Pyrrolidine-thiourea as a Bifunctional Organocatalyst: Highly Enantioselective Michael Addition of Cyclohexanone to Nitroolefins

Chun-Li Cao, Meng-Chun Ye, Xiu-Li Sun and Yong Tang *

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 354 Fenglin Road, Shanghai 200032, China.

tangy@mail.sioc.ac.cn

Supporting Information

Contents

General Methods	S2
The Synthesis of Chiral Ligands 2a and 2b	S2
General Procedures for Catalytic Asymmetric Michael Addition	S3
Procedure for the Transformation of Product 5a	S7
Copies of ¹ H NMR and ¹³ C NMR of Compounds	S8
Copies of HPLC Spectra of Michael Addition Products	S32

General Methods. Commercial Reagents were used as received, unless otherwise noted. All reactions unless otherwise noted were carried out directly under air. Benzene and THF was distilled over calcium hydride. *i*-PrOH, MeOH and cyclohexanone were distilled before use. Nitroolefins were prepared according to literature procedures.^[1, 2]

Procedures for the preparation of pyrrolidine-urea (thiourea) organocatalysts 2a and 2b.

L-Proline
$$\xrightarrow{NH_2}$$
 $\xrightarrow{NH_2}$ $\xrightarrow{1)}$ $\xrightarrow{CF_3}$ $\xrightarrow{CH_2Cl_2/RT}$ $\xrightarrow{NH_2}$ $\xrightarrow{NH_2}$

(S)-tert-butyl 2-(aminomethyl)pyrrolidine-1-carboxylate 1. Compound **1** is prepared according to the known procedures in 4 steps from L-proline. [3]

(S)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(pyrrolidin-2-ylmethyl)urea (2a):

To a stirred solution of 1 (888.6 mg, 4.35 mmol) in dry CH_2Cl_2 (30 mL) was added 3,5-bis(trifluoromethyl)phenyl isocyanate (0.8 mL, 4.35 mmol) at room temperature. The reaction mixture was allowed to stir for 12 h. The solvent was removed under reduced pressure to give the crude product (1.737 g, 86%), which was used directly in the following step without further purification.

The N-Boc-derivative (145 mg, 0.32 mmol) was dissolved in a mixture of trifluoroacetic acid and dichloromethane (8 mL, V/V = 1:1) and the solution was stirred for 2 h at room temperature, at which time the solvent was removed under reduced pressure. The pH was adjusted to 8 with aqueous NaHCO₃. The mixture was extracted with dichloromethane (3 \times 20 mL). The combined organic layers were dried with Na₂SO₄. Concentrated and purified by flash column chromatography (MeOH/EtOAc = 7/1) to give thiourea **2a** as a yellow solid (114 mg, 99%). Mp. 205 °C; $[\alpha]_D^{20} = +4.4$ (c = 0.885, CHCl₃); ¹H NMR (400 MHz, CD₃OD): δ 8.07 (s, 2H), 7.47 (s, 1H), 3.80-3.68 (m, 1H), 3.54-3.50 (m, 2H), 3.35-3.27 (m, 2H), 2.16-2.00 (m, 3H), 1.82-1.77 (m, 1H). ¹³C NMR (100 MHz, CD₃OD): 158.8, 143.7, 133.6 (q, *J* = 32.7 Hz), 125.3 (q, *J* = 270.2 Hz), 119.7 (d, *J* = 3.2 Hz), 116.2 (t, *J* = 3.8 Hz), 63.1, 47.1, 42.7, 28.9, 25.0; IR (neat): 3306, 2970, 1680, 1573, 1388, 1279, 1127, 882, 682 cm⁻¹; MS (ESI, *m/z*): 356 (M+H⁺); HRMS (ESI): Calcd for C₁₄H₁₆N₃OF₆⁺: 356.1190. Found: 356.1192.

(S)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(pyrrolidin-2-ylmethyl)thiourea 2b :

yield: 80%. Mp. 102 °C; $[α]_D^{20} = -26.7$ (c = 0.695, CHCl₃); ¹H NMR (400 MHz, CD₃OD): δ 8.10 (s, 2H), 7.51 (s, 1H), 3.86-3.78 (m, 3H), 3.25-3.20 (m, 1H), 3.17-3.13 (m, 1H), 2.10-2.00 (m, 1H), 1.97-1.87 (m, 2H), 1.72-1.55 (m, 1H). ¹³C NMR (100 MHz, CD₃OD): 184.6, 143.2, 133.0 (q, J = 33.2 Hz), 125.0 (q, J = 270.3 Hz), 124.5 (d, J = 3.1 Hz), 118.6 (t,

J = 3.5 Hz), 62.0, 46.9, 46.0, 28.9, 24.7; IR (neat): 3244, 2956, 1605, 1553, 1538, 1473, 1385, 1278, 1131, 682 cm⁻¹; MS (ESI, m/z): 372 (M+H⁺); HRMS (ESI): Calcd for $C_{14}H_{16}N_3SF_6^+$: 372.0963. Found: 372.0964.

Typical Procedure for Michael Addition Reactions:

Procedure A (in solvent): To a solution of catalyst **2a** or **2b** (0.05 mmol) and *n*-butyric acid (0.0025 mmol) in solvent (1 mL) was added cyclohexanone (0.25 mL, 10 eq) at required temperature and the resulting mixture was stirred for 15 min, nitroolefin (0.25 mmol, 1 eq) was added. After the reaction is complete monitored by TLC, the mixture was concentrated under reduced pressure, the resulting residue was then purified by flash chromatography (PE: EtOAc = 1/5) to give the product.

Procedure B (in neat): The catalyst **2a** or **2b** (0.05 mmol) and n-butyric acid (0.0025 mmol) in cyclohexanone (0.5 mL, 20 eq) at required temperature and the resulting mixture was stirred for 15 min, nitroolefin (0.25 mmol, 1 eq) was added. After the reaction is complete monitored by TLC, the mixture was concentrated under reduced pressure, the resulting residue was then purified by flash chromatography (PE: EtOAc = 1/5) to give the product.

Relative and absolute configurations of the products were determined by comparison with the known ¹H NMR, chiral HPLC analysis, and optical rotation values. Compounds reported in Table 2, entries **1**^[4], **2**^[5], **3**^[6], **6**^[7], **8**^[8], **9**^[9], **10**^[10] are known.

(S)-2-((R)-2-nitro-1-phenylethyl)cyclohexanone $5a^{[6]}$: (Procedure B) reaction time: 38 h (99% yield); ee was determined by HPLC analysis (Chiralcel AS-H, *i*-PrOH/hexane = 10/90, 0.7 mL/min, 238 nm; t_r (minor) = 23.88 min, t_r (major) = 36.38 min), 90% ee, $[\alpha]_D^{20}$ = -26.4 (c = 0.945, CHCl₃); syn/anti = 96/4; ¹H NMR (300 MHz, CDCl₃): δ 7.34-7.23 (m, 3H), 7.16 (d, J = 6.9 Hz, 2H), 4.95 (dd, J = 4.5, 12.6 Hz, 1H), 4.63 (dd, J = 9.9, 12.3 Hz, 1H), 3.76 (dt, J = 4.5, 9.9 Hz, 1H), 2.68 (ddd, J = 8.1, 8.4, 11.7 Hz, 1H), 2.49-2.33 (m, 2H), 2.10-2.04 (m, 1H), 1.79-1.52 (m, 4H), 1.52-1.19 (m, 1H).

$$\bigcup_{i=1}^{n} \mathsf{NO}_2$$

(S)-2-((R)-1-(naphthalen-1-yl)-2-nitroethyl)cyclohexanone 5b^[5]: (Procedure B) reaction time: 60 h (93% yield); ee was determined by HPLC analysis (Chiralcel AS, *i*-PrOH/hexane = 30/70, 0.7 mL/min, 238 nm; t_r (minor) = 11.03 min, t_r (major) = 14.45 min), 95% ee, $[\alpha]_D^{20}$ = -101.2 (c = 1.174, CHCl₃); syn/anti = 99/1; ¹H NMR (300 MHz, CDCl₃): δ 8.15 (s, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.58-7.36 (m, 4H), 5.07 (dd, J = 4.2, 12.6 Hz, 1H), 4.91 (m, 1H), 4.76 (br s, 1H), 2.85 (br s, 1H), 2.52-2.39 (m, 2H), 2.10-2.04 (m, 1H), 1.69-1.47 (m, 4H), 1.30-1.19 (m, 1H).

(S)-2-((S)-1-(furan-2-yl)-2-nitroethyl)cyclohexanone $5c^{[4]}$: (Procedure B) reaction time: 36 h (93% yield); ee was determined by HPLC analysis (Chiralcel AD, *i*-PrOH/hexane = 10/90, 0.7 mL/min, 220 nm; t_r (major) = 15.77 min, t_r

(minor) = 19.03 min), 89% ee, $[\alpha]_D^{20}$ = -10.7 (c = 1.132, CHCl₃); syn/anti = 91/9; ¹H NMR (300 MHz, CDCl₃): δ 7.35 (m, 1H), 6.28 (dd, J = 1.8, 3.3 Hz, 1H), 6.18 (d, J = 3.3 Hz, 1H), 4.83-4.63 (m, 2H), 3.97 (dt, J = 4.8, 9.3 Hz, 1H), 2.80-2.71 (m, 1H), 2.50-2.31 (m, 2H), 2.14-2.04 (m, 1H), 1.88-1.56 (m, 4H), 1.35-1.21 (m, 1H).

(S)-2-((R)-2-nitro-1-(2-nitrophenyl)ethyl)cyclohexanone 5d: (Procedure B) reaction time: 38 h (95% yield); ee was determined by HPLC analysis (Chiralcel AD, *i*-PrOH/hexane = 5/95, 0.9 mL/min, 238 nm; t_r (minor) = 51.63 min, t_r (major) = 63.35 min), 97% ee, $[\alpha]_D^{20}$ = -153.7 (c = 1.105, CHCl₃); syn/anti = 96/4; ¹H NMR (300 MHz, CDCl₃): δ 7.83 (dd, J = 1.2, 8.4 Hz, 1H), 7.64-7.58 (m, 1H), 7.49-7.41 (m, 2H), 4.98-4.83 (m, 2H), 4.38 (dt, J = 4.2, 9.0 Hz, 1H), 2.98-2.87 (m, 1H), 2.50-2.34 (m, 2H), 2.17-2.07 (m, 1H), 1.85-1.61 (m, 5H). ¹³C NMR (75 MHz, CDCl₃):211.1, 150.7, 133.1, 132.8, 129.1, 128.6, 124.9, 77.6, 52.1, 42.8, 38.6, 33.2, 28.3, 25.3; IR (film): 2944, 2864, 1707, 1552, 1527, 1358, 855, 781 cm⁻¹; MS (ESI, m/z): 310 (M+NH₄⁺); HRMS (ESI): Calcd for $C_{14}H_{16}N_2O_5Na^+$: 315.0960. Found: 315.0951.

(S)-2-((R)-1-(2-bromophenyl)-2-nitroethyl)cyclohexanone 5e : (Procedure B) reaction time: 29 h (88% yield); ee was determined by HPLC analysis (Chiralcel AS, i-PrOH/hexane = 10/90, 0.8 mL/min, 238 nm; t_r (minor) = 16.64 min, t_r (major) = 20.81 min), 96% ee, $[\alpha]_D^{20}$ = -52.9 (c = 1.610, CHCl₃); syn/anti = 99/1; 1 H NMR (300 MHz, CDCl₃): δ 7.47 (dd, J = 1.2, 8.1 Hz, 1H), 7.23-7.13 (m, 2H), 7.06-7.00 (m, 1H), 4.87-4.73 (m, 2H), 4.30-4.22 (m, 1H), 2.78 (m, 1H), 2.38-2.28 (m, 2H), 2.03-1.97 (m, 1H), 1.72-1.45 (m, 4H), 1.30-1.26 (m, 1H). 13 C NMR (75 MHz, DMSO-d₆): 211.0, 137.5, 132.5, 128.7, 128.4, 127.9, 125.0, 77.7, 51.3, 41.8, 41.2, 31.7, 27.7, 24.2; IR (neat): 2941, 2862, 1707, 1551, 1379, 1024, 753 cm⁻¹; MS (ESI, m/z): 327 (M+H⁺); Anal. Calcd for $C_{14}H_{16}BrNO_3$: C, 51.55; H, 4.94; N, 4.29. Found: C, 51.72; H, 5.01; N, 4.11.

(S)-2-((R)-1-(4-bromophenyl)-2-nitroethyl)cyclohexanone $5f^{[7]}$: (Procedure B) reaction time: 38 h (90% yield); ee was determined by HPLC analysis (Chiralcel AS, *i*-PrOH/hexane = 10/90, 1.0 mL/min, 238 nm; t_r (minor) = 15.52 min, t_r (major) = 22.95 min), 95% ee, $[\alpha]_D^{20}$ = -22.6 (c = 1.296, CHCl₃); syn/anti = 95/5; ¹H NMR (300 MHz, CDCl₃): δ 7.46 (d, J = 8.7 Hz, 2H), 7.06 (d, J = 8.7 Hz, 2H), 4.93 (dd, J = 4.5, 12.6 Hz, 1H), 4.60 (dd, J = 10.2, 12.6 Hz, 1H), 3.75 (dt, J = 4.5, 9.9 Hz, 1H), 2.69-2.60 (m, 1H), 2.51-2.32 (m, 2H), 2.15-2.05 (m, 1H), 1.85-1.58 (m, 4H), 1.30-1.16 (m, 1H).

(S)-2-((R)-1-(2,4-dichlorophenyl)-2-nitroethyl)cyclohexanone 5g : (Procedure B) reaction time: 49 h (89% yield); ee was determined by HPLC analysis (Chiralcel AS, *i*-PrOH/hexane = 10/90, 0.8 mL/min, 238 nm; t_r (minor) = 12.89 min, t_r (major) = 19.00 min), 97% ee, $[\alpha]_D^{20}$ = -50.9 (c = 0.990, CHCl3); syn/anti = 97/3; ¹H NMR (300 MHz, CDCl₃): δ 7.40 (d, J = 1.8 Hz, 1H), 7.24 (dd, J = 2.1, 8.7 Hz, 2H), 4.95-4.80 (m, 2H), 4.27 (dt, J = 4.8, 9.6 Hz, 1H), 2.90-2.81 (m, 1H), 2.48-2.32 (m, 2H), 2.14-2.05 (m, 1H), 1.84-1.52 (m, 4H), 1.40-1.26 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): 211.2, 135.1, 134.1, 133.8, 130.0, 127.6, 76.9, 51.5, 42.6, 40.3, 32.8, 28.3, 25.1; IR (neat): 2942, 2863, 1708, 1552, 1475, 1379, 820, 733 cm⁻¹; MS (ESI, m/z): 316 (M+H⁺); HRMS (ESI): Calcd for $C_{14}H_{15}NO_3Cl_2Na^+$: 338.0330. Found: 338.0321.

$$\bigcup_{i=1}^{O} \mathsf{NO}_2$$

(S)-2-((R)-1-(benzo[d][1,3]dioxol-5-yl)-2-nitroethyl)cyclohexanone $5h^{[8]}$: (Procedure B) reaction time: 38 h (87% yield); ee was determined by HPLC analysis (Chiralcel AD-H, *i*-PrOH/hexane = 5/95, 0.7 mL/min, 214 nm; t_r (minor) = 48.00 min, t_r (major) = 52.13 min), 98% ee, $[\alpha]_D^{20}$ = -25.6 (c = 0.776, CHCl₃); syn/anti = 94/6; ¹H NMR (300 MHz, CDCl₃): δ 6.74 (d, J = 7.8 Hz, 1H), 6.64 (s, 1H), 6.62 (d, J = 7.8 Hz, 1H), 5.96 (s, 2H), 4.90 (dd, J = 4.5, 12.3 Hz, 1H), 4.55 (dd, J = 10.2, 12.0 Hz, 1H), 3.68 (dt, J = 4.2, 9.9 Hz, 1H), 2.65-2.56 (m, 1H), 2.52-2.33 (m, 2H), 2.15-2.05 (m, 1H), 1.83-1.59 (m, 4H), 1.31-1.18 (m, 1H).

(S)-2-((R)-1-(4-methoxyphenyl)-2-nitroethyl)cyclohexanone $5i^{[9]}$: (Procedure B) reaction time: 44 h (95% yield); ee was determined by HPLC analysis (Chiralcel AD-H, *i*-PrOH/hexane = 25/75, 0.7 mL/min, 238 nm; t_r (minor) = 13.46 min, t_r (major) = 16.13 min), 88% ee, $[\alpha]_D^{20}$ = -20.0 (c = 0.420, CHCl₃); syn/anti = 97/3; ¹H NMR (300 MHz, CDCl₃): δ 7.08 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 4.91 (dd, J = 4.5, 12.3 Hz, 1H), 4.58 (dd, J = 9.9, 12.0 Hz, 1H), 3.78 (s, 3H), 3.71 (dt, J = 4.5, 9.9 Hz, 1H), 2.69-2.60 (m, 1H), 2.52-2.32 (m, 2H), 2.13-2.03 (m, 1H), 1.83-1.51 (m, 4H), 1.30-1.16 (m, 1H).

$$0 = NO_2$$

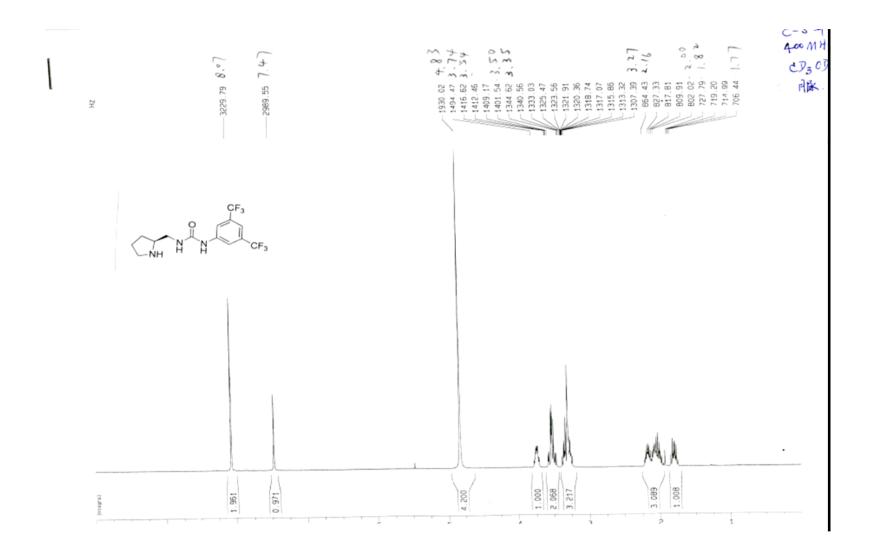
(S)-2-((S)-3-methyl-1-nitrobutan-2-yl)cyclohexanone $5j^{[10]}$: (Procedure B) reaction time: 6 d (63% yield); ee was determined by HPLC analysis (Chiralcel AD-H, *i*-PrOH/hexane = 10/90, 1.0 mL/min, 214 nm; t_r (major) = 6.31 min, t_r (minor) = 7.76 min), 94% ee, $[\alpha]_D^{20}$ = -28.5 (c = 1.305, CHCl₃); syn/anti = 99/1; ¹H NMR (300 MHz, CDCl₃): δ 4.64 (dd, J = 5.7, 13.8 Hz, 1H), 4.35 (dd, J = 5.1, 13.8 Hz, 1H), 2.67-2.60 (m, 1H), 2.43-2.28 (m, 3H), 2.10 (m, 2H), 1.99-1.88 (m,

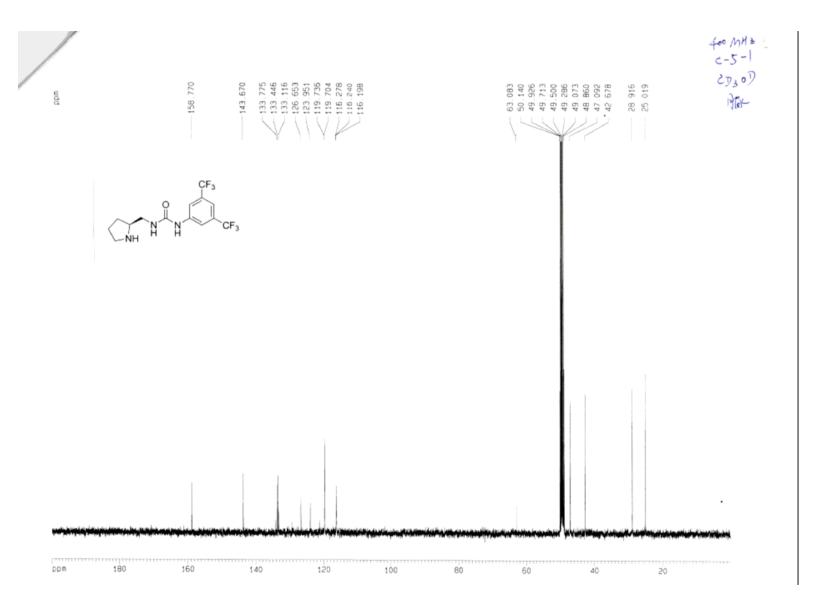
2H), 1.74-1.54 (m, 3H), 0.94 (d, J = 6.6 Hz, 3H), 0.90 (d, J = 6.6 Hz, 3H).

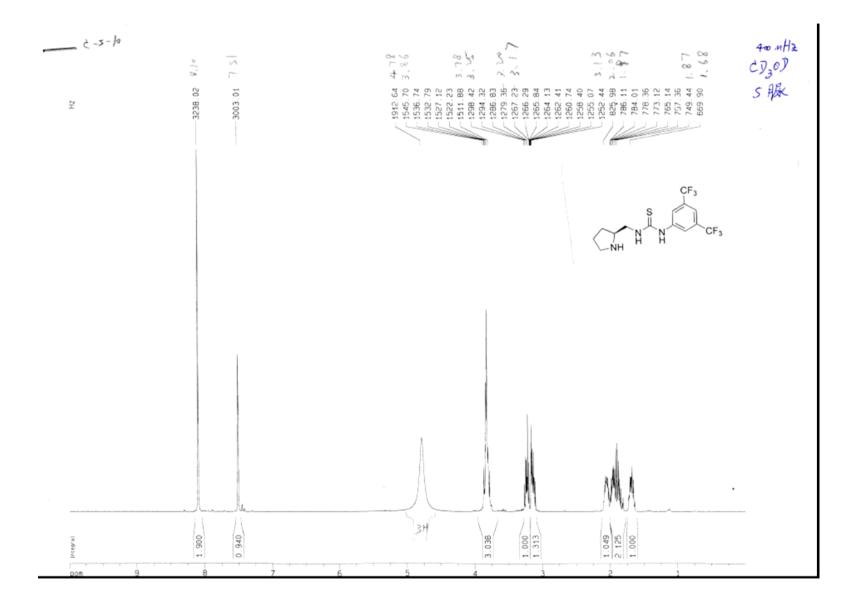
(S)-2-((R)-2-nitro-1-phenylethyl)cyclopentanone $5I^{[11]}$: (Procedure B) reaction time: 6 d (27% yield); ee was determined by HPLC analysis (Chiralcel AD, *i*-PrOH/hexane = 5/95, 1.0 mL/min, 220 nm; t_r (minor) = 14.42 min, t_r (major) = 20.05 min) , 71% ee, $[\alpha]_D^{20}$ = -15.5 (c = 0.495, CHCl₃); syn/anti = 75/15; ¹H NMR (300 MHz, CDCl₃): δ 7.34-7.23 (m, 3H), 7.20-7.15 (m, 2H), 5.37-5.30 (m, 1H), 4.71 (dd, J = 10.2, 12.6 Hz, 1H), 3.76-3.65 (m, 1H), 2.44-2.31 (m, 2H), 2.19-2.06 (m, 1H), 1.94-1.83 (m, 2H), 1.76-1.66 (m, 1H), 1.55-1.41 (m, 1H).

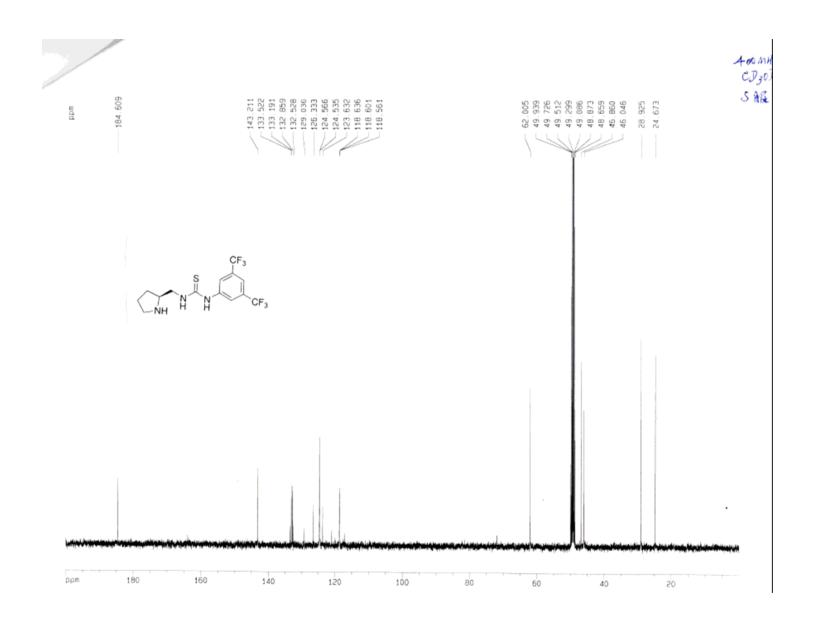
(R)-5-nitro-4-phenylpentan-2-one $5k^{[11]}$: (Procedure B) reaction time: 48 h (80% yield); ee was determined by HPLC analysis (Chiralcel AS, *i*-PrOH/hexane = 15/85, 1.0 mL/min, 220 nm; t_r (minor) = 18.85 min, t_r (major) = 22.13 min , 48% ee; ¹H NMR (300 MHz, CDCl₃): δ 7.28-7.13 (m, 5H), 4.67-4.49 (m, 2H), 3.98-3.89 (m, 1H), 2.84 (d, J = 6.9 Hz, 2H), 2.05 (s, 3H).

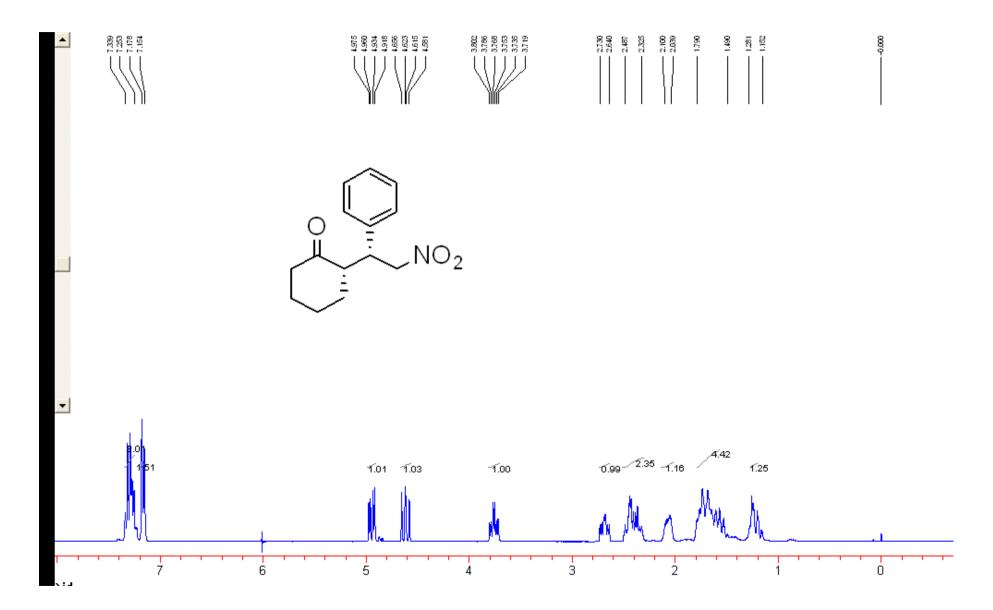
(3S,4R)-3-methyl-5-nitro-4-phenylpentan-2-one 5ma^[11]: (Procedure B) reaction time: 48 h (90% total yield for compound 5ma and 5mb); ee was determined by HPLC analysis (Chiralcel AD-H, *i*-PrOH/hexane = 1.2/100, 0.6 mL/min, 238 nm; t_r (minor) = 43.45 min, t_r (major) = 54.10 min), 70% ee, $[\alpha]_D^{20}$ = -10.6 (c = 1.250, CHCl₃); syn/anti = 99/1; ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.30 (m, 3H), 7.18-7.15 (m, 2H), 4.67-4.63 (m, 2H), 3.80 (dt, J = 5.7, 9.0 Hz, 1H), 3.03-2.93 (m, 1H), 2.24 (s, 3H), 0.98 (d, J = 7.2 Hz, 3H).

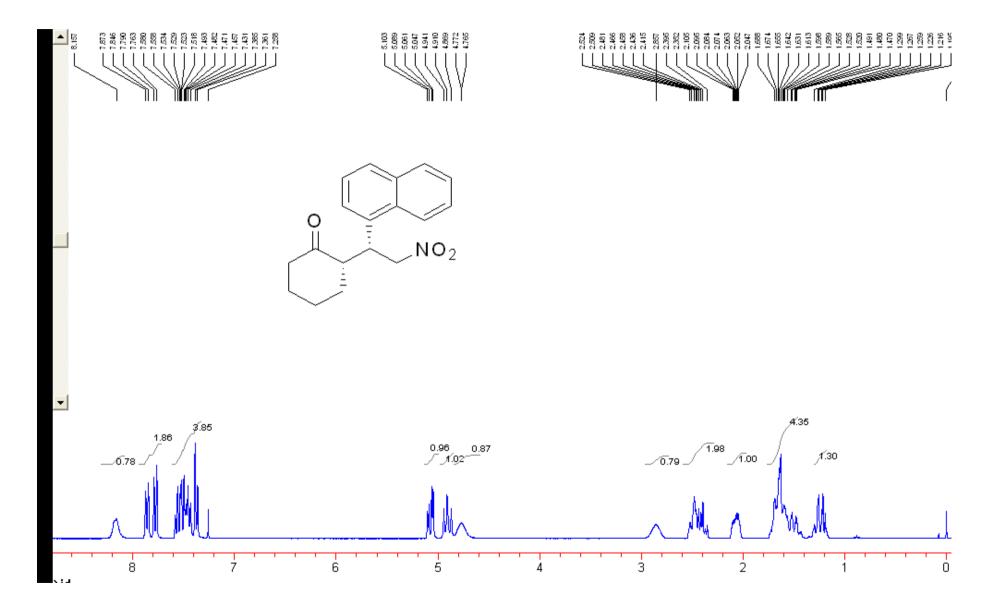

(**R**)-6-nitro-5-phenylhexan-3-one 5mb^[11]: (**Procedure B**) reaction time: 48 h (90% total yield for compound 5ma and 5mb); ee was determined by HPLC analysis (Chiralcel AD-H, *i*-PrOH/hexane = 1.2/100, 0.6 mL/min, 238 nm; t_r (minor) = 60.36 min, t_r (major) = 65.47 min), 70% ee; $[\alpha]_D^{20}$ = -6.6 (c = 0.735, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.33-7.26 (m, 3H), 7.23-7.20 (m, 2H), 4.74-4.54 (m, 2H), 4.08-3.98 (m, 1H), 2.88 (d, J = 7.2 Hz, 2H), 2.43-2.33 (m, 2H), 1.00 (t, J = 7.2 Hz, 3H).

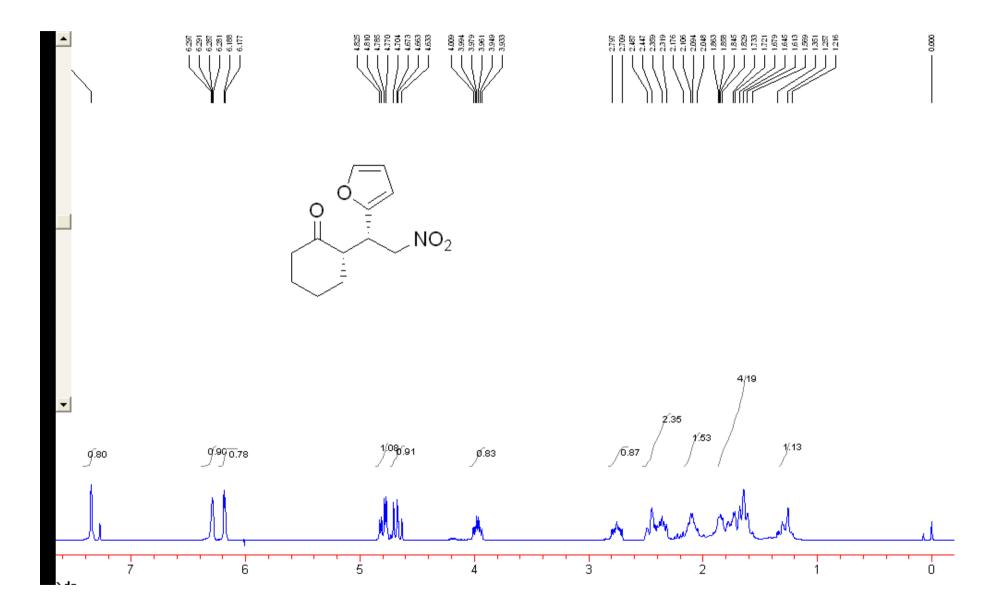

(R)-2,2-dimethyl-4-nitro-3-phenylbutanal $5n^{[12]}$: (Procedure A) reaction time: 48h (62% yield); ee was determined by HPLC analysis (Chiralcel AS-H, *i*-PrOH/hexane = 10/90, 0.7 mL/min, 238 nm; t_r (minor) = 20.38 min, t_r (major) = 21.96 min) , 82% ee, $[\alpha]_D^{20}$ = +0.3 (c = 0.625, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 9.53 (s, 1H), 7.36-7.30 (m, 3H), 7.22-7.18 (m, 2H), 4.86 (dd, J = 11.4, 12.9 Hz, 1H), 4.69 (dd, J = 3.9, 12.6 Hz, 1H), 3.79 (dd, J = 4.2, 11.1 Hz,

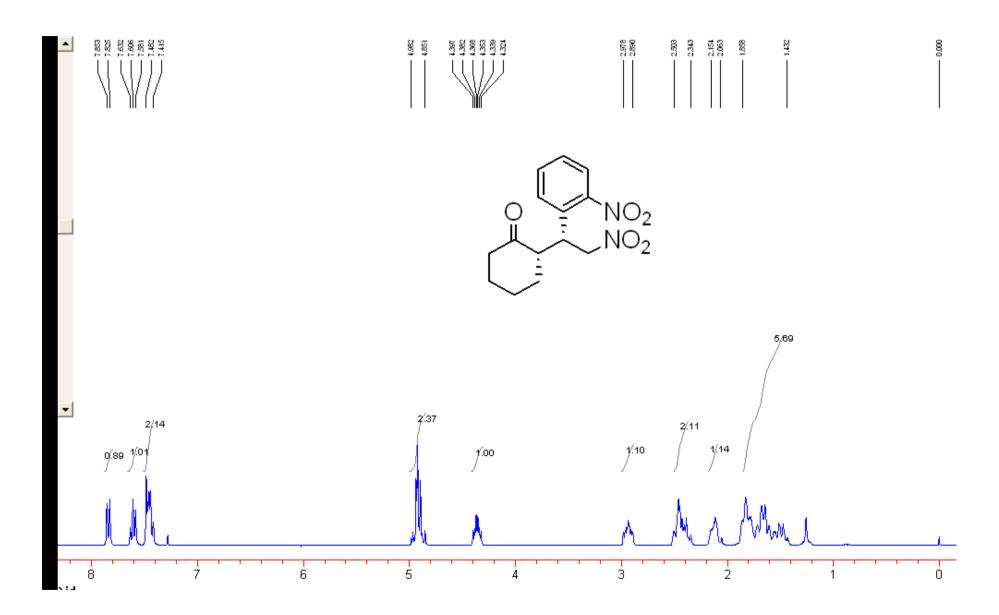

1H), 1.14 (s, 3H), 1.01 (s, 3H).

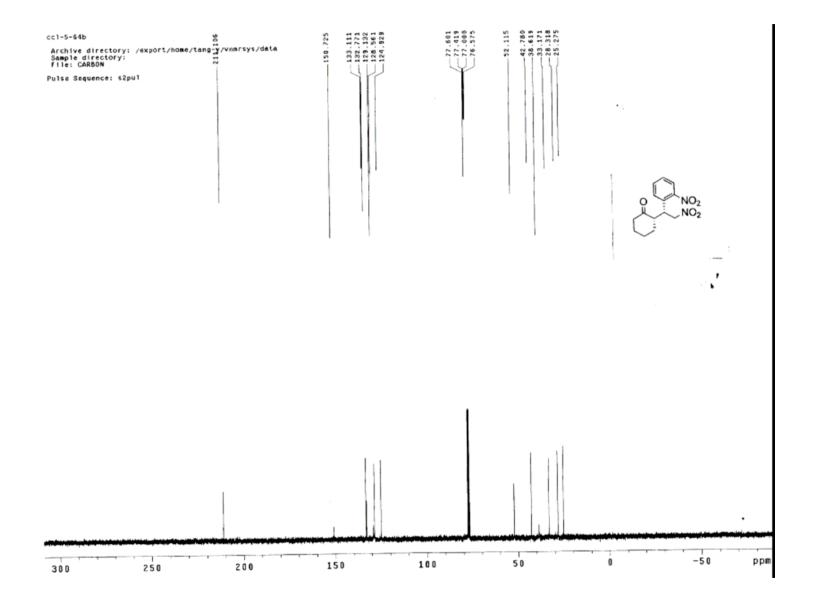

(3R,3aS)-3-phenyl-3,3a,4,5,6,7-hexahydro-2H-indole 1-oxide $7^{[13]}$: A suspension of Pd/C (8 mg) and 5a (50 mg) in MeOH (5 mL) was stirred at room temperature under 3 atm hydrogen atmosphere. After being stirred for 12 h, the mixture was filtrated through a pad of Celite and the filtration was concentrated in vacuo, the residue was purified by column chromatography on silica gel to afford desired product 7 (43 mg, 95% yield): ee was determined by HPLC analysis (Chiralcel AD-H, *i*-PrOH/hexane = 10/90, 0.6 mL/min, 238 nm; t_r (major) = 18.02 min, t_r (minor) = 22.83 min), 92% ee. Mp. 86 °C; $[\alpha]_D^{20}$ = -34.1 (c = 1.140, CHCl₃); syn/anti >99/1; 1 H NMR (300 MHz, CDCl₃): δ 7.30-7.25 (m, 2H), 7.21-7.15 (m, 3H), 4.23-4.04 (m, 2H), 3.19-3.01 (m, 2H), 2.73 (m, 1H), 2.05-1.87 (m, 3H), 1.77 (m, 1H), 1.33-1.14 (m, 3H). 13 C NMR (75 MHz, CDCl₃): 147.9, 139.4, 128.6, 127.0, 126.9, 67.9, 50.2, 45.5, 32.0, 23.9, 23.4, 23.1; IR (neat): 2934, 2857, 1621, 1447, 1253, 1231, 1179, 765, 702 cm⁻¹; MS (ESI, m/z): 216 (M+H⁺); HRMS (ESI): Calcd for $C_{14}H_{17}$ NONa⁺: 238.1204. Found: 238.1202.

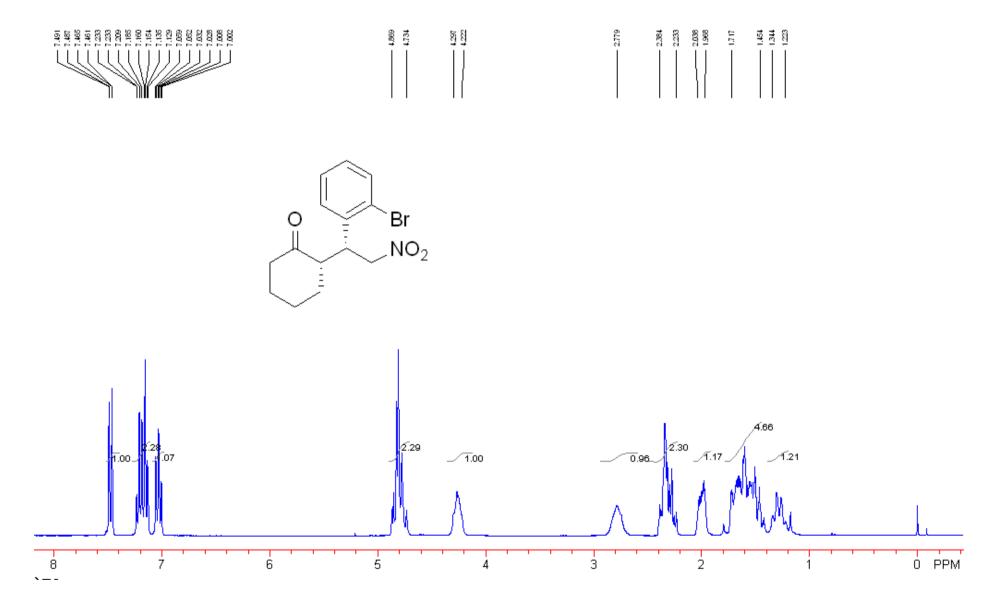

- [1] For the preparation of aryl nitroolefins: Jang, Y.-J.; Shih, Y.-K.; Liu, J.-Y.; Kuo, W.-Y.; Yao, C.-F. *Chem. Europ. J.* **2003**, *9*, 2123-2128.
- [2] For the preparation of alkyl nitroolefines: Kumaran, G.; Kulkarni, G. H. Synthesis 1995, 1545-1548.
- [3] Dahlin, N.; Boegevig, A.; Adolfsson, H. Adv. Synth. Catal. 2004, 346, 1101-1105.
- [4] Alexakis, A.; Andrey, O. Org. Lett. 2002, 4, 3611-3614.
- [5] Ishii, T.; Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, 126, 9558-9559.
- [6] Cobb, A. J. A.; Longbottom, D. A.; Shaw, D. M.; Ley, S. V. Chem. Commun. 2004, 1808-1809.
- [7] Risaliti, A. Tetrahedron Lett. 1966, 51, 6331-6335.
- [8] Sanchez, I. H.; Larraza, M. I.; Rojas, I.; Brena, F. K.; Flores, H. J. Heterocycles 1985, 23, 3033-3039.
- [9] Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Tanaka, F.; Barbas, C. F. Synthesis 2004, 1509-1521.
- [10] Seebach, D.; Golinski, J. Helv. Chim. Acta. 1981, 64, 1413-1423.
- [11] Andrey, O. Alexakis, A. Tomassini, A. Bernardinelli, G. Adv. Synth. Catal. 2004, 346, 1147-1168.
- [12] Wang, W. Wang, J. Li, H. Angew. Chem. Int. Ed. 2005, 44, 1369-1371.
- [13] Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.-N.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119-125.

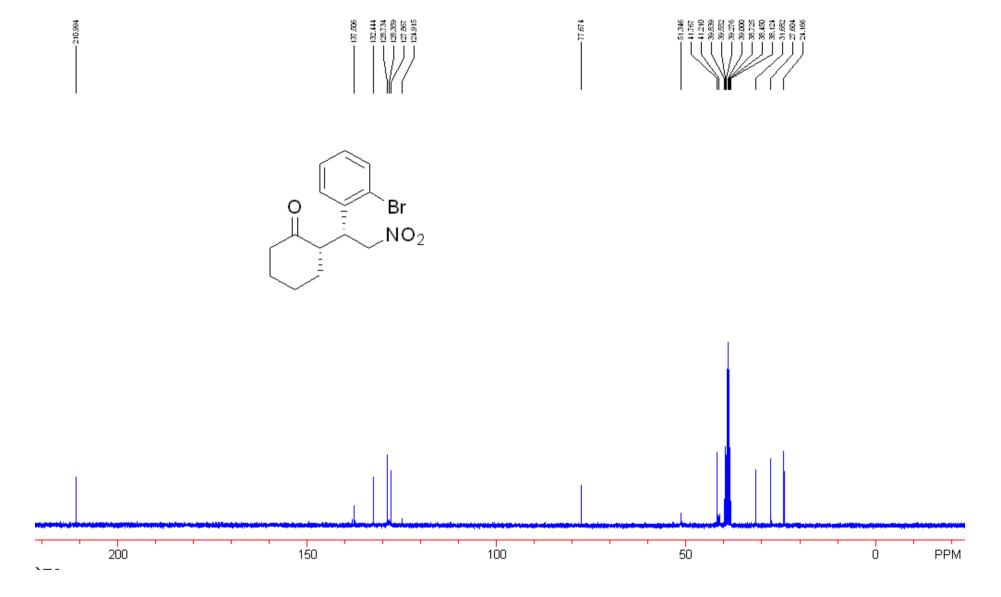


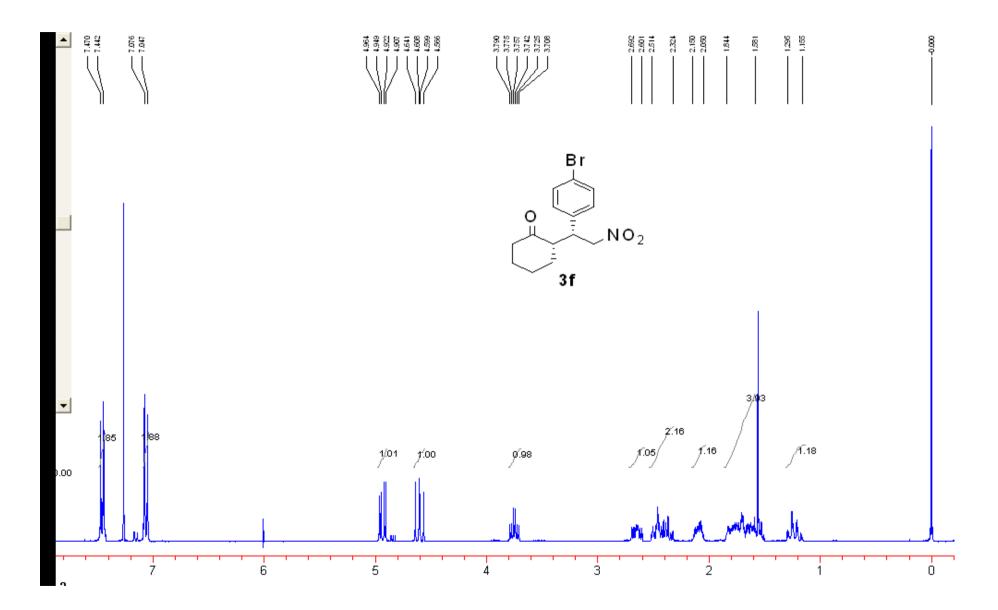


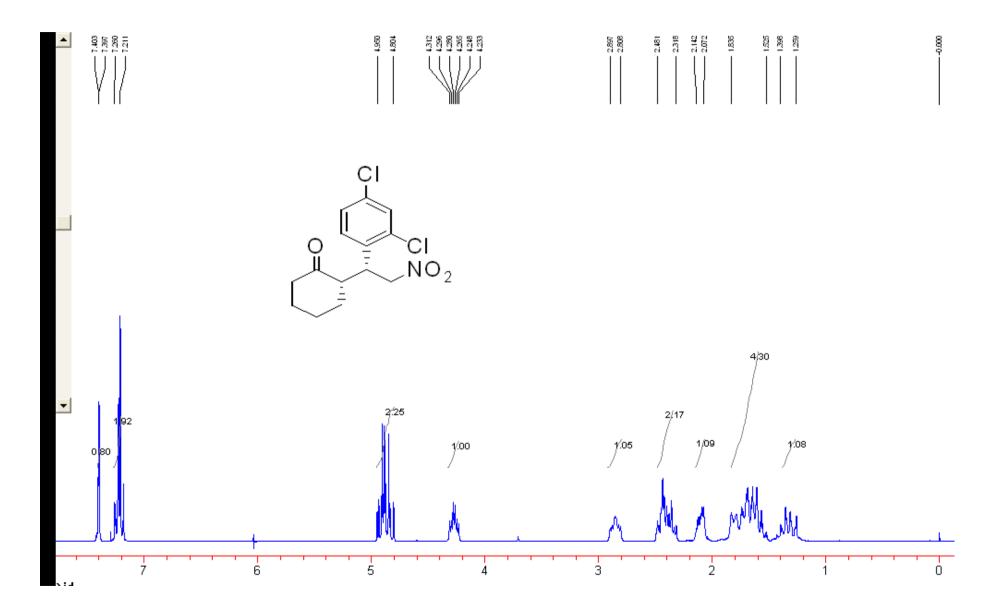


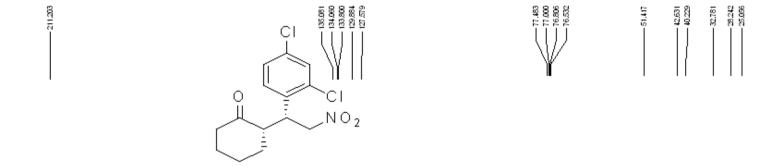


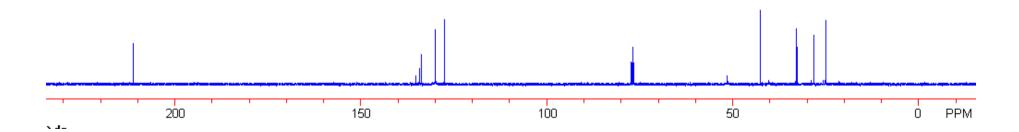


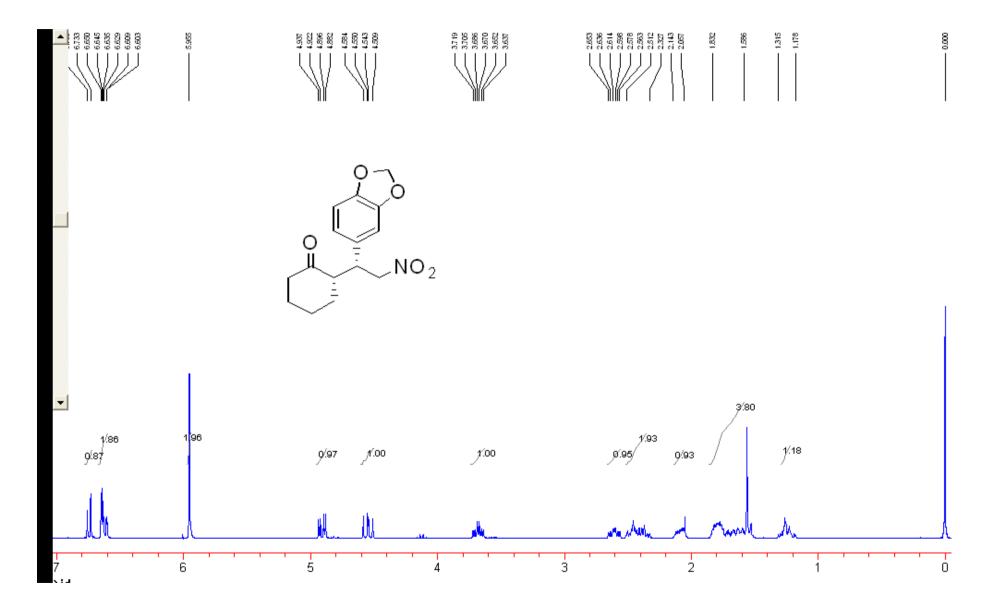


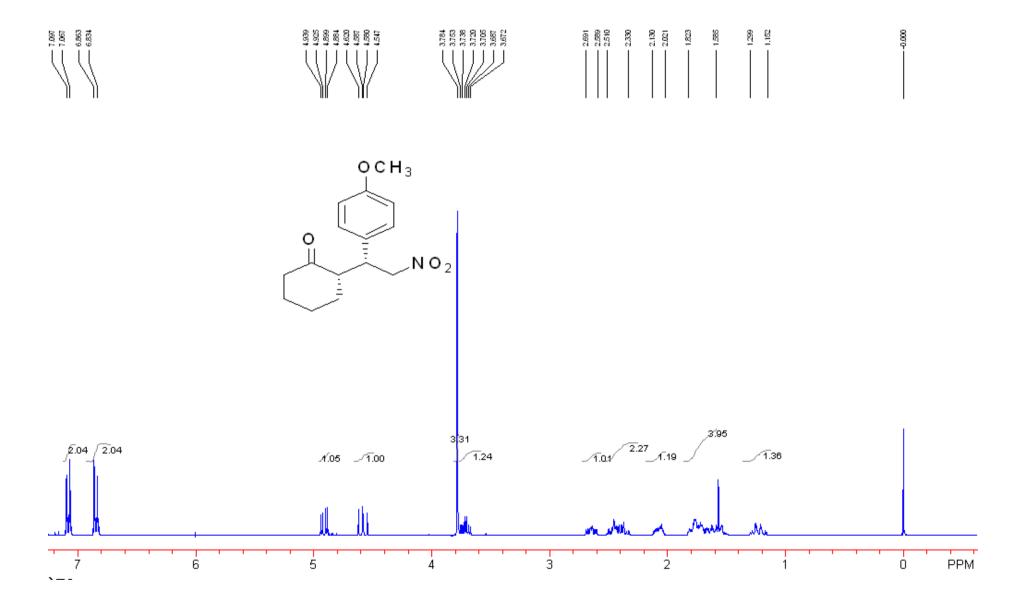




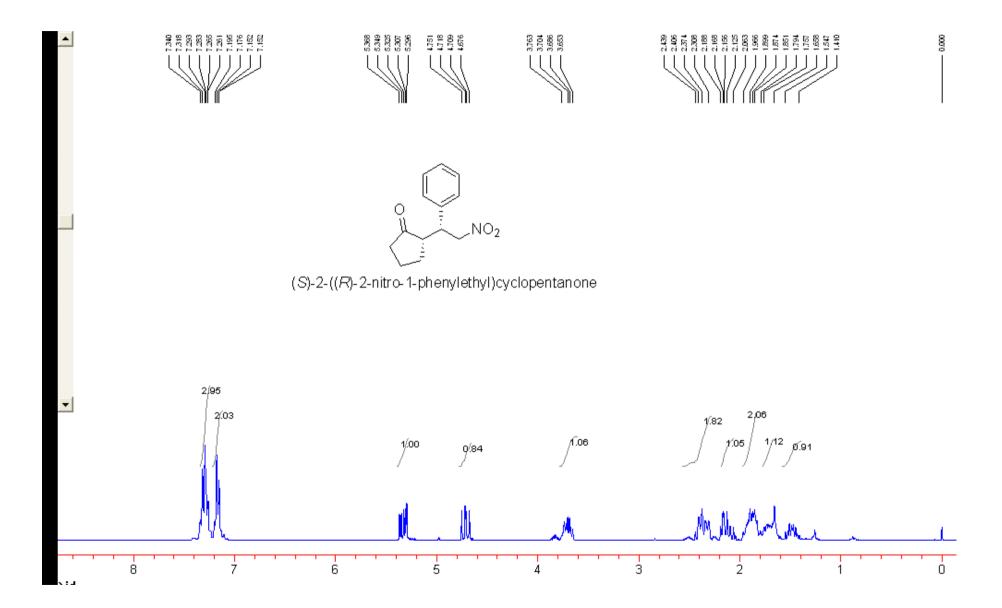


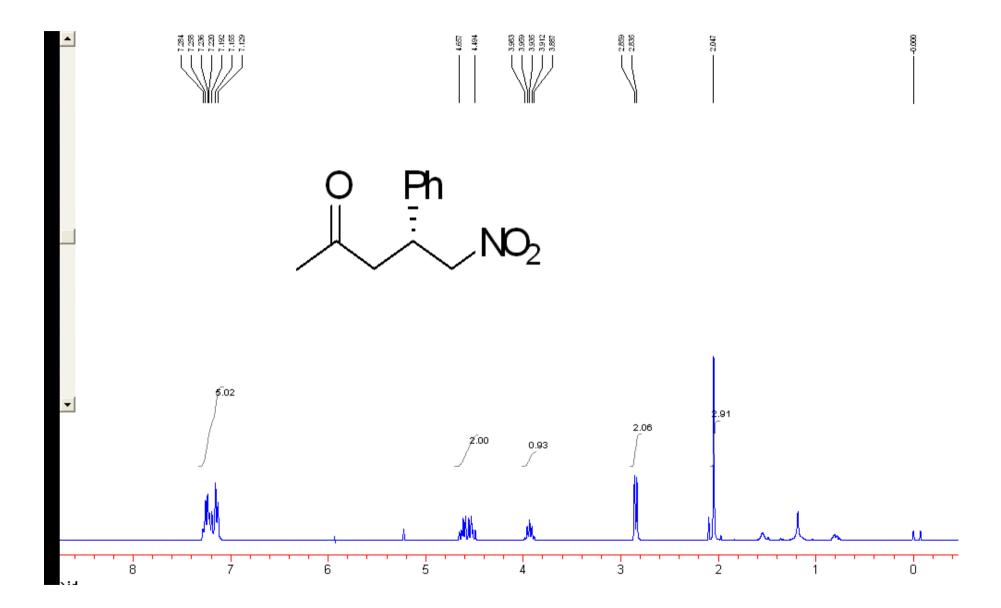


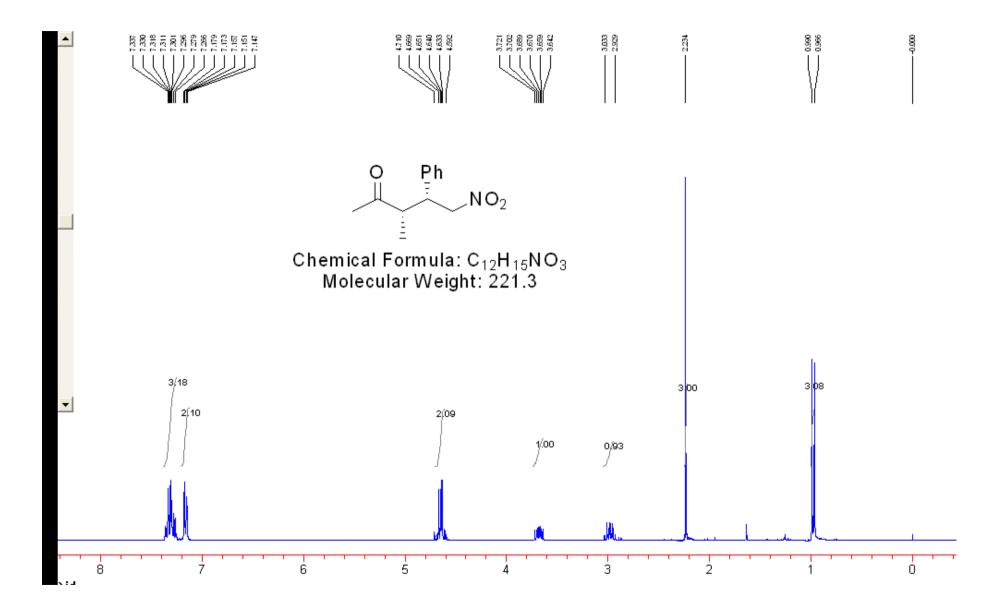


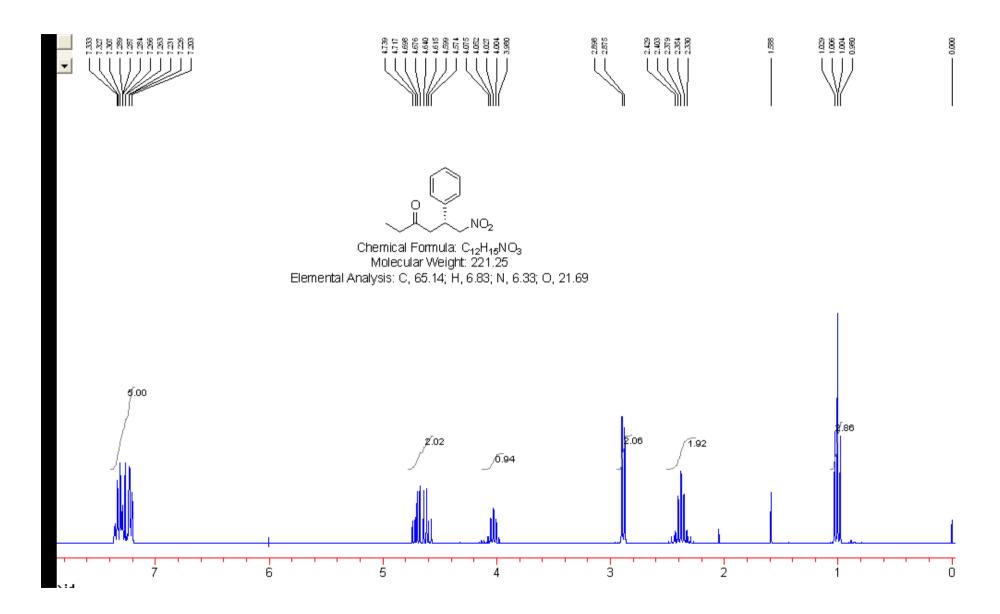


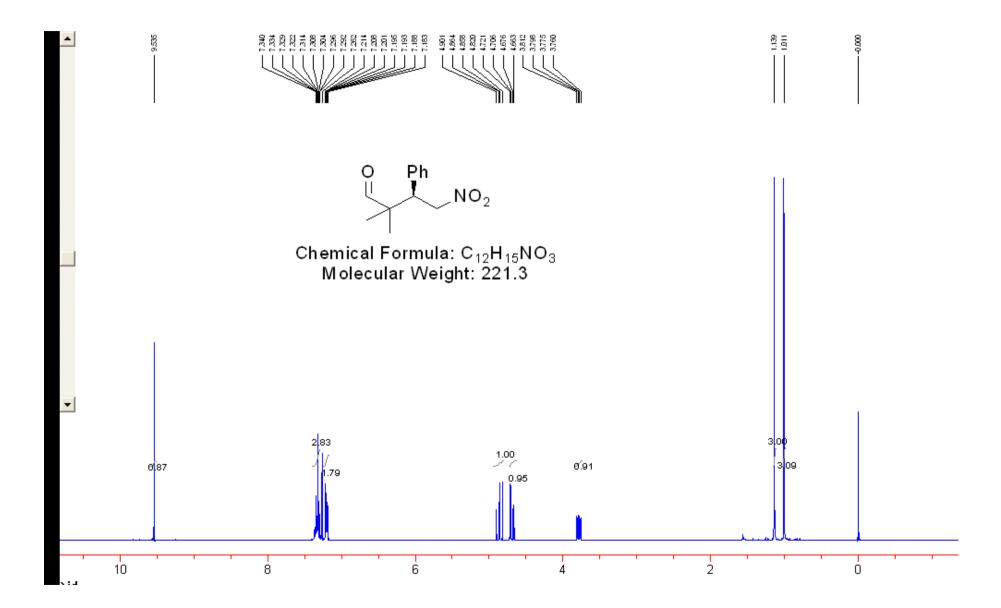


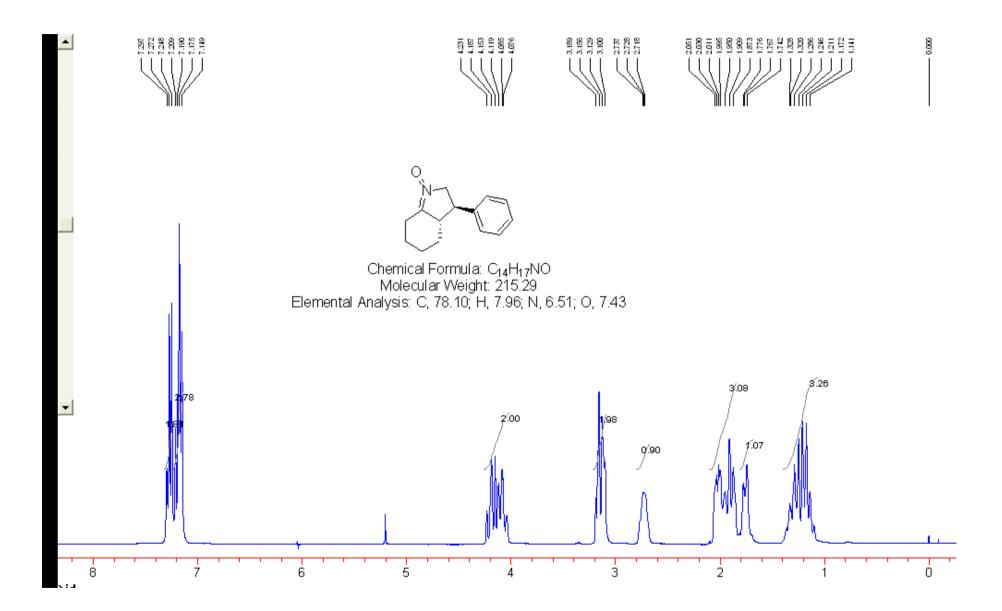


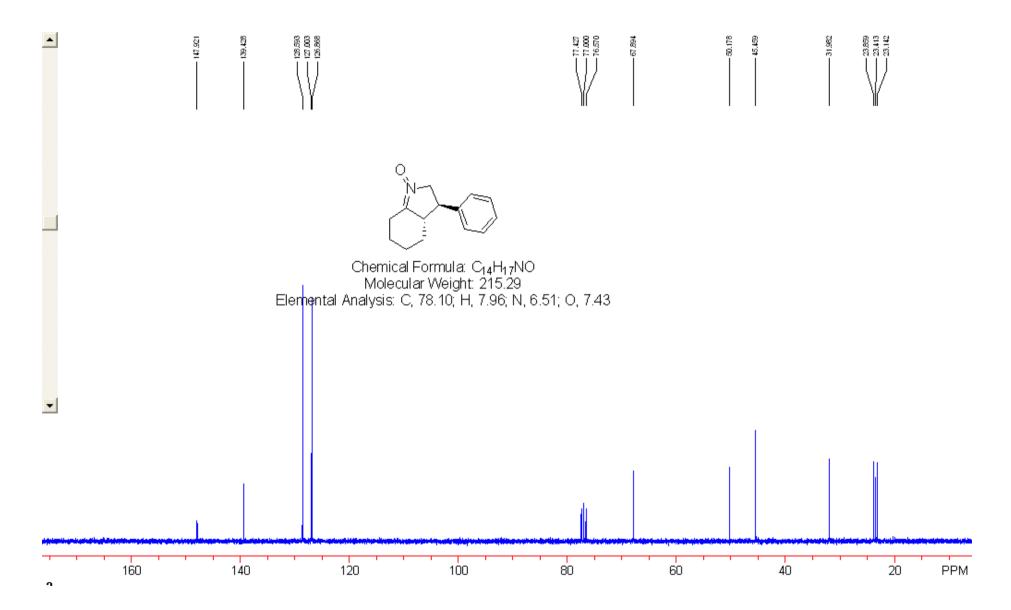


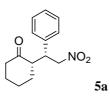


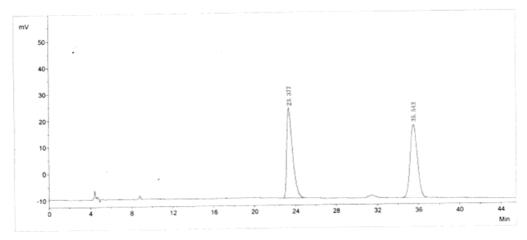


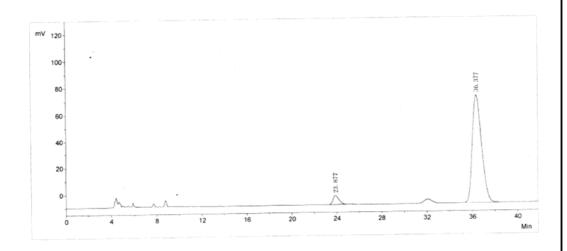


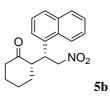


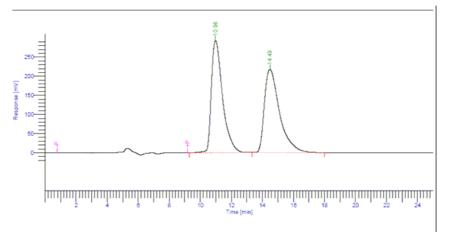




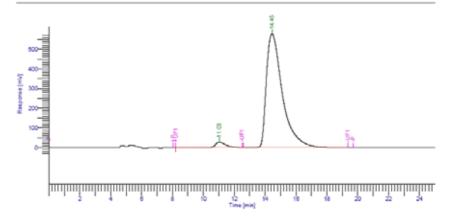




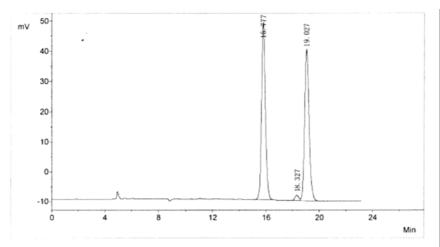


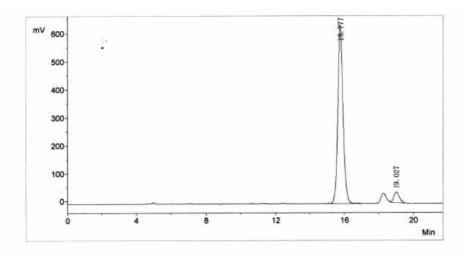


No.	R. Time	PeakHeight	PeakArea	PerCent
1	23. 377 35. 543	33661. 7 27397. 3	1321860. 2 1323087. 5	49. 9768 50. 0232
ta	1	61059. 0	2644947. 7	100.0000

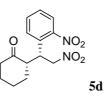

No.	R. Time	PeakHeight	PeakArea	PerCent
	23. 877 36. 377	6585. 1 80529. 7	238170. 5 4549228. 7	4. 9749 95. 0251
otal	l	87114. 8	4787399. 2	100.0000

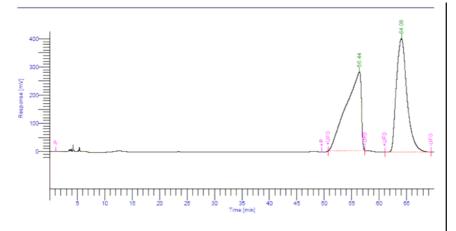
ccl-5-80a-race


Peak #	Time [min]	Area [uV*sec]	Height [u∀]	Area [%]	Norm. Area [%]
1	10.98	1.4704e+07	2.933e+05	49.93	49.93
2	14.49	1.4745e+07	2.177e+05	50.07	50.07
		2 94496+07	5 1110+05	100.00	100.00


ccl

ccl-5-80a-biao

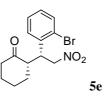

Peak #	Time [min]	Area [uV*sec]	Height [u∨]	Area [%]	Norm. Area [%]
		1.1321e+06 4.1249e+07		2.67 97.33	2.67 97.33
-	14.40	4.12456+07			100.00



No. f	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	15.777	58877.2	1190714.3	49. 4746
2	2	Unknown	18. 327	1675. 7	33798. 2	1. 4043
3	3	Unknown	19.027	49934. 2	1182204.8	49. 1210
Total				110487. 1	2406717. 3	100. 0000


No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	15.777	633515.0	13270053.8	94. 6858
2	2	Unknown	19.027	35710. 4	744778.0	5. 3142
otal	1			669225. 4	14014831.8	100. 0000

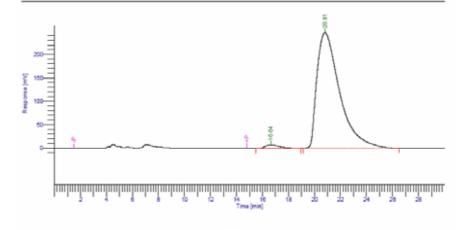
ccl-5-79b-race


Peak #	Time [min]	Area [uV*sec]	Height [u∀]	Area [%]	Norm. Area [%]
1	56.44	5.3760e+07	2.800e+05	49.92	49.92
	64.08	5.3934e+07	4.032e+05	50.08	50.08
		1.07600+00	6 9220105	100.00	100.00

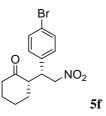


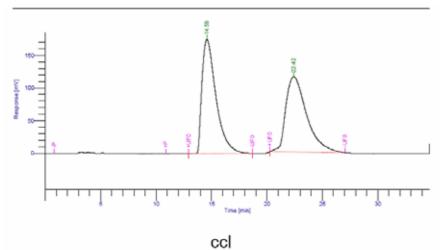
ccl

ccl-5-79b-biao


Peak #	Time [min]	Area [uV*sec]	Height [u∨]	Area [%]	Norm. Area [%]
		442379.7519 2.8145e+07		1.55 98.45	1.55 98.45
		2.8587e+07	2.256e+05	100.00	100.00

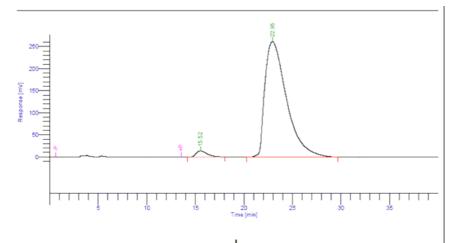
ccl-5-83a-race


Peak #	Time [min]	Area [uV*sec]	Height [u∀]	Area [%]	Norm. Area [%]
		7.8169e+07			49.24
2	19.97	8.0587e+07	6.157e+05	50.76	50.76
		1.5876e+08	1.410e+06	100.00	100.00

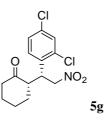


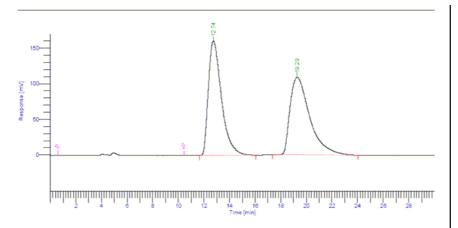
ccl

ccl-5-83a-race


Peak #	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]
		544086.9176 2.9964e+07		1.78 98.22	1.78 98.22
		3.0508e+07	2.540e+05	100.00	100.00

ccl-5-80b-race

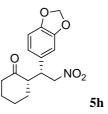

Peak #	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]
		1.5361e+07 1.5036e+07		50.53 49.47	50.53 49.47
		3.0397e+07	2 9026+05	100.00	100.00

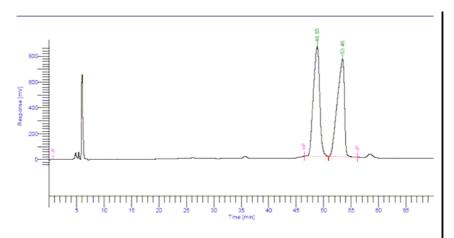


ccl

ccl-5-80b-biao

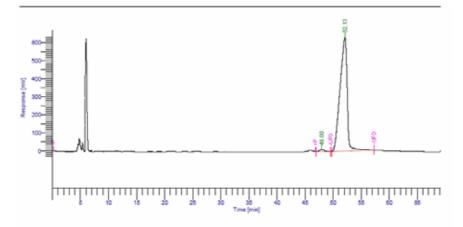
Peak #	Time [min]	Area [uV*sec]	Height [u∀]	Area [%]	Norm. Area [%]
		1.1077e+06 4.0407e+07		2.67 97.33	2.67 97.33
		4.1515e+07	2.751e+05	100.00	100.00


ccl-5-84-race

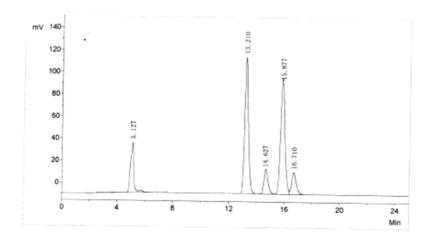

	Time [min]	Area [uV*sec]	Height [u∀]	Area [%]	Norm. Area [%]
	12.74	1.1415e+07	1.608e+05	49.60	49.60
2	19.29	1.1601e+07	1.088e+05	50.40	50.40
		2 30170+07	2 6960+05	100.00	100.00

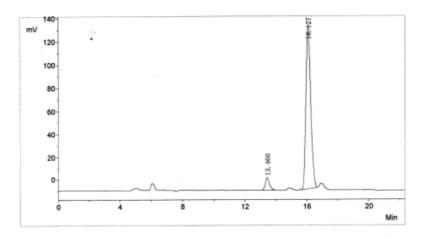
ccl

ccl-5-84-biao

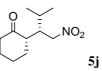

	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]
1	12.87	467172.0400	7798.8437	1.63	1.63
2	19.00	2.8256e+07	2.468e+05	98.37	98.37
		2.8723e+07	2.546e+05	100.00	100.00

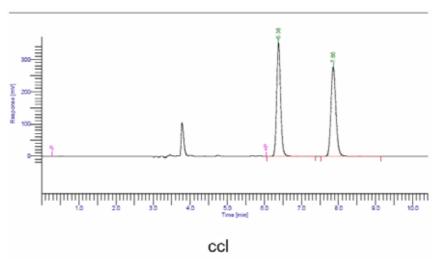
ccl-5-81-biao


Peak #	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]
1	48.85	6.7568e+07	8.484e+05	49.81	49.81
2	53.46	6.8093e+07	7.550e+05	50.19	50.19
		1.3566e+08	1.603e+06	100.00	100.00

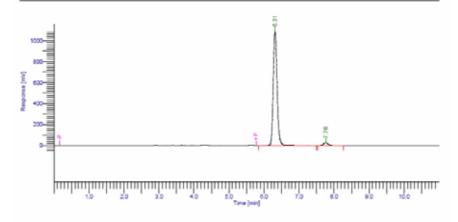

ccl

ccl-5-81-biao

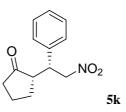

Peak #	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]
		676737.0806 5.5547e+07		1.20 98.80	1.20 98.80
		5.62246+07	6.4090+05	100.00	100.00

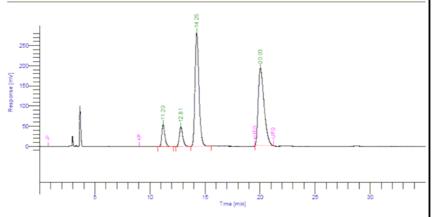


No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1	Unknown	5.127	45058. 4	742648, 2	11. 9475	
2	2	Unknown	13.210	123005.5	2298414.4	36. 9762	
3	3	Unknown	14.627	21073.9	450657.8	7. 2500	
4	4	Unknown	15.877	100093.5	2277580.0	36, 6410	
5	5	Unknown	16.710	19288. 3	446636.9	7. 1854	
Total	l			308519.6	6215937.3	100.0000	


No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
- 1	1	Unknown	13. 460	10298.3	197598.8	6.0314
2	2	Unknown	16. 127	141002.5	3078544. 1	93. 9686
otal	1			151300.8	3276142. 9	100.0000

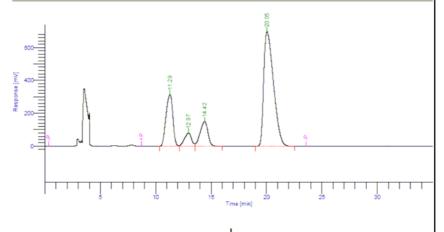
ccl-5-90b-race


Peak #	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]
1	6.38	2.6235e+06	3.511e+05	50.06	50.06
2	7.86	2.6169e+06	2.775e+05	49.94	49.94
		5.2404e+06	6.286e+05	100.00	100.00



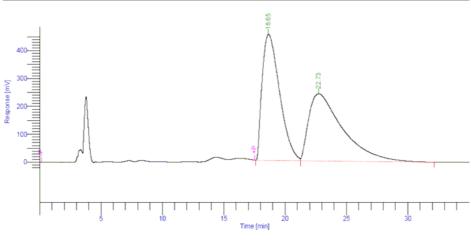
ccl

ccl-5-90b-biao


Peak #	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]
		8.3790e+06 259396.4899		97.00 3.00	97.00 3.00
		8.6384e+06	1.118e+06	100.00	100.00

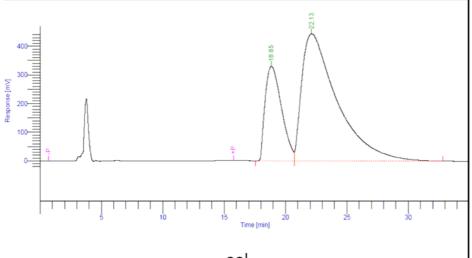
ccl-6-7a-race-biao

Peak #	Time [min]	Area [uV*sec]	Height [u∀]	Area [%]	Norm. Area [%]
	11.20	1.0576e+06	5.511e+04	6.52	6.52
2	12.81	1.0600e+06	4.879e+04	6.54	6.54
3	14.25	7.0449e+06	2.822e+05	43.44	43.44
4	20.03	7.0564e+06	1.918e+05	43.51	43.51
		1.6219e+07	5.779e+05	100.00	100.00

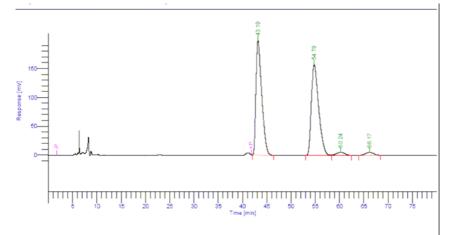


ccl

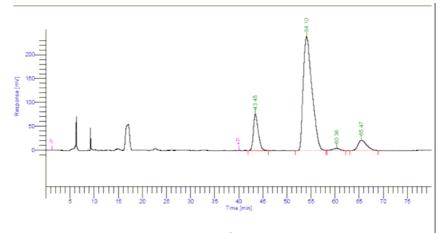
ccl-6-7a-biao


Peak #	Time [min]	Area [uV*sec]	Height [u∨]	Area [%]	Norm. Area [%]
1	11.29	1.3526e+07	3.149e+05	20.23	20.23
2	12.97	3.5609e+06	8.061e+04	5.33	5.33
3	14.42	7.2435e+06	1.493e+05	10.84	10.84
4	20.05	4.2519e+07	6.973e+05	63.60	63.60
		6.6849e+07	1.242e+06	100.00	100.00

ccl-5-86-race-biao

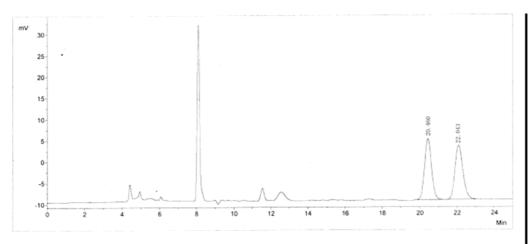

Peak #	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]
1	18.65	4.4634e+07	4.515e+05	49.06	49.06
2	22.73	4.6349e+07	2.411e+05	50.94	50.94
		9.0983e+07	6.926e+05	100.00	100.00

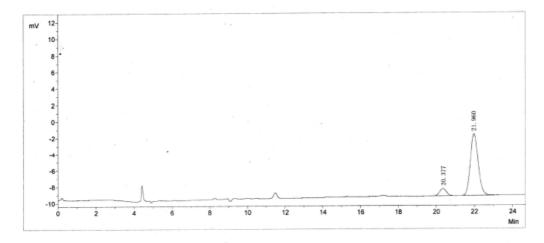
ccl


ccl-5-86-biao

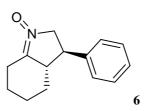
	Time [min]	Area [uV*sec]	Height [u∨]	Area [%]	Norm. Area [%]
1	18.85	3.0622e+07	3.302e+05	25.66	25.66
2	22.13	8.8702e+07	4.434e+05	74.34	74.34
		1.1932e+08	7.735e+05	100.00	100.00

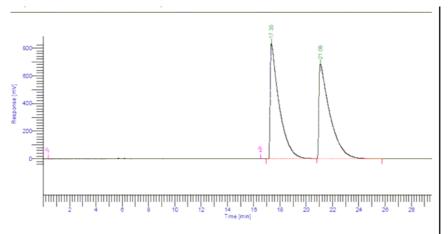
ccl-6-84b-race-biao-qiandianxiao-houdianda


Peak #	Time [min]	Area [uV*sec]	Height [u∨]	Area [%]	Norm. Area [%]
1	43.19	1.6459e+07	1.993e+05	48.02	48.02
2	54.79	1.6553e+07	1.576e+05	48.30	48.30
3	60.24	635720.9397	5566.9825	1.85	1.85
4	66.17	624451.5423	5387.0975	1.82	1.82
		3.4271e+07	3.679e+05	100.00	100.00


ccl

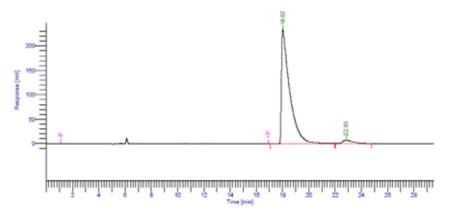
ccl-6-84b-biao-qiandianxiao-houdianda


Peak #	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]
	43.45	5.2952e+06	7.642e+04	13.70	13.70
2	54.10	3.0168e+07	2.392e+05	78.04	78.04
3	60.36	459152.1056	4211.3901	1.19	1.19
4	65.47	2.7349e+06	2.181e+04	7.07	7.07
		3.8657e+07	3.417e+05	100.00	100.00



No.	R. Time	PeakHeight	PeakArea	PerCent
1	20.460	14223.0	371065. 2	49. 9135
2	22.043	12401.0	372350. 6	50. 0865
Total		26624. 0	743415. 8	100. 0000

No.	R. Time	PeakHeight	PeakArea	PerCent		
	20. 377 21. 960	871. 4 7529. 3	21817. 1 215418. 2	9. 1964 90. 8036	-	,
Total		8400.7	237235. 3	100. 0000		



ccl-6-29-race-biao

	Time [min]	Area [uV*sec]	Height [u∨]	Area [%]	Norm. Area [%]
1	17.35	3.9126e+07	8.340e+05	50.08	50.08
2	21.08	3.9007e+07	6.841e+05	49.92	49.92
		7.8133e+07	1.518e+06	100.00	100.00

Result File : Sequence File : D:\HPLC\ccl\xmd-1.seq

ccl

ccl-6-30-biao

Peak #	Time [min]	Area [uV*sec]	Height [u∨]	
		1.0250e+07 419961.8226		
•	22.00	1.0670e+07		 100.00