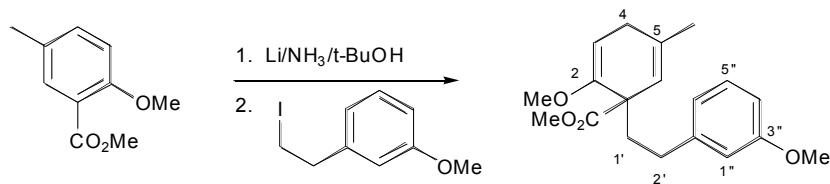


SUPPORTING INFORMATION FOR:

A Formal Total Synthesis of the Marine Diterpenoid Diisocyanoadociane

Kelly A. Fairweather and Lewis N. Mander*

Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia

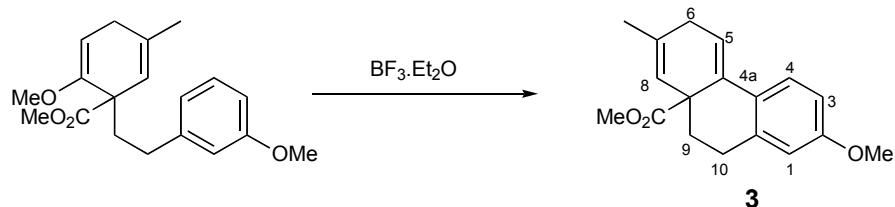

mander@rsc.anu.edu.au

Contents	Page
General Experimental Directions	S2
Experimental procedures and product characterization for compounds: 3, 4, 9–25, 27, 28, 31 and selected intermediates	S3–S40
Thermal ellipsoid plot for compound 27	S41
¹ H NMR and ¹³ C NMR spectra for compounds: 3, 4, 9, 11–14, 18, 20, 22–25, 27, 28 , synthetic and authentic samples of the TFA salt of 31 , and selected intermediates	S42–S87

General Experimental Directions

Proton (^1H) and carbon (^{13}C) NMR spectra were recorded on a Varian Mercury 300 spectrometer operating at 300 MHz for proton and 75 MHz for carbon nuclei. In addition, selected experiments were run on Varian Inova 500 and 600 spectrometers, and a Bruker Avance 800. Chemical shifts were recorded as δ values in parts per million (ppm). Most spectra were acquired at 300 MHz, in deuteriochloroform (CDCl_3), at 20 $^{\circ}\text{C}$ unless otherwise stated. Infrared (IR) spectra (ν_{max}) were recorded on a Perkin–Elmer Spectrum One spectrometer. Low and high resolution mass spectra were recorded on a VG Fisons AutoSpec three sector (E/B/E) double focusing mass spectrometer, using positive ion electron impact techniques. Melting points were recorded on a Gallenkamp Melting Point Apparatus and are uncorrected. Elemental analyses were performed by the Australian National University Microanalytical Services Unit based in the Research School of Chemistry, The Australian National University, Canberra, Australia. Analytical thin layer chromatography (TLC) was conducted on aluminum backed 0.2 mm thick silica gel 60 F_{254} plates (Merck), visualized under a 254 nm UV lamp and/or by treatment with a polymolybdic acid (PMA) dip, followed by heating. Flash chromatography was conducted according to the method of Still and co-workers using silica gel 60 (mesh size 0.040–0.063) or alumina oxide 60 (mesh size 0.063–0.200) as the stationary phase and the analytic (AR) grade solvent indicated. THF, Et_2O , benzene, and toluene were dried using sodium metal and then distilled, as required, from sodium benzophenone ketyl. DCM was distilled from calcium hydride. Ammonia was dried with sodium metal and FeNO_3 and then distilled under an inert atmosphere as required. HMPA was dried over 4 \AA molecular sieves.

(1RS) Methyl 2-Methoxy-1-(2'-(3''-methoxyphenyl)ethyl)-5-methylcyclohexa-2,5-diene-1-carboxylate

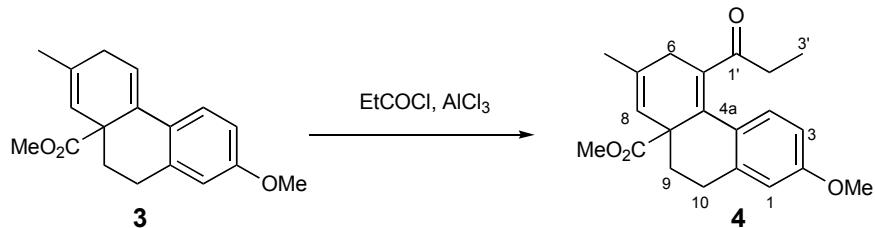


Preparation based on procedure described by S.R. Crabtree, Ph.D. thesis, ANU 1990.

A flame dried 3-necked flask, fitted with a dry ice condenser was charged with 2-methoxy-5-methylbenzoate (2.0 g, 11.1 mmol), THF (20 mL) and *t*-butyl alcohol (2.1 mL, 22.2 mmol) under nitrogen. Dry ammonia (100 mL) was then distilled into the flask cooled to $-78\text{ }^\circ\text{C}$, and small pieces of freshly cleaned lithium wire (0.19 g, 27.8 mg/atom) were added. The resulting blue solution was warmed to $-33\text{ }^\circ\text{C}$ and stirred for 15 min, before adding isoprene until the blue color dispersed. The ammonia was then boiled off under a stream of nitrogen and the residue cooled to $-78\text{ }^\circ\text{C}$. 2-(3''-Methoxyphenyl)-ethyl iodide (3.2 g, 12.2 mmol) in THF (8.5 mL) was then added dropwise over 10 min and the resulting reaction mixture was stirred at $-78\text{ }^\circ\text{C}$ for 30 min, before warming to room temp. and stirring for an additional 16 h. Water (25 mL) was then added and the reaction mixture extracted with EtOAc (2 x 100 mL). The combined organic extracts were washed with water (20 mL), brine (20 mL), dried over anhydrous MgSO_4 , and concentrated *in vacuo* to give a yellow oil. Purification by flash column chromatography on silica gel using EtOAc : hexane (1 : 9) as eluant gave the title compound (2.0 g, 57%) as a yellow oil. **IR** (thin film) cm^{-1} : 2937s (C-H), 1731s (C=O), 1695s, 1665s, 1601s, 1584s, 1491s (C=C), 1384s, 1365s, 1230br, 1168s, 1045s (C-O). **¹H NMR** (300 MHz, CDCl_3) δ : 1.77 (s, 3H, 5- CH_3), 2.00 (m, 1H, H-1'), 2.31 – 2.44 (m, 3H, H-1', H-2'), 2.78 (m, 2H, H-4), 3.56 (s, 3H, - CO_2CH_3), 3.67 (s, 3H, 2- OCH_3), 3.78 (s, 3H, 3''- OCH_3), 4.88 (t, $J = 3.6$ Hz, 1H, H-3), 5.16 (s (br), 1H, H-6), 6.68–6.76 (m, 3H, H-2'', H-4'', H-6''), 7.16 (dd, $J = 8.4$, $J = 7.5$ Hz, 1H, H-5''). **¹³C NMR** (75 MHz, CDCl_3) δ : 22.6 (5- CH_3), 30.8 (CH₂, C-1'), 31.3 (CH₂, C-4), 36.1 (CH₂, C-2'), 52.3 (1- CO_2CH_3), 52.5 (C, C-1), 54.4 (2- OCH_3), 55.1 (3''- OCH_3), 93.8 (CH, C-3), 110.8 (CH, C-4''), 113.9 (CH, C-2''), 120.7 (CH, C-6''), 121.6 (CH, C-6), 128.9 (CH, C-5''), 134.7 (C, C-5), 144.1 (C, C-1''), 152.3 (C, C-2),

159.3 (C, C-3''), 174.1 (1-CO). **LRMS (m/z):** 316 (M⁺, 31%), 257 (29), 195 (18), 181 (46), 149 (70), 135 (100), 121 (43), 105 (40), 91 (43), 77 (32). **HRMS:** C₁₉H₂₄O₄ (M⁺) requires 316.1675, found 316.1677.

(8aRS) Methyl 9,10-Dihydro-2-methoxy-7-methylphenanthrene-8a(6H)-carboxylate (3)

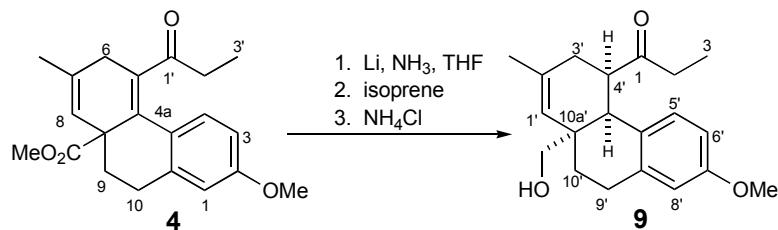


Preparation based on procedure described by S.R. Crabtree, Ph.D. thesis, ANU 1990.

Boron trifluoride diethyl etherate (5.6 mL, 43.9 mmol) was added dropwise to a solution of (1RS) Methyl 2-Methoxy-1-(2'-(3''-methoxyphenyl)ethyl)-5-methylcyclohexa-2,5-diene-1-carboxylate (12.6 g, 39.9 mmol) in DCM (250 mL) at -24 °C under nitrogen. The reaction mixture was warmed to room temp. and stirred for 1 h. Water (60 mL) was then added and the resulting mixture stirred vigorously for 10 min. The organic phase was separated and the aqueous phase further extracted with DCM (2 x 50 mL). The combined organic extracts were dried over anhydrous MgSO₄, and concentrated *in vacuo* to give a yellow solid. Trituration with hexane gave the title compound **3** (9.64 g, 85%) as a cream powder. A sample was crystallized from methanol to give white needle-like crystals; m.p.: 135–138°C. **IR** (thin film) cm⁻¹: 2948s (C-H), 1720s (C=O), 1606s, 1572s, 1497s, 1444, 1230s, 1167, 1072. **¹H NMR** (300 MHz, CDCl₃) δ : 1.78 (s, 3H, 7-CH₃), 1.80 (m, 1H, H-9), 2.45 (ddd, J_{gem} = 13.0, $J_{9,10}$ = 5.7, $J_{9,10}$ = 1.6 Hz, 1H, H'-9), 2.73–3.00 (m, 4H, H-6, H-10), 3.57 (s, 3H, 8a-CO₂CH₃), 3.78 (s, 3H, 2-OCH₃), 5.40 (s (br), 1H, H-8), 6.21 (dd, J = 4.4, J = 3.2 Hz, 1H, H-5), 6.56 (d, $J_{1,3}$ = 2.6 Hz, 1H, H-1), 6.74 (dd, $J_{3,4}$ = 8.8, $J_{3,1}$ = 2.6 Hz, 1H, H-3), 7.53 (d, $J_{4,3}$ = 8.8, 1H, H-4). **¹³C NMR** (75 MHz, CDCl₃) δ : 23.2 (7-CH₃), 27.7 (CH₂, C-10), 32.6 (CH₂, C-9), 34.2 (CH₂, C-6), 48.9 (C, C-8a), 52.6 (8a-CO₂CH₃), 55.5 (2-OCH₃), 113.1 (CH, C-3), 113.2 (CH, C-1), 118.3 (CH, C-5), 123.6 (CH, C-4), 125.7 (C, C-4a), 128.1 (CH, C-8), 133.3 (C, C-7), 133.8 (C, C-10a), 136.4 (C, C-4b), 158.7 (C, C-2), 174.5 (8a-CO). **LRMS (m/z):** 284 (M⁺, 58%), 226 (36), 225

(100), 224 (45), 210 (37), 209 (23), 193 (20), 179 (23), 178 (26), 166 (23), 165 (34), 152 (19). **HRMS:** $C_{18}H_{20}O_3 (M^+)$ requires 284.1412, found 284.1415. **Microanalysis:** Calcd. for $C_{18}H_{20}O_3$: C, 76.03%; H, 7.09%. Found: C, 75.92%; H, 6.82%.

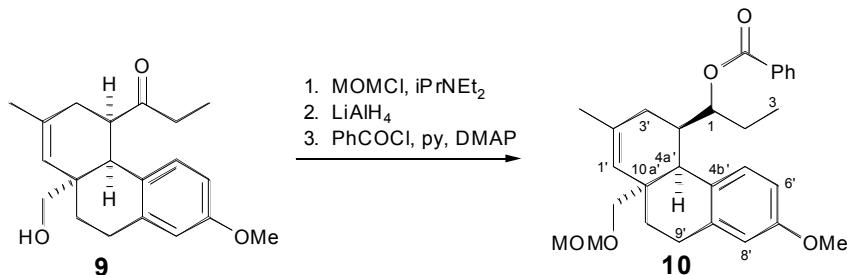
(8a*RS*) Methyl 9,10-Dihydro-5-(1'-oxopropanyl)-2-methoxy-7-methylphenanthrene-8a(*H*)-carboxylate (4)



$AlCl_3$ (9.4 g, 70.4 mmol) was added to a solution of olefin **3** (5.0 g, 17.6 mmol) and propionyl chloride (4.6 mL, 53.8 mmol) in DCM (150 mL) at $-78^\circ C$ under nitrogen. The resulting reaction mixture was stirred for 20 min then quenched by pouring over iced water with vigorous stirring. The organic phase was separated and the aqueous phase extracted with DCM (2 x 30 mL). The combined organic extracts were washed with water, aqueous KH_2PO_4 dried over anhydrous $MgSO_4$ and concentrated *in vacuo* to give a cream solid. Trituration with hexane gave the title compound **4** (4.5 g, 75%) as a cream powder. A sample was crystallized from EtOAc and hexane to give white crystals, **m.p.:** 139–144 $^\circ C$. **IR** (thin film) cm^{-1} : 2936s (C-H), 1729s (C=O), 1679s (C=O), 1605s, 1498s, 1445, 1264, 1239, 1166, 1070. **1H NMR** (300 MHz, $CDCl_3$) δ : 0.94 (t, $J_{3',2'} = 7.2$ Hz, H-3'), 1.75 (s, 3H, 7-CH₃), 1.90 (ddd, $J_{gem} = 13.5$ Hz, $J_{9,10} = 10.8$ Hz, $J_{9,10} = 7.0$ Hz, 1H, H-9), 2.23 (dq, $J = 17.7$ Hz, $J = 7.2$ Hz, 2H, H-2'), 2.57 (m, 1H, H'-9), 2.56 (d, $J_{gem} = 21.9$ Hz, 1H, H-6), 2.87 (ABdd, $J_{gem} = 17.9$ Hz, $J_{10,9} = 6.0$ Hz, 1H, H-10), 3.01 (ddd, $J_{gem} = 17.9$ Hz, $J_{10,9} = 10.8$ Hz, $J_{10,9} = 7.0$ Hz, 1H, H'-10), 3.24 (d, $J_{gem} = 21.9$ Hz, 1H, H'-6), 3.44 (3H, s, 8a-CO₂CH₃), 3.76 (3H, s, 2-OCH₃), 5.33 (s (br), 1H, H-8), 6.60–6.63 (m, 2H, H-1, H-3), 6.97 (d, $J_{4,3} = 8.7$ Hz, 1H, H-4). **^{13}C NMR** (75 MHz, $CDCl_3$) δ : 8.7 (CH₃, C-3'), 22.6 (7-CH₃), 26.7 (CH₂, C-9), 34.3 (CH₂), 34.3 (CH₂), 35.6 (CH₂), 50.7 (C, C-8a), 52.2 (8a-CO₂CH₃), 55.1 (2-OCH₃), 111.7 (CH, C-3), 113.2 (CH, C-1), 122.3 (CH, C-4), 126.9 (C, C-4a), 130.4 (C, C-8), 131.0 (C, C-5), 132.7 (C, C-7), 135.2 (CH, C-4b), 137.8 (C, C-10a), 159.5 (C, C-2), 173.5 (8a-CO), 211.8 (1'-CO). **LRMS (m/z):** 340 (M^+ , 40%),

311 (10), 281 (62), 263 (26), 251 (30), 223 (39), 209 (19), 178 (14), 165 (26), 57 (100).

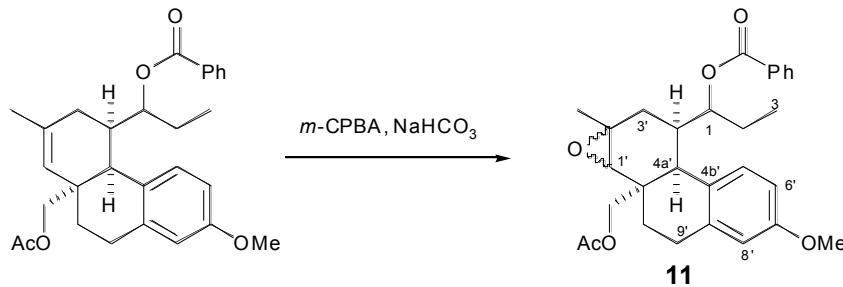
HRMS: $C_{21}H_{24}O_4$ (M^+) requires 340.1675, found 340.1670. **Microanalysis:** Calcd. for $C_{21}H_{24}O_4$: C, 74.09%; H, 7.11%. Found: C, 73.97%; H, 6.97%.


(4'R S , 4a'SR, 10a'RS) 1-(10a'-Hydroxymethyl-7'-methoxy-2'-methyl-3',4',4a',9',10',10a'-hexahydrophenanthren-4'-yl)-propan-1-one (9)

Dry ammonia (480 mL) was distilled into a 3-necked flask fitted with a dry ice condenser, under nitrogen. Small pieces of freshly cleaned lithium wire (1.0 g, 152.7 mmol) were added and the resulting blue solution was stirred at -78 °C for 15 min. A solution of ketone **4** (4.0 g, 11.7 mmol) in THF (200 mL) was then added dropwise over 5 min and the resulting reaction mixture was stirred for 15 min before adding isoprene dropwise until the blue color dispersed. The ammonia was allowed to boil off under a stream of nitrogen and a saturated solution of aqueous NH_4Cl (80 mL) was added. After 15 min, water (50 mL) was added and the aqueous phase extracted with $EtOAc$ (3 x 100 mL). The combined organic extracts were washed with water (50 mL), brine (50 mL) and dried over anhydrous $MgSO_4$. Concentration of the organic phase *in vacuo* gave a yellow oil which was purified by flash column chromatography on silica gel using $EtOAc$: hexane (2 : 3) as eluant to give the title compound **9** (2.7 g, 74%) as a white solid, **m.p.:** 106–109°C. **IR** (thin film) cm^{-1} : 3436br (C-OH), 2914s (C-H), 1701s (C=O), 1611s, 1502s, 1461, 1278, 1236, 1075, 1038. **1H NMR** (300 MHz, $CDCl_3$) δ : 1.04 (t, $J_{3,2} = 7.2$ Hz, 3H, H-3), 1.54 (dt, $J_{gem} = 13.2$ Hz, $J_{10',9'} = 5.1$ Hz, 1H, H-10'), 1.65 (s, 3H, 2'-CH₃), 1.75 (ddd, $J_{gem} = 13.2$ Hz, $J_{10',9'} = 10.5$ Hz, $J_{10',9'} = 5.1$ Hz, 1H, H'-10'), 1.94 (d, $J = 6.9$ Hz, 2H, H-3'), 2.35–2.56 (m, 3H, H-2, H-9'), 2.74 (ddd, $J_{gem} = 16.2$, $J_{9',10'} = 10.5$ Hz, $J_{9',10'} = 5.1$ Hz, H'-9'), 2.91 (s (br), 1H, -OH), 3.09 (ddd, $J = 10.2$ Hz, $J = 6.9$ Hz, $J = 3.3$

Hz, 1H, H-4'), 3.46, 3.60 (2 x ABd, J = 11.1 Hz, 2H, 10a'-CH₂), 3.71 (d, $J_{4a',4'} = 3.3$ Hz, 1H, H-4a'), 3.71 (s, 3H, 7'-OCH₃), 4.98 (s (br), 1H, H-1'), 6.54 (d, $J_{8',6'} = 2.7$ Hz, 1H, H-8'), 6.60 (dd, $J_{6',5'} = 8.6$ Hz, $J_{6',8'} = 2.7$ Hz, 1H, H-6'), 6.72 (d, $J_{5',6'} = 8.6$ Hz, 1H, H-5'). **¹³C NMR** (75 MHz, CDCl₃) δ : 8.0 (CH₃, C-3), 23.6 (2'-CH₃), 26.5 (CH₂, C-10'), 28.5 (CH₂), 29.6 (CH₂), 34.3 (CH₂), 39.2 (C, C-10a'), 42.0 (CH, C-4a'), 50.0 (CH, C-4'), 54.9 (7'-OCH₃), 69.3 (C10a'-CH₂OH), 111.7 (CH, C-6'), 113.3 (CH, C-8'), 125.3 (CH, C-1'), 127.9 (CH, C-5'), 128.7 (C, C-4b'), 136.9 (C, C-2'), 139.1 (C, C-8a'), 157.0 (C, C-7'), 215.1 (1-CO). **LRMS (m/z)**: 314 (M⁺, 60%), 283 (74), 265 (26), 239 (24), 225 (84), 211 (63), 199 (16), 190 (63), 171 (44), 147 (19), 57 (100). **HRMS**: C₂₀H₂₆O₃ (M⁺) requires 314.1882, found 314.1884. **Microanalysis**: Calcd. for C₂₀H₂₆O₃: C, 76.40%; H, 8.33%. Found: C, 76.30%; H, 8.40%.

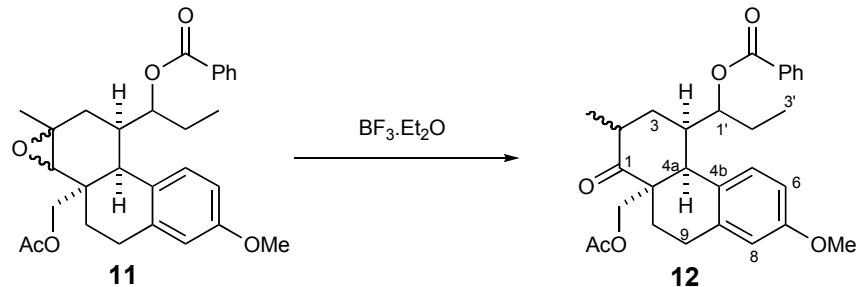
(4'R*S*, 4a'S*R*, 10a'R*S*, 1*SR* or 1*R**S*) 1-[10a'-Methoxymethoxy-7'-methoxy-2'-methyl-4a',9',10',10a'-tetrahydrophenanthren-4'(3'H)-yl]-propan-1-yl benzoate (10)**


Hünig's base (5.6 mL, 32.1 mmol) was added to alcohol **9** (3.36 g, 10.7 mmol) in DCM (100 mL) at 0 °C under nitrogen. Chloromethyl methyl ether (2.4 mL, 32.1 mmol) was added dropwise and the reaction mixture warmed to room temperature. DMAP (50 mg) was then added and the reaction was stirred for 24 h. The reaction mixture was cooled to 0 °C, saturated sodium bicarbonate (50 mL) was added, and stirring continued for 10 min. The organic phase was then separated and the aqueous phase was extracted with DCM (3 x 50 mL). The combined organic extracts were washed with water (50 mL), 2 M HCl (50 mL), saturated sodium bicarbonate (50 mL), brine (50 mL) and dried over anhydrous MgSO₄. Concentration of the organic phase *in vacuo* gave the MOM ether (3.8 g) as a yellow gum, which was used directly in the next step without further purification.

A solution of the ketone (3.8 g, 10.7 mmol) in diethyl ether (40 mL) was added to a suspension of lithium aluminum hydride (0.8 g, 21.4 mmol) in diethyl ether (40 mL) at 0 °C under nitrogen. The resulting reaction mixture was warmed to room temperature and stirred for 1 h. Water (0.8 mL) was added, followed by 1 M NaOH (0.8 mL) and a further portion of water (0.16 mL). When a white precipitate formed, anhydrous MgSO₄ was added and the reaction mixture was filtered through a plug of Celite®. Concentration of the organic phase *in vacuo* gave the alcohol (3.6 g, 93%) as a white foam, which was used directly in the next step without further purification.

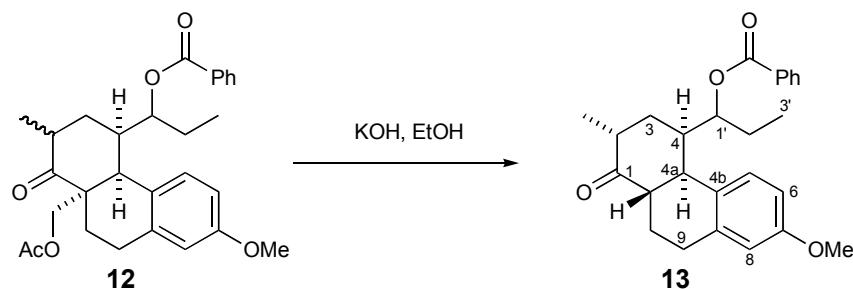
Benzoyl chloride (3.5 mL, 29.9 mmol) was added to a solution of the alcohol (3.6 g, 9.96 mmol) in pyridine (100 mL) at room temperature under nitrogen. A catalytic amount of DMAP (5 mol %) was added and the resulting reaction mixture was stirred for 24 h. Water (50 mL) was then added, and the resulting mixture stirred for 10 min before extracting with ethyl acetate (4 x 50 mL). The combined organic extracts were washed with a saturated aqueous solution of copper sulfate (4 x 50 mL), water (50 mL), 1 M HCl (50 mL), water (50 mL), and dried over anhydrous MgSO₄. Concentration of the organic phase *in vacuo* gave a cream solid, which was purified by flash column chromatography on silica gel using EtOAc : hexane (1 : 9) as eluant to give the title compound **10** (4.2 g, 84% over three steps) as a white wax. **IR** (thin film) cm^{-1} : 2931s (C-H), 1711s (C=O), 1609s, 1501s, 1451, 1314, 1272, 1237, 1150, 1110, 1045. **¹H NMR** (300 MHz, CDCl₃) δ : 0.91 (t, $J_{3,2} = 7.3$ Hz, 3H, H-3), 1.64 (m, 1H, H-10'), 1.74-1.94 (m, 4H, H'-10', H-3', H-2), 2.06 (m, 1H, H'-3'), 1.73 (s, 3H, 2'-CH₃), 2.45-2.76 (m, 3H, H-4', H-9'), 3.17 (d, $J_{4'a,4'} = 3.0$ Hz, 1H, H-4a'), 3.34 (s, 3H, 10a'-OCH₂OCH₃), 3.35, 3.51 (2 x ABd, $J = 6.6$ Hz, 2H, 10a'-CH₂), 3.58 (s, 3H, 7'-OCH₃), 4.60, 4.64 (2 x ABd, $J = 9.3$ Hz, 2H, 10a'-OCH₂OCH₃), 5.26 (s (br), 1H, H-1'), 5.53 (ddd, $J = 9.9$ Hz, $J = 5.4$ Hz, $J = 3.9$ Hz, 1H, H-1), 6.26 (d, $J_{8',6'} = 2.7$ Hz, 1H, H-8'), 6.68 (dd, $J_{6',5'} = 8.7$ Hz, $J_{6',8'} = 2.7$ Hz, 1H, H-6'), 7.20 (d, $J_{5',6'} = 8.7$ Hz, 1H, H-5'), 7.30-7.51 (m, 3H, H-3", H-4"), 7.74 (d, $J = 8.4$ Hz, 2H, H-2"). **¹³C NMR** (75 MHz, CDCl₃) δ : 8.2 (CH₃, C-3), 24.0 (2'-CH₃), 26.0 (CH₂, C-10'), 26.4 (CH₂), 29.1 (CH₂), 31.3 (CH₂), 39.1 (C, C-10a'), 40.0 (CH, C-4a'), 40.4 (CH, C-4'), 54.7 (10a'-OCH₂OCH₃), 55.0 (7'-OCH₃), 74.2 (CH, C-1), 75.4 (C10a'-CH₂), 96.6 (10a'-OCH₂OCH₃), 111.9 (CH, C-6'), 112.8 (CH, C-8'), 127.3 (CH, C-1'), 127.6 (CH, C-5'), 129.3 (Ar), 129.4 (Ar), 130.1 (Ar), 130.2 (Ar), 132.3 (C, C-4b'), 133.6 (C, C-2'),

138.3 (C, C-8a'), 156.6 (C, C-7'), 165.7 (1-OC(O)Ph). **LRMS (m/z):** 464 (M^+ , 37%), 432 (5), 388 (8), 342 (8), 310 (15), 297 (16), 280 (32), 267 (100), 225 (25), 211 (17), 105(50). **HRMS:** $C_{29}H_{36}O_5 (M^+)$ requires 464.2563, found 464.2567.


(4'*RS*, 4a'*SR*, 10a'*RS*) 1-(10a'-Acetoxymethyl-7'-methoxy-2'-methyl-1',2'-epoxy-4a',9',10',10a'-tetrahydrophenanthren-4-yl)-propan-1-yl Benzoate (11)

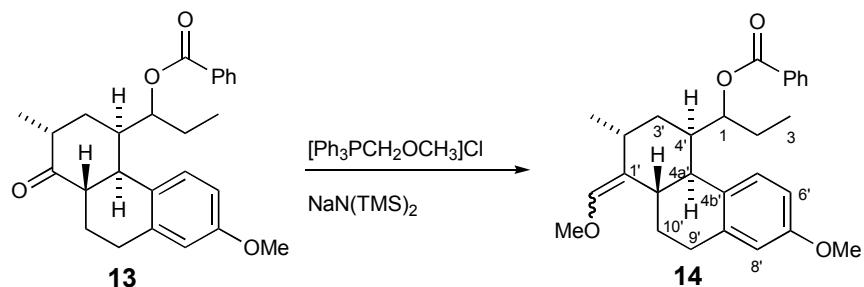
m-CPBA (0.81 g, 4.70 mmol) was added to a mixture of the olefin (1.08 g, 2.30 mmol) and $NaHCO_3$ (1.70 g) in DCM (20 mL) at 0 °C under nitrogen. The resulting reaction mixture was warmed to room temp. and stirred for 2 h before 10% Na_2SO_3 (10 mL) was added. After 5 min, the organic phase was separated and the aqueous residue further extracted with DCM (2 x 15 mL). The combined organic extracts were washed with 1*M* NaOH and brine then dried over $MgSO_4$. Concentration of the organic phase *in vacuo* gave a white foam which was purified by flash column chromatography on silica gel using EtOAc : hexane (1 : 4) as eluant to give the title compound **11** (0.98 g, 89%) as a white foam. **IR** (thin film) cm^{-1} : 2938s (C-H), 1743s (C=O), 1713s (C=O), 1610s, 1583, 1501s, 1451, 1381, 1364, 1271, 1176, 1070, 1039. **¹H NMR** (300 MHz, $CDCl_3$) δ : 0.93 (t, $J_{3,2} = 7.5$ Hz, 3H, H-3), 1.21 (m, 1H, H-10'), 1.57–1.69 (m, 3H), 1.86–2.11 (m, 2H), 1.30 (s, 3H, 2'-CH₃), 2.03 (s, 3H, 10a'-OC(O)CH₃), 2.50–2.92 (m, 3H), 2.81 (s, 1H), 2.97 (s, 1H), 3.74 (s, 3H, 7'-OCH₃), 4.25 (s, 2H, 10a'-CH₂), 5.38 (m, 1H, H-1), 6.57 (d, $J_{8',6'} = 2.4$ Hz, 1H, H-8'), 6.73 (dd, $J_{6',5'} = 8.4$ Hz, $J_{6',8'} = 2.4$ Hz, 1H, H-6'), 7.10 (d, $J_{5',6'} = 8.4$ Hz, 1H, H-5'), 7.41–7.64 (m, 3H, H-3'', H-4''), 8.00 (d, $J = 7.2$ Hz, 2H, H-2''). **¹³C NMR** (75 MHz, $CDCl_3$) δ : 8.2 (CH₃, C-3), 20.9 (-OC(O)CH₃), 22.3 (2'-CH₃), 25.0 (CH₂, C-10'), 26.5 (CH₂), 28.6 (CH₂), 31.3 (CH₂), 35.4, 36.2, 37.3, 55.0 (7'-OCH₃), 58.3 (C, C-2'), 64.3 (CH, C-1'), 68.0 (C10a'-CH₂), 75.4 (CH, C-1), 111.7 (CH, C-6'), 113.5 (CH, C-8'), 127.1 (CH, C-5'), 128.2 (Ar), 129.3 (Ar), 130.1 (Ar), 130.4 (Ar), 132.8 (C, C-4b'), 139.5

(C, C-8a'), 157.0 (C, C-7'), 165.7 (1-OC(O)Ph), 170.7 (-OC(O)CH₃). **LRMS (m/z):** 478 (M⁺, 5%), 418 (12), 356 (15), 296 (34), 267 (45), 226 (47), 173 (29), 105 (100). **HRMS:** C₂₉H₃₄O₆ (M⁺) requires 478.2355, found 478.2359.


4*RS*, 4*bSR*, 10*aSR*) 10a-acetoxymethyl-4-(1'-Benzoyloxypropyl)-7-methoxy-2-methyl-3, 4, 4*a*, 9,10, 10*a*-hexahydrophenanthren-1(2*H*)-one (12)

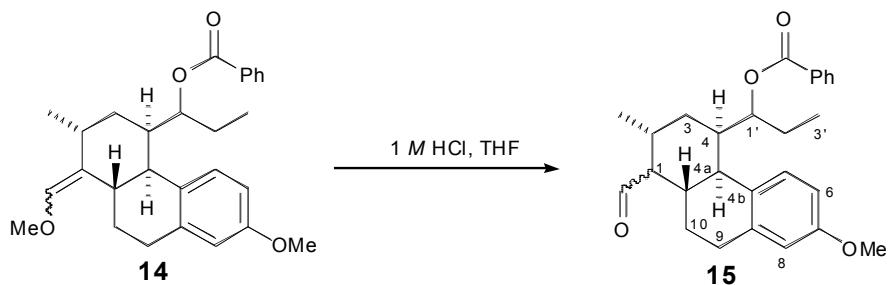
Boron trifluoride diethyl etherate (0.52 mL, 4.10 mmol) was added dropwise to a solution of epoxide **11** (0.98 g, 2.05 mmol) in DCM (35 mL) at 0 °C under nitrogen. The reaction mixture was stirred at 0 °C for 40 min before adding water (15 mL) and stirring vigorously for 10 min. The organic phase was separated, and the aqueous phase extracted with DCM (2 x 15 mL). The combined organic extracts were dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a white foam. Purification by flash column chromatography on silica gel using EtOAc : hexane (1 : 4) as eluant gave the title compound **12** (0.72 g, 74%) as a white solid. A sample was crystallized from hexane to give white needle-like crystals, **m.p.:** 121–123 °C. **IR** (thin film) cm⁻¹: 2967s (C-H), 1739s (C=O), 1709s (C=O), 1611s, 1584, 1502s, 1452, 1378, 1337, 1314, 1271, 1174, 1108, 1038. **¹H NMR** (300 MHz, CDCl₃) δ : 0.89 (t, *J*_{3',2'} = 7.2 Hz, 3H, H-3'), 1.12 (d, *J* = 6.3 Hz, 3H, 2-CH₃), 1.55–2.25 (m, 6H), 1.93 (s, 3H, 10a-OC(O)CH₃), 2.45–2.76 (m, 4H), 3.42 (s, 3H, 7-OCH₃), 3.46 (d, *J*_{4a,4} = 4.2 Hz, 1H, H-4a), 3.94, 4.36 (2 x ABd, *J* = 10.8 Hz, 2H, 10a-CH₂OH), 5.75 (ddd, *J* = 10.5 Hz, *J* = 6.9 Hz, *J* = 3.6 Hz, 1H, H-1'), 6.18 (d, *J*_{8,6} = 2.7 Hz, 1H, H-8), 6.55 (dd, *J*_{6,5} = 8.6 Hz, *J*_{6,8} = 2.7 Hz, 1H, H-6), 7.17 (d, *J*_{5,6} = 8.6 Hz, 1H, H-5), 7.26–7.50 (m, 3H, H-3", H-4"), 7.66 (d, *J* = 8.4 Hz, 2H, H-2"). **¹³C NMR** (75 MHz, CDCl₃) δ : 8.1 (CH₃, C-3'), 15.8 (2-CH₃), 20.6 (-OC(O)CH₃), 25.4 (CH₂, C-10), 25.9 (CH₂), 28.0 (CH₂), 33.2 (CH₂), 38.2, 40.7, 41.6, 50.8, 54.3 (7-OCH₃), 67.2 (C10a-CH₂OH), 74.0 (CH, C-1'), 112.4 (CH, C-6), 112.7 (CH, C-8'), 127.4 (CH, C-5'),

127.6 (Ar), 129.0 (Ar), 129.3 (Ar), 130.0 (Ar), 132.2 (C, C-4b), 135.3 (C, C-8a), 156.9 (C, C-7), 165.1 (1'-OC(O)Ph), 170.0 (-OC(O)CH₃), 214.2 (1-CO). **LRMS (m/z):** 478 (M⁺, 11%), 418 (50), 356 (53), 328 (22), 296 (50), 268 (35), 226 (47), 173 (65), 105(100). **HRMS:** C₂₉H₃₄O₆ (M⁺) requires 478.2355, found 478.2362. **Microanalysis:** Calcd. for C₂₉H₃₄O₆: C, 72.78%; H, 7.16%. Found: C, 72.99%; H, 7.25%.


(2*RS*, 4*RS*, 4*bSR*, 10*a**SR*) 4-(1'-Benzoyloxypropyl)-7-methoxy-2-methyl-3, 4, 4*a*, 9,10, 10*a*-hexahydrophenanthren-1(2*H*)-one (13)**

Acetate **12** (0.21 g, 0.44 mmol) was dissolved in ethanolic KOH (0.6 g per 20 mL), and monitored by TLC until all the starting material had been consumed (ca. 1 h). The reaction mixture was neutralised with 1*M* HCl, the ethanol removed *in vacuo* and the residue extracted with EtOAc (3 x 20 mL). The combined organic extracts were washed with water (20 mL), brine (20 mL) and dried over anhydrous MgSO₄. Concentration of the organic phase *in vacuo* gave a brown oil which was purified by flash column chromatography on silica gel using EtOAc : hexane (1 : 4) as eluant to give the title compound **13** (0.12 g, 70%) as a cream solid. A sample was crystallized from hexane to give white crystals, **m.p:** 94–95 °C. **IR** (thin film) cm⁻¹: 2967s (C-H), 1709s (C=O), 1611s, 1584s, 1503s, 1452s, 1316, 1275s, 1111, 1026. **¹H NMR** (300 MHz, CDCl₃) δ : 0.95 (t, *J*_{3',2'} = 7.3 Hz, 3H, H-3'), 1.11 (d, *J* = 6.3 Hz, 3H, 2-CH₃), 1.48 (m, 1H, H-10), 1.70 (dd, *J*_{gem} = 14.1 Hz, *J* = 4.5 Hz, 1H, H-3), 1.81 (m, 1H, H-2'), 1.95 (m, 1H, H'-2'), 2.17 (m, 1H, H'-10), 2.24 (ddd, *J*_{gem} = 14.1 Hz, *J* = 6.0, *J* = 2.1 Hz, 1H, H'-3) 2.45–2.53 (m, 2H, H-9), 2.73 (m, 1H, H-2), 2.99–3.05 (m, 3H, H-4, H-4a, H-10a), 3.46 (s, 3H, 7-OCH₃), 5.88 (ddd, *J* = 10.8 Hz, *J* = 8.4 Hz, *J* = 3.3 Hz, 1H, H-1'), 6.02 (d, *J*_{8,6} = 2.7 Hz, 1H, H-8), 6.52 (dd, *J*_{6,5} = 8.7 Hz, *J*_{6,8} = 2.7 Hz, 1H, H-6), 7.16–7.44 (m, 6H, H-5, H-2'', H-

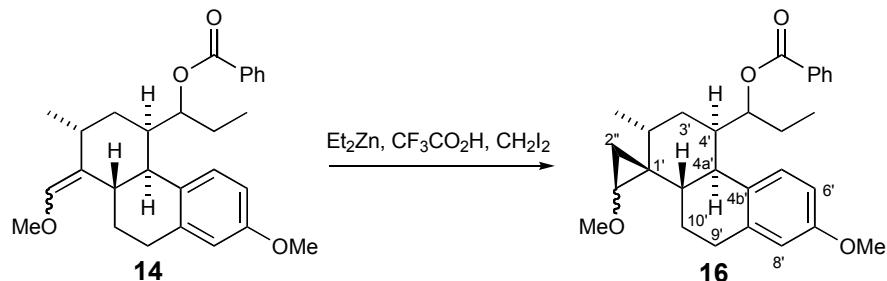
3", H-4"). **¹³C NMR** (75 MHz, CDCl₃) δ: 9.2 (CH₃, C-3'), 14.7 (2-CH₃), 22.3 (CH₂, C-10), 27.2 (CH₂, C-2'), 29.2 (CH₂, C-9), 38.4 (CH₂, C-3), 40.1 (CH, C-2), 40.4 (CH, C-10a), 46.8 (CH, C-4a), 47.3 (CH, C-4), 54.6 (7-OCH₃), 72.7 (CH, C-1'), 112.4 (CH, C-6), 112.6 (CH, C-8), 127.2 (CH, C-5), 127.9 (Ar), 129.0 (Ar), 129.2 (Ar), 132.1 (C, C-4b), 137.1 (C, C-8a), 156.4 (C, C-7), 165.8 (1'-OC(O)Ph), 211.8 (1-CO). **LRMS (m/z):** 406 (M⁺, 90%), 284 (51), 242 (56), 216 (30), 187 (87), 160 (76), 128 (13), 105 (100). **HRMS:** C₂₆H₃₀O₄ (M⁺) requires 406.2144, found 406.2148. **Microanalysis:** Calcd. for C₂₆H₃₀O₄: C, 76.82%, H, 7.44%. Found: C, 76.47%, H, 7.37%.


(2'R^S, 4'R^S, 4a'SR, 10a'SR) 1-[7'-Methoxy-1'-methoxymethylene-2'-methyl-1',1',2', 3',4',4a',9',10',10a'-octahydrophenanthrene-4'-yl]-propan-1-yl Benzoate (14)

Sodium bis(trimethylsilyl)amide (40.5 mL of a 1*M* solution in THF, 40.5 mmol) was added dropwise to a stirred solution of (methoxymethyl)triphenyl phosphonium chloride (13.9 g, 40.5 mmol) in dry THF (50 mL) at 0 °C under nitrogen. After 15 min, a solution of ketone **13** (3.29 g, 8.09 mmol) in THF (50 mL) was added dropwise to the red solution and the reaction mixture was stirred at room temp.. After 4 h, the reaction was quenched with water (20 mL) and extracted with EtOAc (4 x 50 mL). The combined organic extracts were washed with water (20 mL), brine (20 mL), dried over anhydrous MgSO₄, and concentrated *in vacuo* to give a yellow oil. Purification by flash column chromatography using ether : hexane (5 : 95) as eluant gave the title compound **14** (2.96 g, 87%) as a colorless oil, a mixture of *E* and *Z* isomers. **IR** (thin film) cm⁻¹: 2931s (C-H), 1709s (C=O), 1672s, 1610s, 1584, 1502s, 1452s, 1315, 1274s, 1224, 1146, 1112, 1045, 1026. **¹H NMR** (300 MHz, CDCl₃; * indicates peaks belonging to minor isomer) δ: 0.84 (t, *J*_{3,2} = 7.5 Hz, 3H, H-3), 0.87* (t, *J*_{3,2} = 7.5 Hz, 3H, H-3), 1.04 (d, *J* = 6.6 Hz, 3H,

2'-CH₃), 1.34* (d, *J* = 6.6 Hz, 3H, 2'-CH₃), 1.45 (m, 1H, H-10'), 1.59–2.03 (m, 4H), 2.31–2.67 (m, 5H), 2.80–2.96 (m, 2H, H-4a', H-4'), 3.45 (s, 3H, 1'-CHOCH₃), 3.46 (s, 3H, 7'-OCH₃), 3.50* (s, 3H, 1'-CHOCH₃), 3.51* (s, 3H, 7'-OCH₃), 5.63 (s, 1H, 1'-CHOCH₃), 5.70* (s, 1H, 1'-CHOCH₃), 5.71 (m, 1H, H-1), 6.01 (d, *J*_{8',6'} = 2.7 Hz, 1H, H-8'), 6.10* (d, *J*_{8',6'} = 2.7 Hz, 1H, H-8'), 6.50 (dd, *J*_{6',5'} = 8.4 Hz, *J*_{6',8'} = 2.7 Hz, 1H, H-6'), 6.55* (dd, *J*_{6',5'} = 8.4 Hz, *J*_{6',8'} = 2.7 Hz, 1H, H-6'), 7.12 (d, *J*_{5',6'} = 8.4 Hz, 1H, H-5'), 7.18* (d, *J*_{5',6'} = 8.4 Hz, 1H, H-5'), 7.18–7.52 (m, 5H, H-2'', H-3'', H-4''). **¹³C NMR** (75 MHz, CDCl₃; * indicates peaks belonging to minor isomer) δ : 9.2 (CH₃, C-3), 9.4* (CH₃, C-3), 19.0 (2'-CH₃), 21.0* (2'-CH₃), 26.2 (CH₂), 26.3* (CH₂), 26.9 (CH₂), 27.8* (CH₂), 30.5 (CH₂), 31.3* (CH₂), 31.6 (CH₂), 32.2* (CH₂), 37.9 (CH), 38.8* (CH), 40.2 (CH), 40.4* (CH), 41.0 (CH), 41.4* (CH), 47.3 (CH), 47.6* (CH), 54.6 (7'-OCH₃), 54.7* (7'-OCH₃), 59.6 (1'-CHOCH₃), 73.6 (CH, C-1), 74.3* (CH, C-1), 112.0 (CH, C-6'), 112.5 (CH, C-8'), 112.6* (CH, C-8'), 123.8 (CH, 1'-CHOCH₃), 123.9* (CH, 1'-CHOCH₃), 127.2 (CH, C-5'), 127.3* (CH, C-5'), 127.9 (Ar), 128.0* (Ar), 129.3 (Ar), 129.6* (Ar), 129.7 (Ar), 130.8 (Ar), 131.2* (Ar), 131.9 (C, C-4b'), 132.0* (C, C-4b'), 137.6 (C, C-8a'), 138.2* (C, C-8a'), 139.4 (C, C-1'), 139.6* (C, C-1'), 156.0 (C, C-7'), 156.1* (C, C-7'), 165.6 (1-OC(O)Ph), 165.7* (1-OC(O)Ph). **LRMS (m/z)**: 434 (M⁺, 9%), 312 (100), 297 (2), 280 (7), 267 (10), 243 (53), 225 (4), 211 (9), 185 (4), 158 (9). **HRMS**: C₂₈H₃₅O₄ (MH⁺) requires 435.2535, found 435.2541.

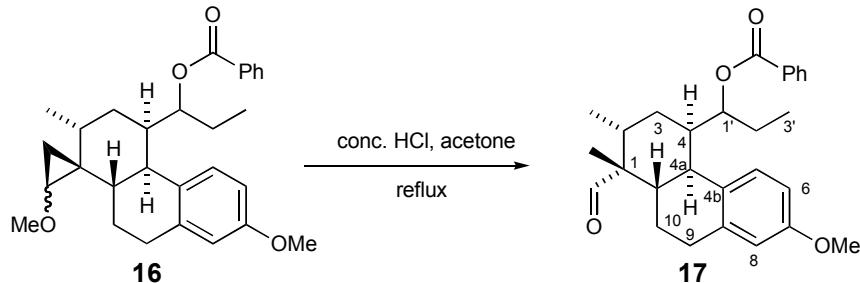
(1*RS*, 2*RS*, 4*RS*, 4a*SR*, 10a*SR*, 1*'SR*) 4-(1'-Benzoyloxypropyl)-7-methoxy-2-methyl-3,4,4a,9,10,10a-hexahydrophenanthrene-1(2H)-carbaldehyde (15).



1 M HCl (~2 mL) was added to a solution of enol ether **14** (0.12g, 0.052 mmol) in THF (20 mL) and the resulting reaction mixture was stirred overnight. The solvent was removed *in vacuo*, and the residue was partitioned between EtOAc and water (1 : 1, 20

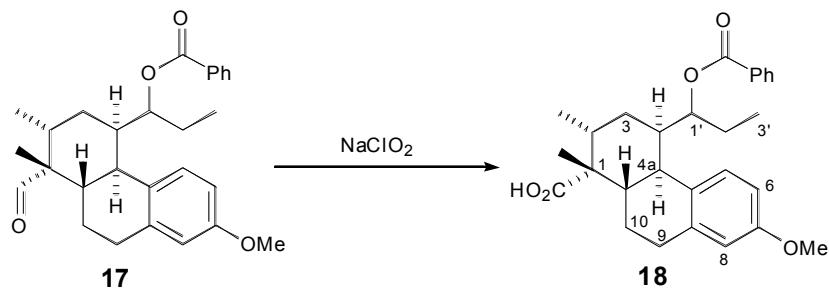
mL). After separation of the organic phase, the aqueous phase was extracted with EtOAc (2 x 10 mL). The combined organic extracts were washed with water (10 mL), brine (10 mL), dried over anhydrous MgSO₄, and concentrated *in vacuo* to give a colourless oil. Purification by flash column chromatography using EtOAc : hexane (1 : 9) as eluant gave the title compound (0.05 g, 44%) as a colourless oil, a mixture of two isomeric aldehydes.

IR (thin film) cm⁻¹: 2925s (C-H), 1711s (C=O), 1610s, 1503, 1452s, 1315, 1274s, 1111, 1045. **¹H NMR** (300MHz, CDCl₃; * indicates peaks belonging to minor isomer) δ : 0.90 (t, $J_{3',2'} = 7.3$ Hz, 3H, H-3'), 0.92* (t, $J_{3',2'} = 7.3$ Hz, 3H, H-3'), 0.94* (d, $J = 6.6$ Hz, 3H, 2-CH₃), 1.07 (d, $J = 6.9$ Hz, 3H, 2-CH₃), 1.45-1.55 (m, 1H, H-10'), 1.63-1.93 (m, 4H, H-2', H-3), 1.98-2.08 (m, 1H, H'-10), 2.12-2.30 (m, 1H, H-2), 2.55-2.67 (m, 3H, H-9, H-10a), 2.71-2.78* (m, 1H, H-4a), 2.70-3.12 (m, 2H, H-1, H-4), 3.24-3.32 (m, 1H, H-4a), 3.45 (s, 3H, 7-OCH₃), 3.47* (s, 3H, 7-OCH₃), 5.64-5.74 (m, 1H, H-1'), 6.00 (d, $J_{8,6} = 2.7$ Hz, 1H, H-8), 6.04* (d, $J_{8,6} = 2.7$ Hz, 1H, H-8), 6.51 (dd, $J_{6,5} = 8.4$ Hz, $J_{6,8} = 2.7$ Hz, 1H, H-6), 6.52* (dd, $J_{6,5} = 8.4$ Hz, $J_{6,8} = 2.7$ Hz, 1H, H-6), 7.17-7.42 (m, 6H, H-5, H-2'', H-3'', H-4''), 9.59* (d, $J = 5.4$ Hz, 1H, 1-CHO), 10.00 (d, $J = 4.5$ Hz, 1H, 1-CHO). **¹³C NMR** (75MHz, CDCl₃; * indicates peaks belonging to minor isomer) δ : 9.1* (CH₃, C3'), 9.2 (CH₃, C3'), 19.7 (2-CH₃), 20.6* (2-CH₃), 26.5 (CH₂, C10), 26.8* (CH₂, C10'), 27.0 (CH₂, C2), 28.1* (CH₂, C2), 29.5 (CH₂, C9), 29.9* (CH₂, C9), 30.7 (CH₂, C3), 33.3* (CH, C2'), 35.2 (CH, C2'), 37.0 (CH, C10a), 37.8* (CH, C10a), 39.7* (CH, C4), 40.7 (CH, C4), 41.2 (CH, C4a), 44.9* (CH, C4a), 54.6 (7-OCH₃), 57.4* (7-OCH₃), 64.4 (CH, C1), 72.8 (CH, C1'), 73.4* (CH, C1'), 112.2 (CH, C6), 112.5* (CH, C6), 112.6 (CH, C8), 127.2 (CH, C5), 127.4* (CH, C5), 127.8 (C, Ar), 129.2 (C, Ar), 130.0* (C, C4b), 132.0 (C, C4b), 137.1* (C, C8a), 137.3 (C, C8a), 156.2 (C, C7), 165.7 (C, C1), 206.9* (1-CHO), 206.3 (1-CHO). **LRMS (m/z):** 420 (M⁺, 5%), 336 (21), 298 (55), 269 (24), 231 (59), 215 (52), 199 (17), 105 (100).


(1'RS, 2'RS, 4'RS, 4a'SR, 10a'SR) 1-[7'-Methoxy-1''-methoxy-spiro[cyclopropane-1',1']-2'-methyl-1',2',3',4',4a',9',10',10a'-octahydrophenanthrene-4'-yl]-propan-1-yl Benzoate (16).

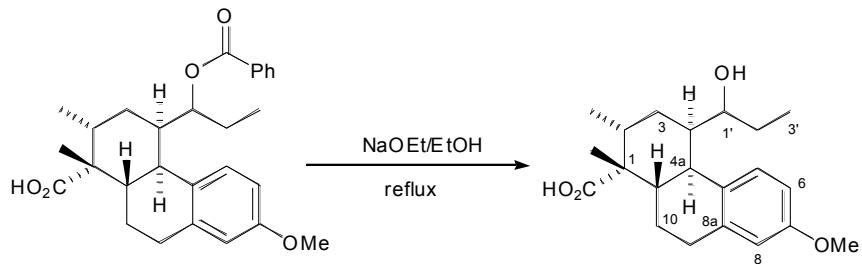
Diethyl zinc (24.5 mL of a 1 *M* solution in hexanes, 24.5 mmol) was added to DCM (20 mL) at 0 °C under nitrogen. Trifluoroacetic acid (1.89 mL, 24.5 mmol) in DCM (10 mL) was then added dropwise and the resulting reaction mixture stirred for 20 min. Diiodomethane (1.98 mL, 24.5 mmol) in DCM (10 mL) was then added and after 20 min enol ether **14** (2.96 g, 7.01 mmol) was added. The reaction mixture was warmed to room temp. and stirred for a further 20 min. The reaction was quenched with a saturated solution of NH₄Cl and extracted with DCM (3 x 50 mL). The combined organic extracts were washed with water, dried over MgSO₄ and concentrated *in vacuo* to give the title compound **16** (ca. 3 g) as a yellow oil. The crude product was used directly in the next step without any further purification. A sample was purified by flash column chromatography using ether : petroleum spirit (0.5 : 9.5) for characterization purposes. **IR** (thin film) cm⁻¹: 2929s (C-H), 1709s (C=O), 1503s, 1455, 1273s, 1112, 1067, 1042, 1020. **¹H NMR** (300 MHz, CDCl₃; * indicates peaks belonging to minor isomer) δ : 0.59 (d, *J* = 7.1 Hz, 3H, 2'-CH₃), 0.64 (m, 1H, H-2''), 0.86 (t, *J*_{3,2} = 7.2 Hz, 3H, H-3), 0.88* (t, *J*_{3,2} = 7.2 Hz, 3H, H-3), 0.81 (m, 1H, H'-2''), 0.97* (d, *J* = 7.1 Hz, 3H, 2'-CH₃), 1.57 (m, 1H, H-10'), 1.62–1.89 (m, 4H), 2.11–2.54 (m, 5H), 2.89 (m, 1H, H-4'), 3.10–3.23 (m, 2H, H-4a', H-1''), 3.22 (s, 3H, 1'-CHOCH₃), 3.30* (s, 3H, 1'-CHOCH₃), 3.43 (s, 3H, 7'-OCH₃), 3.45* (s, 3H, 7'-OCH₃), 5.75 (ddd, *J* = 11.1 Hz, *J* = 7.8 Hz, *J* = 3.3 Hz, 1H, H-1), 5.97 (d, *J*_{8',6'} = 2.9 Hz, 1H, H-8'), 6.49 (dd, *J*_{6',5'} = 8.4 Hz, *J*_{6',8'} = 2.9 Hz, 1H, H-6'), 6.52* (dd, *J*_{6',5'} = 8.4 Hz, *J*_{6',8'} = 2.9 Hz, 1H, H-6'), 7.14 (d, *J*_{5',6'} = 8.4 Hz, 1H, H-5'), 7.17–7.45

(m, 5H). **¹³C NMR** (75 MHz, CDCl₃; * indicates peaks belonging to minor isomer) δ : 9.2 (CH₃, C-3), 9.8* (CH₃, C-3), 10.8 (CH₂, 1'-CH₂), 16.6 (2'-CH₃), 18.4* (2'-CH₃), 25.3 (CH₂), 27.0 (CH₂), 29.8 (CH₂), 30.5 (CH₂), 31.3 (CH₂), 32.1* (CH₂), 32.9 (C, C-1'), 33.1* (C, C-1'), 38.6 (CH), 38.9* (CH), 38.4 (CH), 41.8 (CH), 42.0* (CH), 45.7 (CH), 46.0* (CH), 54.6 (7'-OCH₃), 54.7* (7'-OCH₃), 57.8 (1'-CHOCH₃), 58.1* (1'-CHOCH₃), 59.7 (1'-CHOCH₃), 60.0* (1'-CHOCH₃), 73.7 (CH, C-1), 74.0* (CH, C-1), 112.0 (CH, C-6'), 112.2 (CH, C-8'), 112.4* (CH, C-8'), 127.2 (CH, C-5'), 127.4* (CH, C-5'), 127.9 (Ar), 128.1* (Ar), 129.3 (Ar), 129.7* (Ar), 131.6 (C, C-4b'), 131.9* (C, C-4b'), 137.5 (C, C-8a'), 138.2* (C, C-8a'), 155.9 (C, C-7'), 156.0* (C, C-7'), 165.7 (1-OC(O)Ph). **LRMS (m/z):** 448 (M⁺, 15%), 326 (68), 294 (11), 284 (65), 268 (85), 251 (21), 239 (34) 225 (100), 211 (23), 197 (20), 185 (14). **HRMS:** C₂₉H₃₆O₄ (M⁺) requires 448.2614, found 448.2615.


(1*RS*, 2*RS*, 4*RS*, 4a*SR*, 10a*SR*) 4-(1'-Benzoyloxypropyl)-1,2-dimethyl-7-methoxy-3,4,4a,9,10,10a-hexahydrophenanthrene-1(2*H*)-carbaldehyde (17)

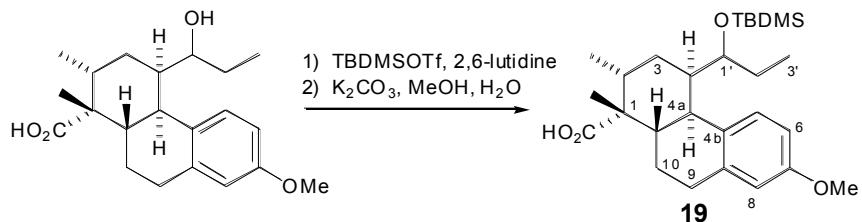
Concentrated HCl (4 mL) was added to cyclopropane **16** (3 g, 7 mmol) in acetone (80 mL) and heated at reflux for 10 h. Water (10 mL) was then added and the acetone removed *in vacuo*. The mixture was extracted with EtOAc (4 x 10 mL) and the combined organic extracts washed with brine (10 mL), saturated NaHCO₃ (10 mL) then water (10 mL). The organic phase was dried over anhydrous MgSO₄ and concentrated *in vacuo* to give the title compound **17** (3 g) as a yellow oil which was used in the next step without further purification. A sample was purified by flash column chromatography for characterization purposes, on silica gel using ether : hexane (5 : 95) as eluant to give the

title compound as a white solid. A sample was crystallized from EtOAc : hexane to give white crystals, **m.p.**: 150–152 °C. **IR** (thin film) cm^{-1} : 2917s (C-H), 1709s (C=O), 1610s, 1503s, 1453, 1273s, 1108. **$^1\text{H NMR}$** (300 MHz, CDCl_3) δ : 0.90 (t, $J_{3',2'} = 7.3$ Hz, 3H, H-3'), 1.01 (d, $J = 6.7$ Hz, 3H, 2-CH₃), 1.35 (s, 3H, 1-CH₃), 1.26 (m, 1H, H-10), 1.65 (m, 1H, H-2'), 1.77–1.93 (m, 3H, H'-2', H-3, H-2), 2.07–2.20 (m, 3H, H'-3, H'-10, H-10a), 2.47–2.50 (m, 2H, H-9), 2.98 (m, 1H, H-4), 3.40 (m, 1H, H-4a), 3.44 (s, 3H, 7-OCH₃), 5.72 (ddd, $J = 10.8$ Hz, $J = 7.8$ Hz, $J = 2.7$ Hz, 1H, H-1'), 5.99 (d, $J_{8,6} = 2.7$ Hz, 1H, H-8), 6.50 (dd, $J_{6,5} = 8.4$ Hz, $J_{6,8} = 2.7$ Hz, 1H, H-6), 7.17–7.42 (m, 6H, H-5, H-2'', H-3'', H-4''), 9.93 (s, 1H, 1-CHO). **$^{13}\text{C NMR}$** (75 MHz, CDCl_3) δ : 9.1 (CH₃, C-3'), 17.2 (2-CH₃), 19.9 (1-CH₃), 24.0 (CH₂, C-10), 26.8 (CH₂, C-2'), 31.1 (CH₂, C-9), 35.5 (CH₂, C-3), 35.6 (CH, C-2), 40.6 (CH, C-4), 41.7 (CH, C-4a), 43.3 (CH, C-10a), 51.9 (C, C-1), 54.7 (7-OCH₃), 72.8 (CH, C-1'), 112.3 (CH, C-6), 112.4 (CH, C-8), 127.3 (CH, C-5), 127.9 (Ar), 129.3 (Ar), 129.4 (Ar), 132.0 (C, C-4b), 137.3 (C, C-8a), 156.3 (C, C-7), 165.7 (1'-OC(O)Ph), 207.7 (1-CHO). **LRMS (m/z)**: 434 (M⁺, 10%), 336 (68), 312 (12), 283 (11), 231 (74), 215 (100), 199 (24), 185 (23). **HRMS**: $\text{C}_{28}\text{H}_{34}\text{O}_4$ (M⁺) requires 434.2457, found 434.2452.


(1*RS*, 2*RS*, 4*RS*, 4a*SR*, 10a*SR*) 4-(1'-Benzoyloxypropyl)-1,2-dimethyl-7-methoxy-3,4,4a,9,10,10a-hexahydrophenanthrene-1(2*H*)-carboxylic acid (18).

Aldehyde **17** (3.25 g, 7.02 mmol) was dissolved in a mixture of acetonitrile (200 mL), hydrogen peroxide (24 mL of a 30% w/v solution) and NaH_2PO_4 buffer (24 mL, pH 2). The solution was cooled to 0 °C and NaClO_2 (1.27 g, 14.0 mmol) was added. The resulting reaction mixture was stirred for 5 h then diluted with EtOAc (150 mL) and washed with water (100 mL). The organic phase was separated and the aqueous layer

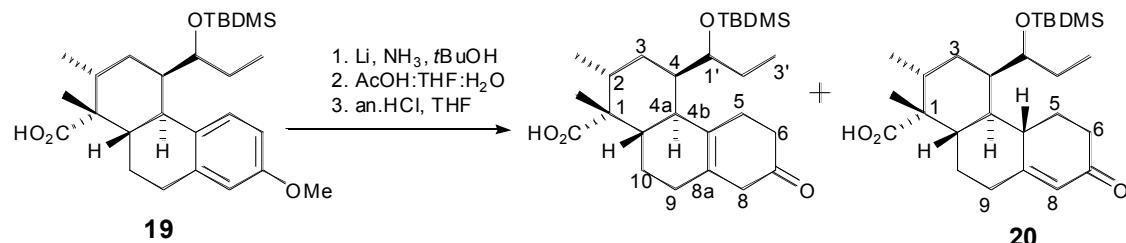
extracted with EtOAc (2 x 50 mL). The combined organic extracts were washed with water (50 mL), brine (50 mL), dried over MgSO₄ and concentrated *in vacuo* to give a yellow solid. Purification by flash column chromatography using EtOAc : petroleum spirit (1 : 4) with 1% HOAc as eluant gave acid **18** (2.52 g, 80% over three steps) as a white solid. A sample was crystallized from ether : hexane to give white crystals, **m.p.**: 203–205 °C. **IR** (thin film) cm⁻¹: 3289br (C-OH), 2938s (C-H), 1709s (C=O), 1689s (C=O), 1606, 1503, 1450, 1275s, 1109. **¹H NMR** (300 MHz, CDCl₃) δ: 0.87 (t, *J*_{3',2'} = 7.5 Hz, 3H, H-3'), 1.00 (d, *J* = 6.6 Hz, 3H, 2-CH₃), 1.39 (s, 3H, 1-CH₃), 1.09–2.34 (m, 8H, H-2', H-3, H-2, H-10, H-10a), 2.37–2.58 (m, 2H, H-9), 2.86 (m, 1H, H-4), 3.44 (s, 3H, 7-OCH₃), 3.55 (m, 1H, H-4a), 5.64 (ddd, *J* = 10.5 Hz, *J* = 7.5 Hz, *J* = 2.7 Hz, 1H, H-1'), 5.99 (d, *J*_{8,6} = 2.7 Hz, 1H, H-8), 6.51 (dd, *J*_{6,5} = 8.4 Hz, *J*_{6,8} = 2.7 Hz, 1H, H-6), 7.15–7.41 (m, 6H, H-5, H-2'', H-3'', H-4''). **¹³C NMR** (75 MHz, CDCl₃) δ: 9.0 (CH₃, C-3'), 17.4 (2-CH₃), 23.2 (1-CH₃), 24.6 (CH₂, C10), 26.6 (CH₂, C-2'), 30.9 (CH₂, C-9), 34.5 (CH₂, C-3), 35.4 (CH, C-2), 39.8 (CH, C-4), 39.9 (CH, C-4a), 42.5 (CH, C-10a), 49.9 (C, C-1), 54.6 (7-OCH₃), 73.2 (CH, C-1'), 112.2 (CH, C-6), 112.4 (CH, C-8), 127.3 (CH, C-5), 127.9 (Ar), 129.3 (Ar), 129.5 (Ar), 131.4 (Ar), 132.0 (C, C-4b), 137.2 (C, C-8a), 156.1 (C, C-7), 165.9 (1'-OC(O)Ph), 181.1 (1-CO₂H). **LRMS (m/z):** 450 (M⁺, 90%), 328 (68), 283 (30), 240 (46), 231 (42), 213 (31), 159 (26), 105 (100). **HRMS:** C₂₈H₃₄O₅ (M⁺) requires 450.2406, found 450.2406. **Microanalysis:** Calcd. For C₂₈H₃₄O₅: C, 74.64%, H, 7.61%. Found: C, 74.43%, H, 7.67%.


(1*RS*, 2*RS*, 4*RS*, 4a*SR*, 10a*SR*, 1*'SR*) 4-(1'-hydroxypropyl)-7-methoxy-1,2-methyl-3,4,4a,9,10,10a-hexahydrophenanthrene-1(2*H*)-carboxylic acid

Sodium (2 g) was slowly added to the benzoate (2.52 g, 5.62 mmol) in ethanol (120 mL) at room temperature under nitrogen. The reaction mixture was heated at reflux for 2 d,

then water (50 mL) was added and the ethanol removed *in vacuo*. The residue was treated with 1 M HCl until pH 5 and extracted with EtOAc (3 x 50 mL). The combined organic extracts were dried over MgSO₄ and concentrated *in vacuo* to give the crude product as a yellow solid. Purification by flash column chromatography using EtOAc : petroleum spirit (1 : 9) with 1% acetic acid as eluant gave the title compound (1.24 g, 65%) as a white foam and recovered starting material (0.97 g, 35%) which was re-submitted to the reaction conditions and purified as above to give more of the title compound (1.38 g total, 73%). **IR (thin film) cm⁻¹**: 3546br (C-OH), 2934s (C-H), 1694s (C=O), 1610s, 1500s, 1464, 1256s, 1157. **¹H NMR** (300 MHz, CDCl₃) δ : 0.92 (t, $J_{3',2'} = 7.5$ Hz, 3H, H-3'), 0.96 (d, $J = 6.6$ Hz, 3H, 2-CH₃), 1.26-1.67 (m, 6H), 1.34 (s, 3H, 1-CH₃), 1.97 (td, $J = 12.0$ Hz, $J = 1.5$ Hz, 1H), 2.08 (m, 1H), 2.57 (m, 1H, H-4), 2.68-2.89 (m, 2H, H-9), 3.59 (m, 1H, H-4a), 3.74 (s, 3H, 7-OCH₃), 3.94 (m, 1H, H-1'), 6.58 (d, $J_{8,6} = 2.7$ Hz, 1H, H-8), 6.73 (dd, $J_{6,5} = 8.7$ Hz, $J_{6,8} = 2.7$ Hz, 1H, H-6), 7.29 (d, $J_{5,6} = 8.7$ Hz, 1H, H-5). **¹³C NMR** (75 MHz, CDCl₃) δ : 9.5 (CH₃, C-3'), 17.3 (2-CH₃), 23.2 (1-CH₃), 24.5 (CH₂), 29.0 (CH₂), 31.3 (CH₂), 34.4 (CH₂), 35.4 (CH), 39.8 (CH), 42.0 (CH), 43.1 (CH), 49.7 (C, C-1), 55.0 (7-OCH₃), 72.8 (CH, C-1'), 112.3 (CH, C-6), 114.1 (CH, C-8), 128.0 (CH, C-5), 130.9 (C, C-4b), 138.5 (C, C-8a), 157.2 (C, C-7), 180.7 (1-CO₂H). **LRMS (m/z)**: 346 (M⁺, 75%), 328 (15), 283 (11), 241 (25), 199 (26), 187 (66), 174 (100), 161 (37). **HRMS**: C₂₁H₃₀O₄ (M⁺) requires 346.2144, found 346.2143.

(1*RS*, 2*RS*, 4*RS*, 4a*SR*, 10a*SR*, 1*'SR*) 4-(1'-*t*-butyldimethylsilyloxyproyl)-7-methoxy-1,2-methyl-3,4,4a,9,10,10a-hexahydrophenanthrene-1(2*H*)-carboxylic acid (19)

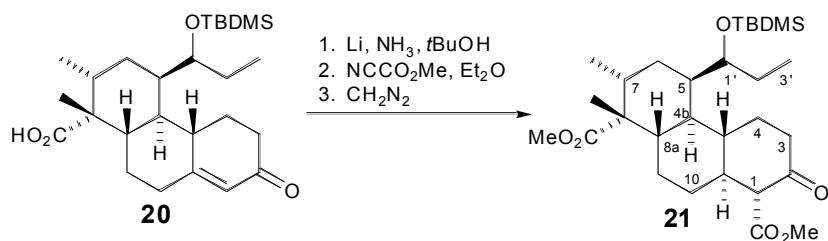


t-Butyldimethylsilyl trifluoromethanesulfonate (1.43 mL, 6.23 mmol) was added dropwise to the alcohol (0.72 g, 2.08 mmol) and 2,6-lutidine (0.97 mL, 8.32 mmol) in DCM (20 mL) at room temperature under nitrogen. After 15 min water (20 mL) was

added and the organic phase was separated then the aqueous layer extracted with DCM (2 x 20 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO_4 and concentrated *in vacuo* to give the crude *bis*-protected product as a yellow gum.

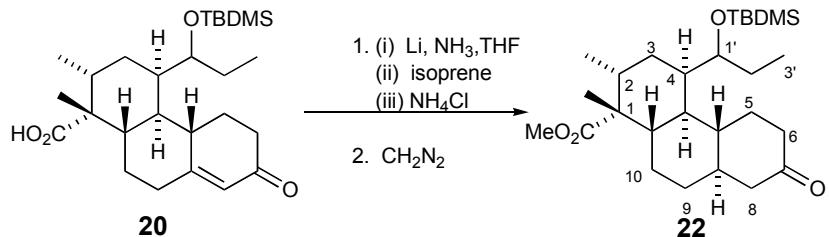
Potassium carbonate (10% in water 10 mL) was added to a solution of the TBDMS ester in THF : MeOH (1 : 3, 40 mL) and stirred at room temperature for 1 h 45 min. The methanol was removed *in vacuo*, the residue treated with 1 M HCl until pH 5 and then extracted with EtOAc (3 x 20 mL). The combined organic extracts were washed with brine (10 mL), dried over MgSO_4 and concentrated *in vacuo* to give a yellow oil. Purification by flash column chromatography on silica gel using EtOAc : hexane (1 : 9) with 1% acetic acid as eluant gave the title compound **19** (0.78 g, 81%) as a white solid. A sample was crystallised from hexane to give white crystals, **m.p.**: 172-173 °C. **IR** (thin film) cm^{-1} : 3500br (C-OH), 2929s (C-H), 1692s (C=O), 1611, 1502s, 1472, 1255s, 1079. **$^1\text{H NMR}$** (300 MHz, CDCl_3) δ : -0.11 (s, 3H, -SiCH₃), -0.07 (s, 3H, -SiCH₃), 0.80 (s, 9H, -Si^tBu), 0.75-0.84 (m, 3H, H-3'), 0.98 (d, J = 6.6 Hz, 3H, 2-CH₃), 1.87-2.16 (m, 8H), 1.33 (s, 3H, 1-CH₃), 2.68-2.84 (m, 3H), 3.53 (dd, $J_{4\text{a},10\text{a}} = 12.0$ Hz, $J_{4\text{a},4} = 4.5$ Hz, 1H, H-4a), 3.77 (s, 3H, 7-OCH₃), 3.87 (m, 1H, H-1'), 6.54 (d, $J_{8,6} = 2.7$ Hz, 1H, H-8), 6.70 (dd, $J_{6,5} = 8.7$ Hz, $J_{6,8} = 2.7$ Hz, 1H, H-6), 7.23 (d, $J_{5,6} = 8.7$ Hz, 1H, H-5). **$^{13}\text{C NMR}$** (75 MHz, CDCl_3) δ : -4.5 (SiCH₃), -3.9 (SiCH₃), 9.8 (CH₃, C-3), 17.7 (2-CH₃), 18.2 (SiC), 23.5 (1-CH₃), 25.2 (CH₂), 26.1 (Si^tBu), 28.7 (CH₂), 31.4 (CH₂), 31.9 (CH₂), 36.8 (CH), 39.2 (CH), 39.4 (CH), 43.6 (CH), 49.6 (C, C-1), 55.2 (7-OCH₃), 72.7 (CH, C-1'), 111.8 (CH, C-6), 113.2 (CH, C-8), 128.4 (CH, C-5), 131.1 (C, C-4b), 137.4 (C, C-8a), 156.7 (C, C-7), 181.4 (1-CO₂H). **LRMS (m/z)**: 460 (M^+ , 15%), 437 (17), 405 (50), 403 (98), 283 (23), 241 (23), 173 (100), 117 (70). **HRMS**: $\text{C}_{27}\text{H}_{44}\text{O}_4\text{Si}$ (M^+) requires 460.3009, found 460.3007. **Microanalysis**: Calcd. for $\text{C}_{27}\text{H}_{44}\text{O}_4\text{Si}$: C, 70.39%, H, 9.63%. Found: C, 70.06%, H, 9.49%.

(1RS, 2RS, 4RS, 4aS, 10aS)-4-(1'-*t*-Butyldimethylsilyloxypropyl)-1,2-dimethyl-7-oxo-3,4,4a,4b,5,6,7,9,10,10a-decahydrophenanthrene-1(2H)-carboxylic Acid (20)



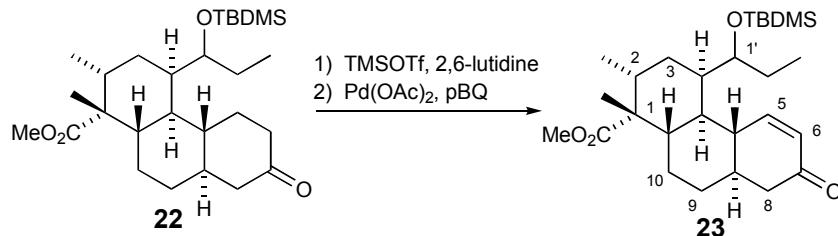
Dry ammonia (200 mL) was distilled into a 3-necked flask fitted with a dry ice condenser under nitrogen. Small pieces of freshly cleaned lithium wire (1.65 g, 245.3 mmol) were added at -78°C and the resulting blue solution was stirred for 15 min. Silyl ether **19** (2.26 g, 4.91 mmol) in THF (50 mL) was added over 10 min, stirred for 15 min, then *t*-butanol (50mL) was added. The blue reaction mixture was warmed to -40°C and stirred for 3 h. The reaction was then quenched with methanol and the ammonia allowed to boil off under a stream of nitrogen before a saturated aqueous solution of NH₄Cl (80 mL) was added. After 15 min water (50 mL) was added and the aqueous phase adjusted to pH 5 with 1*M* HCl then extracted with EtOAc (3 x 100 mL). The combined organic extracts were washed with water (50 mL), brine (50 mL) and dried over anhydrous MgSO₄. Concentration of the organic phase *in vacuo* gave a colorless oil, which was taken up in a solution of AcOH: THF : water (4 : 2 : 1, 50 mL) and stirred for 2 h under nitrogen. The solvent was removed *in vacuo* and the aqueous residue was extracted with ethylacetate (3 x 50 mL) then dried over anhydrous MgSO₄. Concentration of the organic phase *in vacuo* gave the crude $\beta\gamma$ -enone as a colorless oil, which was used directly in the next reaction without further purification. Concentrated H₂SO₄ was added dropwise to NaCl. The resulting hydrogen chloride gas was passed through concentrated H₂SO₄ and then bubbled through THF (35 mL) for 1 min. The crude $\beta\gamma$ -enone in THF (35 mL) was then added to the acidic THF then the reaction was monitored by TLC until half of the starting material had been consumed, and a new UV active spot was observed. Concentration of the organic phase *in vacuo* gave a yellow gum, which was purified by flash column chromatography on silica gel using EtOAc : hexane (1 : 9 – 1 : 4) as eluant to give the $\beta\gamma$ -enone (1.31 g, 39%) as a colorless oil, and the $\alpha\beta$ -enone **20** (1.20 g, 35%) as a white foam (74% combined yield).

$\beta\gamma$ -enone: **IR** (thin film) cm^{-1} : 2931s (C-H), 1721s (C=O), 1694 (C=O), 1472, 1463, 1254s, 1075s. **$^1\text{H NMR}$** (300 MHz, CDCl_3) δ : -0.10 (s, 3H, -SiCH₃), -0.01 (s, 3H, -SiCH₃), 0.82 (s, 9H, -Si^tBu), 0.87 (t, $J_{3',2'} = 7.5$ Hz, 3H, H-3'), 0.91 (d, $J = 6.6$ Hz, 3H, 2-CH₃), 1.28 (s, 3H, 1-CH₃), 1.44-2.20 (m, 11H), 2.26-2.38 (m, 2H), 2.41-2.46 (m, 2H), 2.67 (s(br), 2H, H-8), 2.70-2.90 (m, 2H), 4.05 (dt, $J = 9.9$ Hz, $J = 3.3$ Hz, 1H, H-1'). **$^{13}\text{C NMR}$** (75 MHz, CDCl_3) δ : -4.6 (SiCH₃), -3.4 (SiCH₃), 6.6 (CH₃, C-3'), 17.5 (2-CH₃), 18.2 (SiC), 23.6 (1-CH₃), 24.6 (CH₂), 26.2 (Si^tBu), 27.5 (CH₂), 28.2 (CH₂), 30.5 (CH₂), 34.3 (CH₂), 35.3 (CH), 36.0 (CH), 39.1 (CH₂), 41.7 (CH), 42.2 (CH), 44.7 (CH₂, C-8), 49.8 (C), 70.7 (CH, C-1'), 122.8 (C, C-8a), 133.0 (C, C-4b), 181.2 (1-CO₂H), 212.2 (7-CO). **LRMS (m/z):** 391 ((M-^tBu)⁺, 50%), 316 (70), 277 (22), 224 (21), 173 (100), 147 (43), 73 (79). **HRMS:** $\text{C}_{22}\text{H}_{35}\text{O}_4\text{Si}$ ((M-^tBu)⁺) requires 391.2305, found 391.2304.


$\alpha\beta$ -enone (20): **IR** (thin film) cm^{-1} : 2932s (C-H), 1694s (C=O), 1671 (C=O), 1472, 1462, 1256s, 1208. **$^1\text{H NMR}$** (300 MHz, CDCl_3) δ : 0.07 (s, 3H, -SiCH₃), 0.08 (s, 3H, -SiCH₃), 0.89 (s, 9H, -Si^tBu), 0.91 (t, $J_{3',2'} = 7.5$ Hz, 3H, H-3'), 0.86-0.94 (m, 3H, 2-CH₃), 1.26 (s, 3H, 1-CH₃), 1.05-2.31 (m, 14H), 2.34-2.45 (m, 2H, H-6), 2.91 (m, 1H, H-4b), 4.16 (dt, $J = 8.4$ Hz, $J = 3.9$ Hz, 1H, H-1'), 5.79 (s, 1H, H-8). **$^{13}\text{C NMR}$** (75 MHz, CDCl_3) δ : -3.8 (SiCH₃), -3.3 (SiCH₃), 7.4 (CH₃, C3'), 17.6 (2-CH₃), 18.2 (SiC), 23.9 (1-CH₃), 26.1 (Si^tBu), 27.0 (CH₂), 28.0 (CH₂), 28.4 (CH₂), 33.1 (CH₂), 35.2 (CH), 35.3 (CH), 35.7 (CH₂), 36.2 (CH₂), 39.0 (CH), 43.5 (CH), 46.3 (CH), 50.1 (C, C-1), 72.3 (CH, C-1'), 123.7 (CH, C-8), 167.8 (C, C-8a), 180.2 (1-CO₂H), 200.9 (7-CO). **LRMS (m/z):** 448 (M⁺, 1%), 319 (80), 345 (15), 316 (100), 273 (21), 224 (48), 173 (91). **HRMS:** $\text{C}_{26}\text{H}_{44}\text{O}_4\text{Si}$ (M⁺) requires 448.3009, found 448.3010.

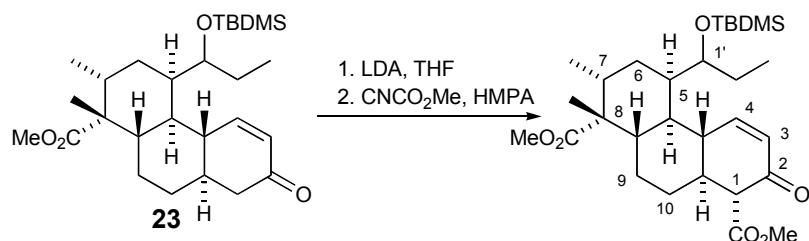
(1 RS , 4 aRS , 4 bSR , 5 RS , 7 RS , 8 SR , 8 aSR , 10 aSR , 1'SR) Dimethyl 5-(1'-*t*-Butyldimethylsilyloxypropyl)-7,8-dimethyl-2-oxo-3,4,4a,4b,5,6,7,8, 8a,9,10,10a-Dodecahydrophenanthrene-1,8(2H, 8aH)-dicarboxylate (21)

Dry ammonia (10 mL) was distilled into a 3-necked flask fitted with a dry ice condenser under nitrogen. Small pieces of freshly cleaned lithium wire (0.002 g, 0.29 mmol) were added at -78 °C and the resulting blue solution stirred for 10 min. A solution of enone **20** (0.030 g, 0.067 mmol) in *t*-butyl alcohol (6.4 μ L, 0.067 mmol) and ether (2 mL) was added dropwise, and the resulting reaction mixture stirred for 15 min. The reaction was quenched with isoprene until the blue colour dispersed, and the ammonia allowed to boil off under a stream of nitrogen. The residue was dried under high vacuum for 5 min then nitrogen was reintroduced. Ether (3 mL) was added and the reaction mixture was cooled to -78 °C. Methyl cyanoformate (11 μ L, 0.13 mmol) was added and the reaction mixture was stirred for 15 min before quenching with lithium hydroxide (2 mL, 2 *M*). The reaction mixture was warmed to room temperature and monitored by TLC until only one product was observed. The reaction mixture was extracted with ether (3 x 15 mL) and the combined organic extracts were washed with water (5 mL), brine (5 mL) and dried over anhydrous MgSO₄. Concentration of the organic phase *in vacuo* gave a colourless oil which was purified by flash column chromatography on silica gel using EtOAc : hexane (5 : 95 - 20 : 80) as eluant to give the keto ester (7.3 mg, 21%) as a colourless oil. Futher elution gave starting material **20** (0.016 g, 53%). The crude keto ester (7.3 mg) was dissolved in ether (1 mL) and diazomethane (1 mL) was added. The reaction mixture was stirred for 15 minutes then excess diazomethane and ether were allowed to blow off under nitrogen to obtain the title compound **21** as a colourless oil (7.3 mg, 100%). **IR (thin film) cm⁻¹**: 2918s (C-H), 1775s (C=O), 1725 (C=O), 1489, 1261, 1189, 1096, 1025. **¹H NMR (300 MHz, CDCl₃) δ :** 0.09 (s, 3H, -SiCH₃), 0.10 (s, 3H, -SiCH₃), 0.91 (s, 9H, -Si^tBu), 0.77 (d, *J* = 6.3 Hz, 3H, 7-CH₃), 0.85-0.95 (m, 3H, H-3'), 0.98-2.54 (m, 21H), 3.09 (d, *J*_{1,10a} = 12.0 Hz, 1H, H-1), 3.62 (s, 3H, 8-CO₂CH₃), 3.74 (s, 3H, 1-CO₂CH₃), 4.08 (m, 1H, H-1'). **LRMS (m/z):** 465 ((M-^tBu)⁺, 50%), 407 (15), 345 (5), 215 (8), 173 (100), 115 (20), 73 (60). **HRMS:** C₂₅H₄₁O₆Si (M-^tBu⁺) requires 465.2672, found 465.2675.


(1*RS*, 2*RS*, 4*RS*, 4a*SR*, 10a*SR*) Methyl 4-(1'-*t*-Butyldimethylsilyloxypropyl)-1,2-dimethyl-7-oxo-3,4,4a,4b,5,6,7,8,8a,9,10,10a-dodecahydrophenanthrene-1(2*H*)-carboxylate (22)

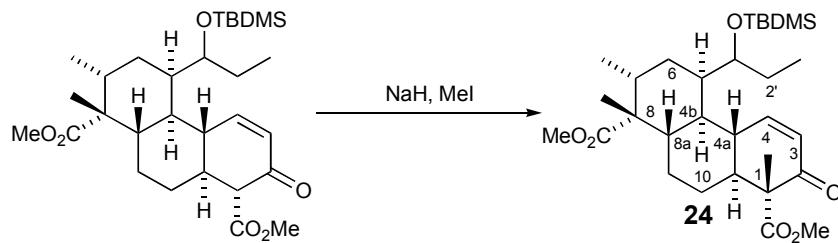
Dry ammonia (70 mL) was distilled into a 3-necked flask fitted with a dry ice condenser under nitrogen. Small pieces of freshly cleaned lithium wire (0.056 g, 8.22 mmol) were added at $-78\text{ }^{\circ}\text{C}$ and the resulting blue solution was stirred for 10 min. A solution of enone **20** (1.23 g, 2.74 mmol) in *t*-butanol (0.26 mL, 2.74 mmol) and THF (40 mL) was added dropwise, and the resulting reaction mixture was stirred for 30 min at $-33\text{ }^{\circ}\text{C}$. The reaction was quenched with isoprene until the blue color dispersed, and the ammonia was allowed to boil off under a stream of nitrogen. A saturated solution of aqueous NH₄Cl (40 mL) was then added and stirring continued for a further 15 min. Water (10 mL) was added and the aqueous phase adjusted to pH 5 with 1*M* HCl then extracted with EtOAc (3 x 40 mL). The combined organic extracts were washed with water (20 mL), brine (20 mL) and dried over anhydrous MgSO₄. Concentration of the organic phase in *vacuo* gave a crude yellow oil which was used directly in the next step without further purification. A freshly prepared solution of diazomethane in ether (120 mL) was added to the crude carboxylic acid (2 g) in ether (50 mL) at 0 $^{\circ}\text{C}$. The yellow reaction mixture was stirred for 30 min, and the excess diazomethane and ether blown off with a stream of nitrogen. Purification by flash column chromatography using EtOAc : petroleum spirit (1 : 9) as eluant gave the title compound **22** (1.2 g, 55% over two steps) as a colorless oil, and an alcohol (7-OH, 0.45 g, 21% over the two steps) which was subsequently converted to **22** by oxidation with DMP (a total of 76% yield over two steps). **IR** (thin film) cm^{-1} : 2952s (C-H), 1721s (C=O), 1472, 1462, 1255, 1145. **¹H NMR** (600 MHz, CDCl₃) δ : 0.08 (s, 3H, -SiCH₃), 0.09 (s, 3H, -SiCH₃), 0.78 (d, *J* = 7.2 Hz, 3H, 2-CH₃), 0.92 (s, 9H, -Si^tBu), 0.93 (t, *J*_{3',2'} = 7.2 Hz, 3H, H-3'), 0.79 (m, 1H, H-10), 1.09 (m, 1H, H-9), 1.24 (s, 3H, 1-CH₃), 1.26–1.35 (m, 2H, H-8a, H-5), 1.48–1.75 (m, 8H, H-2', H-4b, H-3, H-2, H-10a, H'-

9), 1.85 (m, 1H, H-4a), 1.95 (m, 1H, H'-10), 2.06 (m, 1H, H-8), 2.18 (m, 1H, H-4), 2.27 (m, 1H, H'-8), 2.30–2.34 (m, 2H, H-6), 2.44 (m, 1H, H'-5), 3.62 (s, 3H, 1-CO₂CH₃), 4.03 (dt, *J* = 7.2 Hz, *J* = 4.2 Hz, 1H, H-1'). ¹³C NMR (75 MHz, CDCl₃) δ: –4.2 (SiCH₃), –3.0 (SiCH₃), 8.7 (CH₃, C-3'), 17.8 (2-CH₃), 18.2 (SiC), 23.9 (2-CH₃), 26.2 (Si^tBu), 28.1 (CH₂, C-10), 28.6 (CH₂, C-2'), 30.9 (CH₂, C-5), 32.4 (CH₂, C-3), 33.7 (CH₂, C-9), 35.7 (CH), 36.1 (CH, C-4), 40.9 (CH₂, C-6), 42.0 (CH, C-4b), 43.5 (CH, C-8a), 44.0 (CH, C-4a), 44.3 (CH), 48.5 (CH₂, C-8), 50.3 (C, C-1), 50.6 (1-CO₂CH₃), 72.9 (CH, C-1'), 175.0 (1-CO₂CH₃), 211.8 (7-CO). LRMS (m/z): 407 ((M-^tBu)⁺, 91%), 255 (28), 215 (18), 173 (100), 145 (13), 115 (27). HRMS: C₂₃H₃₉O₄Si ((M-^tBu)⁺) requires 407.2618, found 407.2621.


Methyl (1*RS*, 2*RS*, 4*RS*, 4a*SR*, 10a*SR*) Methyl 4-(1'-*t*-Butyldimethylsilyloxypropyl)-1,2-dimethyl-7-oxo-3,4,4a,4b,7,8,8a,9,10,10a-decahydronaphthalene-1(2*H*)-carboxylate (23)

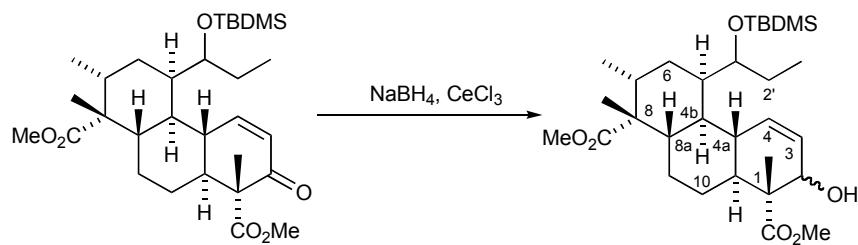
Trimethylsilyl trifluoromethanesulfonate (1.52 mL, 8.39 mmol) was added dropwise to ketone **22** (1.30 g, 2.80 mmol) and 2,6-lutidine (1.30 mL, 11.19 mmol) in DCM (30 mL) at 0 °C under nitrogen. Water (15 mL) was added and the organic phase was separated before further extraction of the aqueous layer with DCM (2 x 15 mL). The combined organic extracts were then washed with brine and dried over anhydrous MgSO₄. Concentration of the organic phase *in vacuo* gave a mixture of two silyl enol ethers (20 : 1, 6,7-enol ether : 7,8-enol ether). The crude silyl enol ethers in acetonitrile (30 mL) were added to palladium acetate (0.63 g, 2.80 mmol) and *p*-benzoquinone (0.15 g, 1.40 mmol) in acetonitrile (30 mL) at room temp. under nitrogen. The resulting reaction mixture was stirred for 30 h, then filtered through a plug of Celite® and washed with ether (60 mL). Concentration *in vacuo* gave a black gum, which was purified by flash column chromatography on silica gel using EtOAc : petroleum spirit (1 : 9) as eluant to give the title $\alpha\beta$ -enone **23** (1.03 g, 79%) as a white solid. A sample was crystallized from hexane

to give white crystals, **m.p.**: 99–101 °C. **IR** (thin film) cm^{-1} : 2933s (C-H), 1722s (C=O), 1684s (C=O), 1472s, 1463, 1253s, 1195. **^1H NMR** (300 MHz, CDCl_3) δ : 0.05 (s, 3H, -SiCH₃), 0.08 (s, 3H, -SiCH₃), 0.79 (d, J = 6.6 Hz, 3H, 2-CH₃), 0.87 (s, 9H, -Si^tBu), 0.93 (t, $J_{3',2'} = 7.2$ Hz, 3H, H-3'), 0.87 (m, 1H, H-10), 1.25 (s, 3H, 1-CH₃), 1.18 (m, 1H, H-9), 1.46–1.69 (m, 8H), 1.80 (m, 1H), 1.96–2.14 (m, 2H, H-8, H-10), 2.35–2.41 (m, 2H, H-8, H-4), 2.55 (m, 1H, H-4b), 3.62 (s, 3H, 1-CO₂CH₃), 4.17 (dt, J = 8.7 Hz, J = 3.9 Hz, 1H, H-1'), 5.97 (m, 1H, H-6), 7.27 (dd, J = 9.0 Hz, J = 1.8 Hz, 1H, H-5). **^{13}C NMR** (75 MHz, CDCl_3) δ : -3.7 (SiCH₃), -3.3 (SiCH₃), 6.9 (CH₃, C-3'), 17.7 (2-CH₃), 18.3 (SiC), 23.9 (1-CH₃), 26.2 (Si^tBu), 27.4 (CH₂), 27.7 (CH₂), 32.4 (CH₂), 33.1 (CH₂), 35.1 (CH), 35.4 (CH), 41.6 (CH), 42.3 (CH), 43.7 (CH), 44.7 (CH), 45.3 (CH₂, C-8), 50.5 (C, C-1), 50.7 (1-CO₂CH₃), 71.6 (CH, C-1'), 128.7 (CH, C-6), 154.1 (CH, C-5), 175.0 (1-CO₂CH₃), 200.2 (7-CO). **LRMS (m/z)**: 405 ((M-^tBu)⁺, 93%), 330 (22), 270 (25), 213 (14), 173 (100), 115 (33). **HRMS**: C₂₃H₃₇O₄Si ((M-^tBu)⁺) requires 405.2461, found 405.2459.

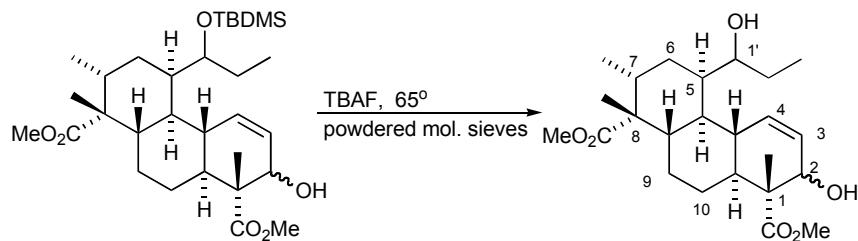

Dimethyl (1*RS*, 2*RS*, 4*RS*, 4a*SR*, 10a*SR*) 5-(1'-*t*-Butyldimethylsilyloxypropyl)-7,8-dimethyl-2-oxo-4a,4b,5,6,7,9,10,10a-octahydrophenanthrene-1,8(2*H*, 8*aH*)-dicarboxylate

n-Butyllithium (1.0 mL of a 1.6*M* solution in hexanes, 1.60 mmol) was added to diisopropylamine (0.22 mL, 1.60 mmol) in THF (10 mL) at -20 °C under nitrogen. The reaction mixture was stirred for 20 min, warmed to 0 °C and stirred for a further 30 min. The solution was cooled to -78 °C, ketone **23** (0.37 g, 0.80 mmol) in THF (10 mL) was added, and then stirred for 1 h at 0 °C. The reaction mixture was then cooled to -78 °C, HMPA (0.14 mL, 0.80 mmol) was added followed by methyl cyanoformate (0.12 mL, 1.60 mmol). After 20 min the mixture was poured into water and extracted with ether (3 x

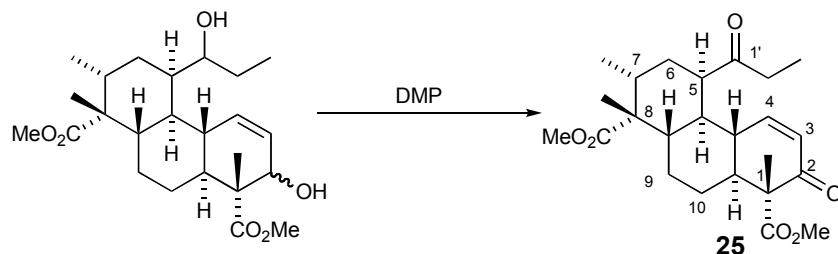
15 mL). The combined organic extracts were washed with water (10 mL), brine (10mL) and dried over anhydrous MgSO_4 . Concentration of the organic phase *in vacuo* gave a yellow oil, which was purified by flash column chromatography on silica gel using $\text{EtOAc} : \text{hexane}$ (1 : 9) as eluant to give the title compound (0.35 g, 83%) as a colorless oil. **IR** (thin film) cm^{-1} : 2952s (C-H), 1746s (C=O), 1722s (C=O), 1681s (C=O), 1472s, 1462s, 1254s, 1149. **$^1\text{H NMR}$** (300 MHz, CDCl_3) δ : 0.05 (s, 3H, - SiCH_3), 0.07 (s, 3H, - SiCH_3), 0.79 (d, $J = 6.6$ Hz, 3H, 7- CH_3), 0.86 (s, 9H, - Si^tBu), 0.93 (t, $J_{3',2'} = 7.2$ Hz, 3H, H-3'), 1.26 (s, 3H, 8- CH_3), 0.90 (m, 1H, H-9), 1.17 (m, 1H, H-10), 1.47–1.72 (m, 6H), 1.82 (m, 1H), 1.95–2.14 (m, 3H, H-4b, H-9, H-10), 2.38 (m, 1H, H-5), 2.69 (m, 1H, H-4a), 3.10 (d, $J_{1,10a} = 12.9$ Hz, 1H, H-1), 3.62 (s, 3H, 8- CO_2CH_3), 3.76 (s, 3H, 1- CO_2CH_3), 4.22 (dt, $J = 9.3$ Hz, $J = 3.6$ Hz, 1H, H-1'), 6.03 (dd, $J = 10.2$ Hz, $J = 2.7$ Hz, 1H, H-3), 7.33 (dd, $J = 10.2$ Hz, $J = 1.8$ Hz, 1H, H-4). **$^{13}\text{C NMR}$** (75MHz, CDCl_3) δ : -3.6 (SiCH_3), -3.2 (SiCH_3), 6.4 (CH_3 , C-3'), 17.7 (7- CH_3), 18.3 (SiC), 23.9 (8- CH_3), 26.2 (Si^tBu), 27.1 (CH_2 , C-9), 27.4 (CH_2), 30.4 (CH_2), 33.3 (CH_2), 34.8 (CH), 35.2 (CH), 42.6 (CH), 42.7 (CH), 43.6 (CH), 44.4 (CH), 50.5 (C, C-8), 50.8 (8- CO_2CH_3), 52.0 (1- CO_2CH_3), 60.9 (CH, C-1), 71.4 (CH, C-1'), 127.5 (CH, C-3), 154.3 (CH, C-4), 170.5 (1- CO_2CH_3), 174.7 (8- CO_2CH_3), 194.6 (2-CO). **LRMS (m/z)**: 463 ($(\text{M}^t\text{Bu})^+$, 93%), 405 (49), 388 (50), 329 (67), 269 (47), 213 (40), 173 (100). **HRMS**: $\text{C}_{25}\text{H}_{39}\text{O}_6\text{Si}$ ($(\text{M}^t\text{Bu})^+$) requires 463.2516, found 463.2514.


(1*RS*, 2*RS*, 4*RS*, 4a*SR*, 10a*SR*) Dimethyl 5-(1'-*t*-Butyldimethylsilyloxypropyl)-2-oxo-1,7,8-trimethyl-4a,4b,5,6,7,9,10,10a-octahydrophenanthrene-1,8(2*H*, 8a*H*)-dicarboxylate (24)

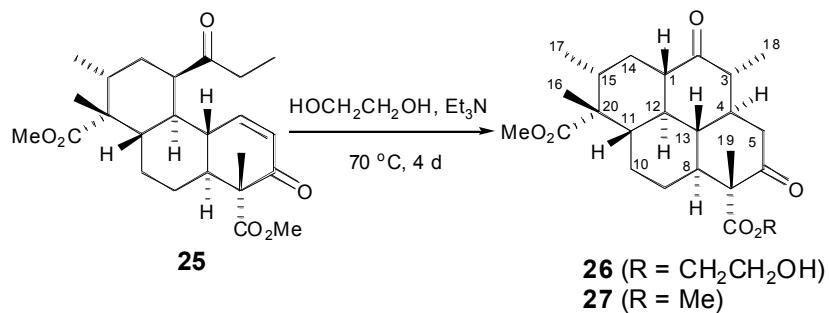
NaH (0.018 g, 0.76 mmol) was added to the β -ketoester (0.33 g, 0.64 mmol) in THF (10 mL) at room temp. under nitrogen. After 5 min iodomethane (0.048 mL, 0.76 mmol) was


added and the reaction mixture stirred for 18 h. The reaction was quenched with water and extracted with EtOAc (4 x 10 mL). The combined organic extracts were washed with water (5 mL), brine (5 mL) and dried over MgSO₄. Concentration of the organic phase *in vacuo* gave a yellow oil which was purified by flash column chromatography on silica gel using EtOAc : petroleum spirit (1 : 9) as eluant to give the title compound **24** (0.29 g, 88%) as a white solid. A sample was crystallized from hexane to give white crystals, **m.p.**: 47–50 °C. **IR** (thin film) cm⁻¹: 2950s (C-H), 1741s (C=O), 1721s (C=O), 1679s (C=O), 1461, 1258s, 1212. **¹H NMR** (300 MHz, CDCl₃) δ : 0.04 (s, 3H, -SiCH₃), 0.09 (s, 3H, -SiCH₃), 0.79 (d, *J* = 6.6 Hz, 3H, 7-CH₃), 0.89 (s, 9H, -Si^tBu), 0.93 (t, *J*_{3',2'} = 7.2 Hz, 3H, H-3'), 1.26 (s, 6H, 1-CH₃, 8-CH₃), 0.91 (m, 1H, H-9), 1.25 (m, 1H, H-10), 1.47–1.68 (m, 6H), 1.81 (m, 1H), 2.01 (m, 1H, H-9), 2.08–2.26 (m, 2H, H-10, H-4b), 2.38 (m, 1H, H-5), 2.56 (m, 1H, H-4a), 3.64 (s, 3H, 8-CO₂CH₃), 3.72 (s, 3H, 1-CO₂CH₃), 4.19 (dt, *J* = 8.7 Hz, *J* = 3.9 Hz, 1H, H-1'), 5.96 (dd, *J* = 10.4 Hz, *J* = 2.7 Hz, 1H, H-3), 7.28 (dd, *J* = 10.4 Hz, *J* = 1.5 Hz, 1H, H-4). **¹³C NMR** (75 MHz, CDCl₃) δ : -3.6 (SiCH₃), -2.9 (SiCH₃), 6.9 (CH₃, C-3'), 14.1 (1-CH₃), 17.6 (7-CH₃), 18.4 (SiC), 23.8 (8-CH₃), 26.3 (Si^tBu), 26.7 (CH₂, C-9), 27.4 (CH₂), 27.9 (CH₂), 33.3 (CH₂), 35.1 (CH), 35.2 (CH), 39.3 (CH), 43.5 (CH), 44.5 (CH), 46.2 (CH), 50.6 (C, C-8), 50.8 (8-CO₂CH₃), 52.2 (1-CO₂CH₃), 58.6 (C, C-1), 72.0 (CH, C-1'), 126.3 (CH, C-3), 152.8 (CH, C-4), 173.2 (1-CO₂CH₃), 174.8 (8-CO₂CH₃), 199.1 (2-CO). **LRMS (m/z)**: 477 ((M-^tBu)⁺, 84%), 459 (22), 419 (37), 357 (38), 343 (53), 283 (22), 173 (100). **HRMS**: C₂₆H₄₁O₆Si (M-^tBu)⁺ requires 477.2672, found 477.2669.

Dimethyl (1*RS*, 2*RS*, 4*RS*, 4a*SR*, 10a*SR*) 5-(1'-*t*-Butyldimethylsilyloxypropyl)-2-hydroxy-1,7,8-trimethyl-4a,4b,5,6,7,9,10,10a-octahydrophenanthrene-1,8(2*H*, 8a*H*)-dicarboxylate


Ketone **24** (0.36 g, 0.67 mmol) in MeOH (10 mL) was added to CeCl₃ heptahydrate (0.28 g, 0.74 mmol) under nitrogen. The solution was cooled to -78 °C, NaBH₄ (0.03 g, 0.74 mmol) was added and the mixture gradually warmed to 0 °C over 50 min. The reaction was quenched with water and the methanol was removed *in vacuo*. The aqueous residue was extracted with EtOAc (4 x 30 mL), then the combined organic extracts were washed with brine (10 mL), back-extracted with EtOAc (2 x 10 mL) and dried over MgSO₄. Concentration of the organic phase *in vacuo* gave two epimeric products, which were purified by flash column chromatography on silica gel using EtOAc : petroleum spirit (1.5 : 8.5) as eluant to give the major alcohol (0.27 g, 75%) as a white solid and the minor alcohol (0.02 g, 5%) as a white solid. A sample of the major alcohol was crystallized with ether to give white crystals, **m.p.**: 133–136 °C. **IR** (thin film) cm⁻¹: 3497br (C-OH), 2951s (C-H), 1723s (C=O), 1468s, 1387, 1255s, 1212. **¹H NMR** (300 MHz, CDCl₃) δ : 0.05 (s, 3H, -SiCH₃), 0.08 (s, 3H, -SiCH₃), 0.76 (d, *J* = 6.6 Hz, 3H, 7-CH₃), 0.88 (s, 9H, -Si^tBu), 0.91 (t, *J*_{3',2'} = 7.2 Hz, 3H, H-3'), 0.85 (m, 1H, H-9), 1.06 (s, 3H, 1-CH₃), 1.22 (s, 3H, 8-CH₃), 1.18 (m, 1H, H-10), 1.46–1.77 (m, 8H), 1.89–2.10 (m, 3H), 2.31 (m, 1H, H-5), 3.63 (s, 3H, 8-CO₂CH₃), 3.70 (s, 3H, 1-CO₂CH₃), 4.09 (m, 1H, H-1'), 4.73 (m, 1H, H-2), 5.51 (m, 1H, H-3), 6.05 (m, 1H, H-4). **¹³C NMR** (75 MHz, CDCl₃) δ : -3.9 (SiCH₃), -3.0 (SiCH₃), 7.9 (CH₃, C-3'), 9.1 (1-CH₃), 17.7 (7-CH₃), 18.4 (SiC), 23.9 (8-CH₃), 26.3 (Si^tBu), 26.9 (CH₂), 28.0 (CH₂), 28.4 (CH₂), 32.8 (CH₂), 35.4 (CH), 36.0 (CH), 39.5 (CH), 44.0 (CH), 44.5 (CH), 46.2 (CH), 50.6 (2 x C, C-8 and C-1), 50.8 (8-CO₂CH₃), 51.9 (1-CO₂CH₃), 72.2 (CH, C-1'), 73.2 (CH, C-2), 128.8 (CH, C-3), 130.6 (CH, C-4), 175.2 (1-CO₂CH₃), 177.1 (8-CO₂CH₃). **LRMS (m/z)**: 479 ((M-^tBu)⁺, 53%), 419 (82), 404 (79), 387 (80), 361 (41), 355 (33), 345 (100). **HRMS**: C₂₆H₄₃O₆Si ((M-^tBu)⁺) requires 479.2829, found 479.2830. **Microanalysis**: Calcd. For C₃₀H₅₂O₆Si: C, 67.12%, H, 9.76%. Found: C, 67.43%, H, 10.00%.

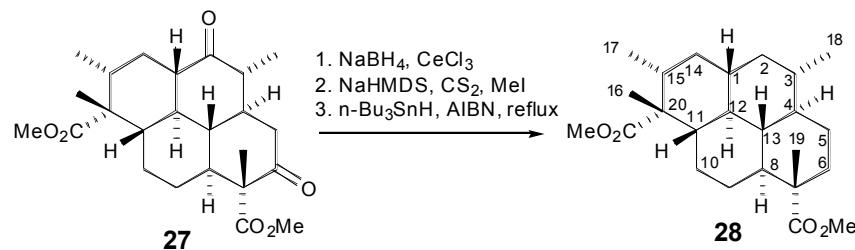
Dimethyl (1*RS*, 2*RS*, 4*RS*, 4a*SR*, 10a*SR*) 5-(1'-hydroxypropyl)-2-hydroxy-1,7,8-trimethyl-2-hydroxy-4a,4b,5,6,7,9,10,10a-octahydrophenanthrene-1,8(2*H*, 8a*H*)-dicarboxylate


Tetrabutyl ammonium fluoride (1.51 mL of a 1*M* solution in THF, 1.51 mmol) was added to the TBDMS ether (0.27 g, 0.50 mmol) in THF (20 mL) containing powdered 4 Å molecular sieves at room temp. under nitrogen, then heated to 65 °C for 36 h. The reaction mixture was cooled to room temp., water (5 mL) was added and the mixture extracted with EtOAc (4 x 20 mL). The combined organic extracts were washed with water (10 mL), brine (10 mL) and dried over MgSO₄. Concentration of the organic phase *in vacuo* gave a yellow oil, which was purified by flash column chromatography on silica gel using EtOAc : hexane (2 : 3 – 4 : 1) as eluant to give the title compound (0.15 g, 84% based on recovered starting material) as a white solid, **m.p.**: 164–165 °C. **IR** (thin film) cm⁻¹: 3497br (C-OH), 2948s (C-H), 1718s (C=O), 1459, 1387, 1256, 1211. **¹H NMR** (300 MHz, CDCl₃) δ : 0.75 (d, *J* = 6.9 Hz, 3H, 7-CH₃), 0.84 (m, 1H, H-9), 0.98 (t, *J*_{3',2'} = 7.5 Hz, 3H, H-3'), 1.05 (s, 3H, 1-CH₃), 1.21 (s, 3H, 8-CH₃), 1.20 (m, 1H, H-10), 1.31–1.99 (m, 10H), 2.14 (m, 1H, H-5), 2.26 (m, 1H, H-4a), 3.63 (s, 3H, 8-CO₂CH₃), 3.69 (s, 3H, 1-CO₂CH₃), 3.91 (td, *J* = 8.7 Hz, *J* = 2.7 Hz, 1H, H-1'), 4.72 (m, 1H, H-2), 5.49 (m, 1H, H-3), 6.10 (m, 1H, H-4). **¹³C NMR** (75 MHz, CDCl₃) δ : 9.2 (1-CH₃), 9.5 (CH₃, C-3'), 17.9 (7-CH₃), 24.1 (8-CH₃), 27.2 (CH₂), 28.3 (CH₂), 28.6 (CH₂), 33.6 (CH₂), 35.4 (CH), 38.6 (CH), 40.1 (CH), 44.4 (CH), 44.8 (CH), 46.2 (CH), 50.7 (C), 51.1 (8-CO₂CH₃), 52.1 (C), 52.2 (1-CO₂CH₃), 71.9 (CH, C-1'), 73.5 (CH, C-2), 128.7 (CH, C-3), 131.4 (CH, C-4), 175.4 (1-CO₂CH₃), 177.5 (8-CO₂CH₃). **LRMS (m/z):** 404 ((M-H₂O)⁺, 20%), 386 (20), 345 (41), 327 (44), 285 (51), 278 (56), 221 (70), 189 (67), 161 (100). **HRMS:** C₂₄H₃₆O₅ (M-H₂O)⁺ requires 404.2563, found 404.2562.

Dimethyl (1*RS*, 2*RS*, 4*RS*, 4a*SR*, 10a*SR*) 5-(1'-oxopropyl)-2-oxo-1,7,8-trimethyl-4a,4b,5,6,7,9,10,10a-octahydrophenanthrene-1,8(2*H*, 8a*H*)-dicarboxylate (25)

Dess–Martin periodinane (0.45 g, 1.07 mmol) was added to the diol (0.15 g, 0.36 mmol) in DCM (10 mL) at 0 °C under nitrogen. After 1.5 h, the reaction mixture was stirred with 1*M* sodium thiosulfate (5 mL) and a saturated aqueous solution of NaHCO₃ (5 mL) until the cloudiness disappeared. The organic phase was separated and the aqueous phase further extracted with DCM (3 x 15 mL). The combined organic extracts were dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a white solid. Purification by flash column chromatography on silica gel using EtOAc : hexane (1 : 9) as eluant gave the title compound **25** (0.12 g, 81%) as a white solid. A sample was crystallized from ether/hexane to give white crystals, **m.p.**: 143–145 °C. **IR** (thin film) cm^{−1}: 2947s (C–H), 1736s (C=O), 1720s (C=O), 1678s (C=O), 1458, 1377, 1263. **¹H NMR** (300 MHz, CDCl₃) δ : 0.82 (d, *J* = 6.9 Hz, 3H, 7-CH₃), 0.78 (m, 1H, H-9), 1.04 (t, *J*_{3',2'} = 7.2 Hz, 3H, H-3'), 1.23 (s, 6H, 1-CH₃, 8-CH₃), 1.17–1.51 (m, 2H), 1.68–1.75 (m, 2H), 1.93–2.44 (m, 7H), 2.69 (m, 1H, H-2'), 3.35 (m, 1H, H-5), 3.63 (s, 3H, 8-CO₂CH₃), 3.71 (s, 3H, 1-CO₂CH₃), 5.96 (dd, *J* = 10.5 Hz, *J* = 2.7 Hz, 1H, H-3), 6.88 (dd, *J* = 10.5 Hz, *J* = 1.5 Hz, 1H, H-4). **¹³C NMR** (75 MHz, CDCl₃) δ : 7.9 (CH₃, C-3'), 13.5 (1-CH₃), 17.2 (7-CH₃), 22.9 (8-CH₃), 26.7 (CH₂, C-9), 27.5 (CH₂, C-10), 32.2 (CH₂, C-6), 35.4 (CH), 35.5 (CH₂, C-2'), 38.9 (CH), 41.5 (CH), 44.6 (CH), 46.0 (CH), 46.1 (CH, C-5), 49.9 (C, C-8), 50.9 (8-CO₂CH₃), 52.3 (1-CO₂CH₃), 58.7 (C, C-1), 127.6 (CH, C-3), 149.5 (CH, C-4), 172.9 (1-CO₂CH₃), 174.8 (8-CO₂CH₃), 198.8 (2-CO), 213.9 (1'-CO). **LRMS (m/z)**: 418 (M⁺, 94%), 358 (58), 299 (59), 241 (61), 213 (20), 159 (22), 121 (21), 57 (100). **HRMS**: C₂₄H₃₄O₆ (M⁺) requires 418.2355, found 418.2354. **Microanalysis**: Calcd. for C₂₄H₃₄O₆: C, 68.88%, H, 8.19%. Found: C, 68.89%, H, 8.12%.

(\pm)-Dimethyl 2,6-Dioxo-isocycloamphilectane-7,20-dicarboxylate (27)



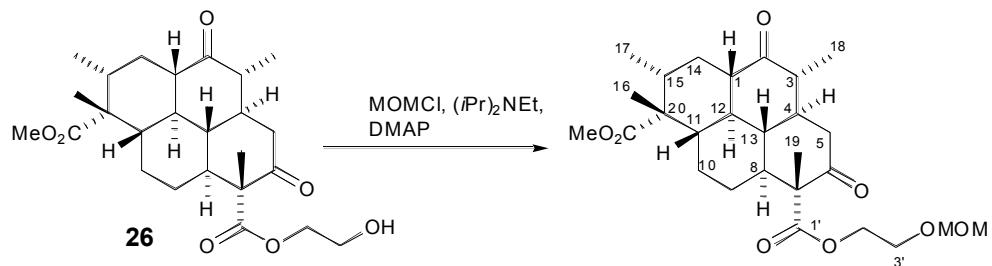
Enone **25** (0.058 g, 0.14 mmol) in ethylene glycol (3 mL) and triethylamine (0.3 mL) was heated to 70 °C under nitrogen for 4 d. Water was then added and the resulting mixture extracted with a pentane : DCM mixture (2 : 1, 3 x 10 mL). The aqueous phase was then saturated with NaCl and further extracted with pentane : DCM (2 : 1, 3 x 10 mL). The combined organic extracts were washed with water (5 mL), brine (5 mL), dried over MgSO₄ and concentrated *in vacuo* to give the crude product mixture as a yellow oil. Purification by flash column chromatography on silica gel using EtOAc : petroleum spirit (1.5 : 8.5) as eluant gave the title compound **27** (R = Me, 0.013 g, 30% based on recovered starting material) as a white solid and the trans-esterified product **26** (R = CH₂CH₂OH, 0.018 g, 41% based on recovered starting material) as a colorless oil. A sample of **27** (R = Me) was crystallized from methanol to give white needle like crystals, **m.p.** 174–175 °C. **IR** (thin film) cm⁻¹: 2950s (C-H), 1732s (C=O), 1712s (C=O), 1456, 1434, 1380, 1235, 1091. **¹H NMR** (800 MHz, CDCl₃) **δ**: 0.92 (d, *J* = 6.4 Hz, 3H, 17-CH₃), 0.91 (m, 1H, H-10), 1.02 (d, *J* = 7.2 Hz, 3H, 18-CH₃), 1.17 (m, 1H, H-11), 1.24 (m, 1H, H-14), 1.25 (s, 3H, 16-CH₃), 1.33 (m, 1H, H-9), 1.39 (s, 3H, 19-CH₃), 1.39–1.44 (m, 2H, H'-9, H-15), 1.59 (m, 1H, H-13), 1.66 (m, 1H, H-4), 1.74 (m, 1H, H'-14), 1.84 (m, 1H, H-12), 1.95 (dq, *J* = 13.6 Hz, *J* = 2.4 Hz, 1H, H'-10), 2.15–2.19 (m, 2H, H-8, H-1), 2.28 (m, 1H, H-3), 2.35 (m, 1H, H-5), 2.56 (dd, *J* = 14.4 Hz *J* = 4.0 Hz, 1H, H'-5), 3.63 (s, 3H, 20-CO₂CH₃), 3.75 (s, 3H, 7-CO₂CH₃). **¹³C NMR** (150 MHz, CDCl₃) **δ**: 11.1 (18-CH₃), 15.5 (19-CH₃), 17.4 (17-CH₃), 23.3 (16-CH₃), 26.4 (CH₂, C-10), 27.4 (CH₂, C-9), 29.5 (CH₂, C-14), 39.6 (CH, C-15), 42.3 (CH₂, C-5), 44.6 (CH, C-13), 45.1 (CH, C-8), 46.3 (CH, C-12), 48.4 (CH, C-4), 49.5 (C, C-20), 49.6 (CH, C-3), 51.0 (CH, C-11), 51.1 (20-CO₂CH₃), 52.4 (7-CO₂CH₃), 52.4 (CH, C-1), 61.4 (C, C-7), 172.7 (7-CO₂CH₃), 174.4

(20-CO₂CH₃), 207.9 (6-CO), 209.9 (2-CO). **LRMS (m/z):** 418 (M⁺, 40%), 400 (78), 358 (51), 341 (100), 281 (60), 229 (50), 211 (54). **HRMS:** C₂₄H₃₄O₆ (M⁺) requires 418.2355, found 418.2354. **Microanalysis:** Calcd. For C₂₄H₃₄O₆: C, 68.88%, H, 8.19%. Found: C, 68.65%, H, 7.91%.

A sample of **26** (R = CH₂CH₂OH) was characterized as its MOM ether: **IR** (thin film) cm⁻¹: 2931s (C-H), 1736s (C=O), 1712s (C=O), 1459, 1380, 1254, 1091. **¹H NMR** (300 MHz, CDCl₃) δ : 0.91 (d, *J* = 6.9 Hz, 3H, 17-CH₃), 0.87 (m, 1H, H-10), 1.01 (d, *J* = 6.6 Hz, 3H, 18-CH₃), 1.12–2.04 (m, 10H), 1.24 (s, 3H, 16-CH₃), 1.38 (s, 3H, 19-CH₃), 2.11–2.40 (m, 4H), 2.57 (dd, *J* = 14.4 Hz *J* = 3.9 Hz, 1H, H-5), 3.35 (s, 3H, 3'-OCH₂OCH₃), 3.61 (s, 3H, 20-CO₂CH₃), 3.72–3.75 (m, 2H, 3'-H), 4.33–4.36 (m, 2H, 2'-H), 4.62 (s, 2H, 3'-OCH₂OCH₃). **¹³C NMR** (75 MHz, CDCl₃) δ : 11.1 (CH₃), 15.4 (CH₃), 17.4 (CH₃), 23.3 (CH₃), 26.3 (CH₂), 27.4 (CH₂), 29.5 (CH₂), 39.6 (CH), 42.2 (CH₂), 44.5 (CH), 45.0 (CH), 46.3 (CH), 48.3 (CH), 49.5 (C), 49.6 (CH), 50.9 (CH), 51.0 (20-CO₂CH₃), 52.4 (CH), 55.2 (3'-OCH₂OCH₃), 61.4 (C), 64.2 (CH₂, C-2'), 65.5 (CH₂, C-3'), 96.4 (3'-OCH₂OCH₃), 172.1 (3-CO₂R), 174.4 (20-CO₂CH₃), 207.8 (6-CO), 209.9 (2-CO). **LRMS (m/z):** 492 (M⁺, 4%), 460 (19), 386 (20), 358 (41), 299 (37), 281 (38), 229 (30), 45 (100). **HRMS:** C₂₇H₄₀O₈ (M⁺) requires 492.2723, found 492.2726.

(\pm)-Dimethyl Isocycloamphilectane-7,20-dicarboxylate (**28**)

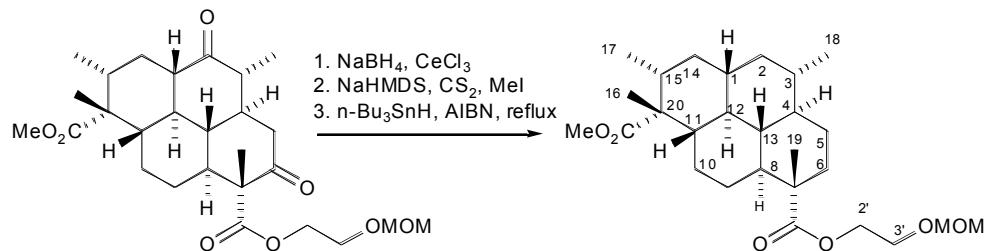
The dione (0.028 g, 0.067 mmol) in MeOH (2 mL) was added to cerium (III) chloride heptahydrate (0.056 g, 0.15 mmol) under nitrogen. The solution was cooled to 0 °C, and NaBH₄ (0.01 g, 0.26 mmol) was added in four batches over 2 h, until TLC revealed the consumption of all starting material. The reaction was quenched with water and the methanol was removed *in vacuo*. The aqueous residue was extracted with EtOAc (3 x 10 mL), then the aqueous phase saturated with NaCl, and extracted with EtOAc (2 x 10 mL).


The combined organic extracts were washed with brine (10 mL) and dried over MgSO_4 . Concentration of the organic phase *in vacuo* gave the desired product as a mixture of four epimeric alcohols (0.028g), which was used directly in the next step without further purification.

The crude diols (0.028 g, 0.066 mmol) were dissolved in THF (3 mL) and Sodium bis(trimethylsilyl)amide (0.26 mL of a 1*M* solution in THF, 0.26 mmol) was added at room temp. under nitrogen. The resulting reaction mixture was stirred for 2 h then carbon disulfide (0.016 mL, 0.26 mmol) was added. The reaction mixture was stirred for 2 h and then iodomethane (0.016 mL, 0.26 mmol) was added. After a further 2 h, the reaction was quenched with AcOH (0.5 mL) and diluted with a saturated aqueous NH_4Cl solution, before extracting with EtOAc (4 x 10 mL). The combined organic extracts were dried over MgSO_4 and concentrated *in vacuo* to give the crude product as a mixture of four epimeric xanthates (~0.40 g), which was used directly in the next step without further purification.

The crude xanthate esters (~0.40 g, 0.066 mmol) were dissolved in toluene (3 mL) and tributyl tin hydride (0.071 mL, 0.26 mmol) was added under nitrogen. A catalytic amount of AIBN was added and the reaction mixture heated to 80 °C for 2.5 h, after which time starting material remained so excess tributyl tin hydride (0.03 mL, 0.11 mmol) and AIBN (catalytic) were added. After 1 h at 80 °C TLC revealed the consumption of all starting material. The toluene was removed *in vacuo* and the residue purified by flash column chromatography on silica gel using EtOAc : petroleum spirit (5 : 95) as eluant to give the title compound **27** (7.1 mg, 27% over 3 steps) as a white oil, and a mono-deoxygenated product (11 mg, 40% over 3 steps), which was recycled to give the title compound **27** (5.1 mg), (12.2 mg, 47% total yield of the title compound over three steps). **IR** (thin film) cm^{-1} : 2925s (C-H), 1726s (C=O), 1456, 1260, 1160, 1097. **¹H NMR** (600 MHz, CDCl_3) δ : 0.68 (q, *J* = 10.8 Hz, 1H), 0.83 (d, *J* = 6.6 Hz, 3H, 17-CH₃), 0.86 (d, *J* = 6.6 Hz, 3H, 18-CH₃), 0.74–0.91 (m, 4H), 1.08 (s, 3H, 16-CH₃), 1.19 (s, 3H, 19-CH₃), 0.96–1.21 (m, 4H), 1.23–1.45 (m, 5H), 1.53–1.63 (m, 3H), 1.72–1.85 (m, 3H), 3.62 (s, 3H, 20-CO₂CH₃), 3.64 (s, 3H, 7-CO₂CH₃). **¹³C NMR** (150 MHz, CDCl_3) δ : 15.1 (16-CH₃), 17.4 (17-CH₃), 19.9 (18-CH₃), 23.4 (19-CH₃), 25.2 (CH₂), 27.2 (CH₂), 28.5 (CH₂), 36.7 (CH₂ and CH), 38.4 (CH₂), 40.5 (CH), 41.0 (CH), 42.7 (CH₂, C6), 45.0 (CH), 45.4 (CH), 46.2

(CH), 46.6 (C), 48.2 (CH), 50.2 (C), 50.3 (CH), 50.7 (CO₂CH₃), 51.7 (CO₂CH₃), 175.3 (20-CO₂CH₃), 179.1 (7-CO₂CH₃). **LRMS (m/z):** 390 (M⁺, 25%), 330 (100), 271 (92), 217 (24), 201 (20), 149 (34), 81 (53), 69 (98). **HRMS:** C₂₄H₃₈O₄ (M⁺) requires 390.2770, found 390.2763.

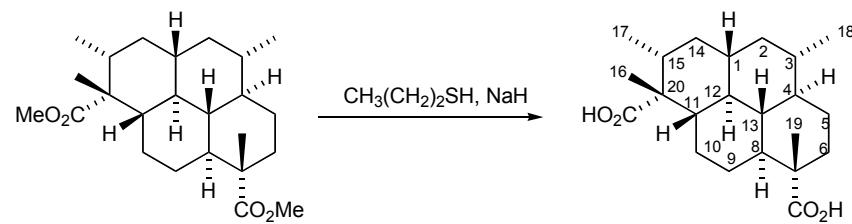

(\pm)-7-(2'-Methoxymethoxyethyl)-20-Methyl-2,6-Dioxo-isocycloamphilectane-7,20-dicarboxylate

Hünig's base (0.15 mL, 0.86 mmol) was added to alcohol **26** (0.077 g, 0.17 mmol) in DCM (5 mL) at 0 °C under nitrogen. Chloromethyl methyl ether (0.065 mL, 0.86 mmol) was added dropwise and the reaction mixture was warmed to room temperature. A catalytic amount of DMAP was then added and the reaction mixture stirred for 24 h. The reaction mixture was cooled to 0 °C, saturated aqueous sodium bicarbonate (5 mL) was added, and the resulting mixture stirred for 10 min. The organic phase was separated and the aqueous phase was extracted with DCM (3 x 10 mL). The combined organic extracts were washed with water (5 mL), 1 M HCl (5 mL), saturated aqueous sodium bicarbonate (5 mL), brine (5 mL) and dried over anhydrous MgSO₄. Concentration of the organic phase *in vacuo* gave a yellow gum which was purified by flash column chromatography on silica gel using EtOAc : hexane (1 : 4) as eluant to give the title compound (0.036 g, 43%) as a colourless oil. **IR** (thin film) cm⁻¹: 2931s (C-H), 1736s (C=O), 1712s (C=O), 1459, 1380, 1254, 1091. **¹H NMR** (300 MHz, CDCl₃) δ : 0.91 (d, *J* = 6.9 Hz, 3H, 17-CH₃), 0.87 (m, 1H, H-10), 1.01 (d, *J* = 6.6 Hz, 3H, 18-CH₃), 1.12-2.04 (m, 10H), 1.24 (s, 3H, 16-CH₃), 1.38 (s, 3H, 19-CH₃), 2.11-2.40 (m, 4H), 2.57 (dd, *J* = 14.4 Hz, *J* = 3.9 Hz, 1H, H-5), 3.35 (s, 3H, 3'-OCH₂OCH₃), 3.61 (s, 3H, 20-CO₂CH₃), 3.72-3.75 (m, 2H, 3'-H), 4.33-4.36 (m, 2H, 2'-H), 4.62 (s, 2H, 3'-OCH₂OCH₃). **¹³C NMR** (75 MHz, CDCl₃) δ : 11.1 (CH₃), 15.4 (CH₃), 17.4 (CH₃), 23.3 (CH₃), 26.3 (CH₂), 27.4 (CH₂), 29.5 (CH₂),

39.6 (CH), 42.2 (CH₂), 44.5 (CH), 45.0 (CH), 46.3 (CH), 48.3 (CH), 49.5 (C), 49.6 (CH), 50.9 (CH), 51.0 (20-CO₂CH₃), 52.4 (CH), 55.2 (3'-OCH₂OCH₃), 61.4 (C), 64.2 (CH₂, C-2'), 65.5 (CH₂, C-3'), 96.4 (3'-OCH₂OCH₃), 172.1 (3-CO₂R), 174.4 (20-CO₂CH₃), 207.8 (6-CO), 209.9 (2-CO). **LRMS (m/z):** 492 (M⁺, 4%), 460 (19), 386 (20), 358 (41), 299 (37), 281 (38), 229 (30), 45 (100). **HRMS:** C₂₇H₄₀O₈ (M⁺) requires 492.2723, found 492.2726.

(±)-7-(2'-Methoxymethoxyethyl)-20-Methyl-isocycloamphilectane-7,20-dicarboxylate

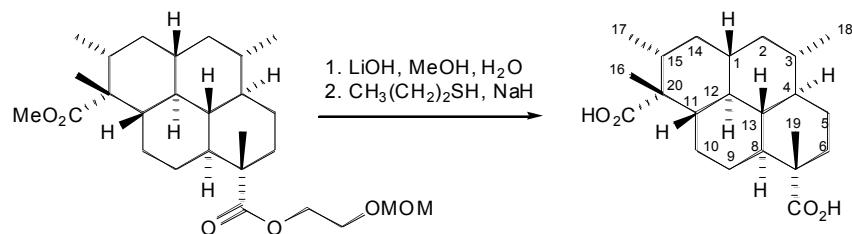
The dione (0.019 g, 0.039 mmol) in MeOH (2 mL) was added to cerium (III) chloride heptahydrate (0.032 g, 0.085 mmol) under nitrogen. The solution was cooled to 0 °C, and sodium borohydride (0.006 g, 0.16 mmol) was added in four batches over 2 h, until TLC revealed the consumption of all starting material. The reaction was quenched with water and the methanol was removed *in vacuo*. The aqueous residue was extracted with EtOAc (3 x 10 mL), then the aqueous phase saturated with NaCl, and extracted with EtOAc (2 x 10 mL). The combined organic extracts were washed with brine (10 mL) and dried over MgSO₄. Concentration of the organic phase *in vacuo* gave the desired product as a mixture of four epimeric alcohols (0.019 g), which was used directly in the next step without further purification.


The crude diols (0.019 g, 0.038 mmol) were dissolved in THF (3 mL) and Sodium bis(trimethylsilyl)amide (0.23 mL of a 1 M solution in THF, 0.23 mmol) was added at room temperature under nitrogen. The resulting reaction mixture was stirred for 2 h then carbon disulfide (0.017 mL, 0.23 mmol) was added. The reaction mixture was stirred for 2 h and then iodomethane (0.014 mL, 0.23 mmol) was added. After a further 2 h, the reaction was quenched with acetic acid (0.5 mL) and diluted with a saturated aqueous ammonium chloride solution, before extracting with EtOAc (4 x 10 mL). The combined organic extracts were dried over MgSO₄ and concentrated *in vacuo* to give the crude

product as a mixture of four epimeric xanthates (~0.03 g), which was used directly in the next step without further purification.

The crude xanthate esters (~0.03 g) were dissolved in toluene (3 mL) and tributyl tin hydride (0.049 mL, 0.18 mmol) was added under nitrogen. A catalytic amount of AIBN was added and the reaction mixture heated to 80 °C for 2.5 h, after which time starting material remained so excess tributyl tin hydride (0.025 mL, 0.09 mmol) and AIBN (catalytic) were added. After 1 h at 80 °C TLC revealed the consumption of all starting material. The toluene was removed *in vacuo* and the residue purified by flash column chromatography on silica gel using EtOAc : petroleum spirit (1 : 9) as eluant to give the title compound (7 mg, 39% over 3 steps) as a white oil. **IR** (thin film) cm^{-1} : 2926s (C-H), 1725s (C=O), 1459, 1382, 1255, 1230, 1157, 1042. **$^1\text{H NMR}$** (300 MHz, CDCl_3) δ : 0.68 (q, $J = 9.9$ Hz, 1H), 0.83 (d, $J = 6.0$ Hz, 3H, 17-CH₃), 0.86 (d, $J = 6.3$ Hz, 3H, 18-CH₃), 1.09 (s, 3H, 16-CH₃), 1.19 (s, 3H, 19-CH₃), 0.73-1.43 (m, 12H), 1.51-1.67 (m, 4H), 1.72-1.84 (m, 3H), 3.36 (s, 3H, 3'-OCH₂OCH₃), 3.61 (s, 3H, 20-CO₂CH₃), 3.69-3.73 (m, 2H, 3'-H), 4.22-4.25 (m, 2H, 2'-H), 4.62 (s, 2H, 3'-OCH₂OCH₃). **$^{13}\text{C NMR}$** (75 MHz, CDCl_3) δ : 15.1 (16-CH₃), 17.4 (17-CH₃), 19.9 (18-CH₃), 23.4 (19-CH₃), 25.2 (CH₂), 27.2 (CH₂), 28.5 (CH₂), 36.7 (CH₂ and CH), 38.4 (CH₂), 40.5 (CH), 41.0 (CH), 42.7 (CH₂, C-6), 44.9 (CH), 45.4 (CH), 46.2 (CH), 46.6 (C), 48.2 (CH), 50.2 (C), 50.3 (CH), 50.7 (20-CO₂CH₃), 55.2 (3'-OCH₂OCH₃), 63.4 (CH₂, C-2'), 65.6 (CH₂, C-3'), 96.4 (3'-OCH₂OCH₃), 175.3 (20-CO₂CH₃), 178.5 (1'-CO). **LRMS (m/z)**: 464 (M^+ , 5%), 419 (15), 372 (10), 359 (12), 331 (31), 271 (100), 215 (15), 201 (15). **HRMS**: $\text{C}_{27}\text{H}_{44}\text{O}_6$ (M^+) requires 464.3138, found 464.3142.

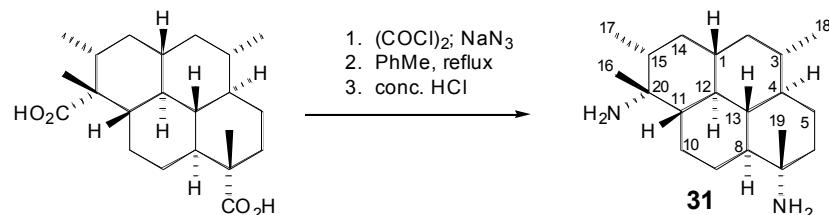
(±)-Isocycloamphilectane-7,20-dicarboxylic Acid


Method A:

Freshly distilled propane thiol (0.35 mL, 3.87 mmol) was added to a degassed suspension of NaH (0.12 g, 5.0 mmol) in HMPA (2.5 mL) under nitrogen. The reaction mixture was

stirred for 2 h then left to stand for 1h at room temp. An aliquot of the thiolate solution prepared above (0.19 mL, 0.30 mmol) was added to a solution of diester **27** (0.015 g, 0.038 mmol) in HMPA (0.3 mL) at room temp. under nitrogen. The reaction mixture was stirred for 1.5 d, after which time EtOAc (5 mL) was added and the crude carboxylic acid was extracted with a water : saturated NaHCO₃ solution (2 : 1, 3 x 10 mL). The combined aqueous washings were treated with 1 M HCl until pH 2, then the resulting mixture was extracted with EtOAc (4 x 5 mL). The combined organic extracts were washed with saturated copper (II) chloride solution (2 x 5 mL), brine and dried over MgSO₄. Concentration of the organic phase *in vacuo* gave a yellow gum, which was purified by flash column chromatography on silica gel using EtOAc : petroleum spirit (1 : 4) as eluant to give the title compound (0.012 g, 87%) as a white solid.

Method B:

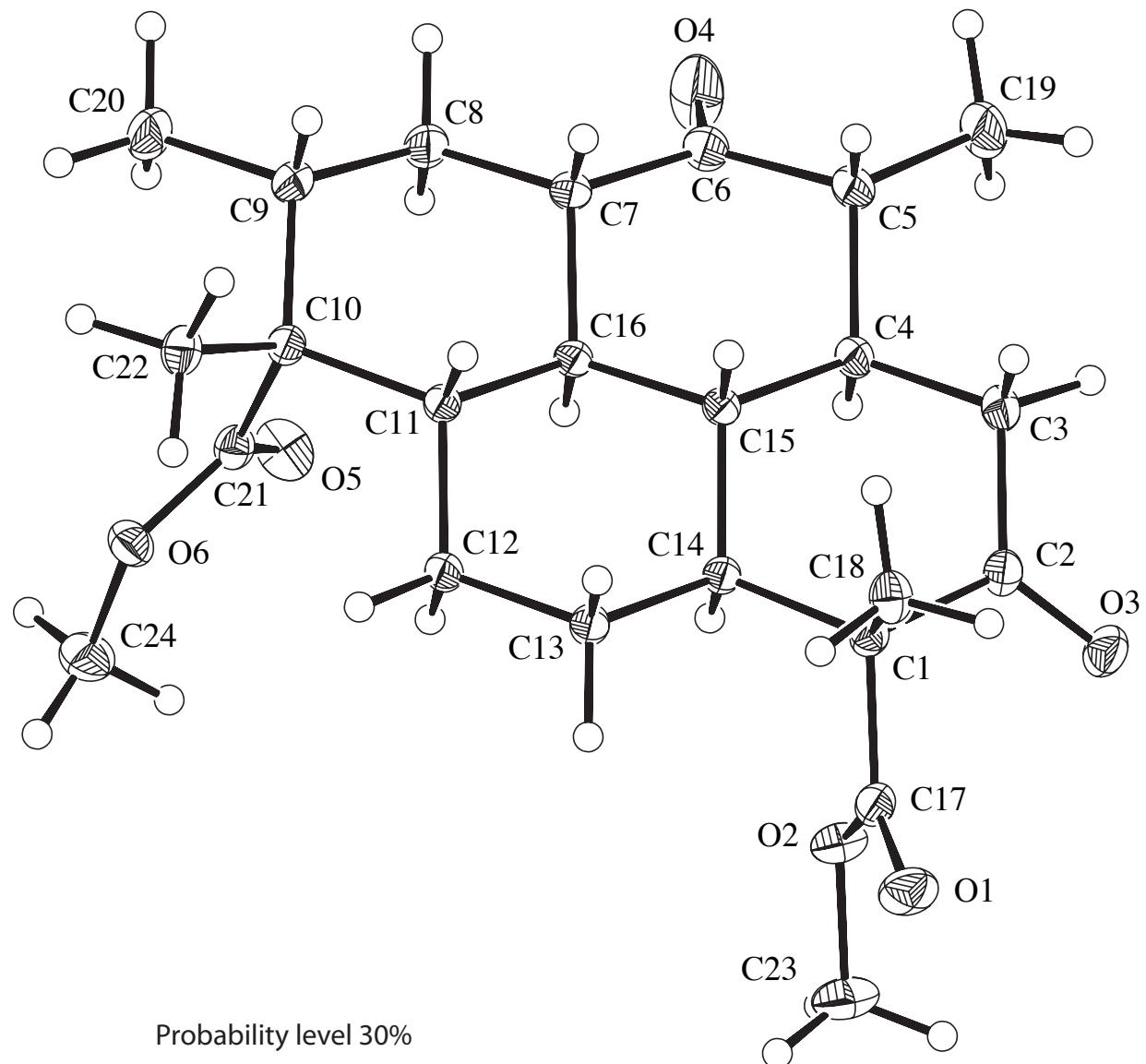


Lithium hydroxide (13 mg, 0.30 mmol) was added to the ester (7 mg, 0.015 mmol) in methanol : water (3 : 1, 4 mL) and the reaction mixture was heated to reflux for 24 h. The reaction mixture was cooled to room temperature and the methanol removed *in vacuo*. The aqueous residue was then extracted with EtOAc (3 x 5 mL) and the combined organic extracts dried over MgSO₄. Concentration of the organic phase *in vacuo* gave the crude ester (~6 mg) as a colourless oil.

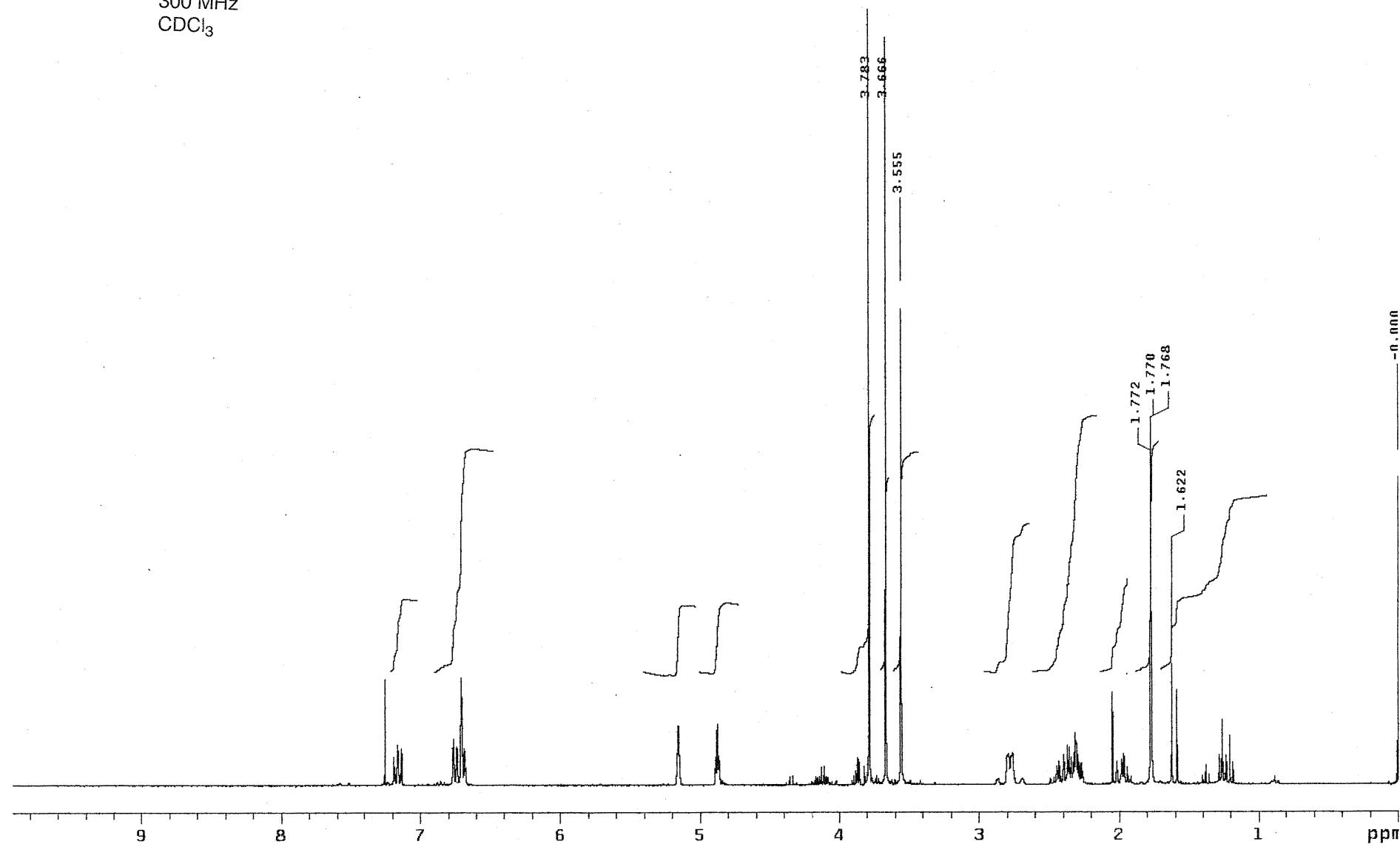
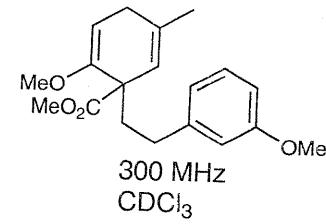
An aliquot of the thiolate solution prepared in method A (0.10 mL, 0.15 mmol) was added to a solution of crude ester (~6 mg, 0.015 mmol) in HMPA (0.3 mL) at room temperature under nitrogen. The reaction mixture was stirred for 1.5 d, after which time EtOAc (5 mL) was added and the crude carboxylic acid was extracted with water : saturated sodium bicarbonate solution (2 : 1, 3 x 10 mL). The combined aqueous washings were treated with 1 M HCl until pH 2 then the residue was extracted with EtOAc (4 x 5 mL). The combined organic extracts were washed with a saturated copper

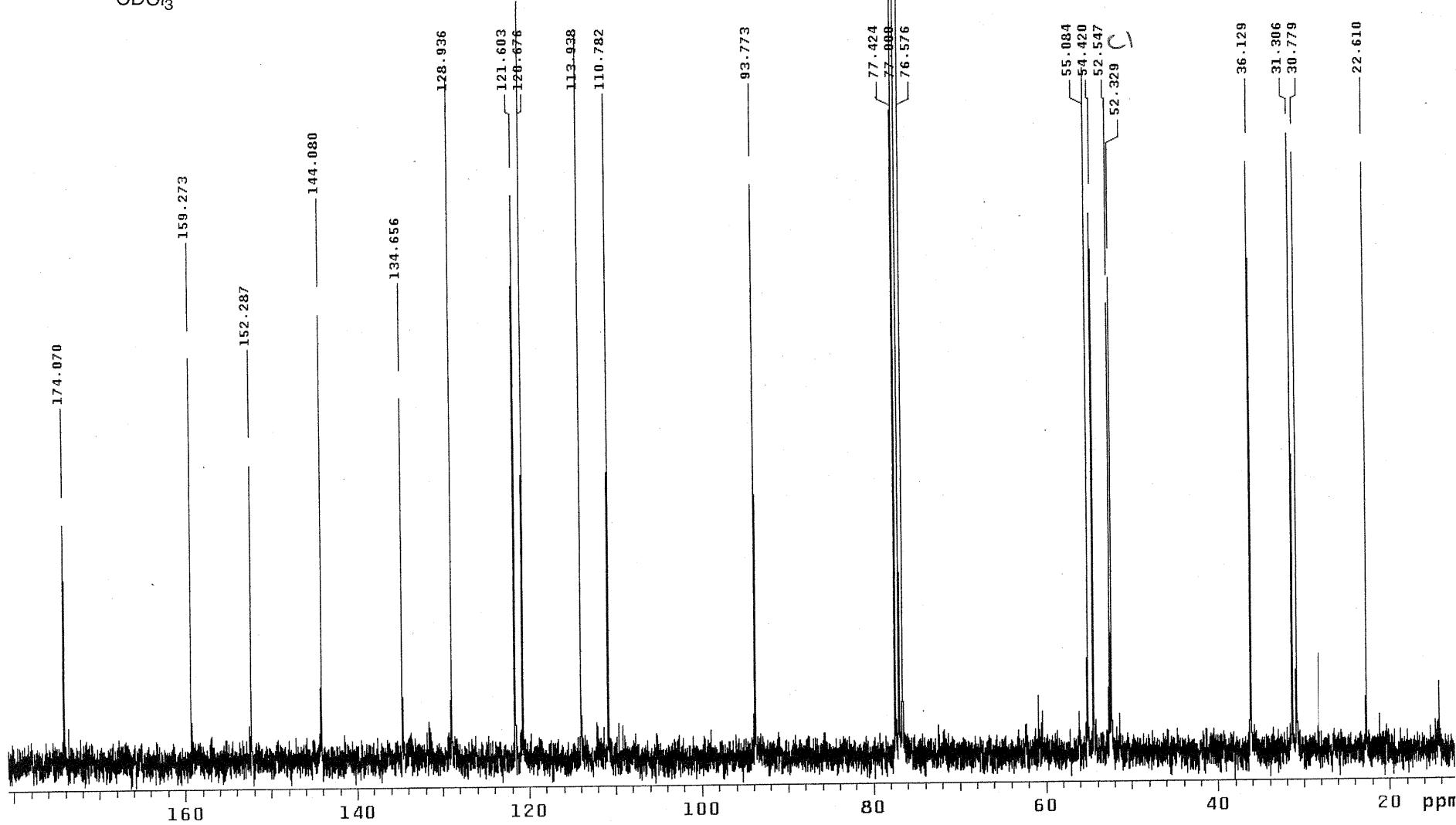
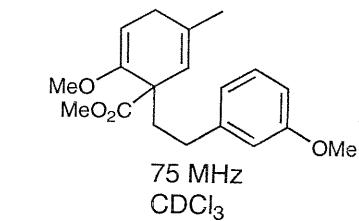
(II) chloride solution (2 x 5 mL), brine and dried over MgSO_4 . Concentration of the organic phase *in vacuo* gave a yellow gum, which was purified by flash column chromatography on silica gel using EtOAc : petroleum spirit (1 : 4) as eluant to give the title compound (~1 mg, ~20% over two steps) as a white solid, **m.p.**: decomposed at 280 $^{\circ}\text{C}$. **IR** (thin film) cm^{-1} : 3200br (C-OH), 2924s (C-H), 1693s (C=O), 1456, 1379, 1261. **$^1\text{H NMR}$** (300 MHz, CDCl_3) δ : 0.83 (d, $J = 6.3$ Hz, 3H, 17-CH₃), 0.88 (d, $J = 6.6$ Hz, 3H, 18-CH₃), 1.05 (s, 3H, 16-CH₃), 1.16 (s, 3H, 19-CH₃). See *bis*-methyl ester derivative **27** for full $^1\text{H NMR}$ characterization. **$^{13}\text{C NMR}$** (75 MHz, CDCl_3) δ : 14.9 (16-CH₃), 17.3 (17-CH₃), 19.8 (18-CH₃), 23.4 (19-CH₃), 25.1 (CH₂), 27.0 (CH₂), 28.4 (CH₂), 36.6 (CH₂), 36.7 (CH), 38.2 (CH₂), 40.2 (CH), 40.9 (CH), 42.7 (CH₂, C-6), 44.9 (CH), 45.4 (CH), 46.0 (CH), 46.2 (C), 48.2 (CH), 49.8 (C or CH), 50.1 (C or CH), 178.4 (20-CO₂H), 182.1 (7-CO₂H). **LRMS (m/z):** 362 (M^+ , 18%), 316 (100), 298 (12), 271 (75), 262 (50), 217 (43), 201 (25), 161 (20), 149 (20). **HRMS:** $\text{C}_{22}\text{H}_{34}\text{O}_4$ (M^+) requires 362.2457, found 362.2465.

(\pm)-Isocycloamphilectane-7,20-diamine (31)

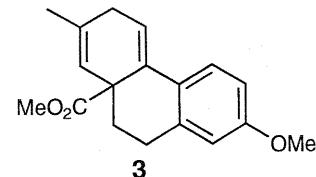


Oxalyl chloride (0.072 mL, 0.83 mmol) was added to the dicarboxylic acid (0.015 g, 0.041 mmol) in DCM (3 mL) at room temp. under nitrogen. After 3 h, analysis by IR spectroscopy revealed a peak at 1781 cm^{-1} , due to the formation of an acid chloride. The reaction mixture was concentrated *in vacuo* and dried under high vacuum for 5 min.



The crude acid chloride was taken up in THF (3 mL) and NaN_3 (0.054 g 0.083 mmol) was added. The resulting reaction mixture was stirred for 18 h, after which time analysis by IR spectroscopy revealed the disappearance of the peak at 1781 cm^{-1} , and the formation of a peak at 2131 cm^{-1} , due to the formation of an acyl azide. The reaction mixture was then diluted with water (5 mL) and extracted with EtOAc (5 x 5 mL). The combined organic extracts were then dried over MgSO_4 and concentrated *in vacuo* to give the crude acyl azide **29** as a yellow oil.

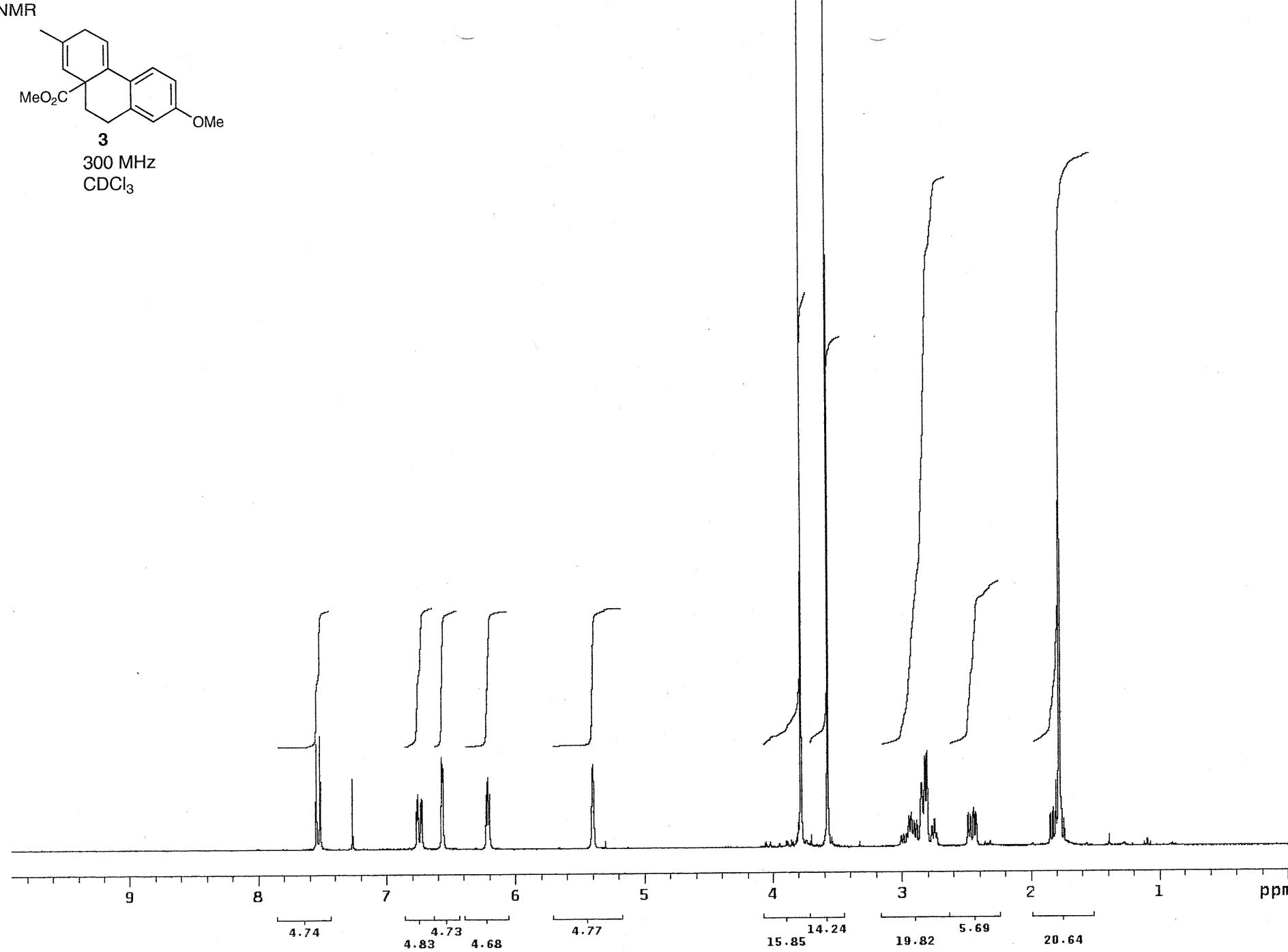


Toluene (3 mL) was added to the crude acyl azide and the resulting solution was heated to reflux for 15 min then cooled to room temp.. Analysis by IR spectroscopy revealed a new peak at 2260 cm^{-1} , and the disappearance of the peak at 2131 cm^{-1} , indicating that the desired isocyanate **30** had formed. Concentrated HCl (2 mL) was then added to the isocyanate in toluene and the mixture heated to $100\text{ }^{\circ}\text{C}$ for 18 h. After cooling the solution to room temp., the mixture was extracted with water (2 x 10 mL). The combined aqueous layers were treated with 10% aqueous NaOH until pH 10, then extracted with chloroform (5 x 10 mL). The combined organic extracts were dried over MgSO_4 and concentrated to give the title compound **31** (4.70 mg, 39% over three steps) as a white solid, which was further purified by reverse-phase HPLC on C-18 stationary phase heated to $40\text{ }^{\circ}\text{C}$ (5–100% acetonitrile and 100–5% water gradient containing 0.1% TFA), **IR** (thin film) cm^{-1} : 3368br (N-H), 2920s (C-H), 1729, 1642, 1544, 1455, 1378, 1261, 1101. **$^1\text{H NMR}$** (TFA salt, 600 MHz, CD_3OD) δ : 0.78 (m, 1H), 0.86 (ddd, $3\times J = 10.2\text{ Hz}$, 1H), 0.86–0.91 (m, 1H), 0.92 (d, $J = 6.6\text{ Hz}$, 3H), 0.95 (ddd, $3\times J = 10.2\text{ Hz}$, 1H), 1.03 (d, $J = 7.2\text{ Hz}$, 3H), 1.03 (m, 1H), 1.09–1.15 (m, 2H), 1.20–1.28 (m, 2H), 1.25 (s, 3H), 1.30–1.35 (m, 3H), 1.35 (s, 3H), 1.53–1.63 (m, 3H), 1.75 (m, 1H), 1.86–1.91 (m, 2H), 1.99 (m, 1H), 2.10 (m, 1H). **$^{13}\text{C NMR}$** (200 MHz, CDCl_3) δ : 15.6, 18.0, 20.0, 22.2, 25.8, 26.1, 26.8, 37.6, 37.8, 38.6, 40.4, 41.9, 43.1, 46.8, 47.2, 48.2, 58.0, 60.4. Two peaks obscured by CD_3OD . **LRMS (m/z):** 304 (M^+ , 32%), 289 (37), 256 (9), 221 (12), 204 (25), 105 (20), 84 (100). **HRMS:** $\text{C}_{20}\text{H}_{36}\text{N}_2\text{ (M}^{\text{+}}\text{)}$ requires 304.2878, found 304.2876.

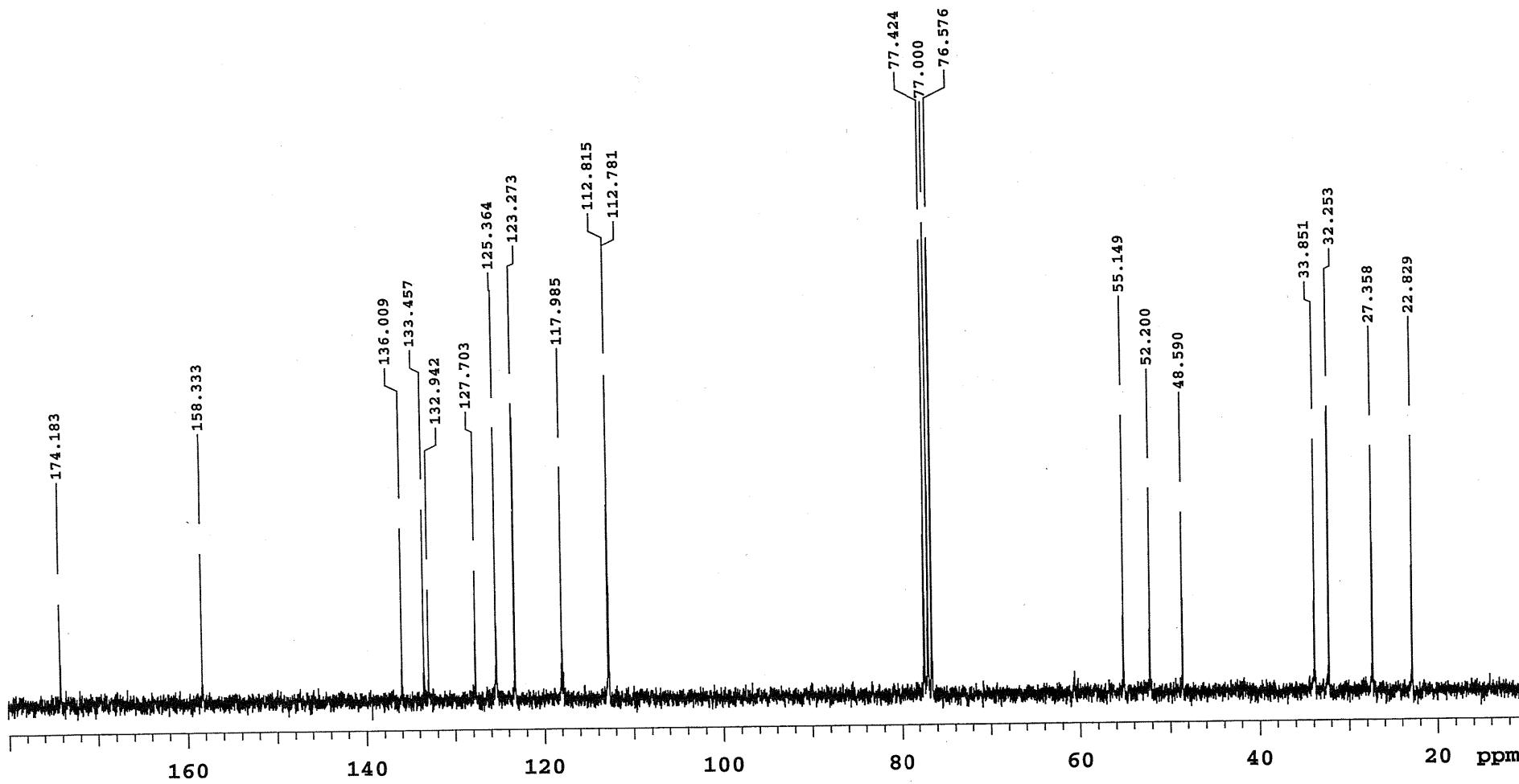
Compound 27



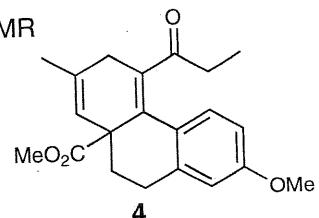
¹H NMR

¹³C NMR

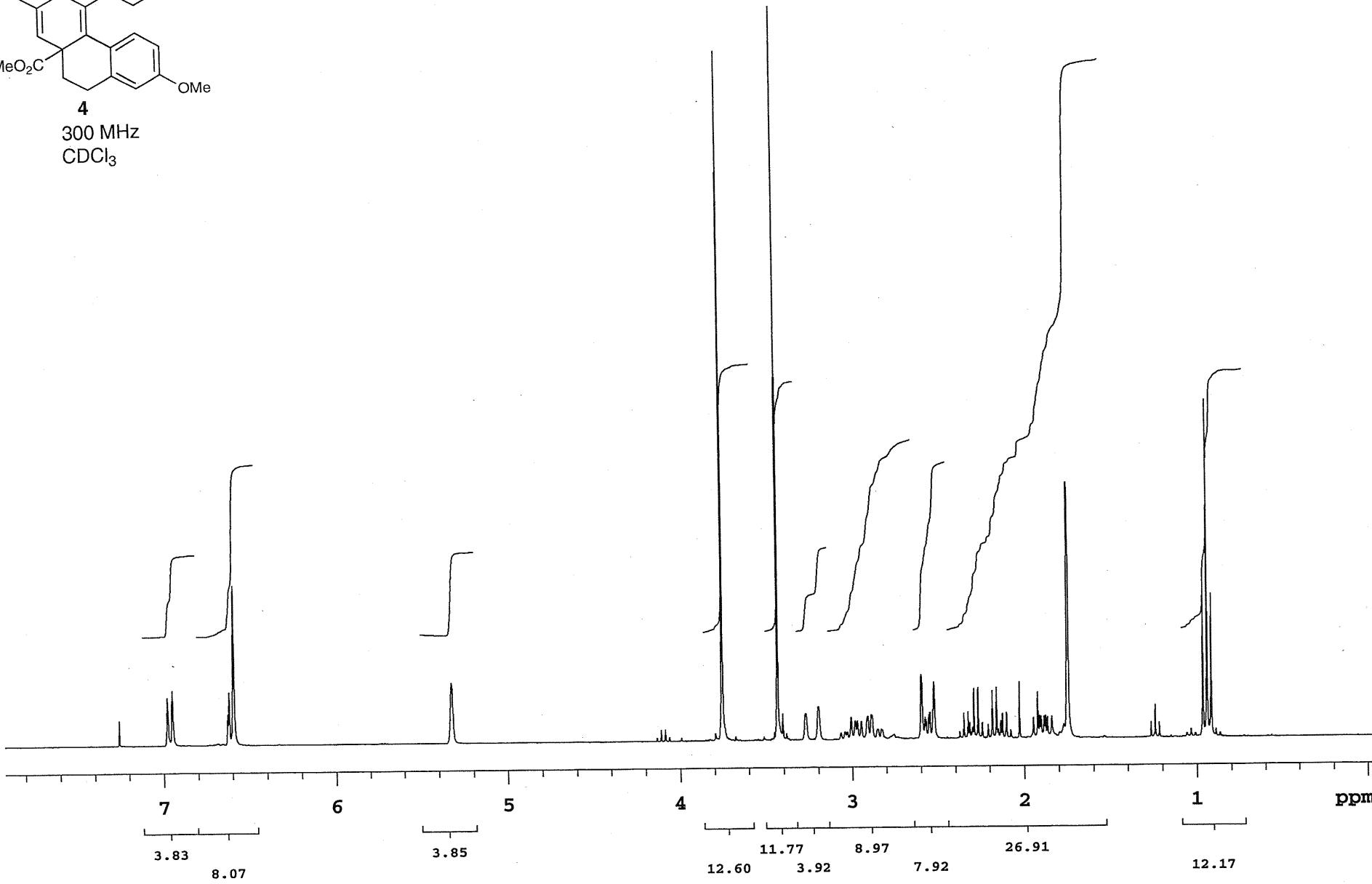

¹H NMR

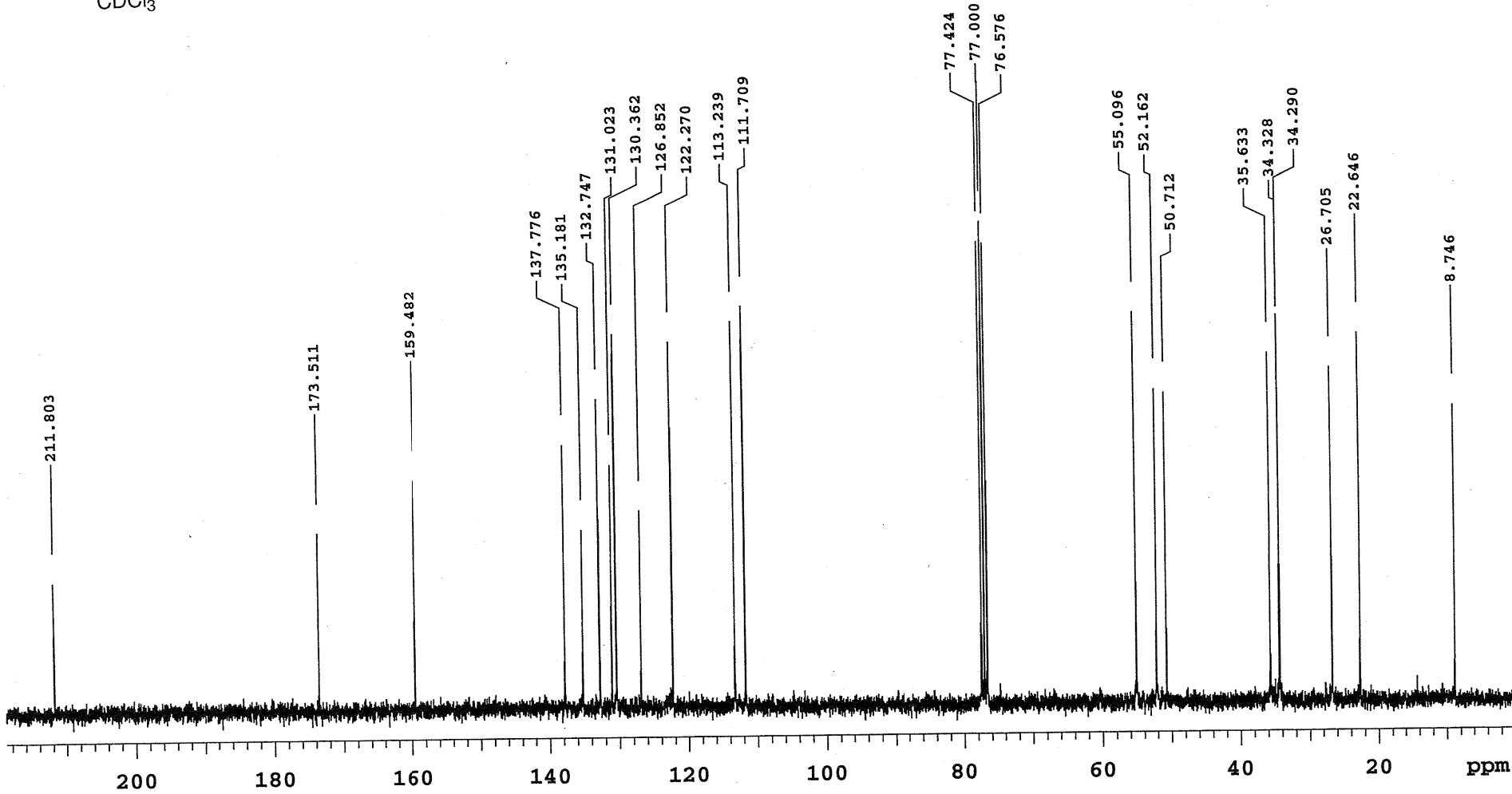
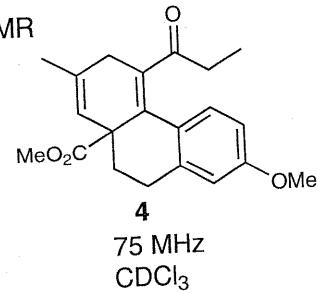

3

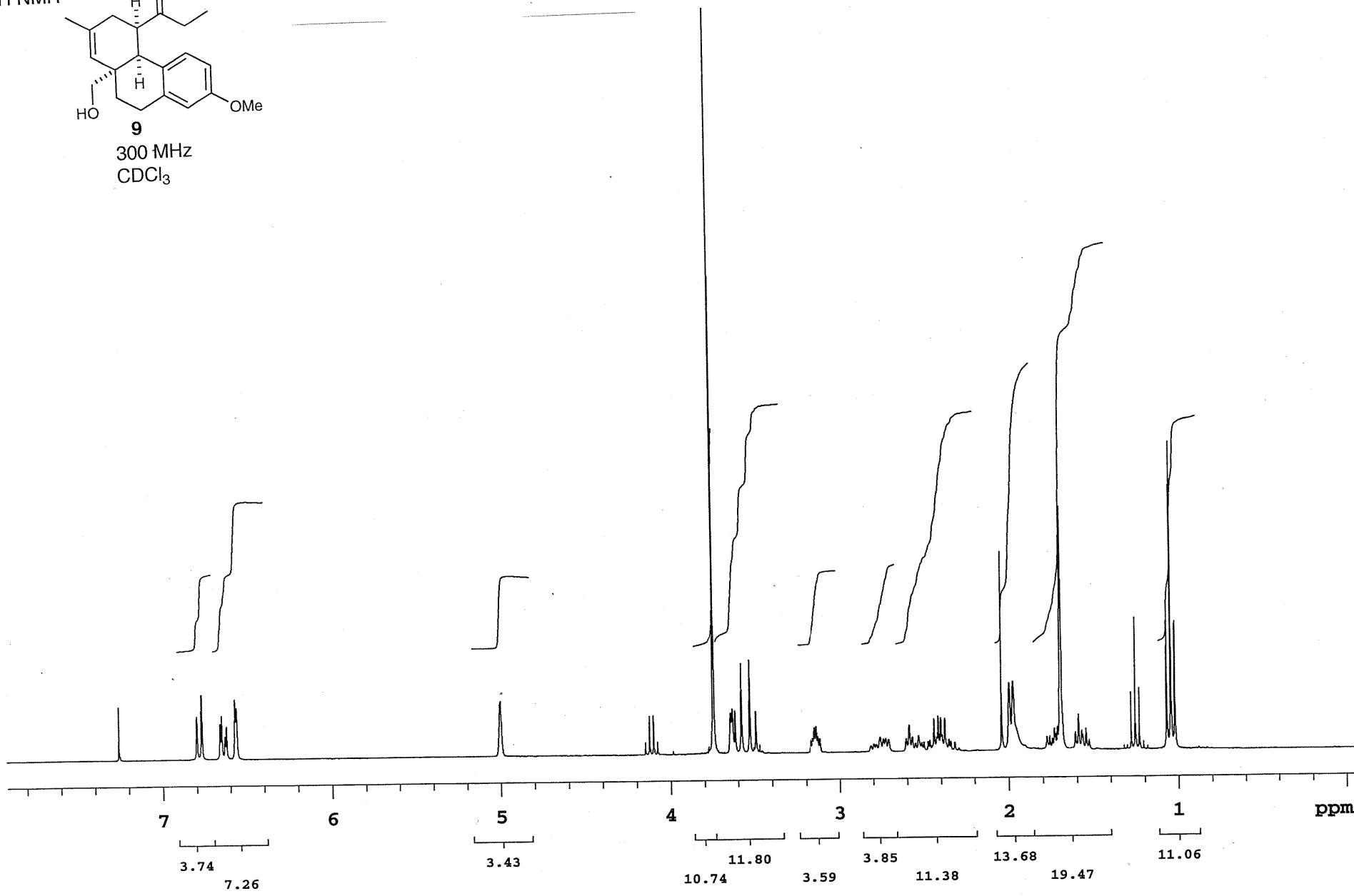
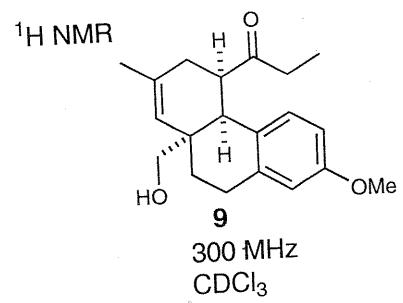
300 MHz


CDCl₃

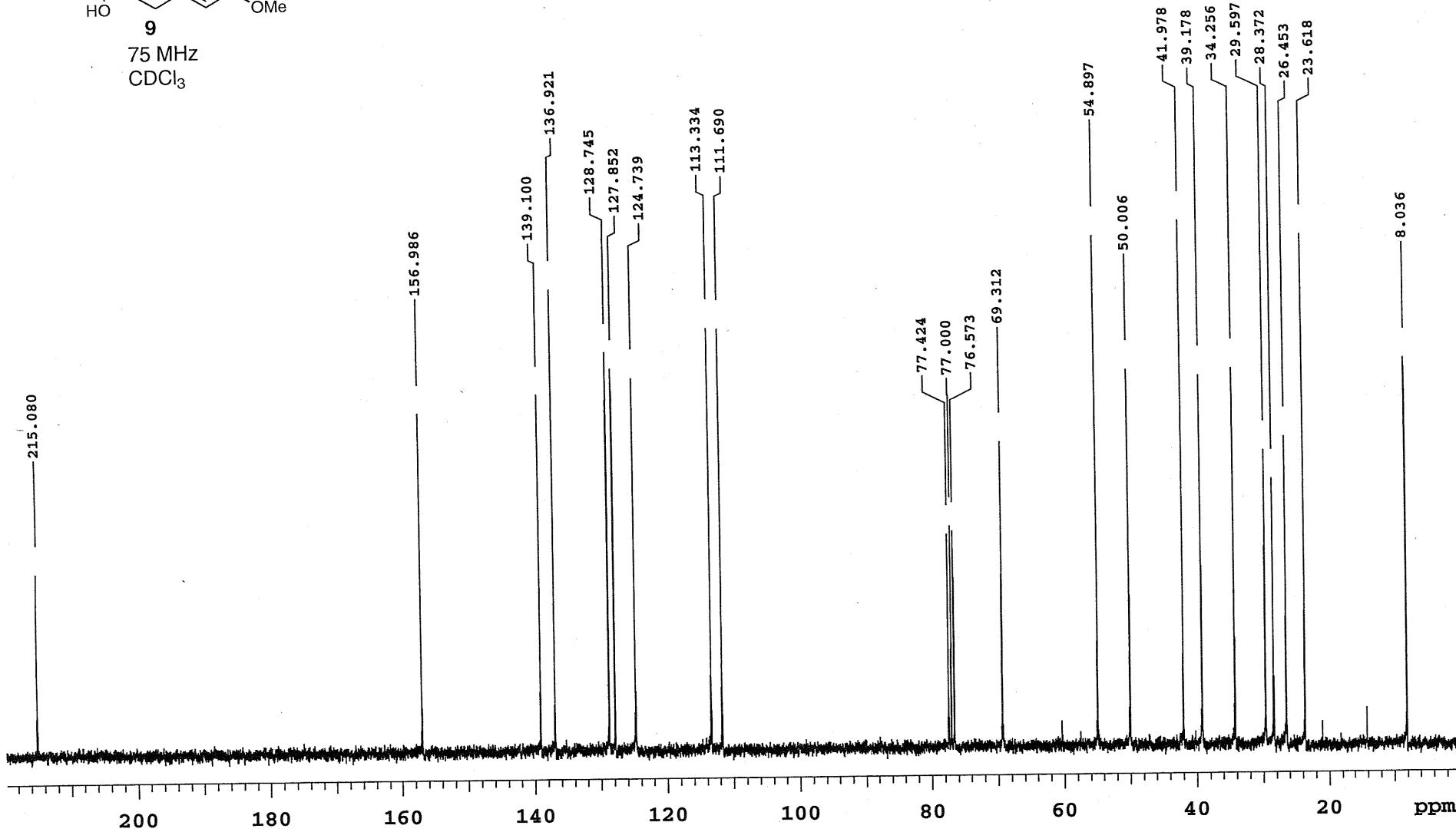
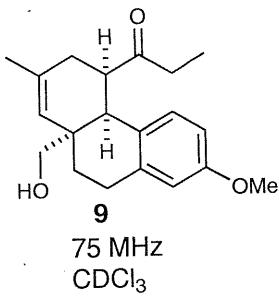
¹³C NMR
CC1=C(C=C2C=C(C=C2C(=O)OC)C=C1)C=C3C=C(C=C3)OC
3
75 MHz
CDCl₃


¹H NMR

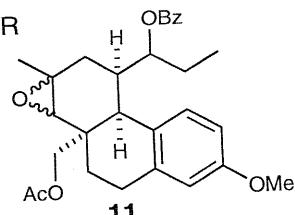


4



300 MHz

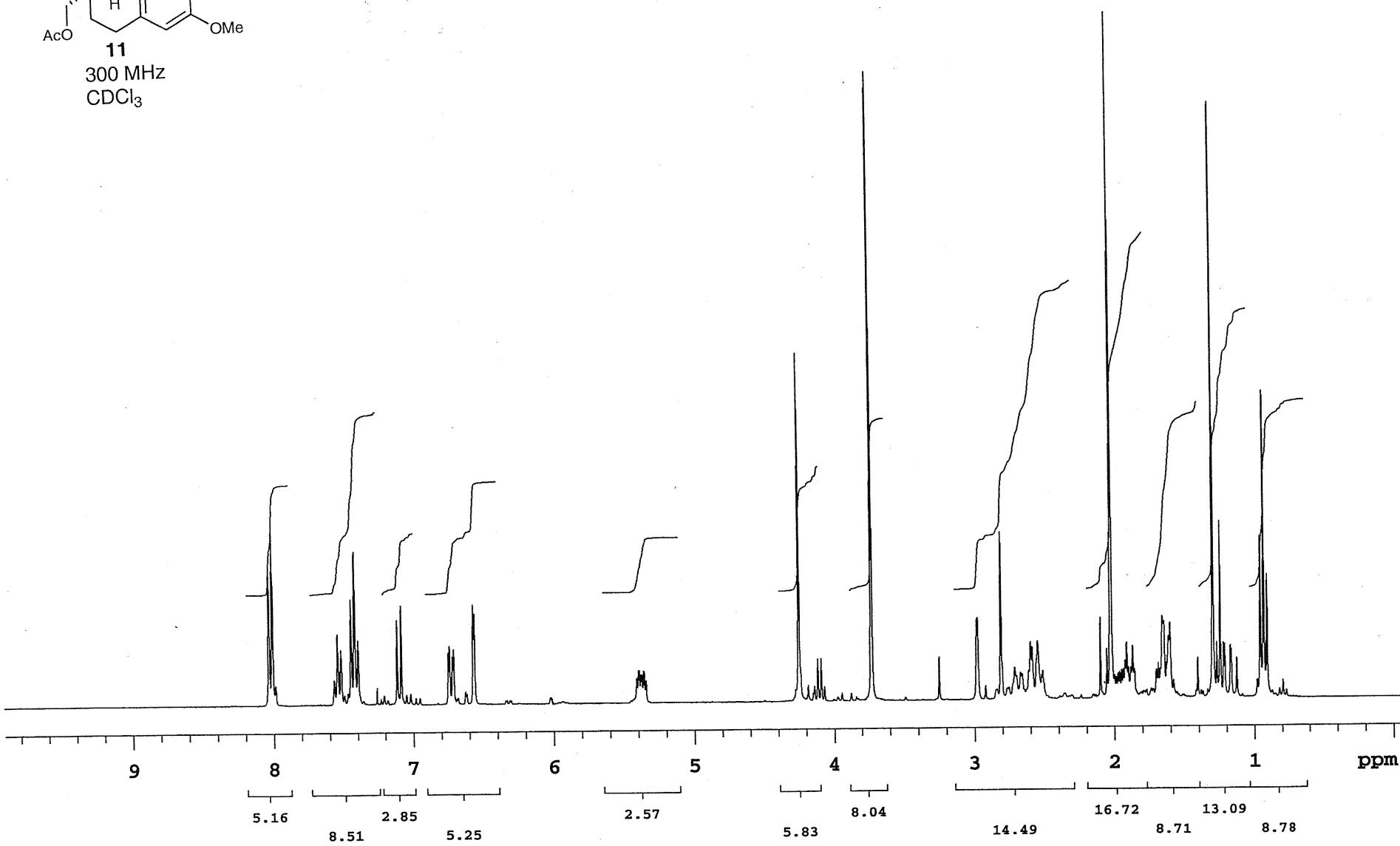
CDCl₃

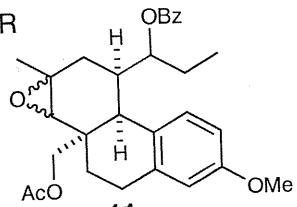



¹³C NMR

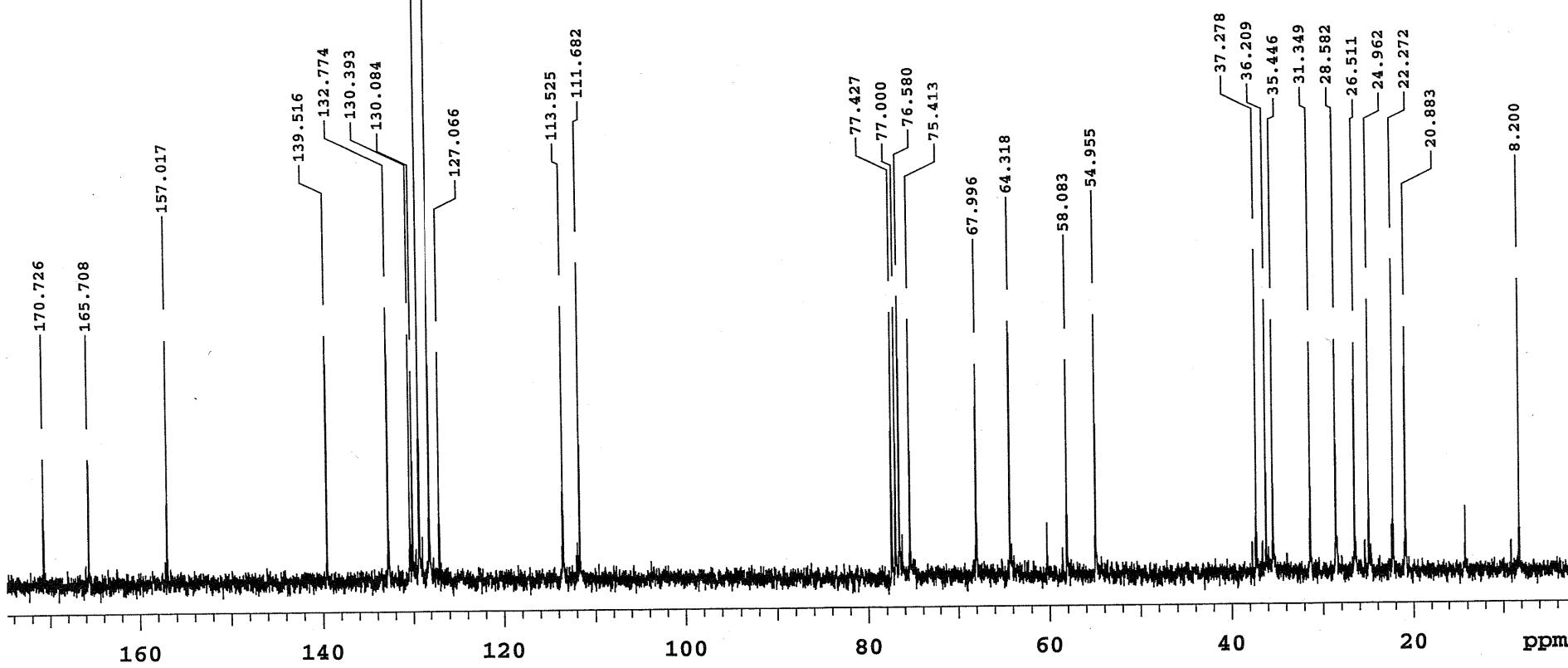


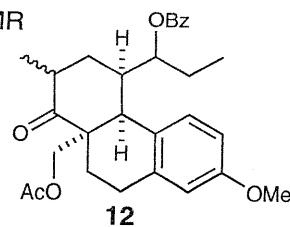
¹³C NMR


¹H NMR

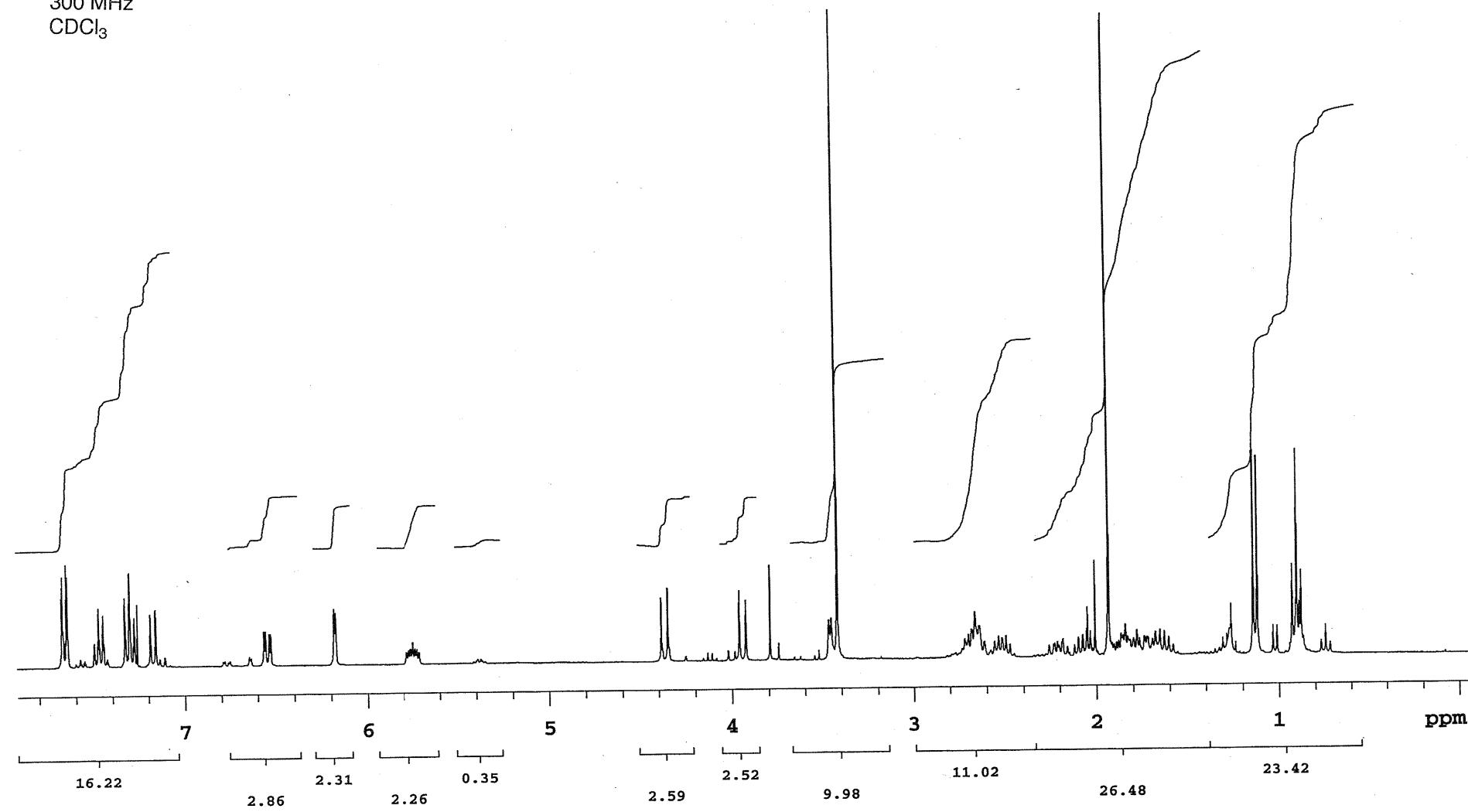

11

300 MHz

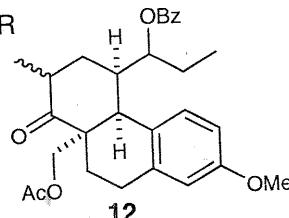

CDCl₃


¹³C NMR

75 MHz
 CDCl_3

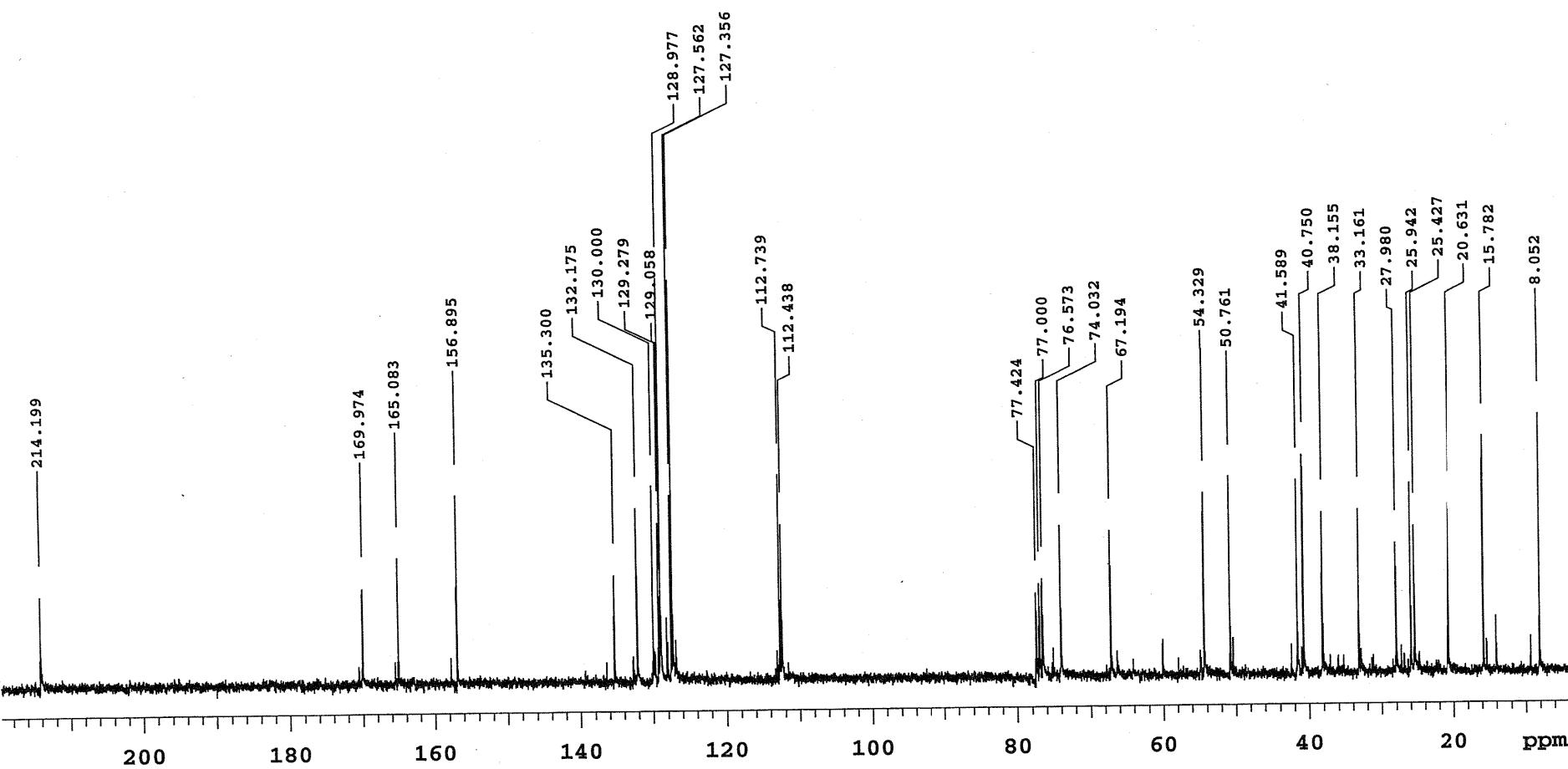


¹H NMR

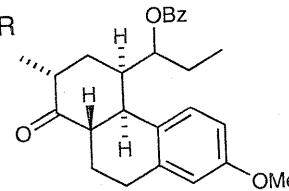


300 MHz

CDCl₃

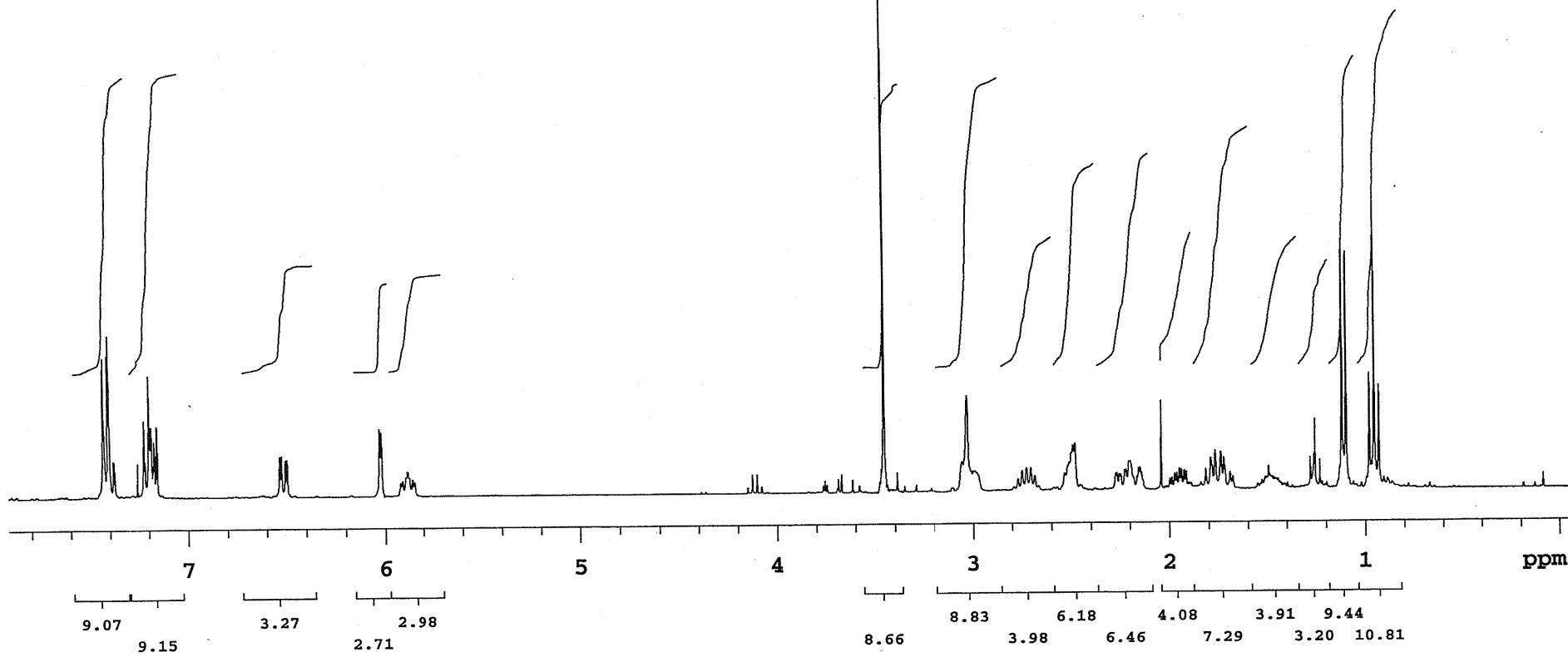


¹³C NMR

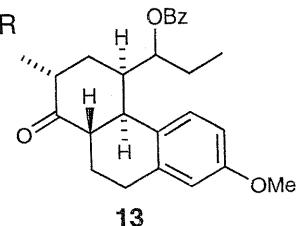


75 MHz

CDCl₃

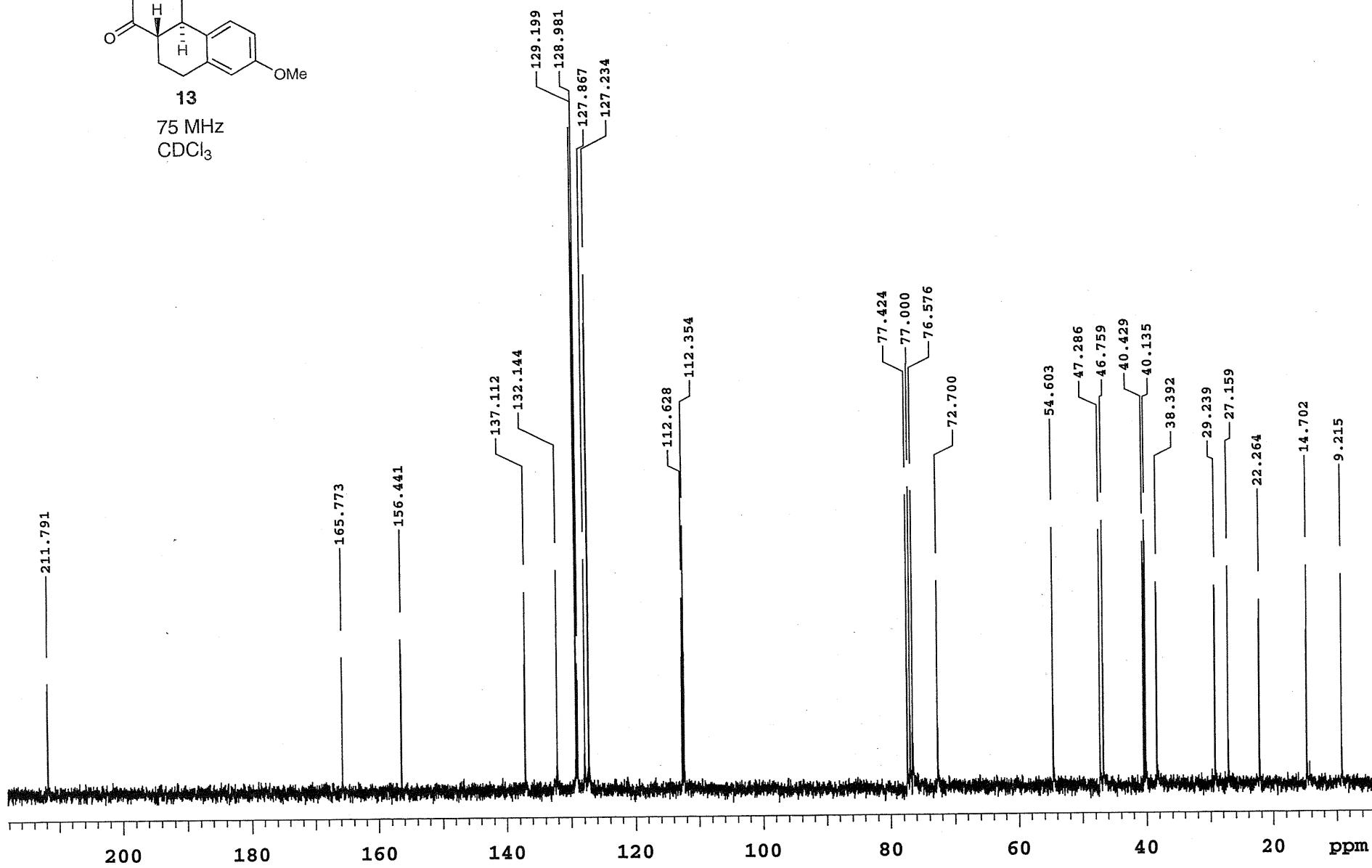


¹H NMR

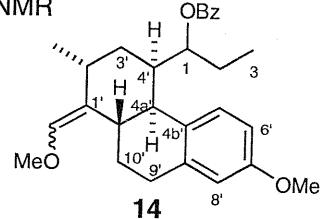


13

300 MHz
CDCl₃

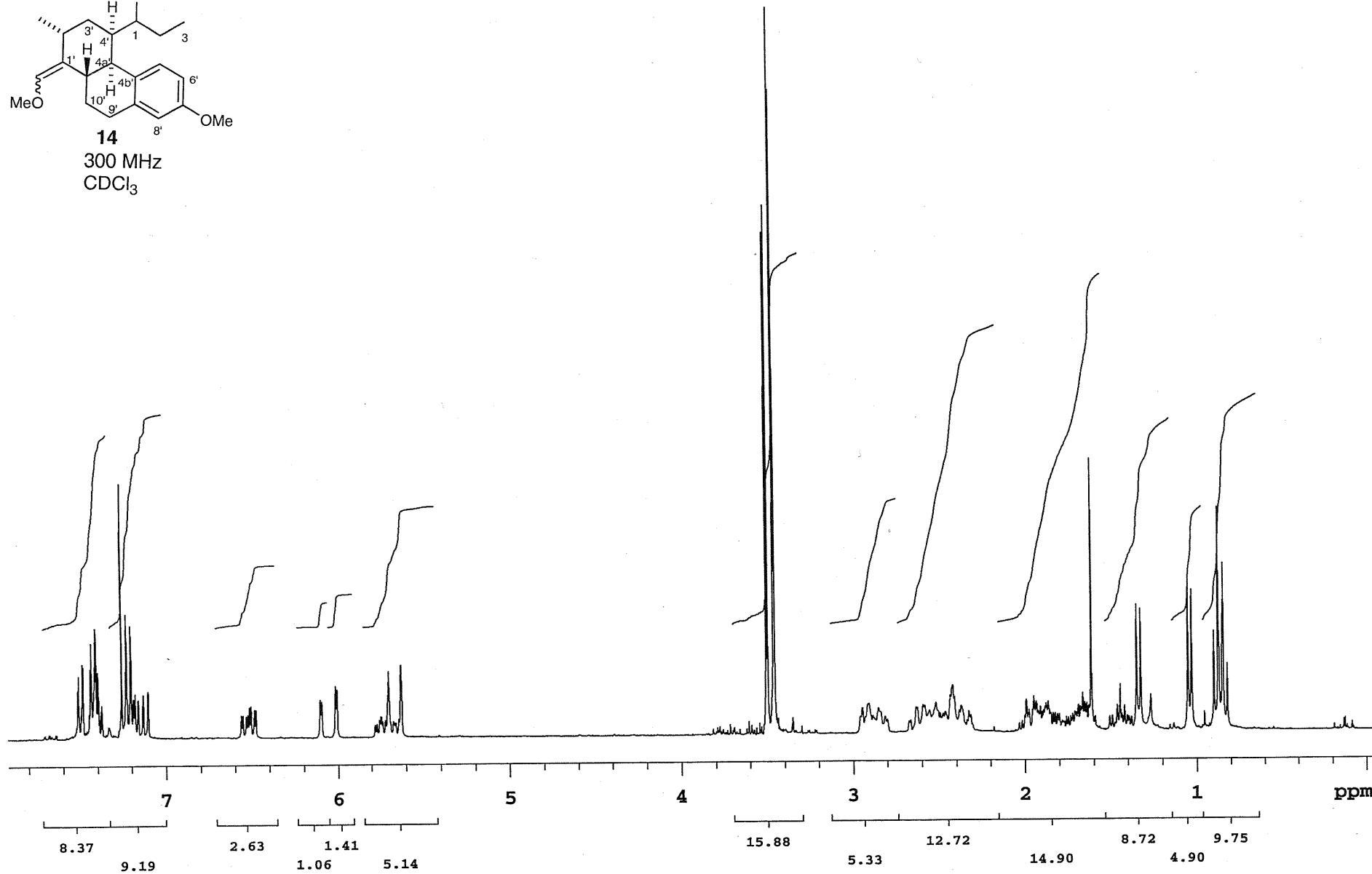


¹³C NMR

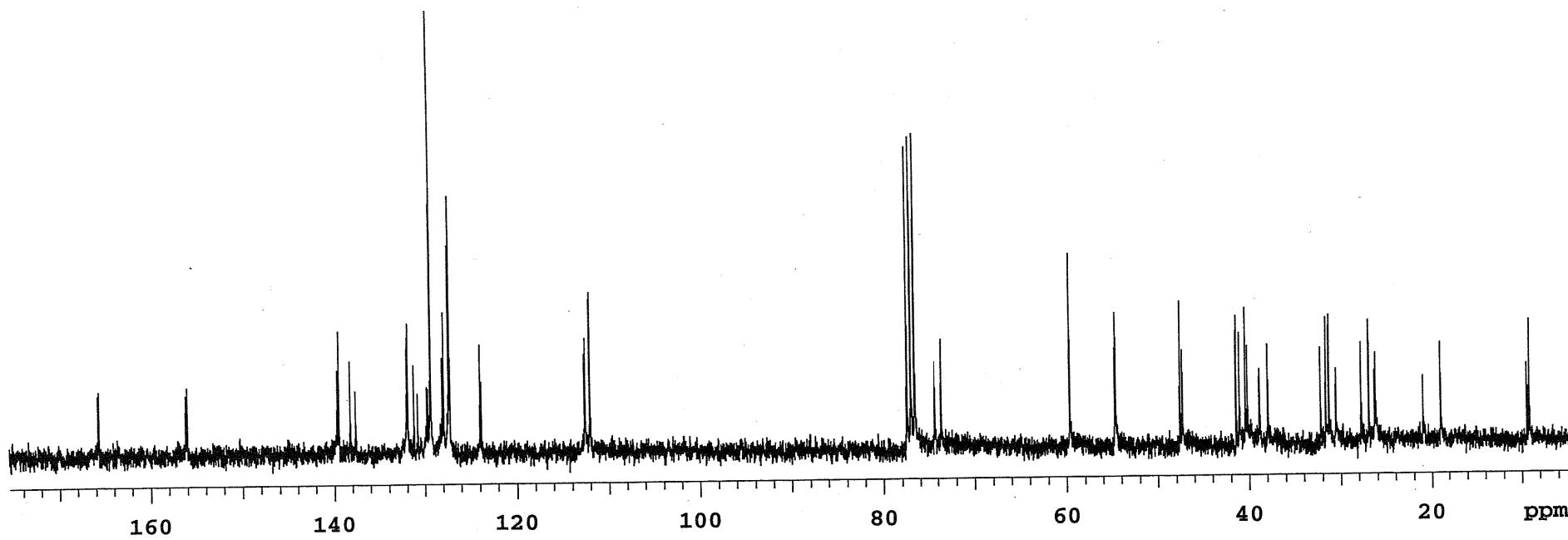
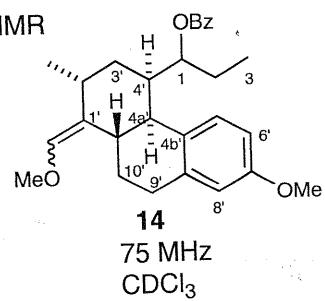


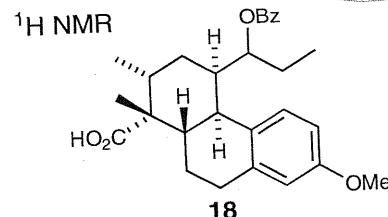
13

75 MHz
 CDCl_3

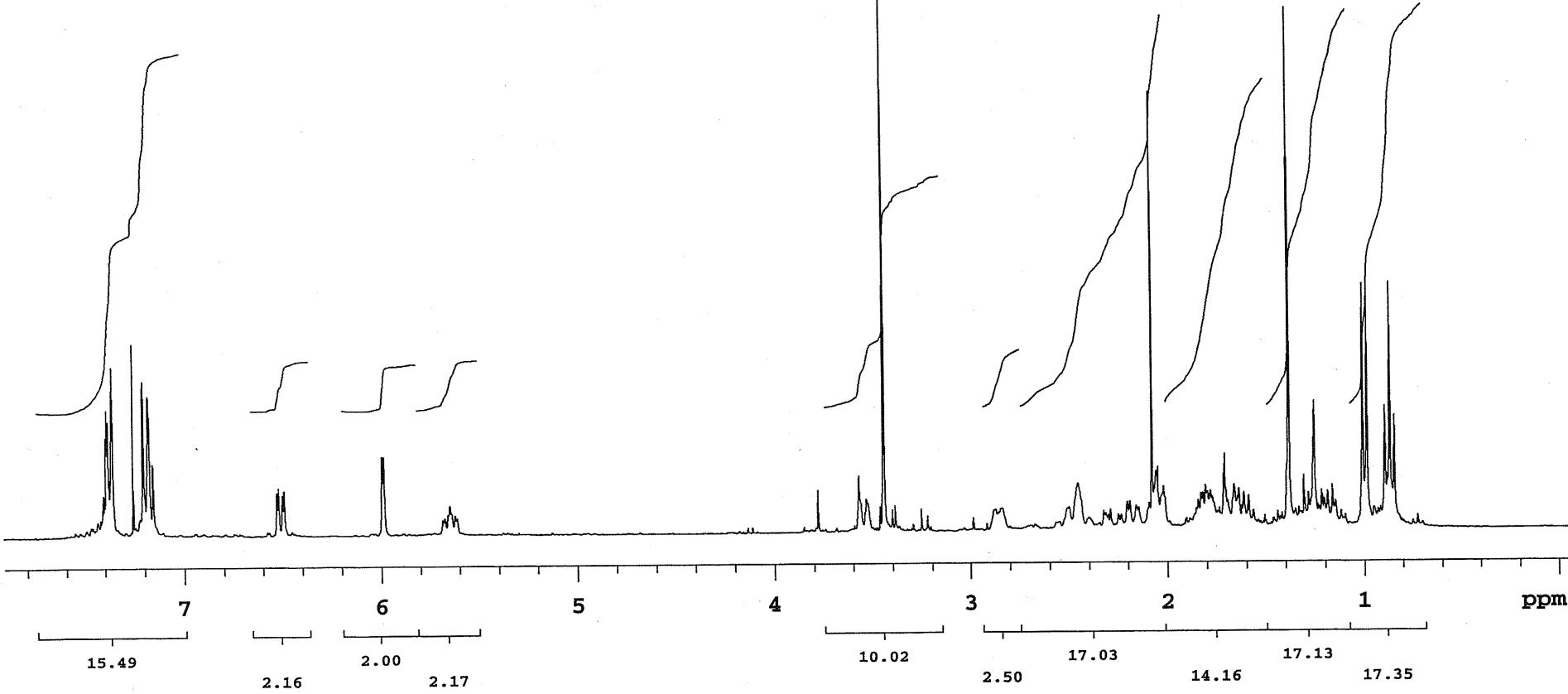


¹H NMR

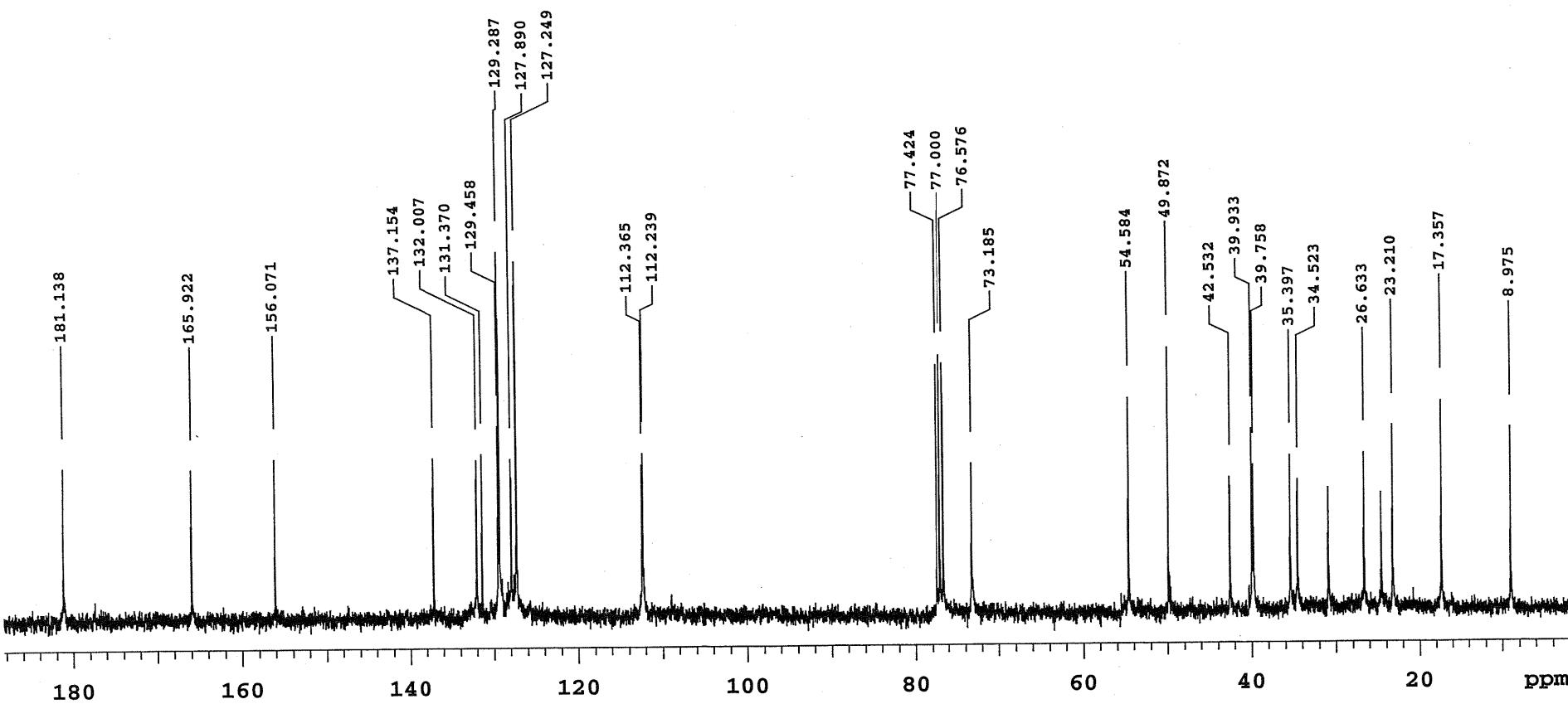
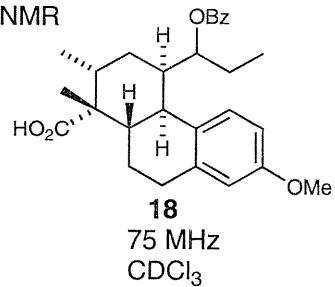



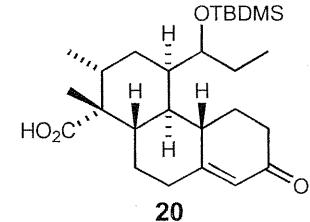

300 MHz

CDCl₃

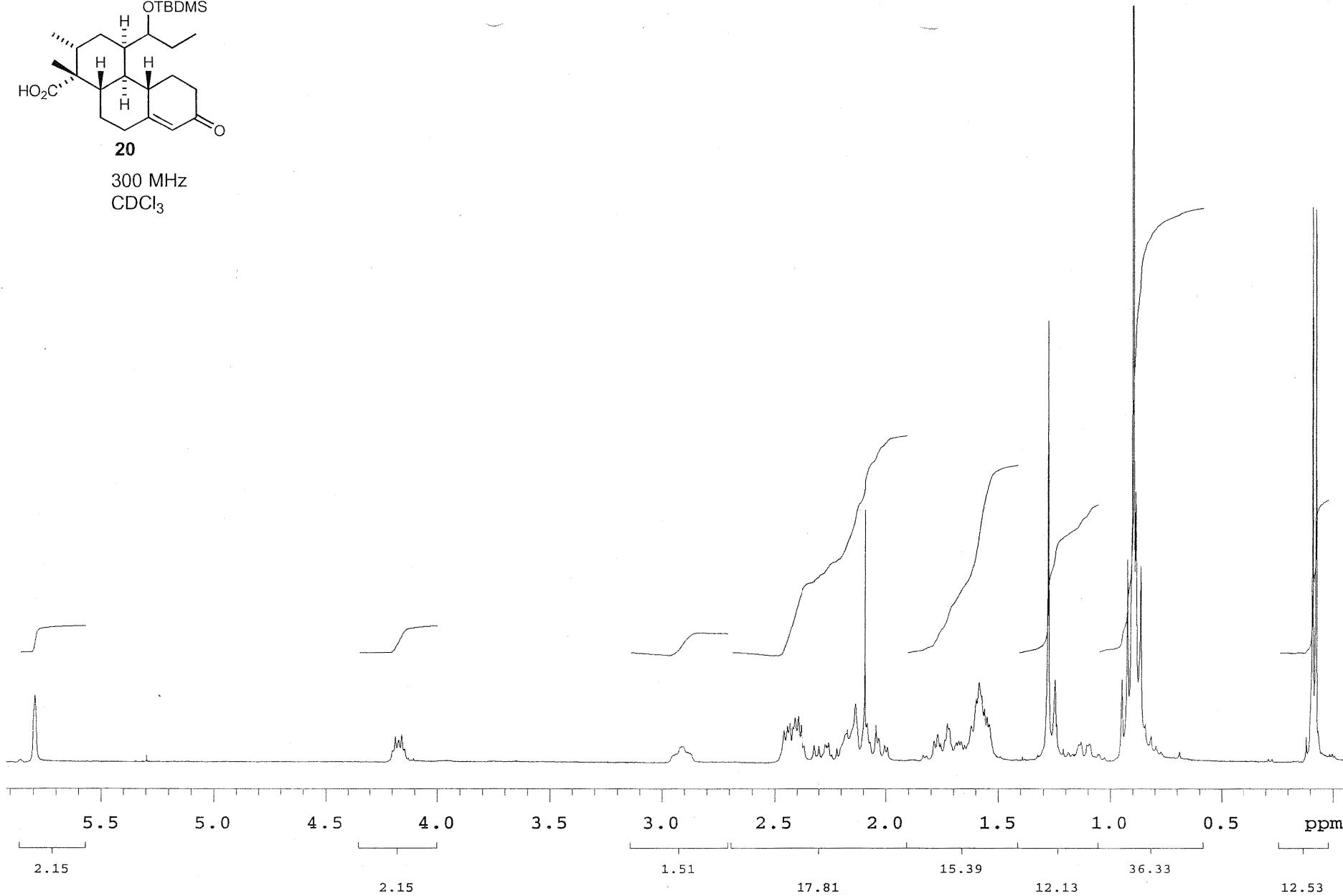


¹³C NMR

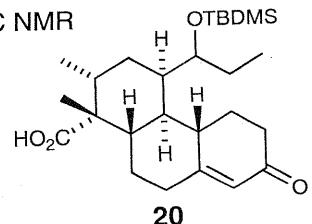




300 MHz
 CDCl_3

¹³C NMR

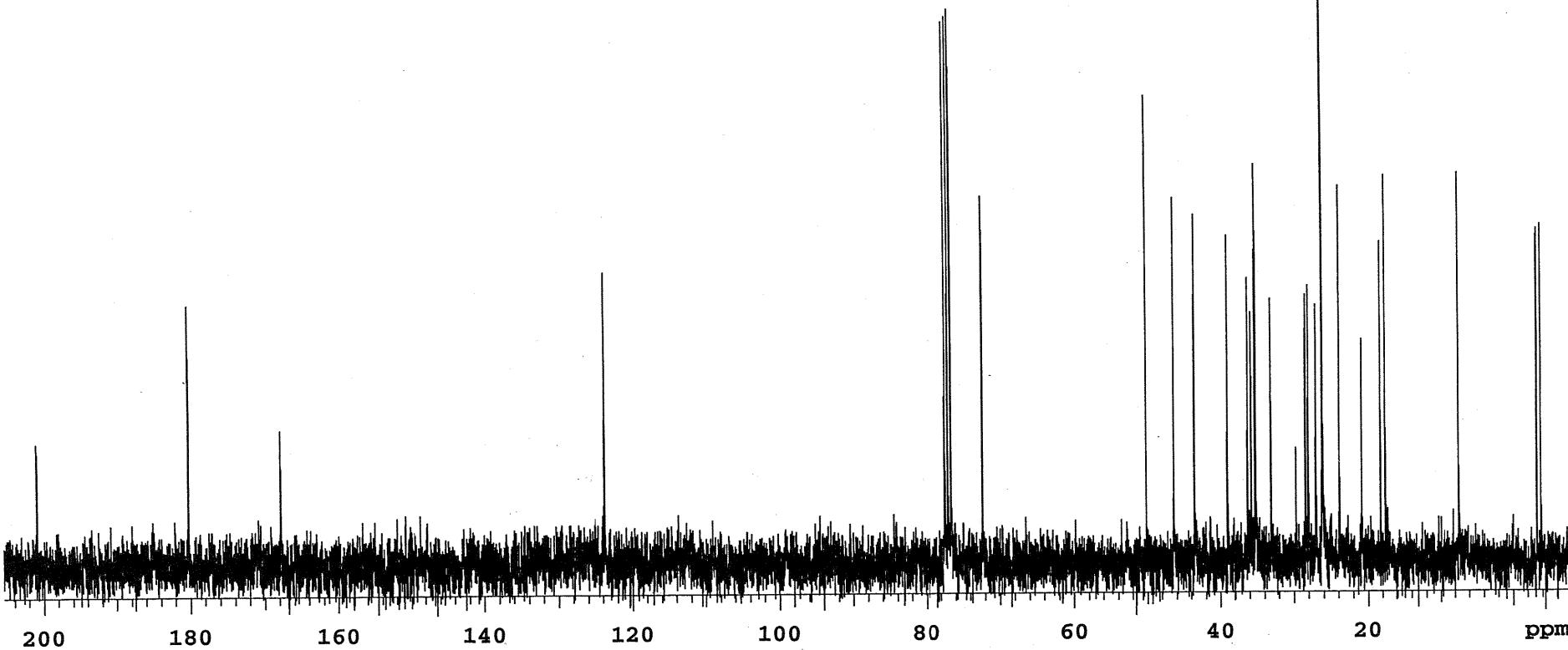


¹H NMR

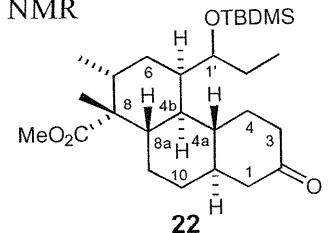


20

300 MHz
 CDCl_3

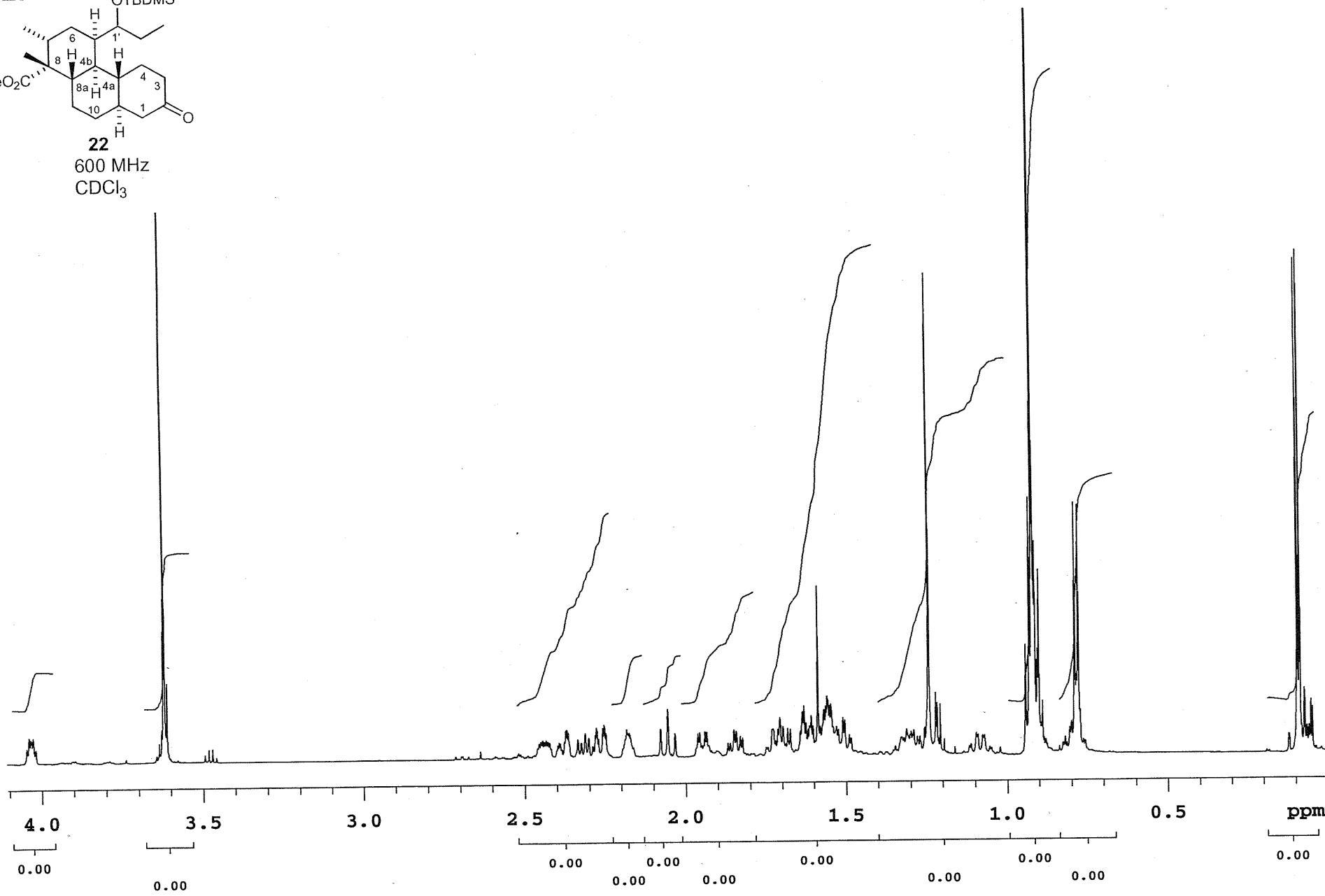


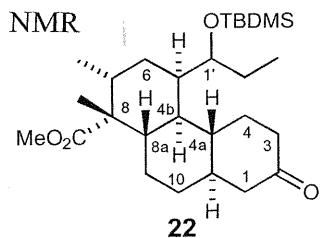
¹³C NMR



20

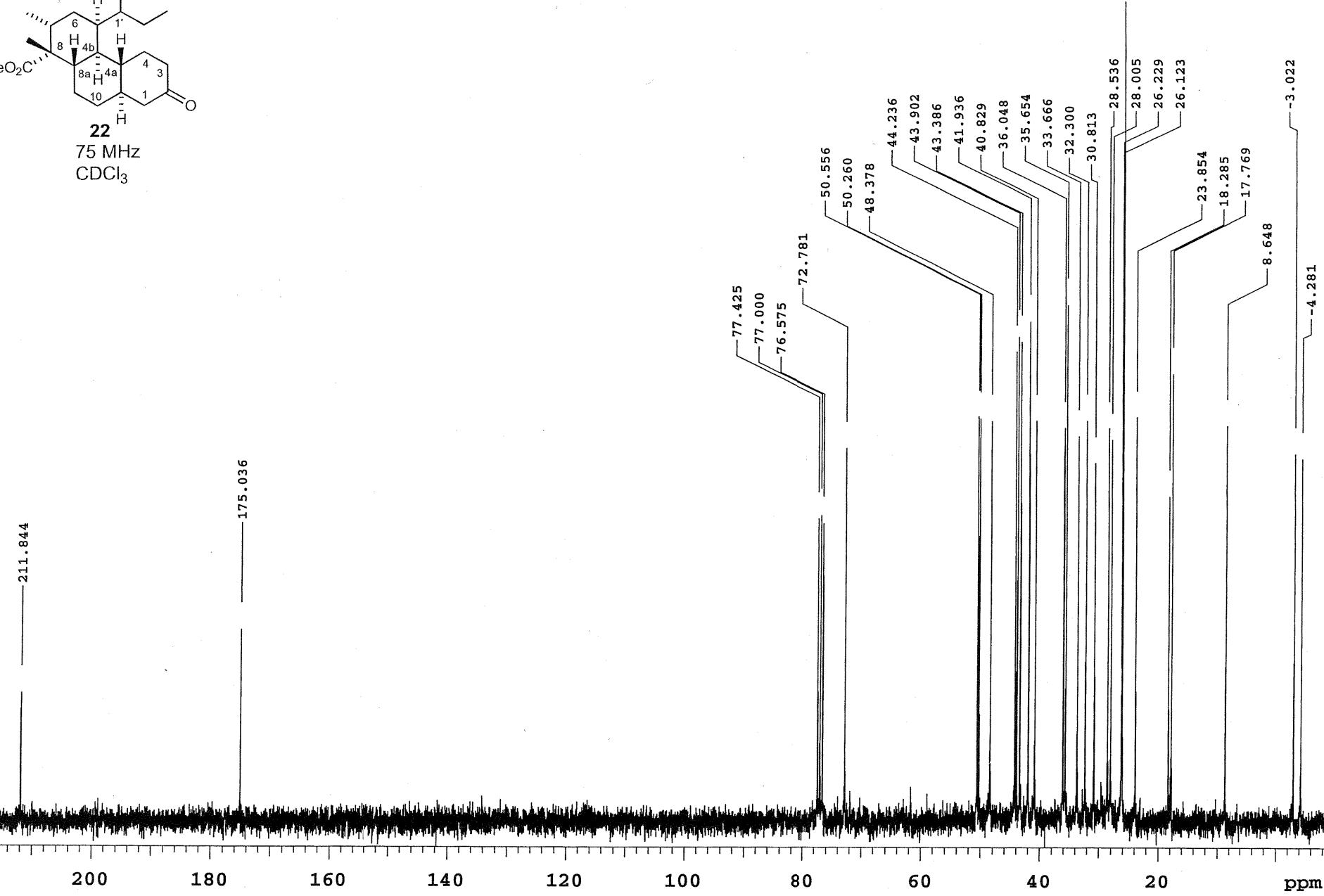
75 MHz
CDCl₃


¹H NMR

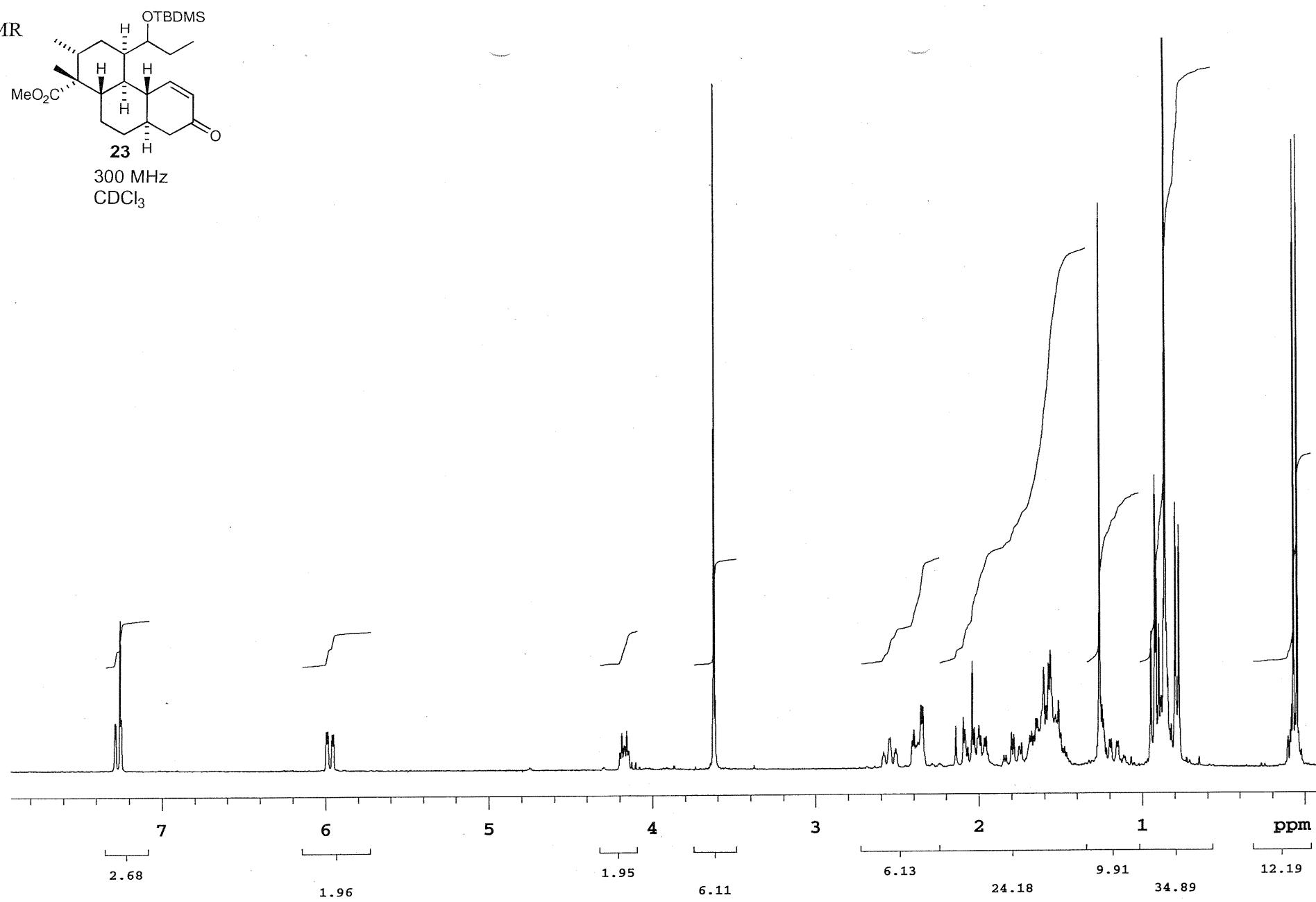

600 MHz

600 MHz
SBCI

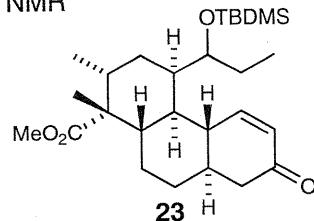
CDCl₃

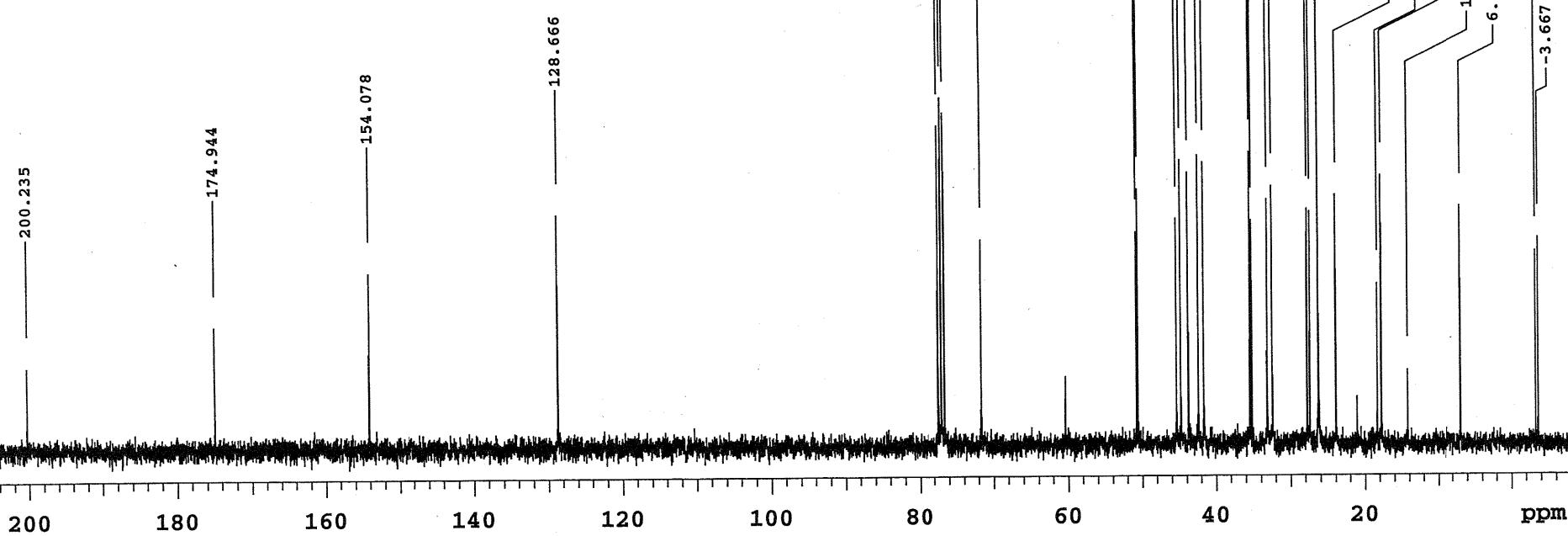


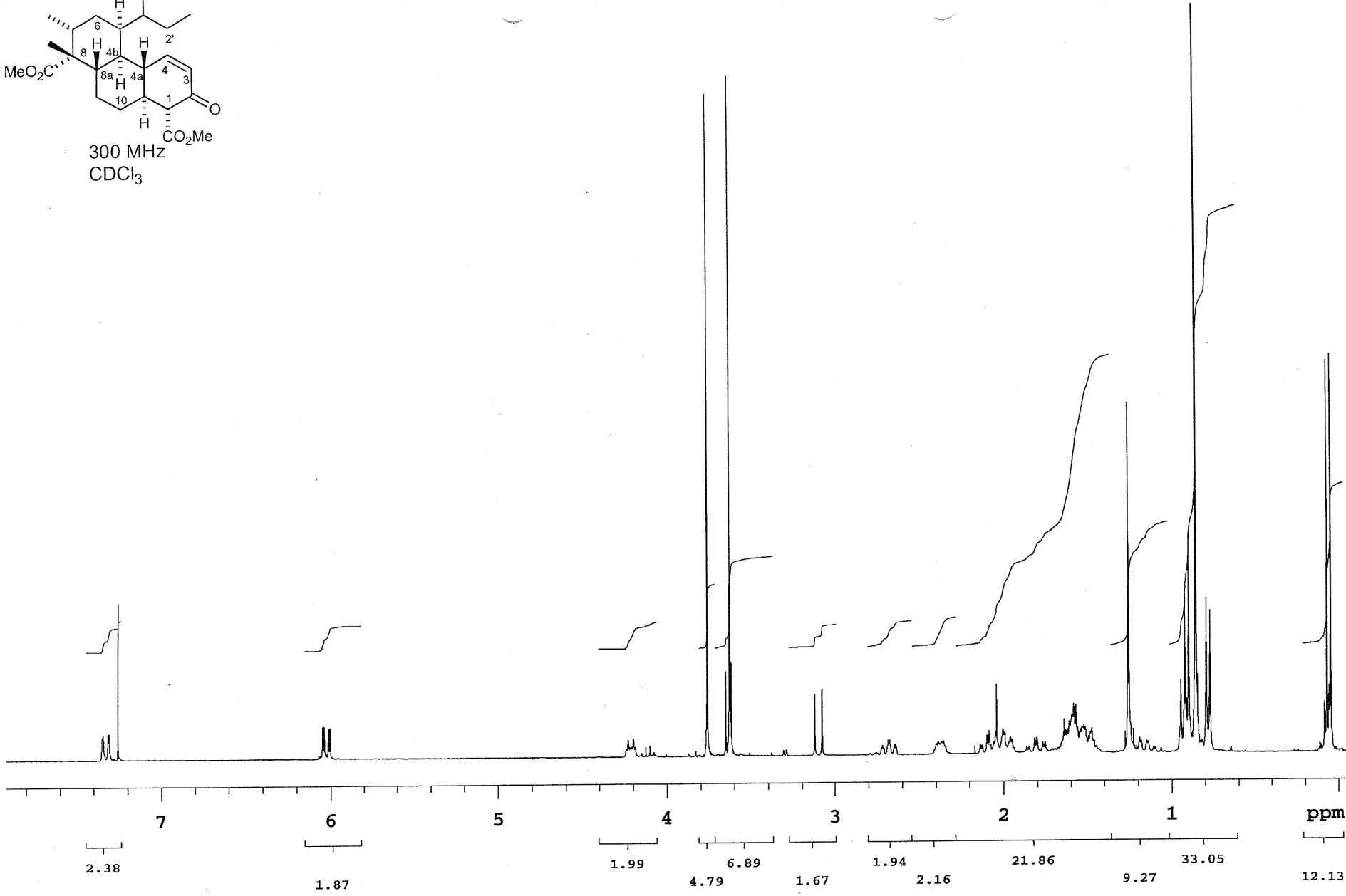
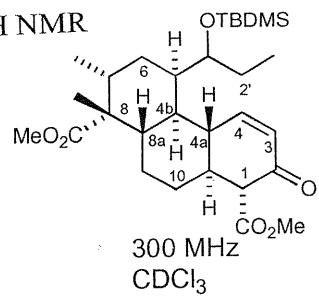
¹³C NMR

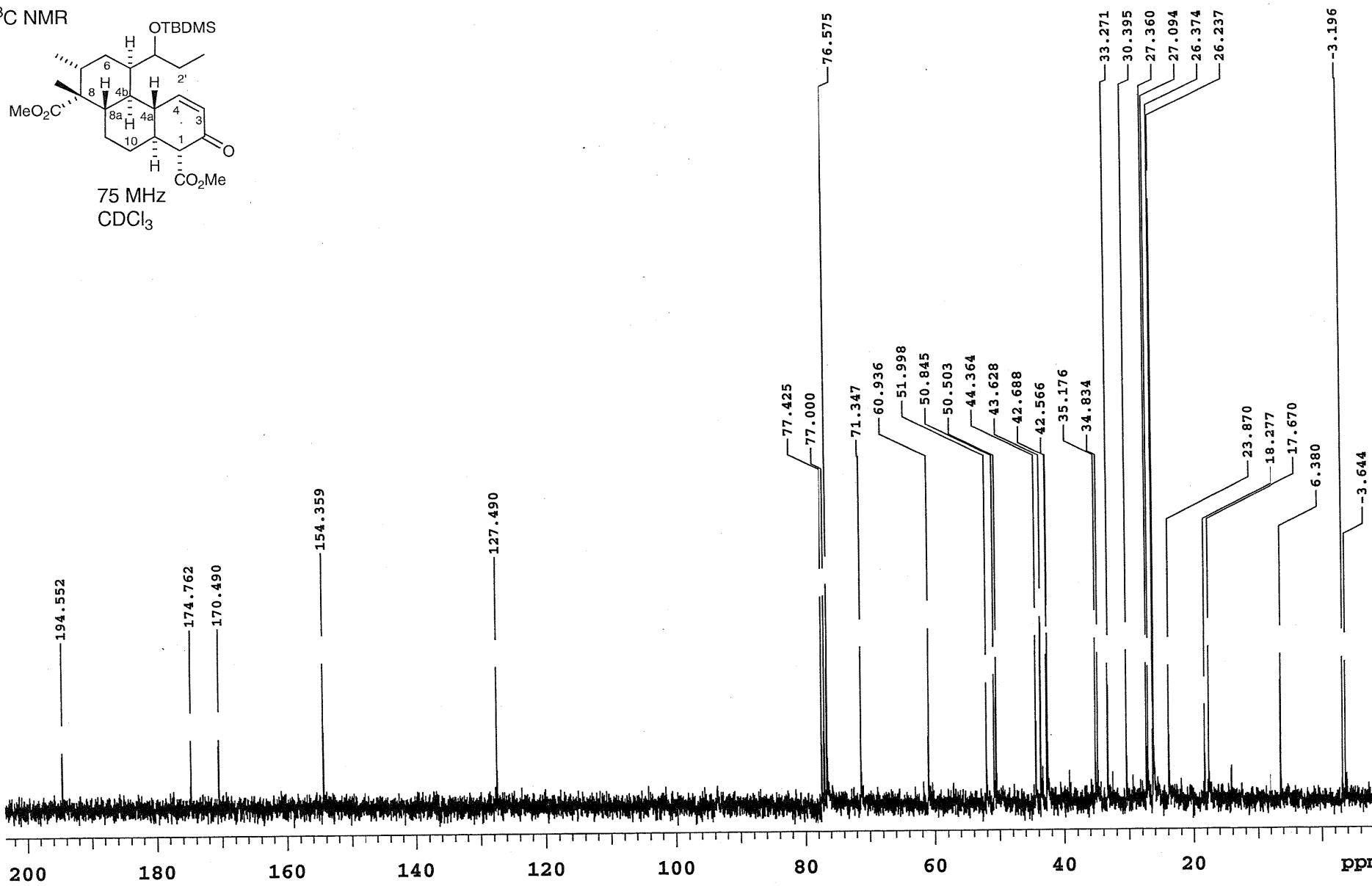
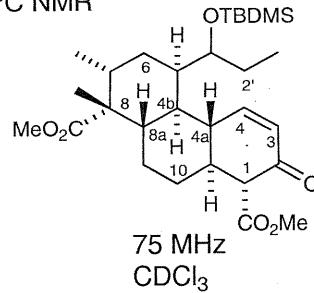


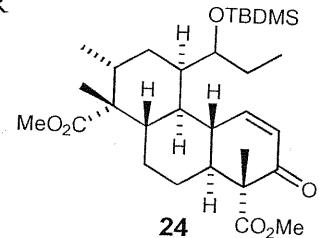
22

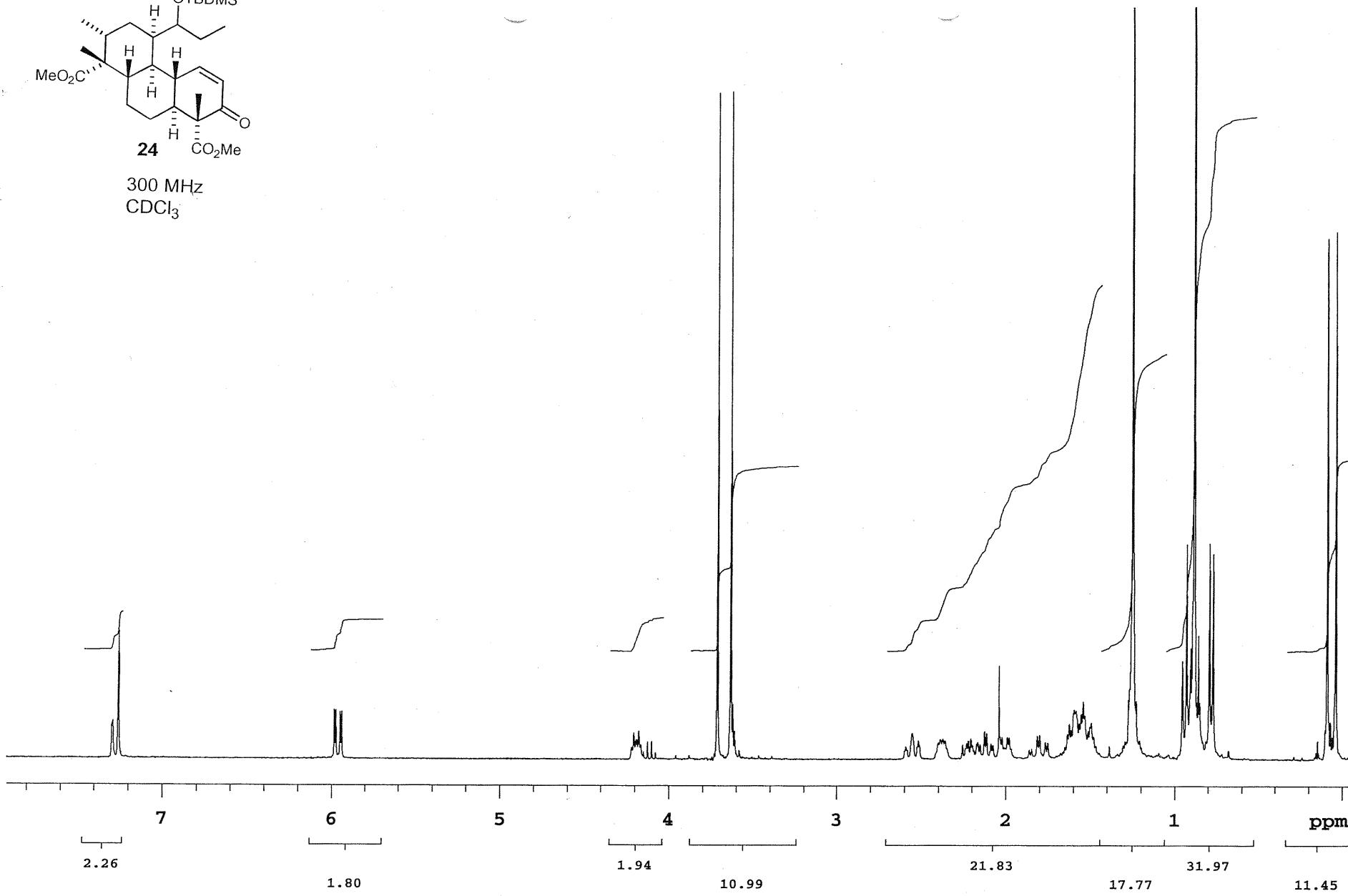

75 MHz
CDCl₃

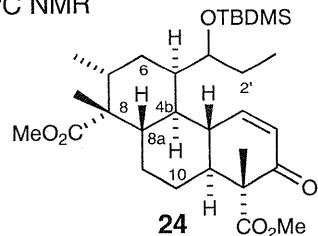

¹H NMR



¹³C NMR

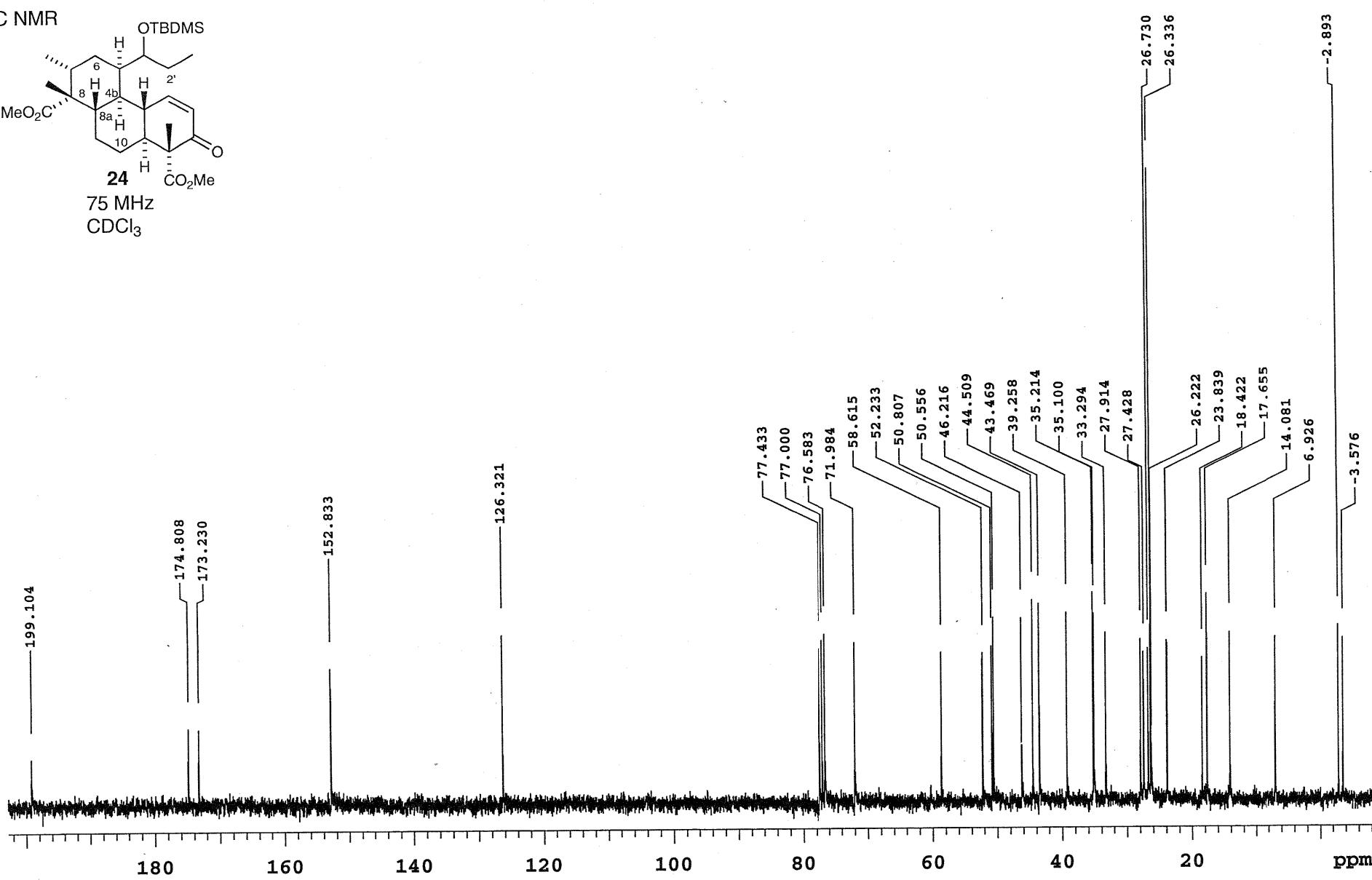


23
75 MHz
CDCl₃


¹H NMR

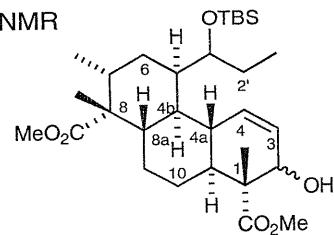

¹³C NMR


¹H NMR

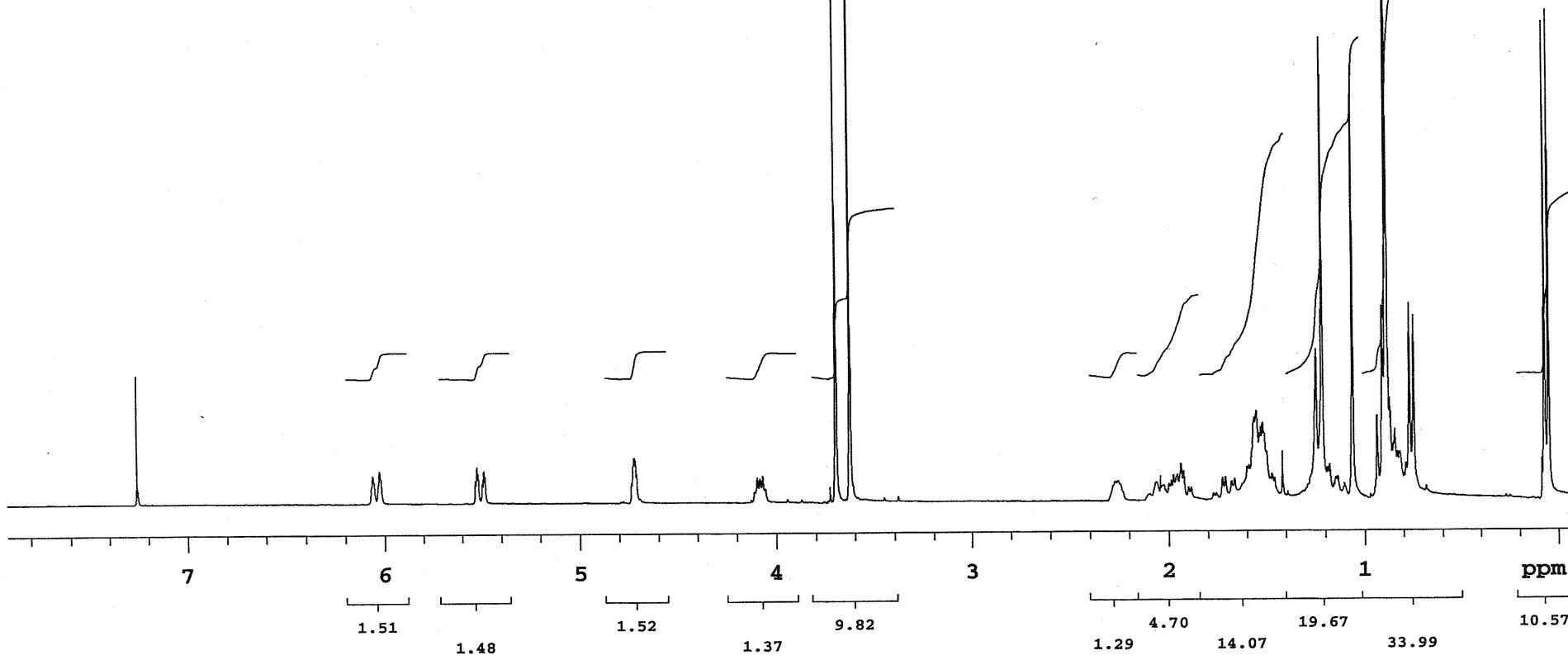
300 MHz
 CDCl_3

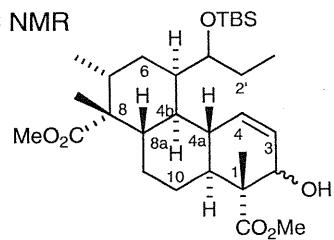


¹³C NMR

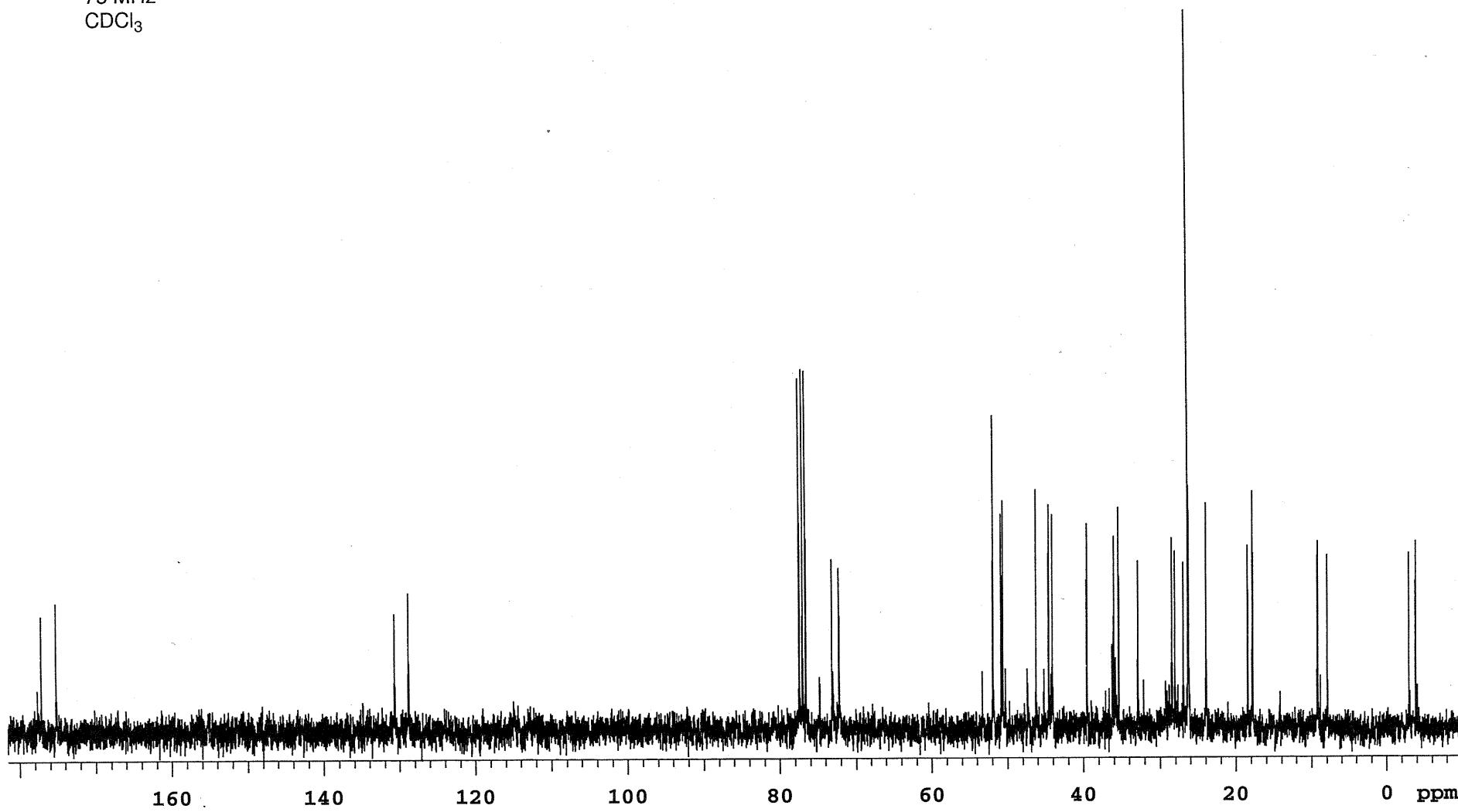


75 MHz

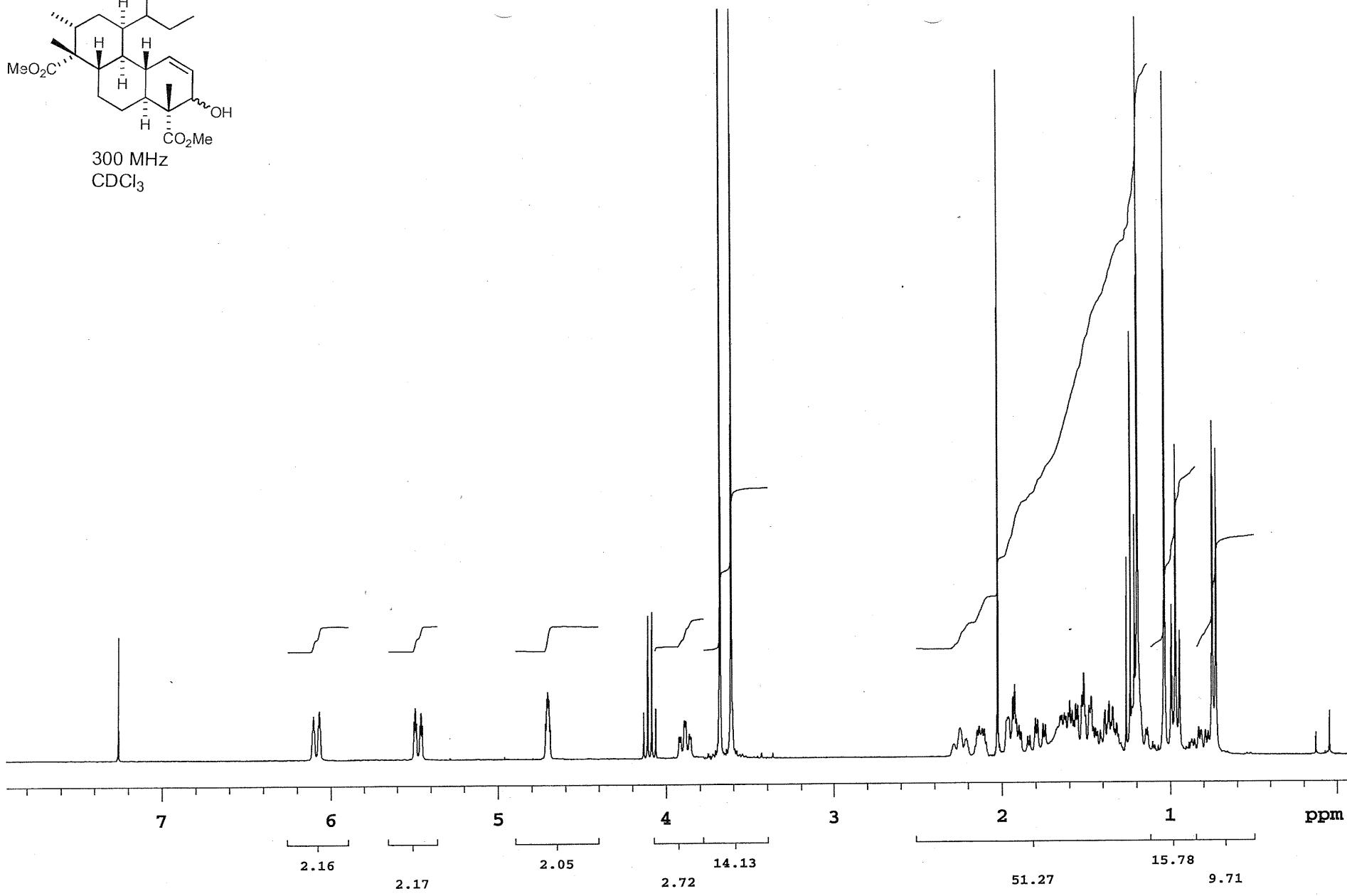
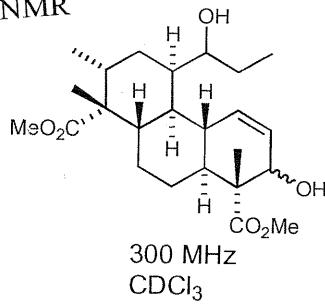

CDCl₃


¹H NMR

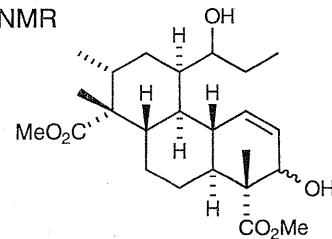
300 MHz
 CDCl_3



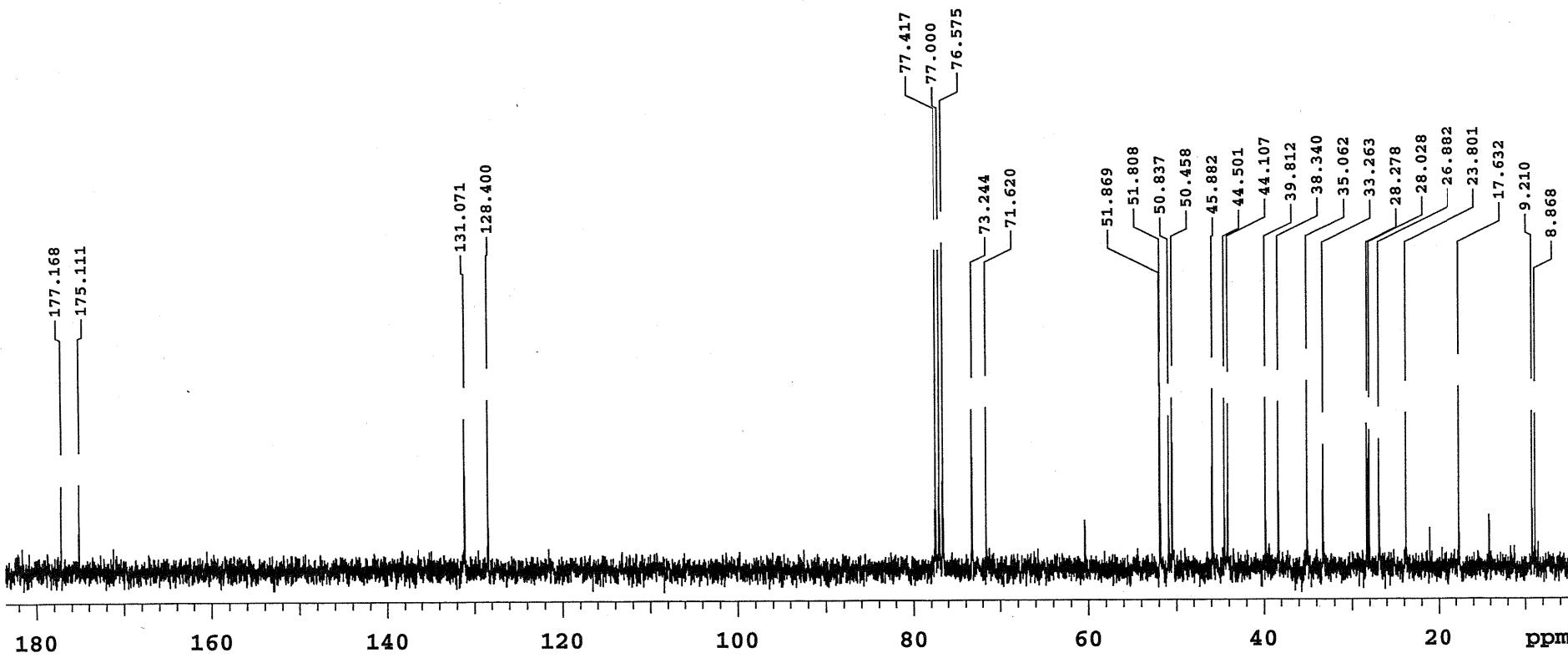
¹³C NMR

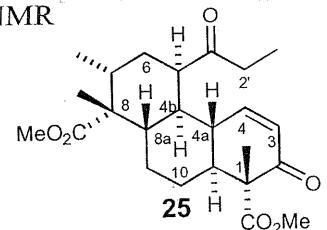
75 MHz


CDCl₃

¹H NMR

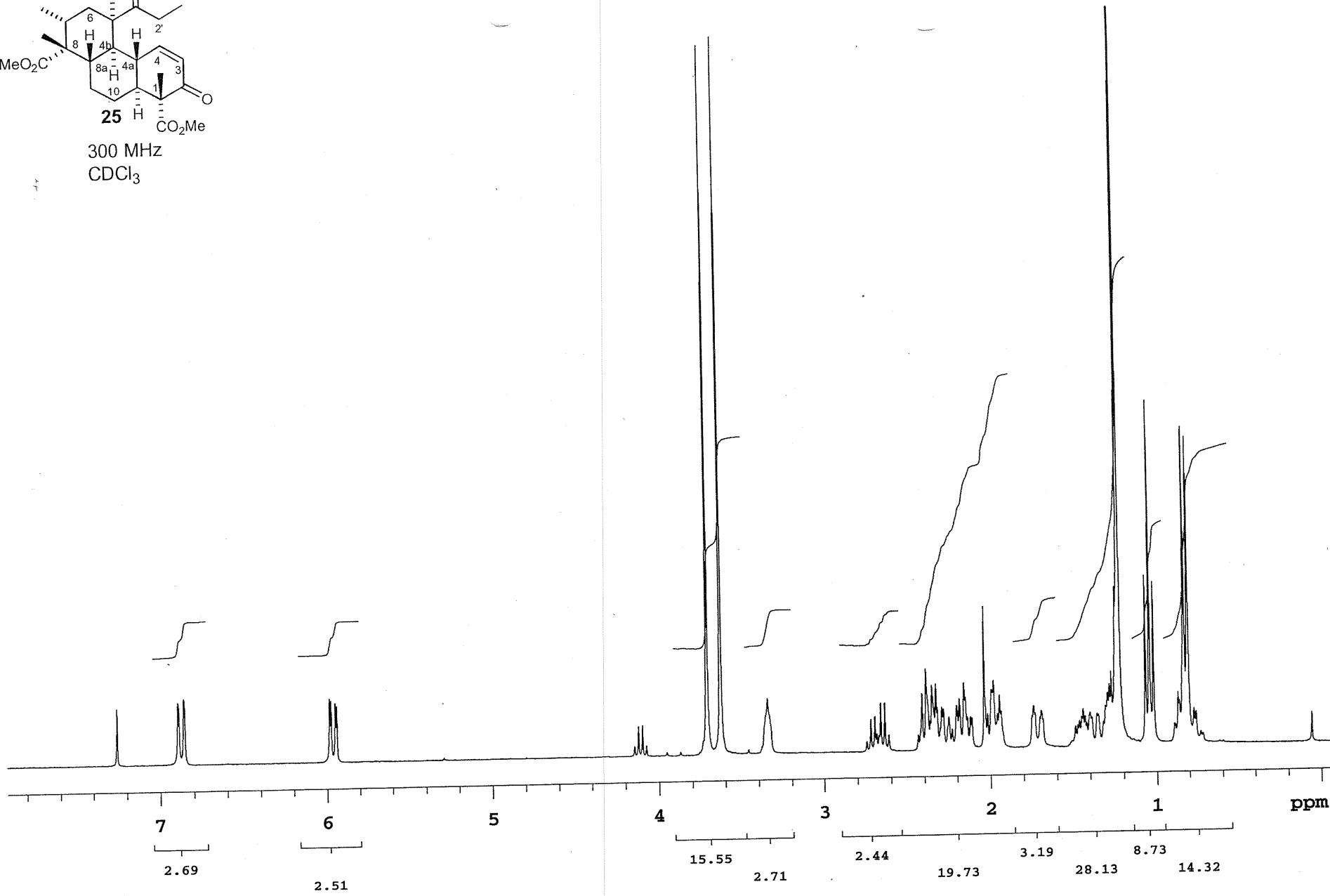


¹³C NMR

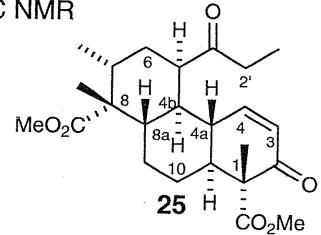


75 MHz

CDCl₃

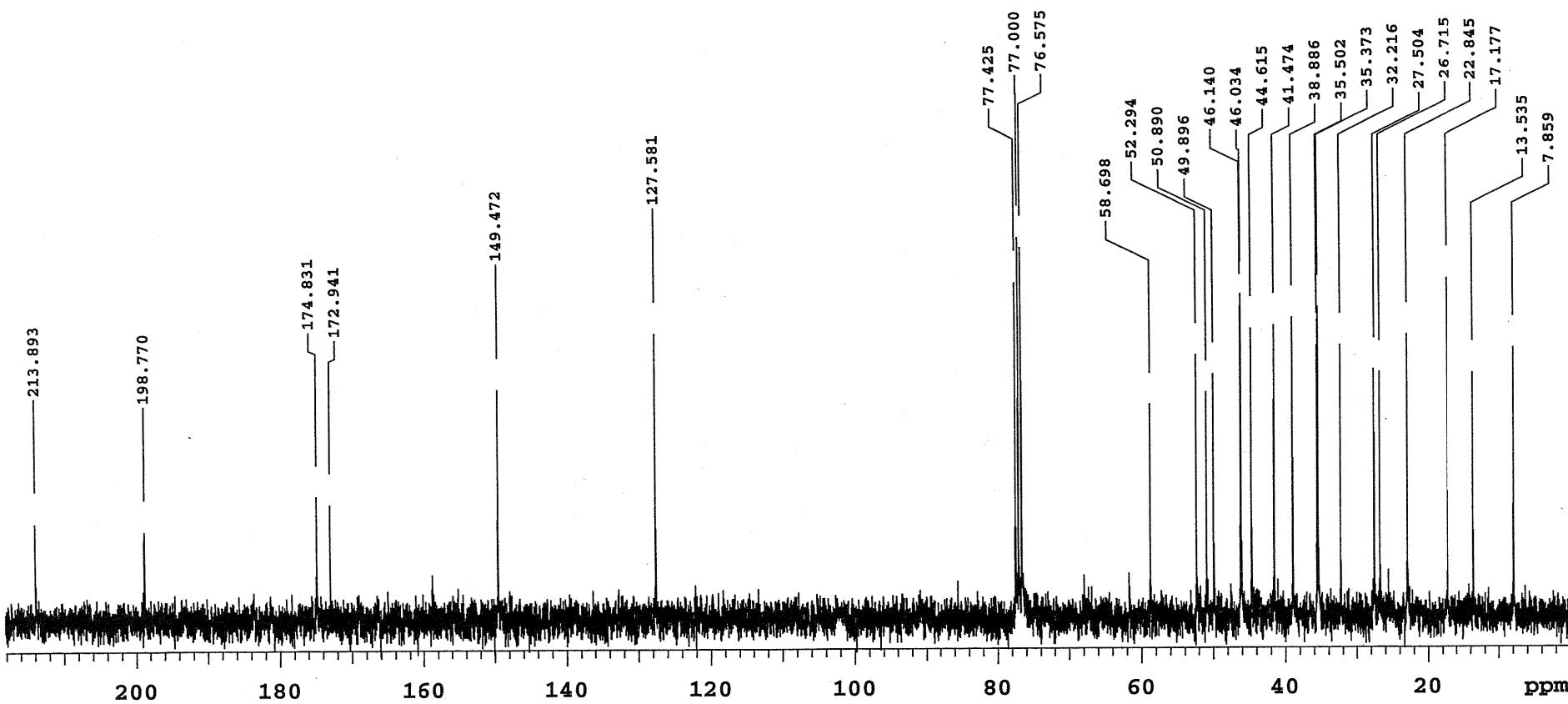


¹H NMR

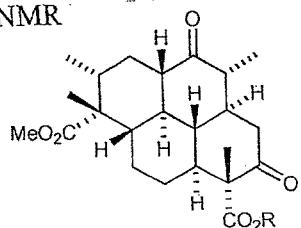


300 MHz

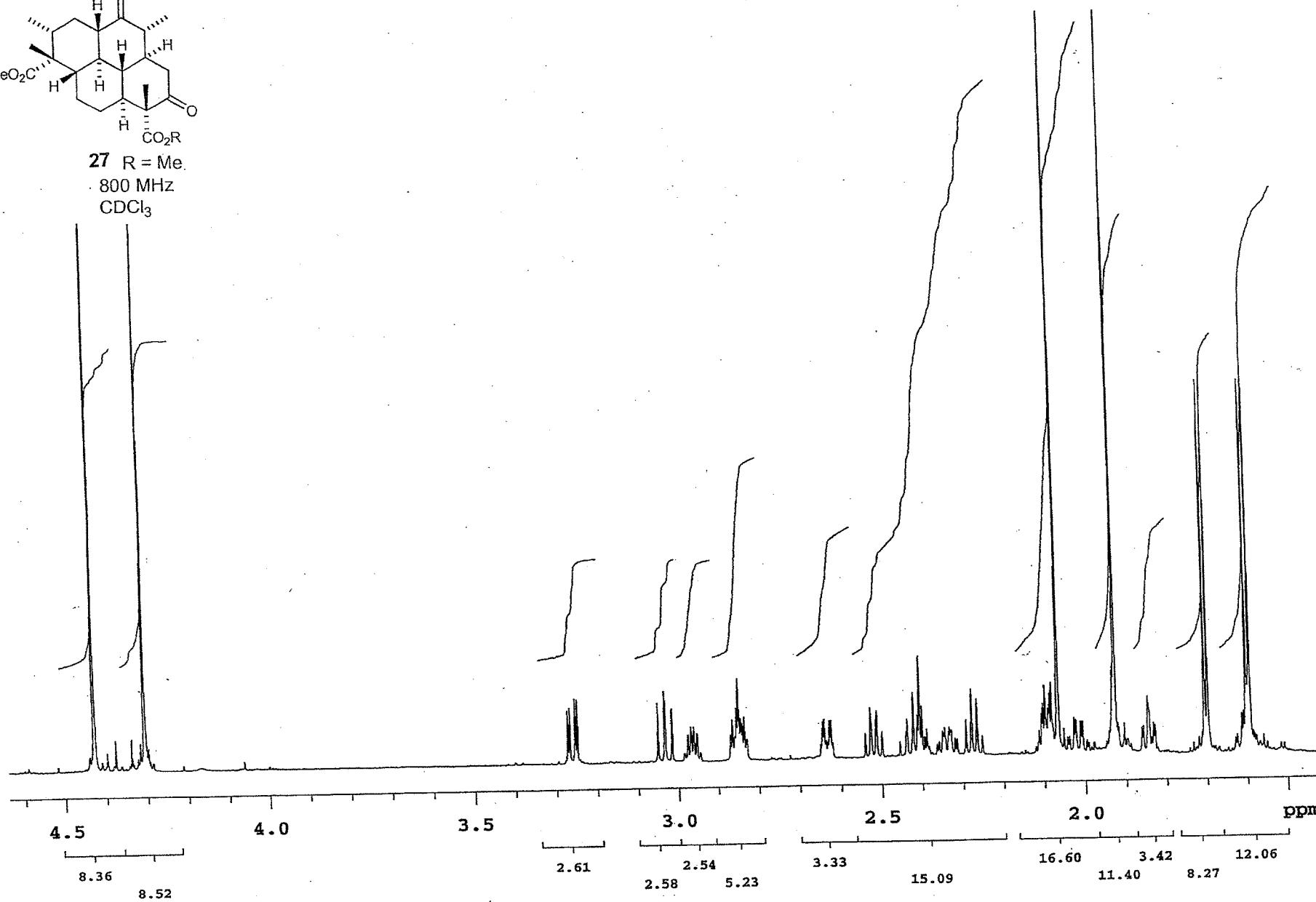
CDCl₃

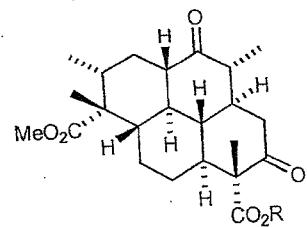


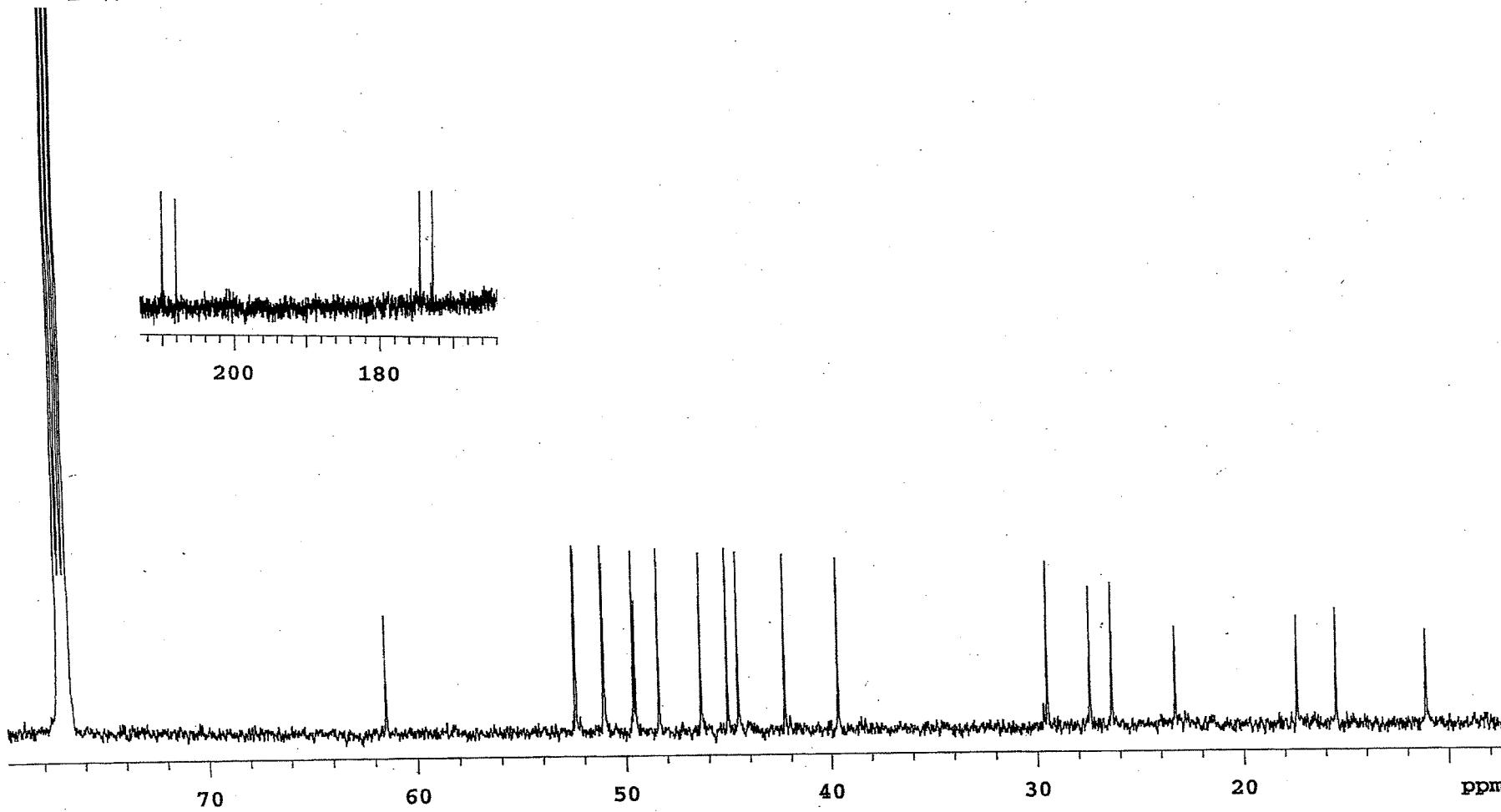
¹³C NMR

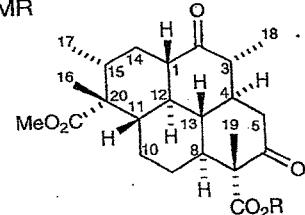


75 MHz

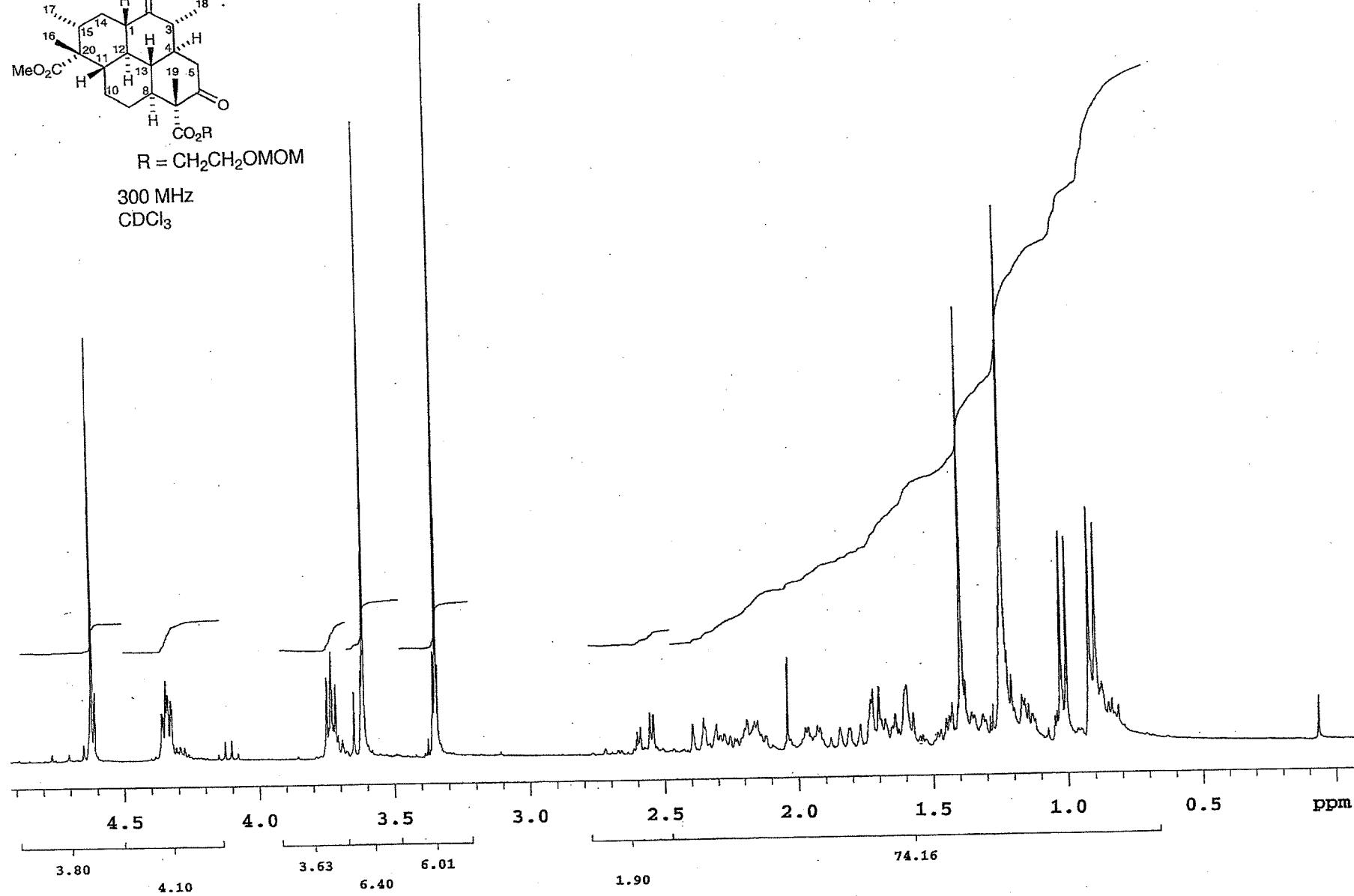

CDCl₃


¹H NMR


27 R = Me.
800 MHz
 CDCl_3


¹³C NMR

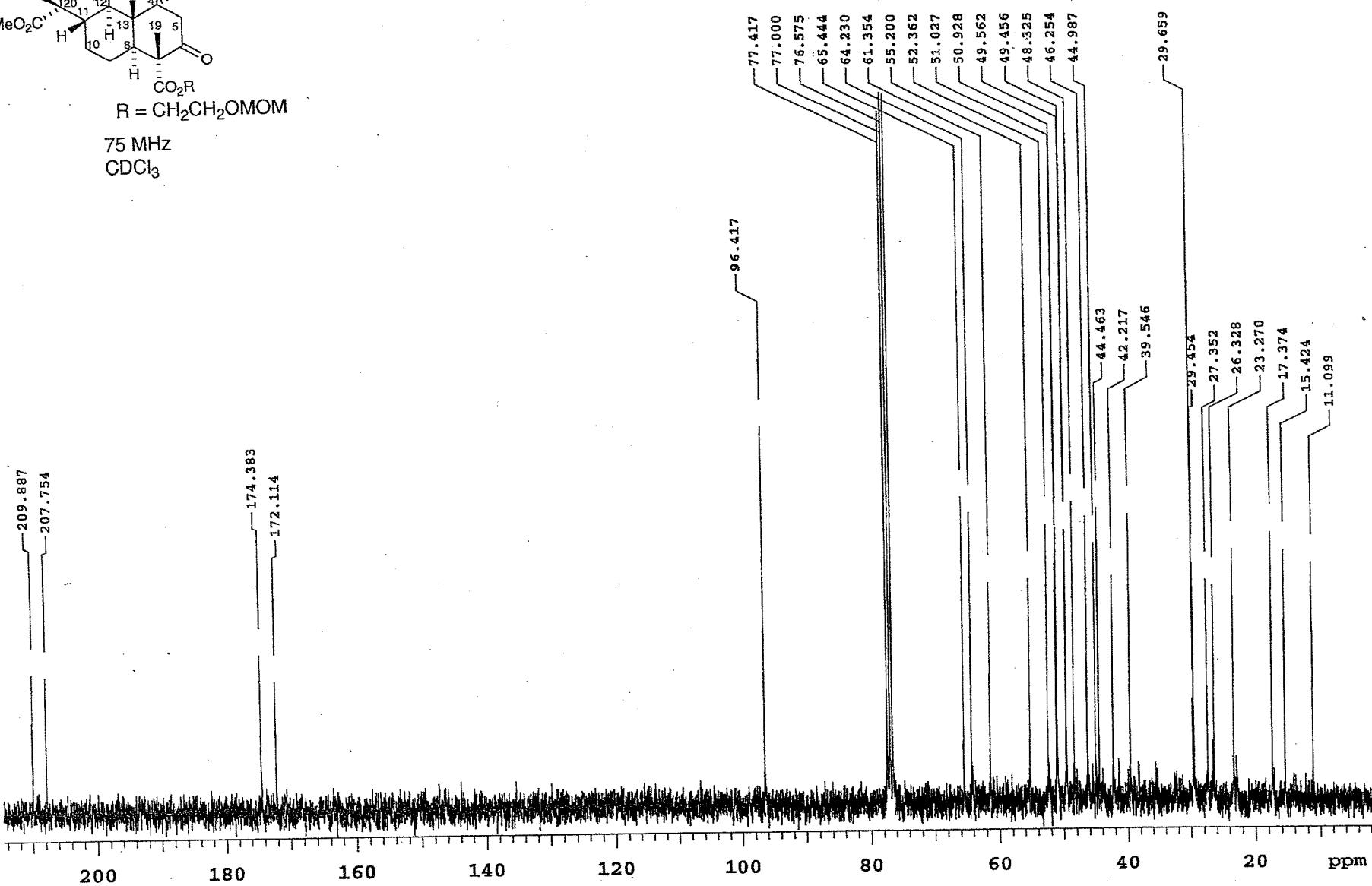
27 R = Me



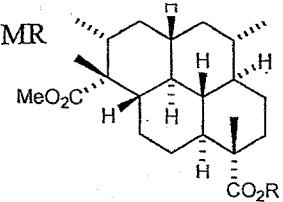
¹H NMR

R = CH₂CH₂OMOM

300 MHz
CDCl₃

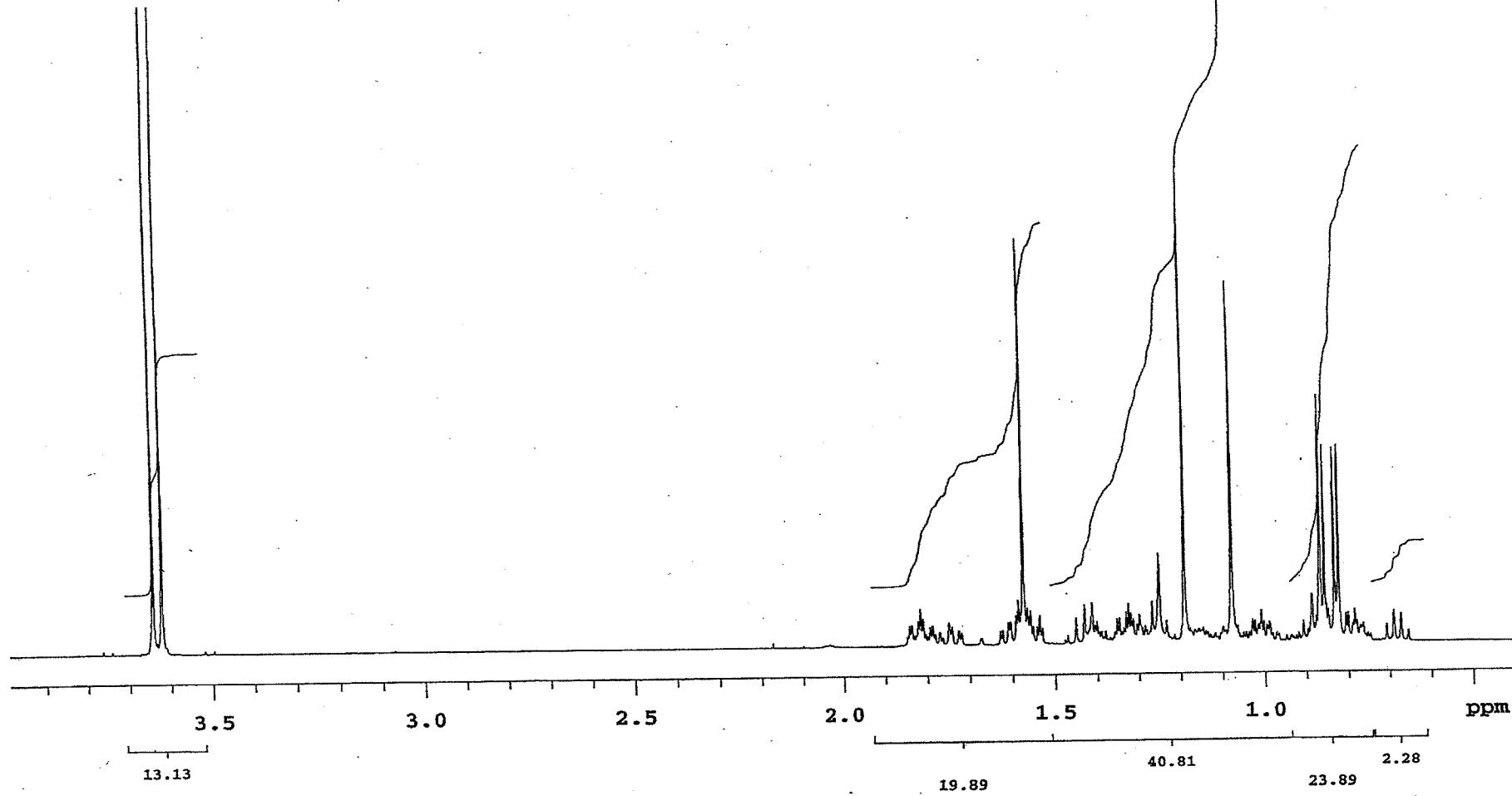


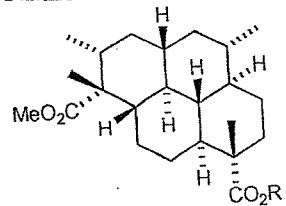
¹³C NMR



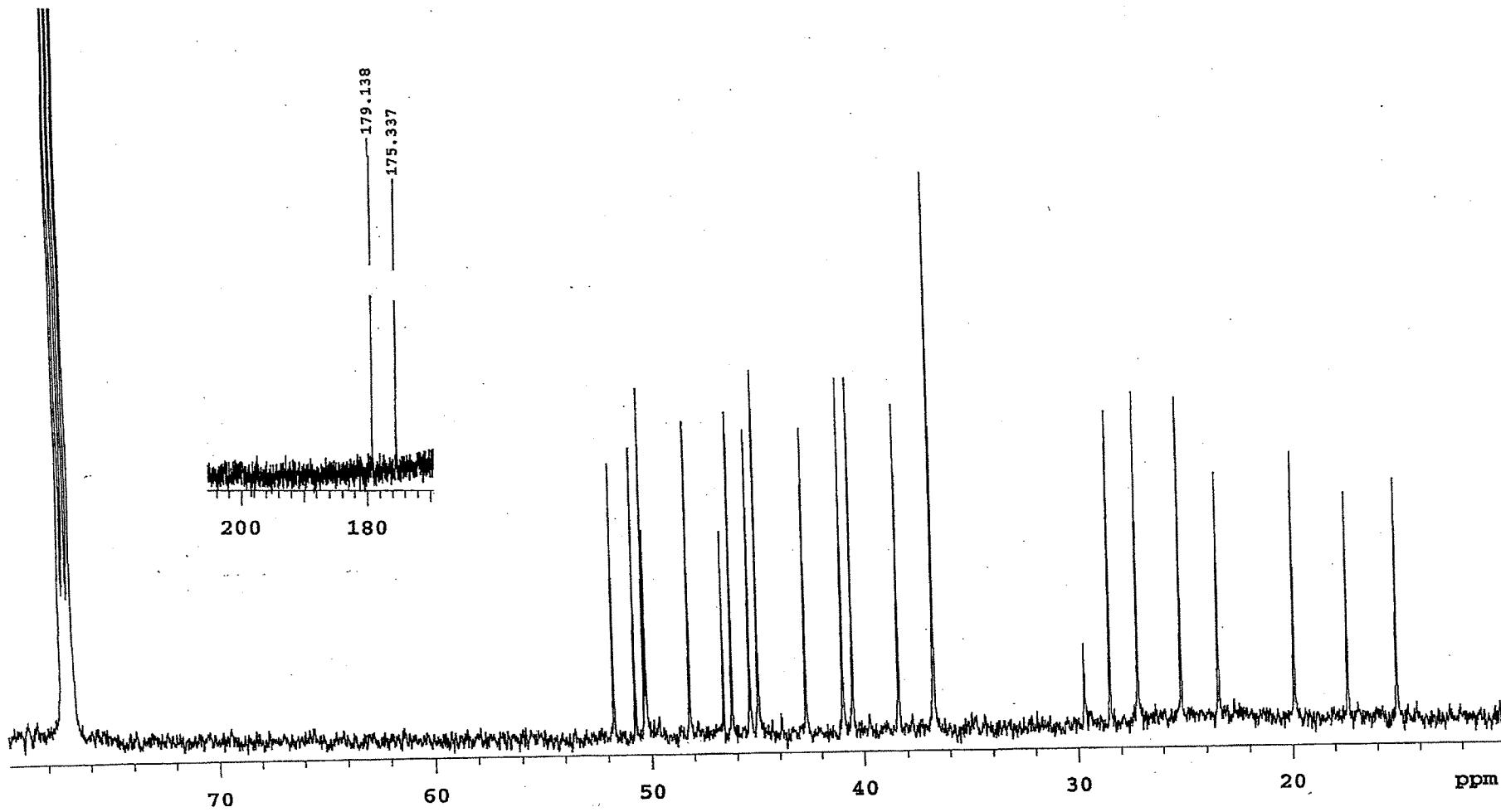
R = CH₂CH₂OMOM

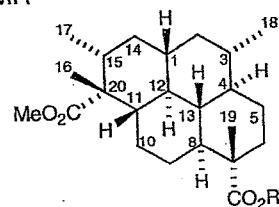
75 MHz
CDCl₃


¹H NMR

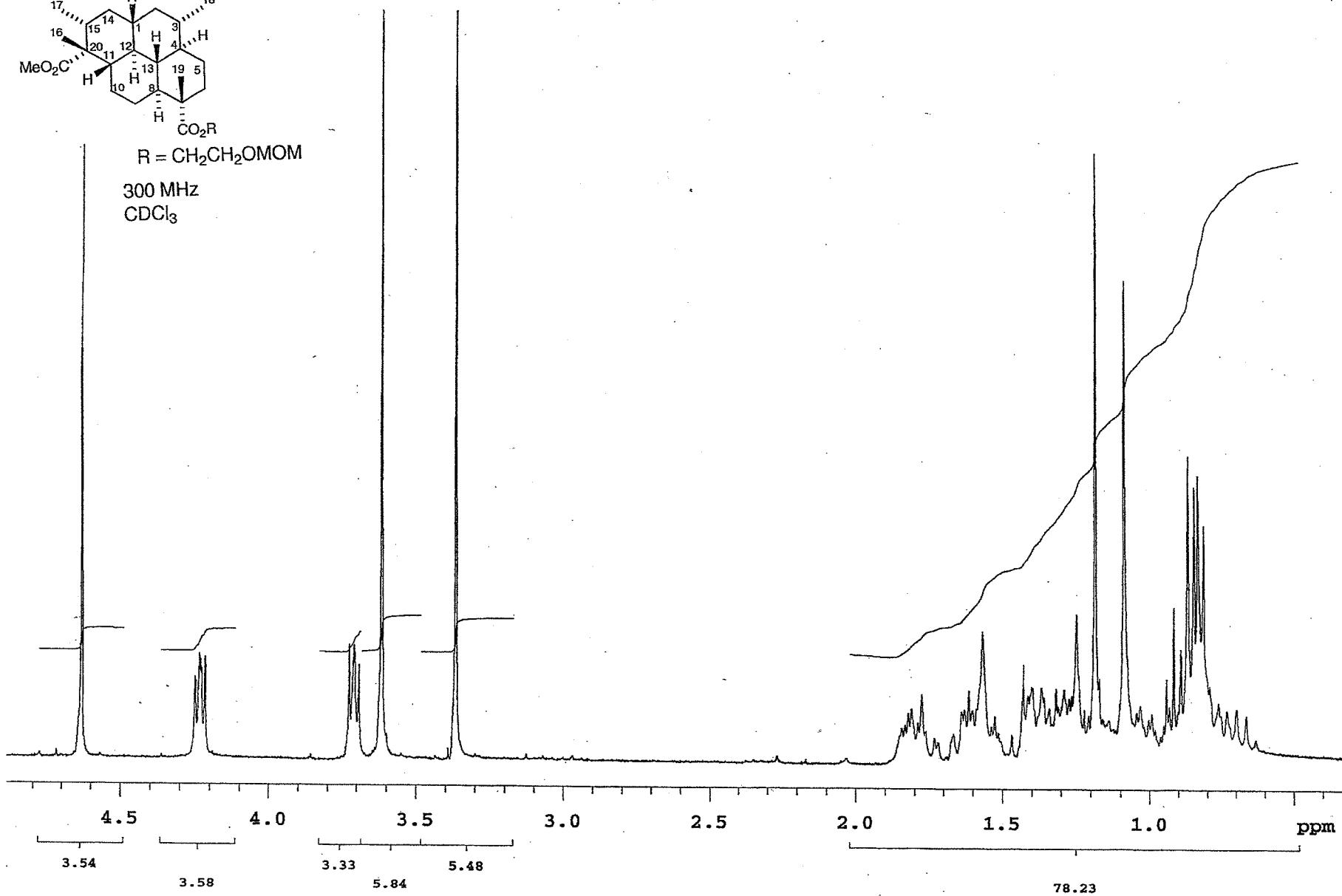

28 R = Me

600 MHz

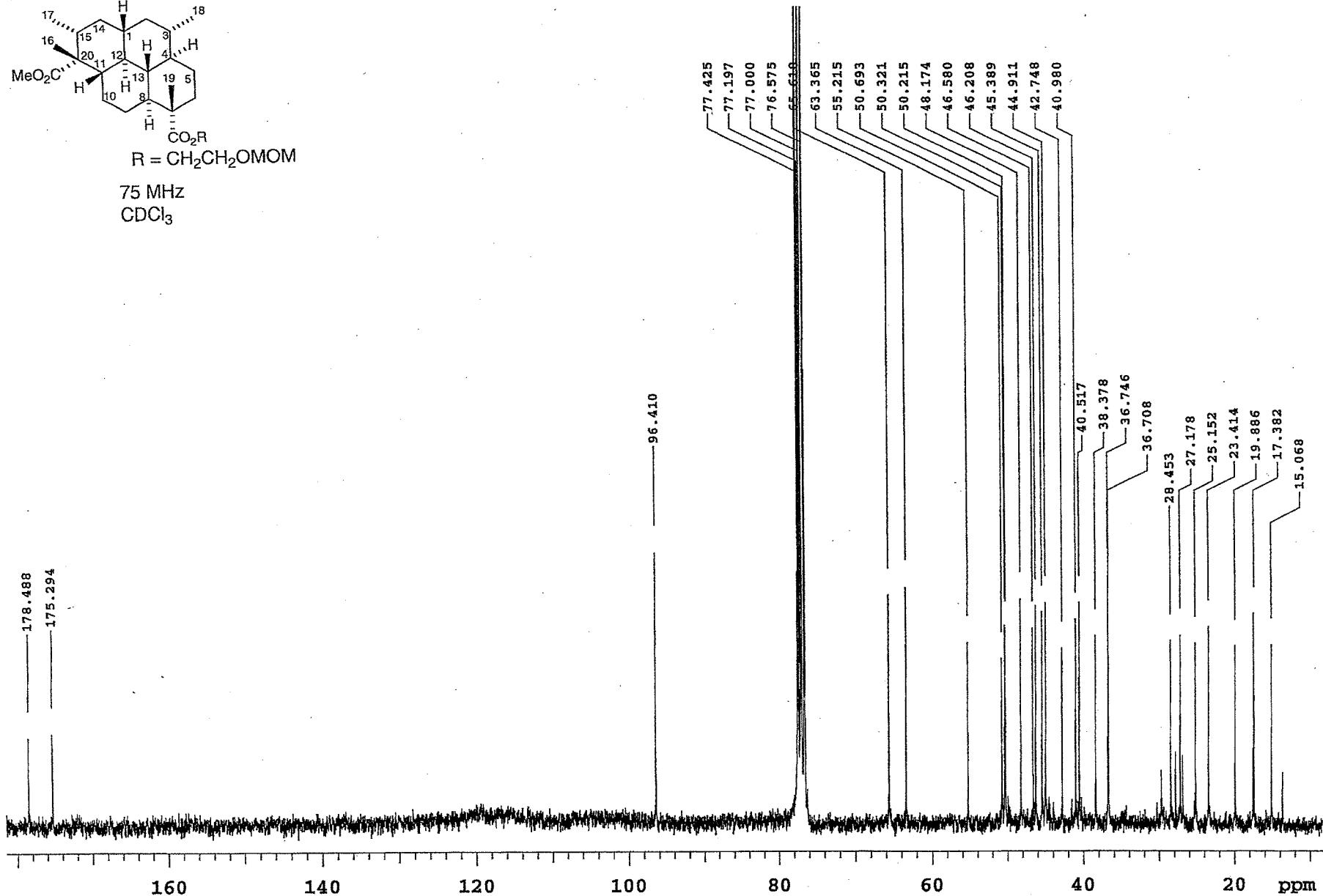
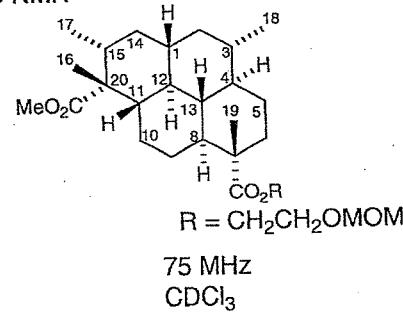

CDCl₃


¹³C NMR

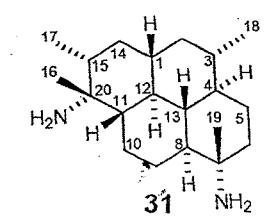
28 R = Me



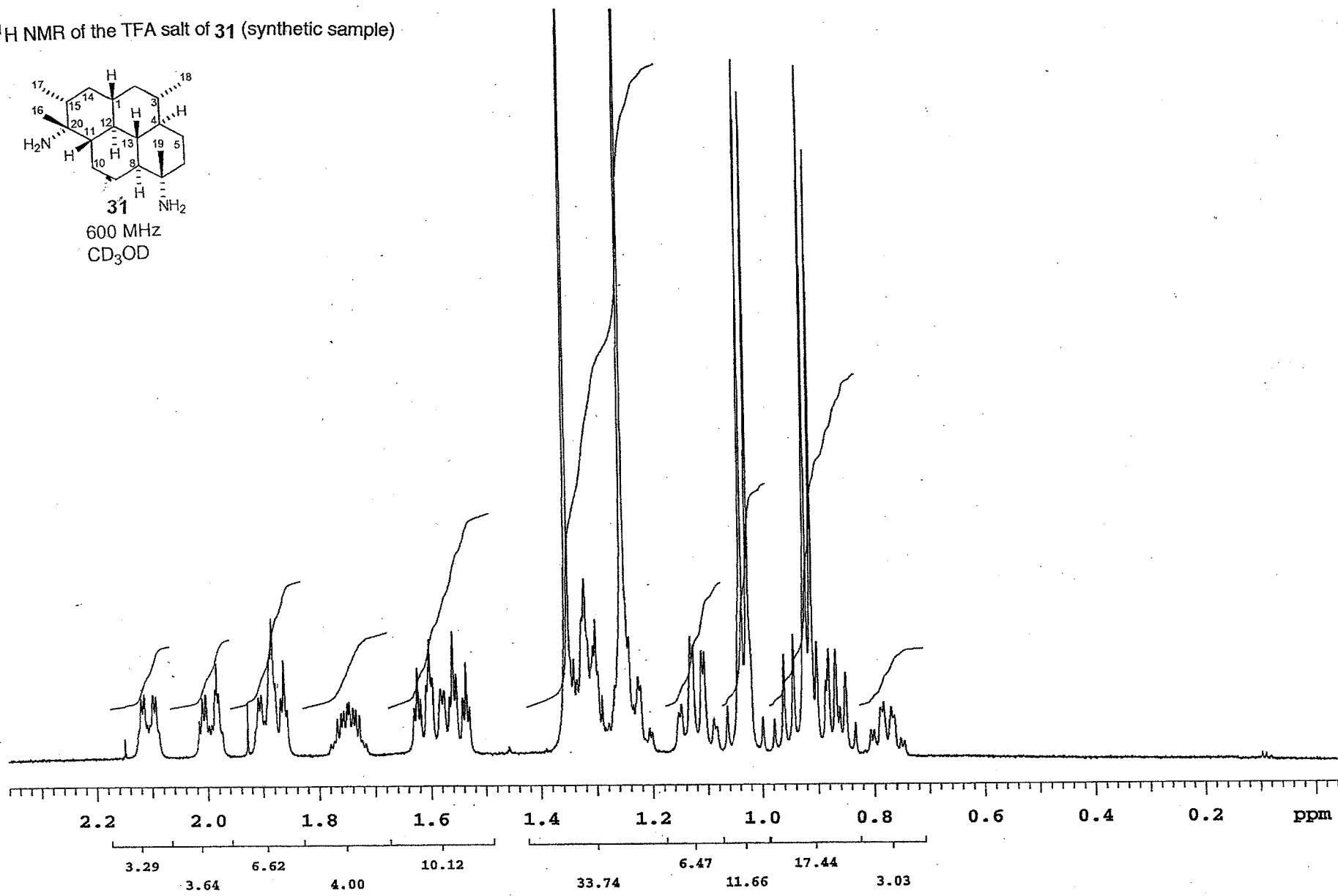
¹H NMR

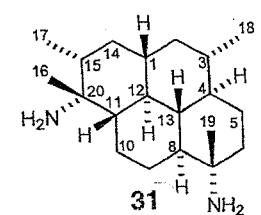
R = CH₂CH₂OMOM


300 MHz
CDCl₃

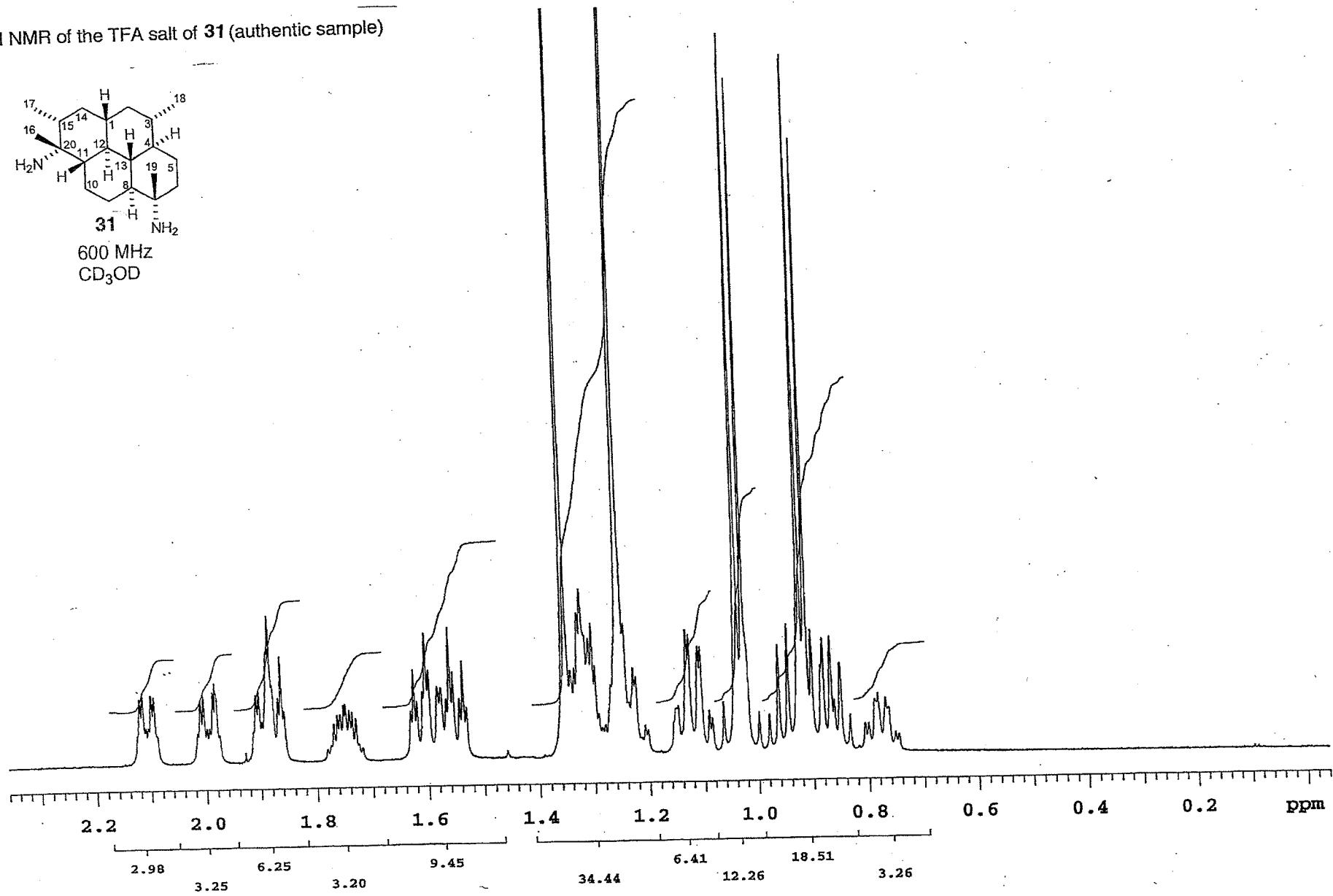
¹³C NMR

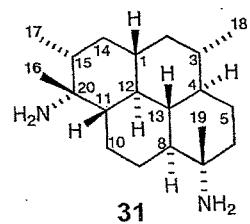


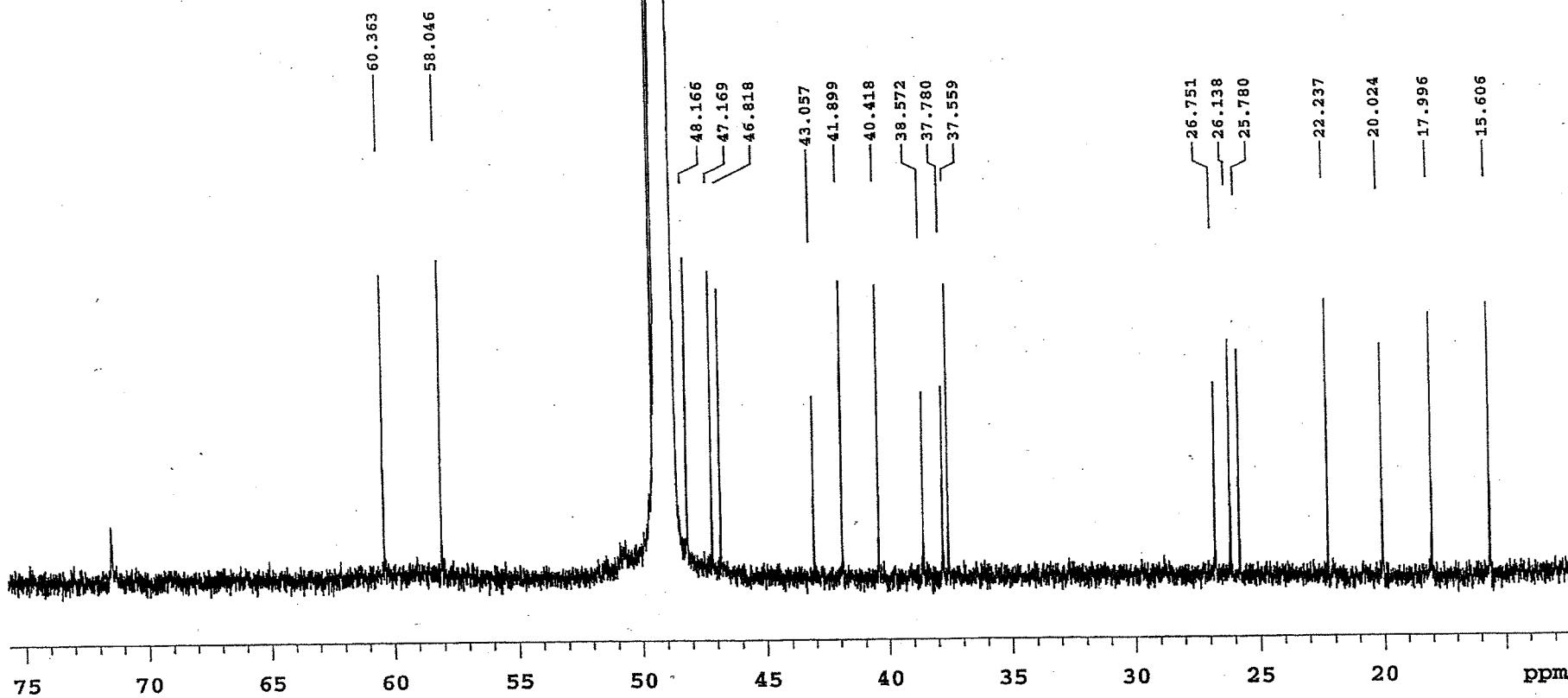
¹H NMR of the TFA salt of 31 (synthetic sample)

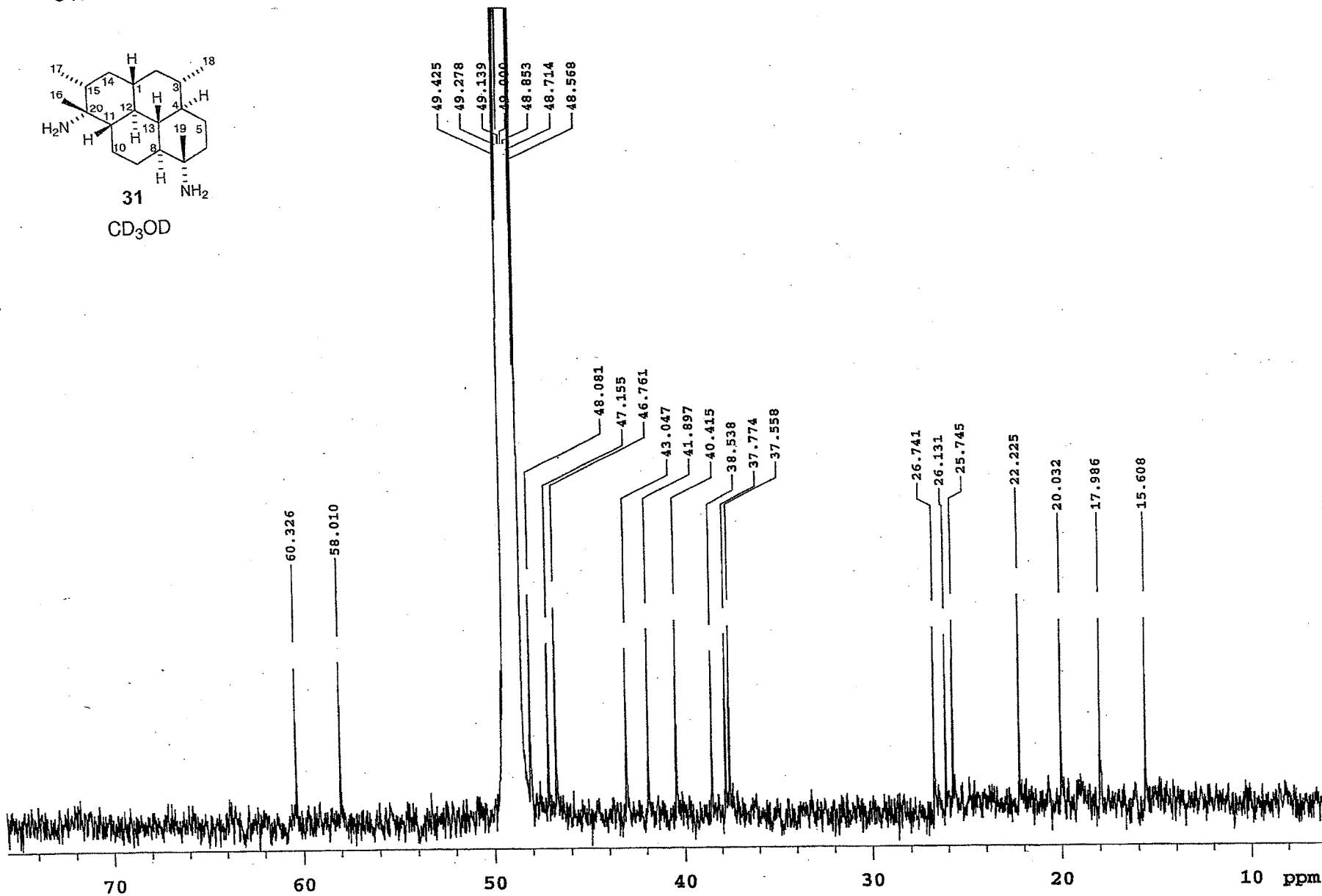


600 MHz


CD₃OD


¹H NMR of the TFA salt of 31 (authentic sample)


600 MHz
CD₃OD


¹³C NMR of the TFA salt of 31 (synthetic sample)

CD₃OD

¹³C NMR of the TFA salt of 31 (authentic sample)

