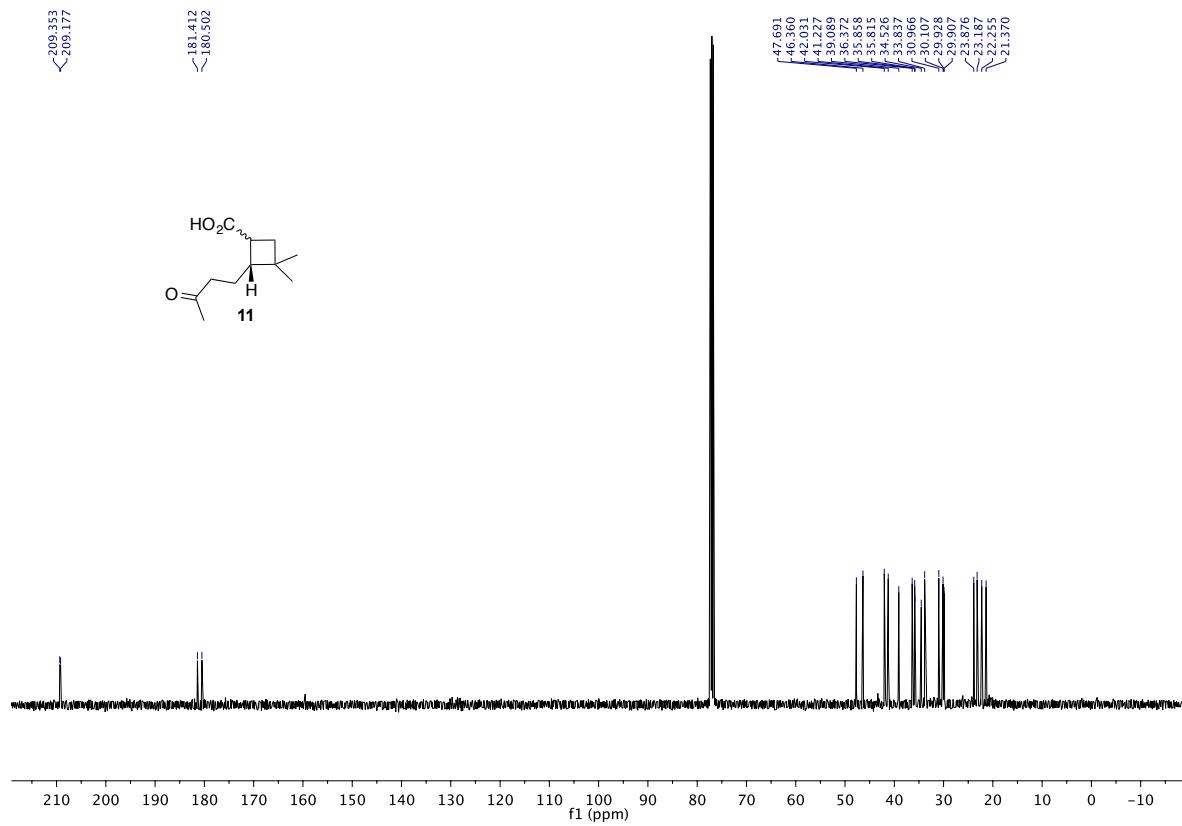
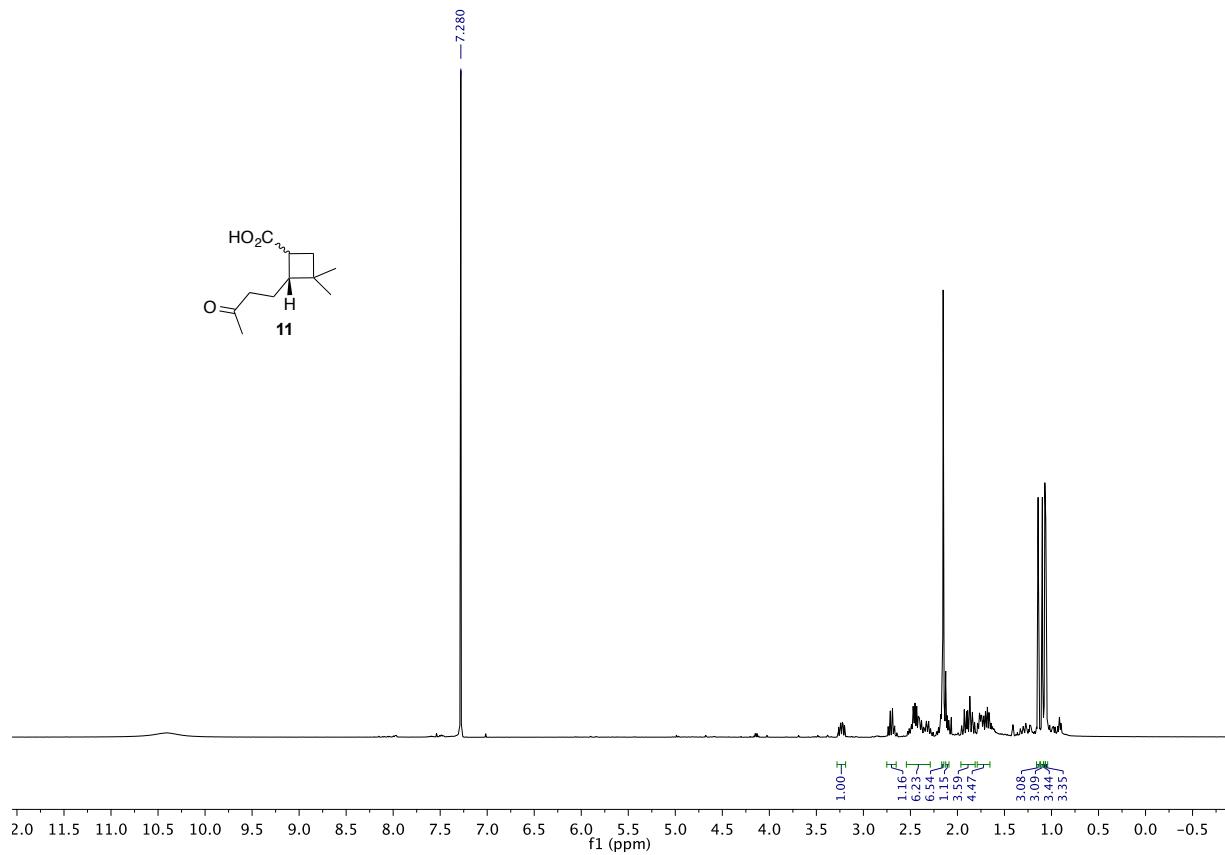
To a stirred solution of 5-[(1*S*,2*R*)-2-(2-bromoethyl)-3,3-dimethylcyclobutyl]-3,5-dimethyldihydrofuran-2(3*H*)-one (7.5 mg, 0.025 mmol) in N,N-Dimethylformamide (102 μ L) at 0 °C was added potassium hexamethyldisilazide (99 μ L, 0.05 mmol). After 45 min the reaction was quenched with a saturated aqueous solution of NH₄Cl and extracted with ethyl acetate (3 \times 1 mL). The organic phase was washed with a saturated aqueous solution of NH₄Cl, water and brine, dried over MgSO₄ and concentrated reduced pressure. Purification by silica gel flash column chromatography (9:1 cyclohexane: ethyl acetate) afforded hushinone **2** (99%, white solid).⁴

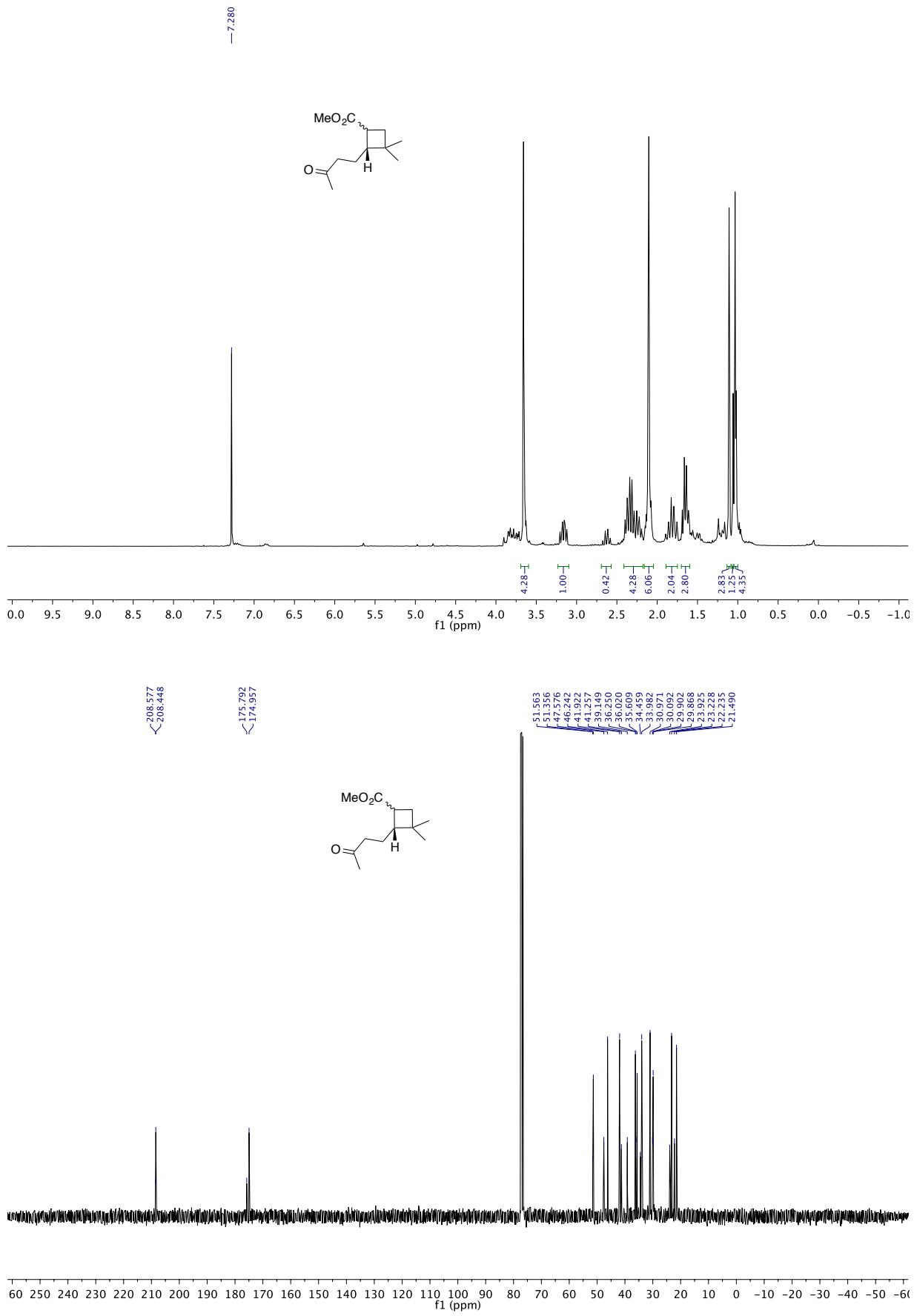
¹H NMR (400 MHz, CDCl₃) δ 2.59 (d, *J* = 12.9 Hz, 1H), 2.21 (td, *J* = 11.7, 7.8 Hz, 1H), 2.06 – 1.98 (m, 1H), 1.86 – 1.62 (m, 4H), 1.55 – 1.49 (m, 1H), 1.35 (s, 4H), 1.33 – 1.21 (m, 5H), 1.03 – 1.028 (m, 6H).

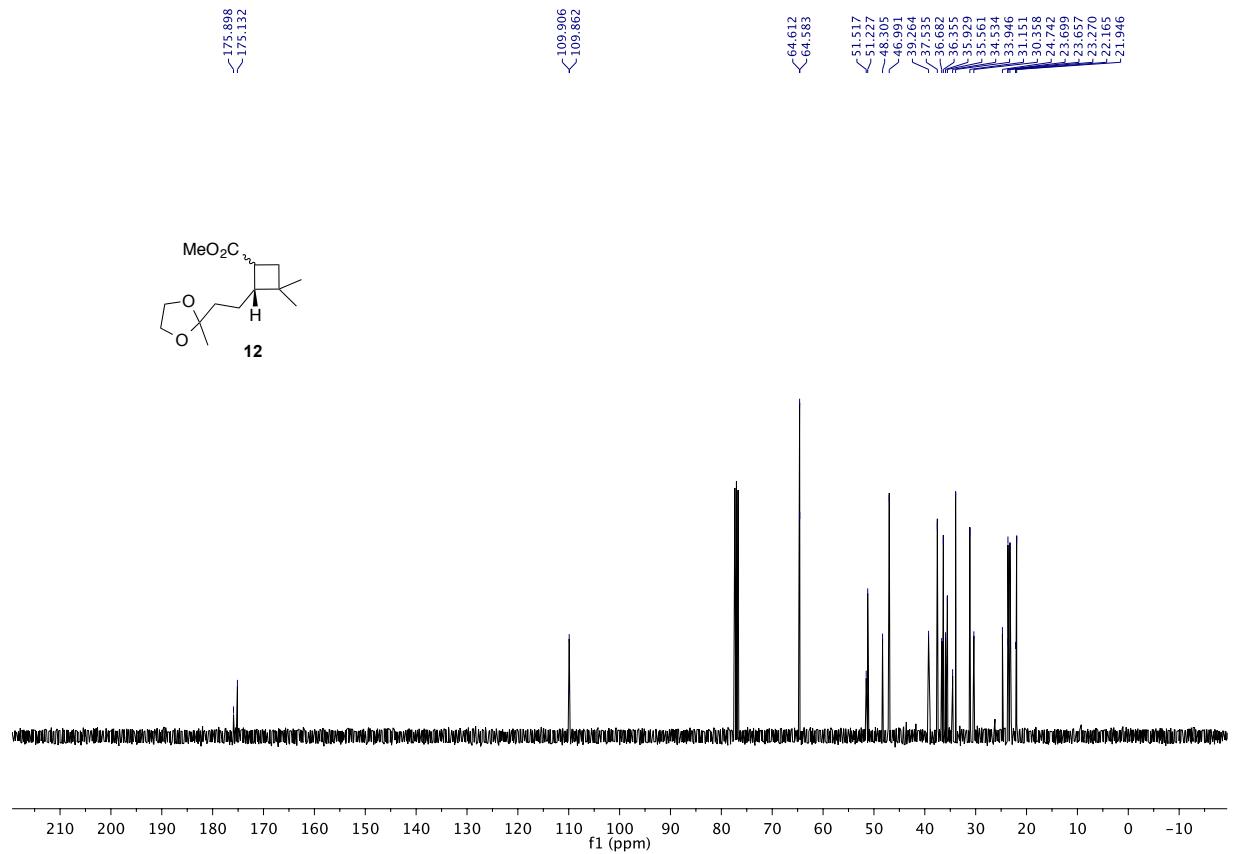
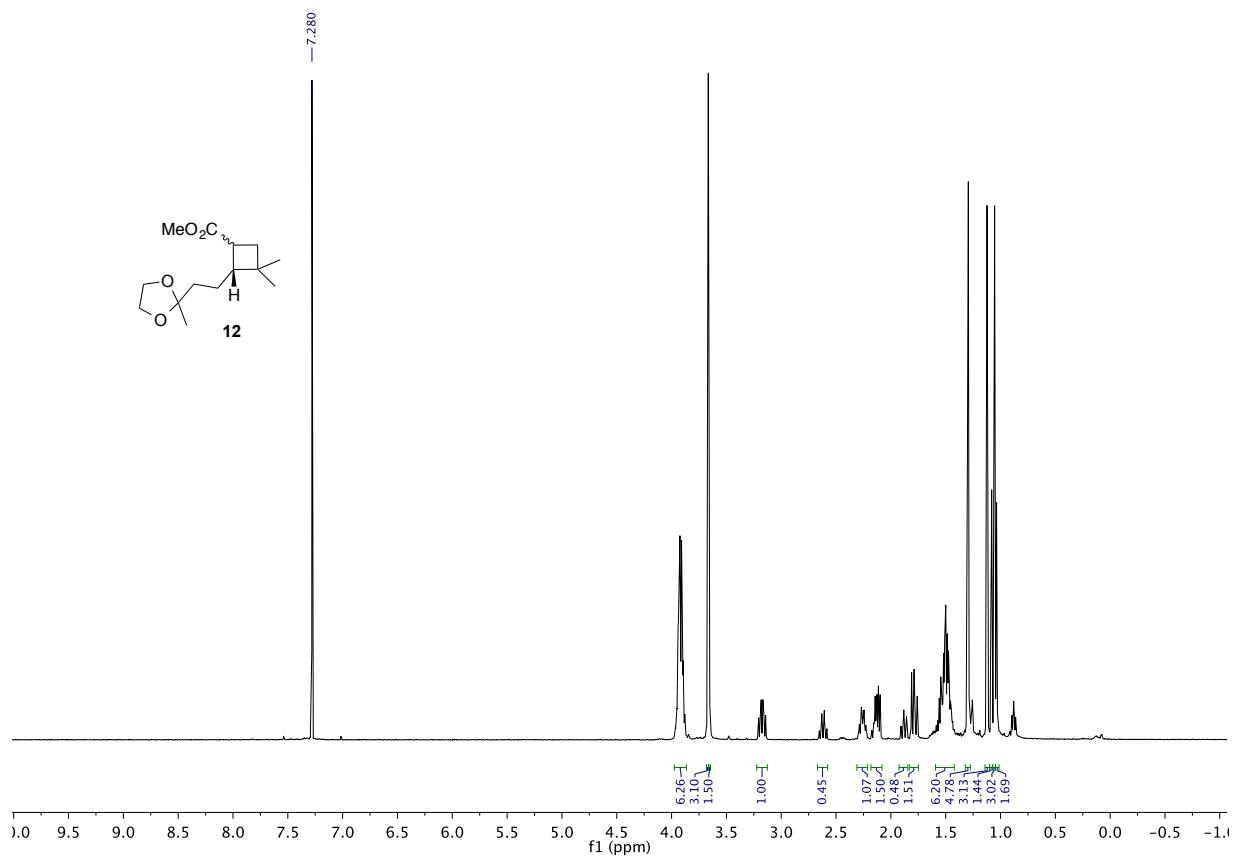




¹³C NMR (101 MHz, CDCl₃) δ 181.8 (Cq), 86.0 (Cq), 50.8 (CH), 48.8 (CH), 46.6 (Cq), 46.58 (CH₂), 39.4 (CH₂), 37.8 (CH₂), 35.5 (Cq), 30.2 (CH₃), 28.1 (CH₃), 26.7 (CH₂), 22.3 (CH₃), 19.8 (CH₃).

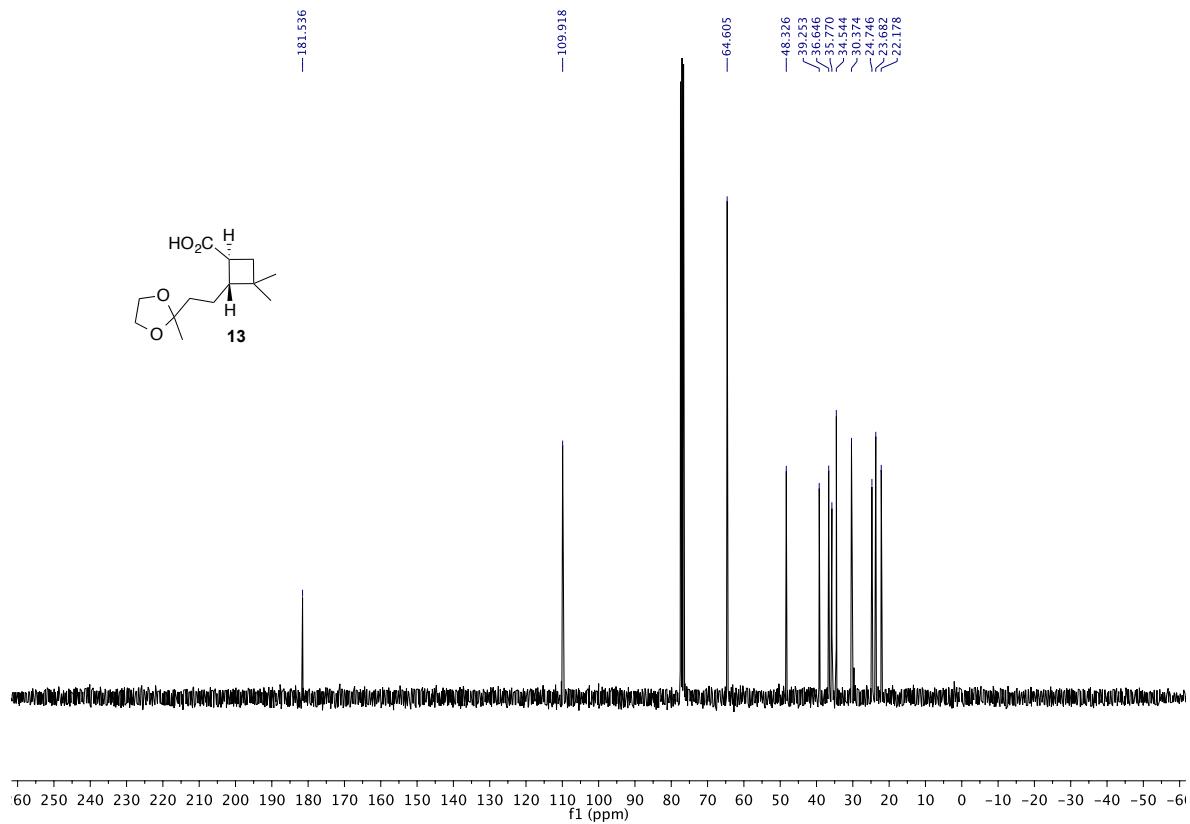
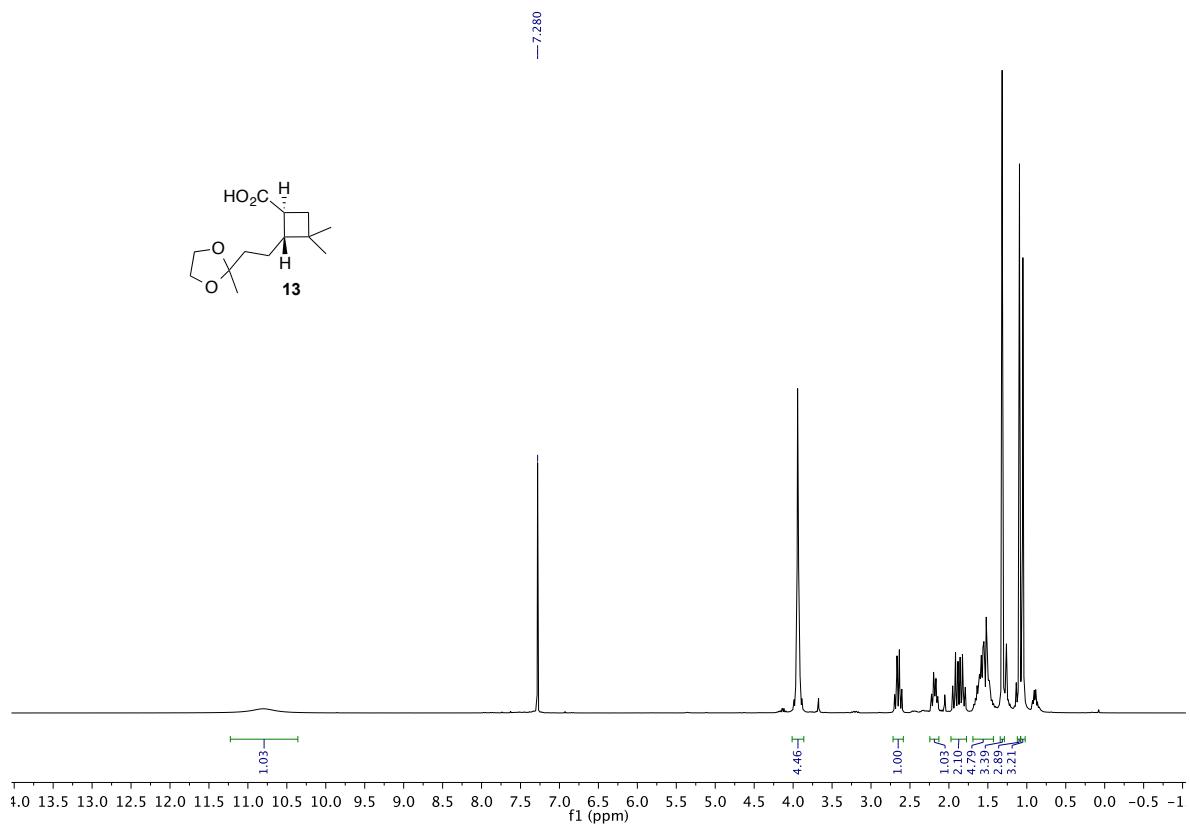

$[\alpha]_D$ (EtOH, *c* 0.35, 25 °C) = +32.0 °; lit. ⁴ $[\alpha]_D$ (EtOH, *c* 1.00, 23 °C) = +24.1 °

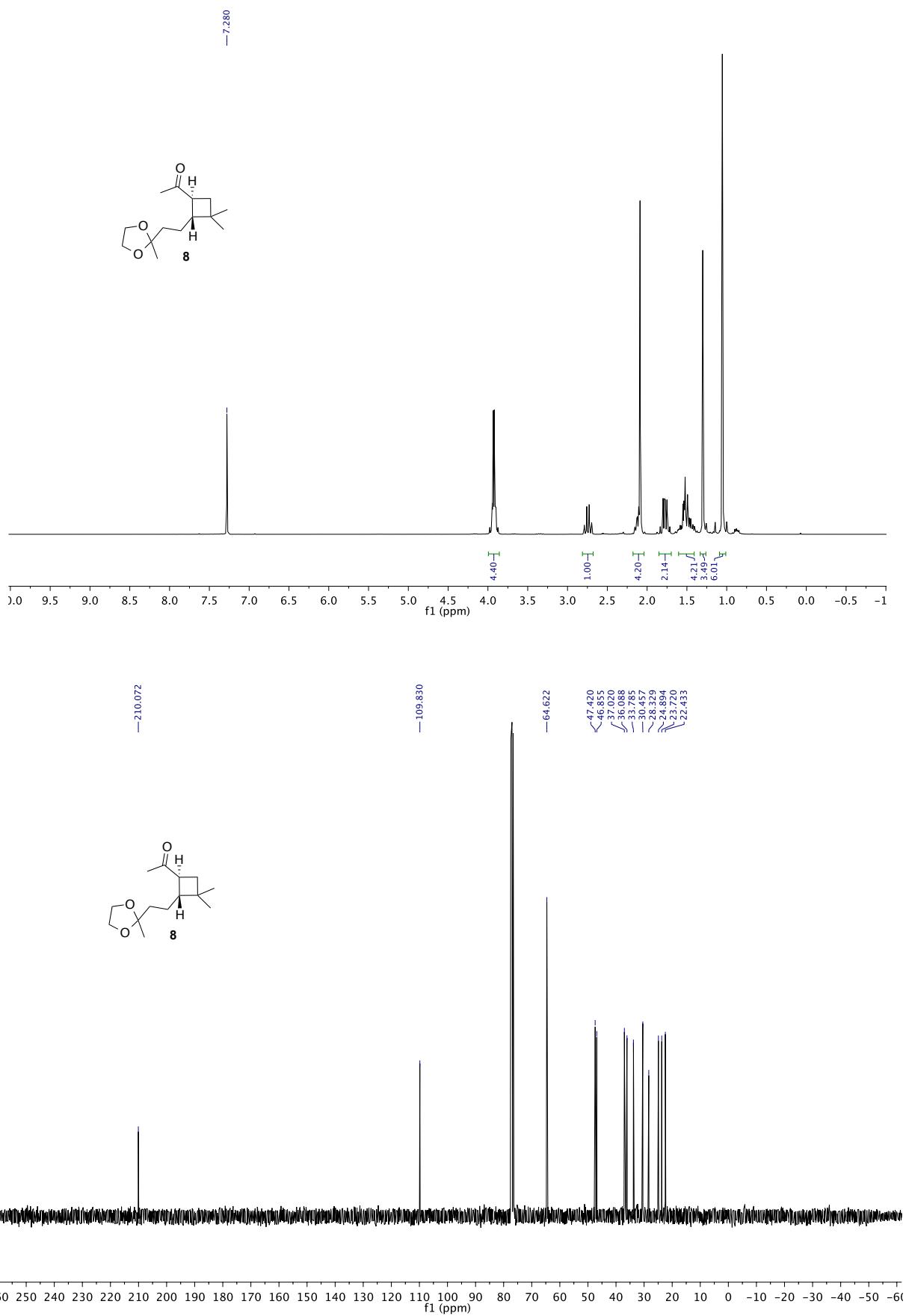




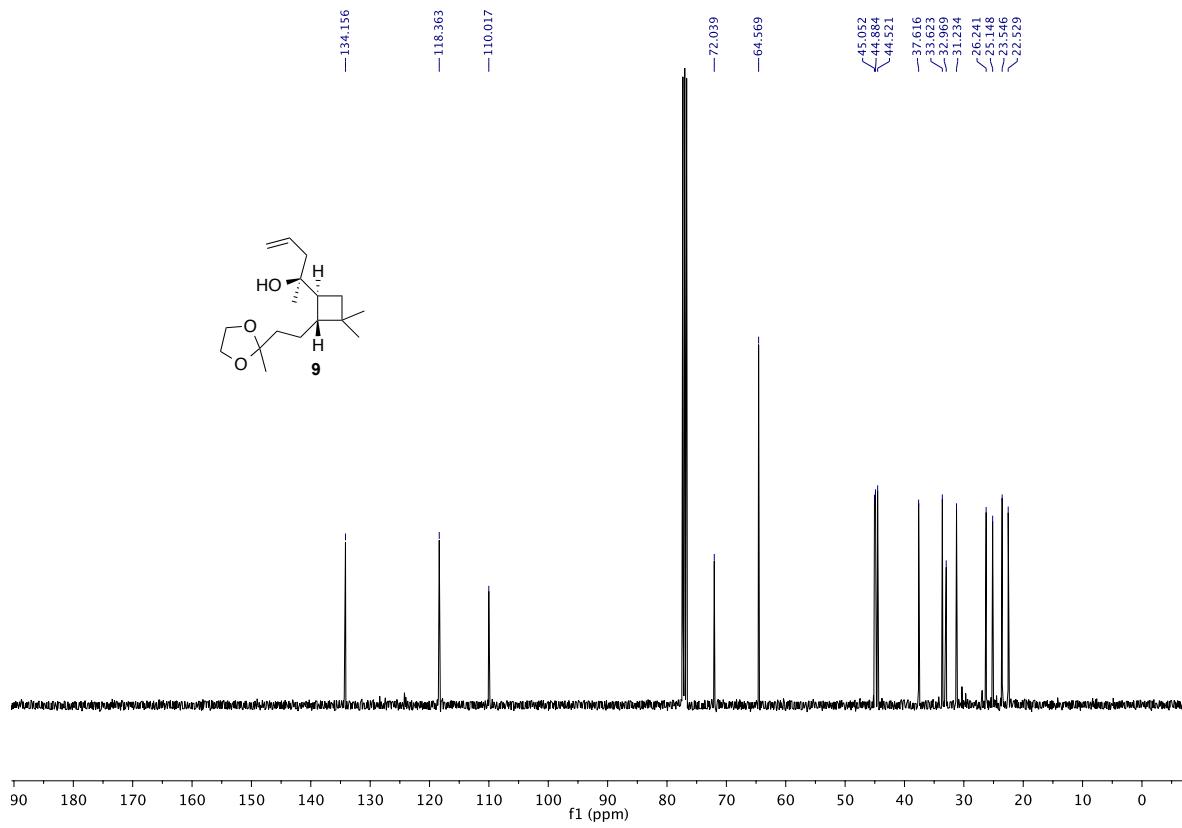
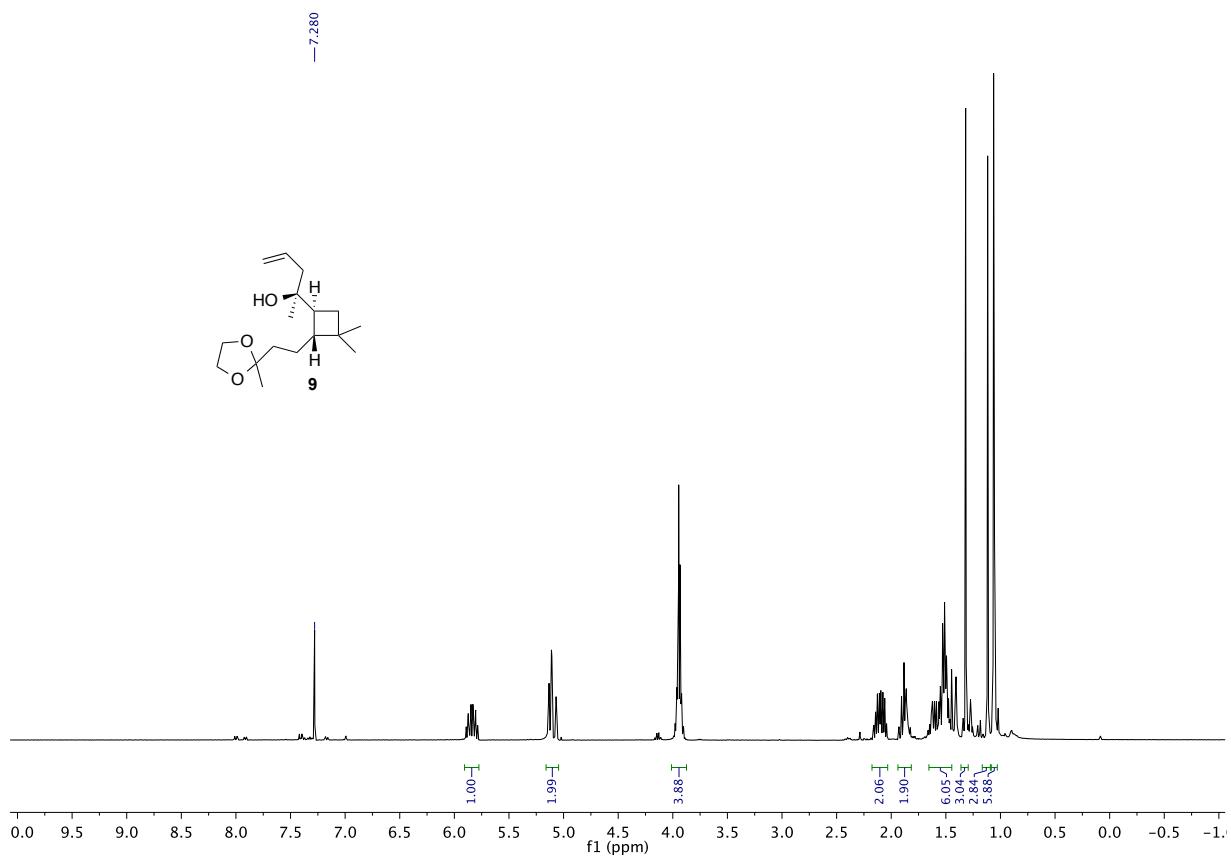


⁴ Hirokawa, T.; Kuwahara, S. *Eur. J. Org. Chem.* **2013**, 2780–2782.

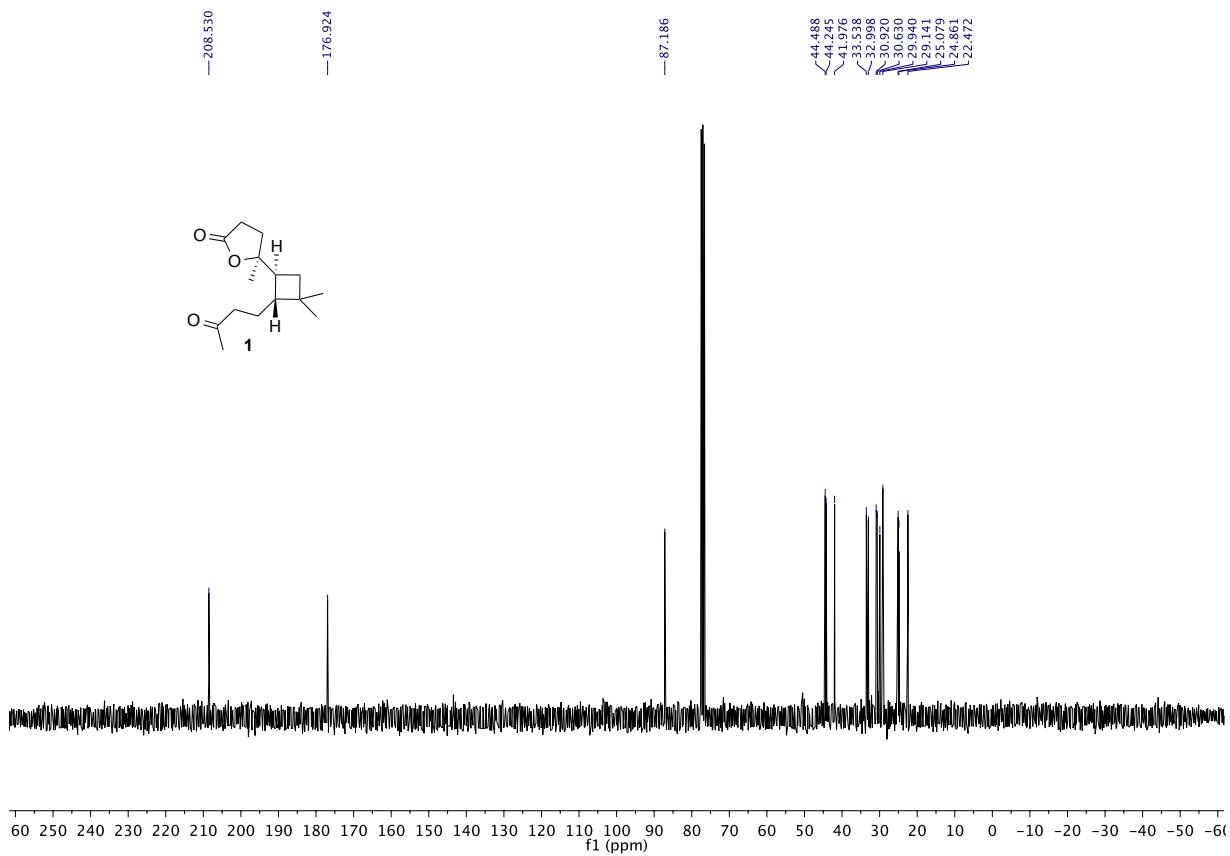
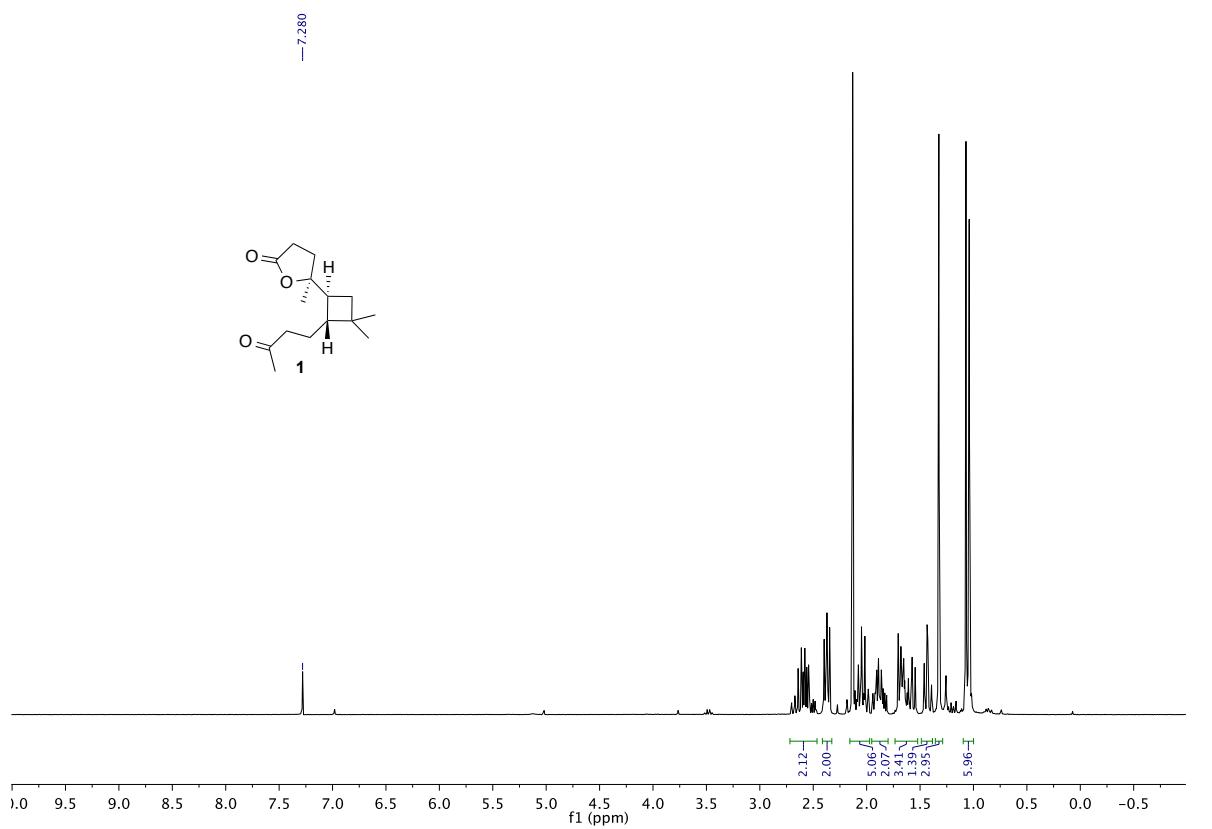

3. NMR spectra

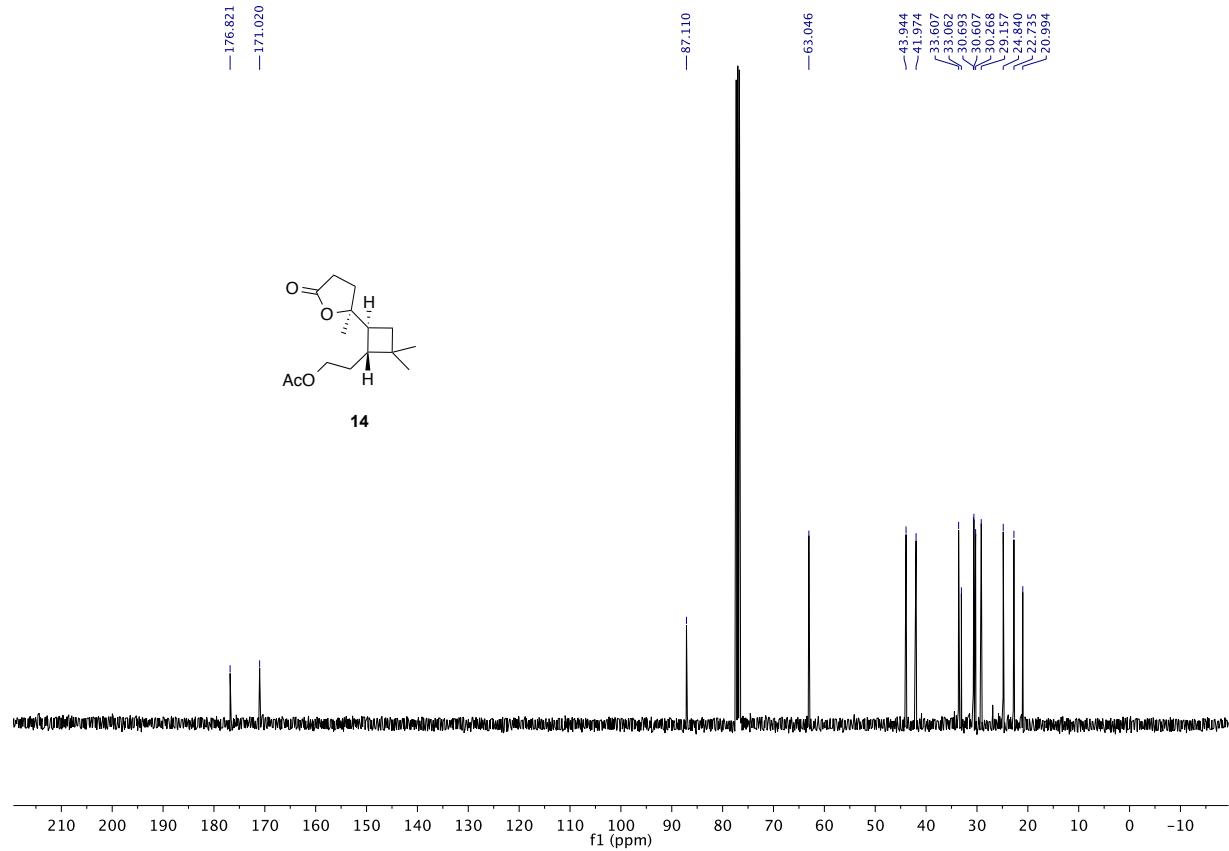
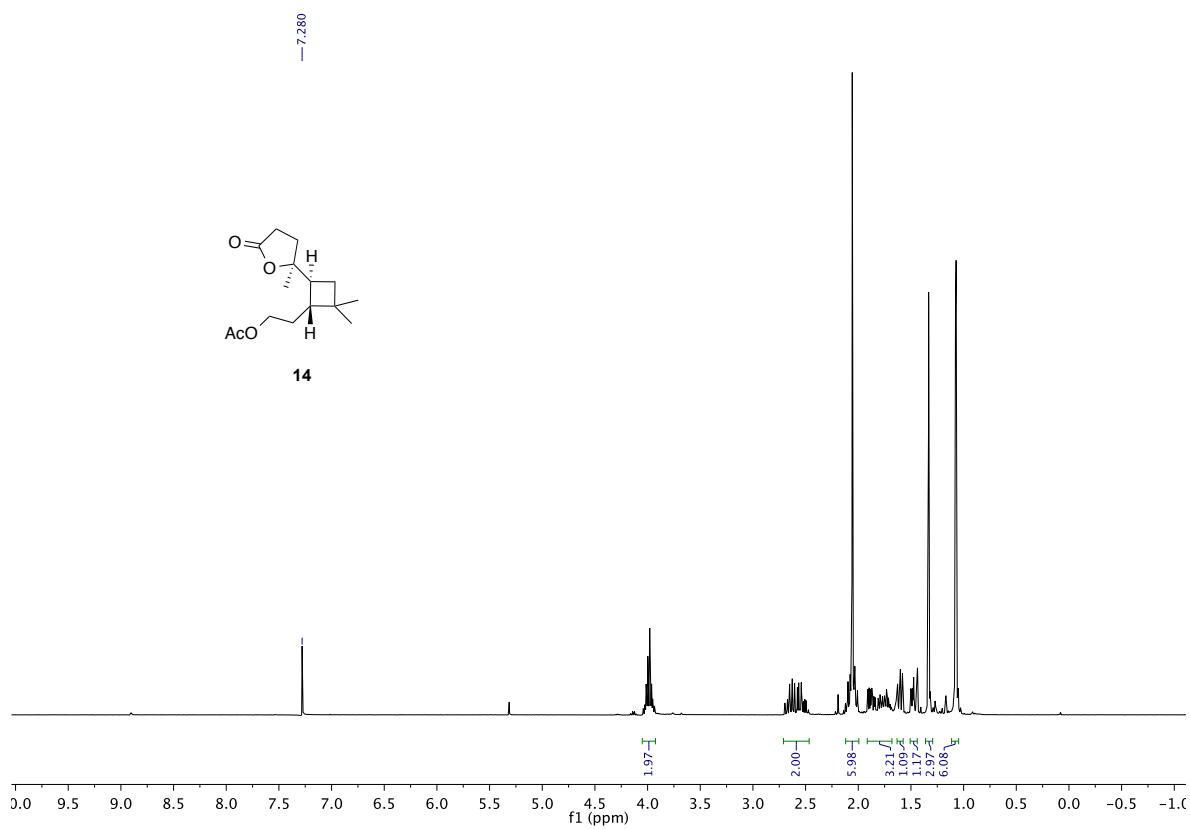



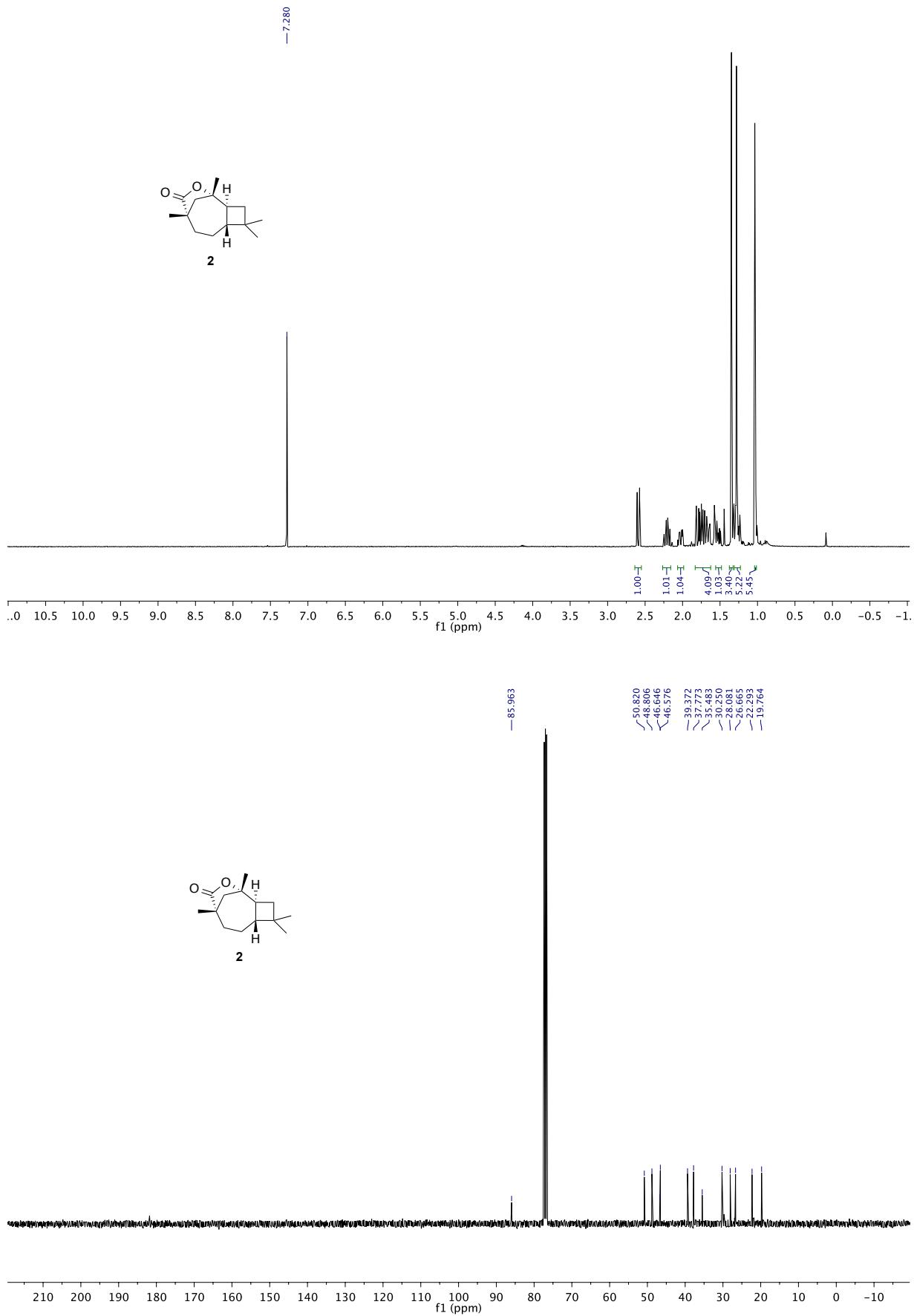



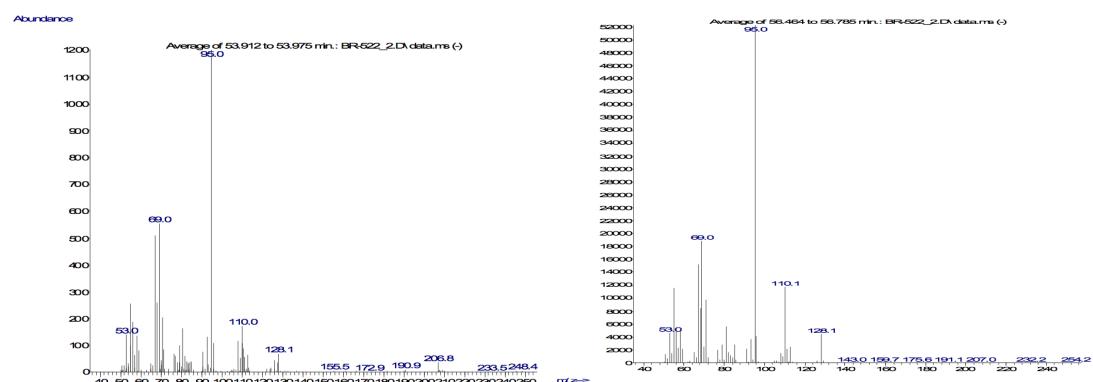
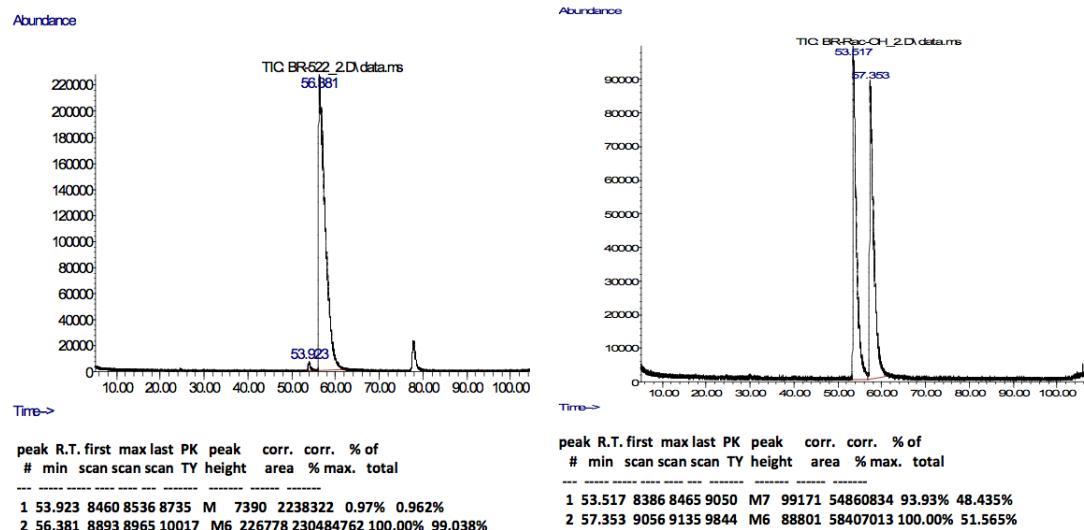


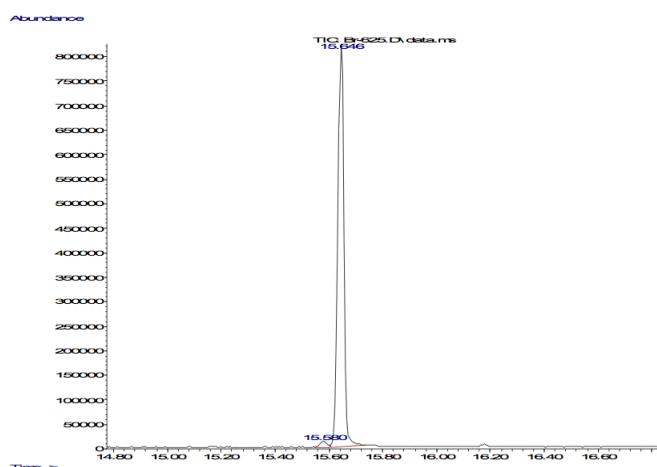



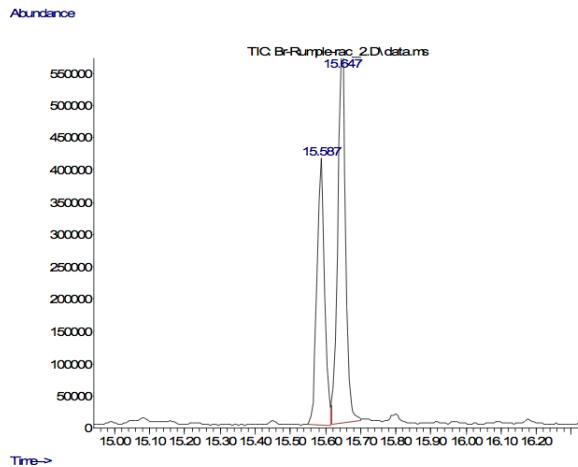
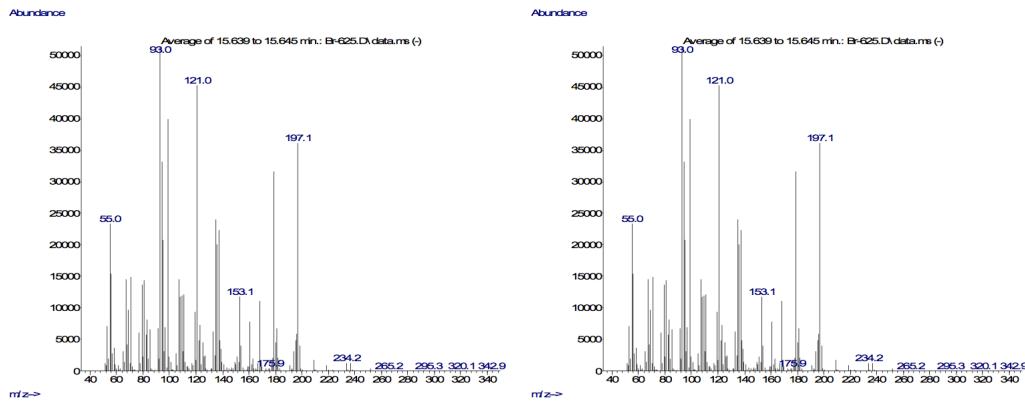





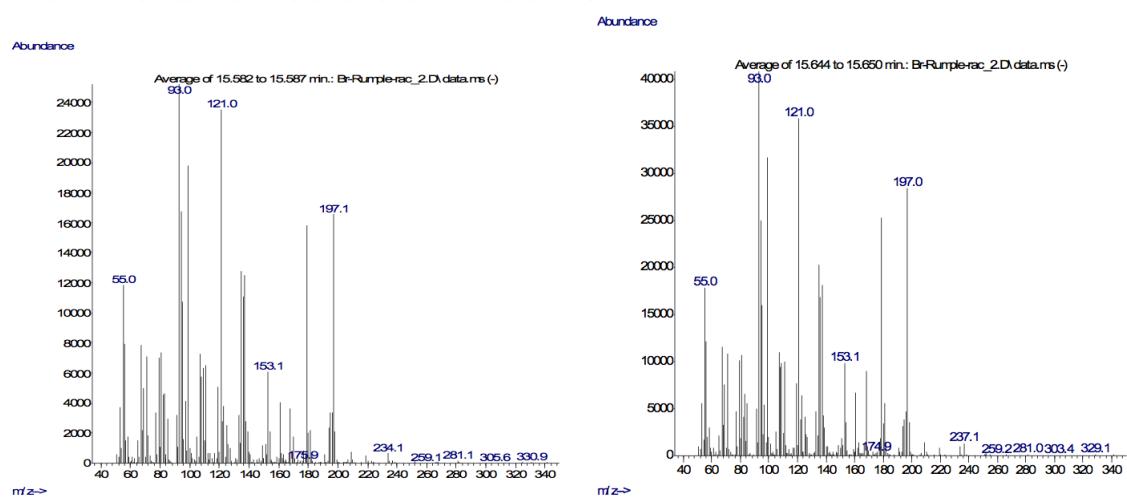


4. Chiral GC-MS traces

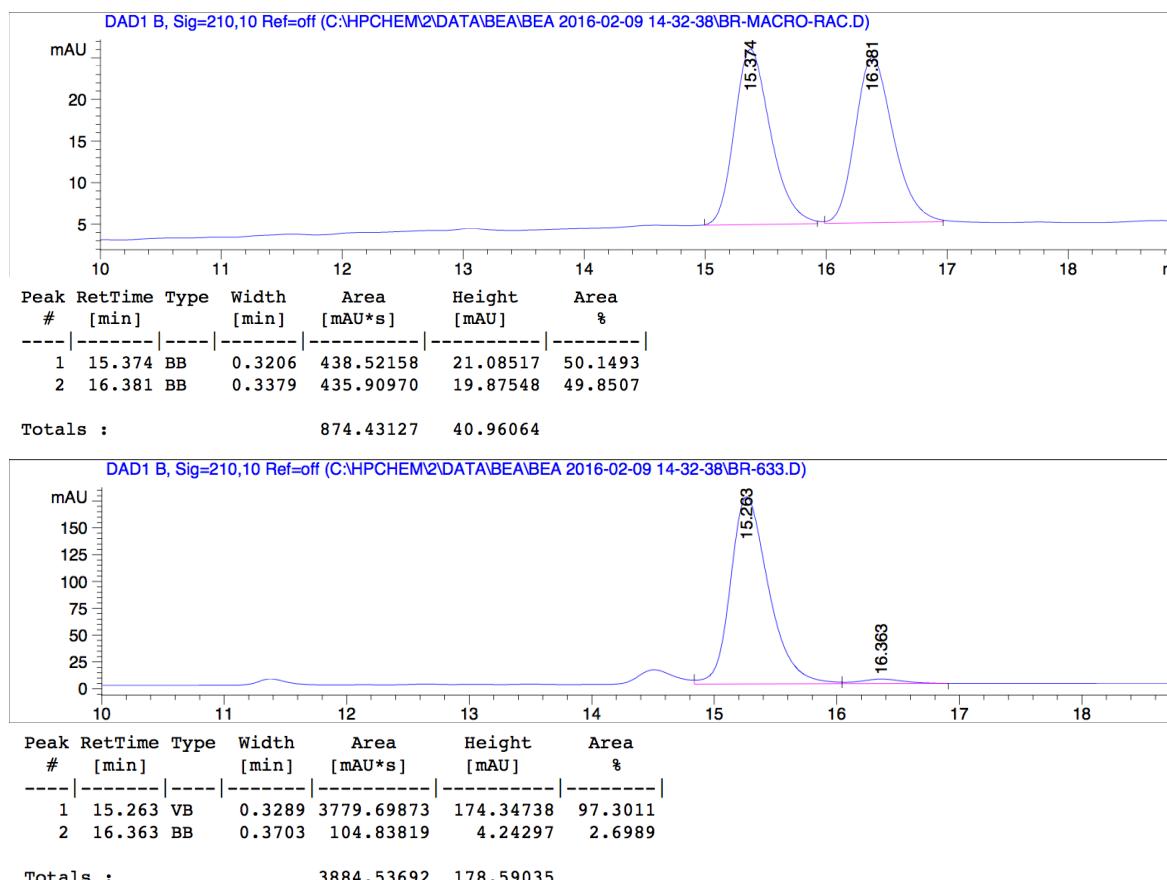


(R)-6-methylhept-5-en-2-ol

Rumphellaone (1)

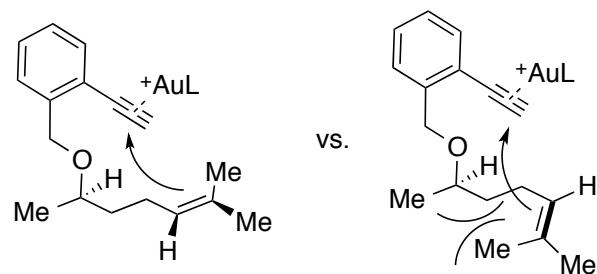
peak R.T. first	max last	PK	corr.	corr.	% of			
# min	scan	scan	TY	height	area	% max.	total	
1 15.580	2266	2272	2276	M3	12519	193605	1.55%	1.527%
2 15.646	2276	2283	2298	M	829208	12485681	100.00%	98.473%



peak R.T. first max last PK peak corr. corr. % of
 # min scan scan scan TY height area % max. total



1 15.587 2266 2273 2278 M 414270 6412418 68.51% 40.658%


2 15.647 2278 2283 2293 M 610158 9359375 100.00% 59.342%

5. Chiral HPLC traces

Gold-catalyzed [2+2] cycloaddition: Postulated transition states

(R)-alcohol shown.