Selective N,N-Dimethylation of Primary Aromatic Amines with Methyl Alkyl Carbonates in the Presence of Phosphonium Salts.

Maurizio Selva, * Alvise Perosa, Pietro Tundo, and Davide Brunelli

Dipartimento di Scienze Ambientali dell'Università Ca' Foscari, and

Consorzio Interuniversitario "La Chimica per l'Ambiente" (INCA), UdR di Venezia

Calle Larga S. Marta, 2137 – 30123 – Venezia, Italy

Supporting Information

General Experimental Methods	S 2
 Isolation and characterisation of methyl alkyl carbonates 	S2
• ¹ H NMR spectrum of 2-[2-(2-Methoxyethoxy)ethoxy]ethyl methyl carbonate, 1a	S2
• ¹³ C NMR spectrum of 2-[2-(2-Methoxyethoxy)ethoxy]ethyl methyl carbonate, 1a	S 3
• ¹ H NMR spectrum of 2-(2-Methoxyethoxy)methylethyl carbonate, 1c	S 3
• ¹³ C NMR spectrum of 2-(2-Methoxyethoxy)methylethyl carbonate, 1c	S4
• Isolation and characterisation of N,N-dimethyl anilines $(\mathbf{D}_{\mathbf{x}})$	S5
• ¹ H NMR of N,N-dimethyl <i>p</i> -anisidine	S5
• ¹ H NMR of N,N-dimethyl <i>p</i> -toluidine	S 6
• ¹ H NMR of N,N-dimethylaniline	S 7
• ¹ H NMR of N,N-dimethyl <i>p</i> -chloroaniline	S 7
• ¹ H NMR of methyl N,N-dimethylaminobenzoate	S 8
• ¹ H NMR of N,N-dimethyl <i>o</i> -ethylaniline	S 8
• ¹ H NMR of <i>N,N</i> -dimethyl 2,3-dimethylaniline	S 9
• GC/MS of N-Ethyl,N-methyl <i>m</i> -toluidine, 7b	S 9
 Overlap of IR spectra of 5b, 3b and the mixture 5b/3b 	S10
• Overlap of IR spectra of 5a, 3a and the mixture 5a/3a	S11
• References	S12

General Experimental Methods. GLC and GC/MS (70 eV) analyses were run using HP5 and HP5/MS capillary columns (30 m), respectively. ¹H and spectra were recorded at 300 and 400 MHz spectrometers, ¹³C NMR at 75 and 100 MHz. Chemical shifts are reported in δ values downfield from TMS. CDCl₃ was used as the solvent. IR spectra were recorded at room temperature on KBr pellets.

Compounds **3a-d**, **4a-b**, **5a-g**, **6a-b**, **7a**, DMC, and K₂CO₃ were ACS grade and were employed without further purification.

Isolation and characterisation of methyl alkyl carbonates.

Methyl alkyl carbonates **1a-c** were purified by distillation under vacuum, and recovered as colorless liquids: **1a** (b.p. 92 °C / 100Pa) 72% yield (98% purity by GC); **1b** (b.p. 65 °C / 100Pa) 62% yield (99.5% purity by GC); **1c** (b.p. 39 °C / 100Pa) 60% yield (98.5% purity by GC). Full spectroscopic data of **1b** were already reported: ¹ the structure of **1b** was confirmed by comparison to an authentic sample. **1a** and **1c** were characterized by GC/MS, ¹H NMR, and ¹³C NMR.

2-[2-(2-Methoxyethoxy)ethoxy]ethyl methyl carbonate, 1a. ¹H NMR (400 MHz, CDCl₃) δ 4.29-4.25 (m, 2H), 3.76 (s, 3H), 3.72-3.68 (m, 2H), 3.67-3.60 (m, 6H), 3.55-3.51 (m, 2H), 3.36 (s, 3H). ¹³C NMR δ (100 MHz, CDCl₃), 54.9, 69.0, 67.0, 68.9, 70.51, 70.55, 70.6, 71.9, 155.7. GC-MS, 70 eV, m/z: 222 (M⁺, <1%), 103 (100), 89 (12), 59 (76), 58 (27). Anal. Calcd. for C₉H₁₈O₆: C, 48.65; H, 8.11. Found: C, 48.72; H, 8.19.

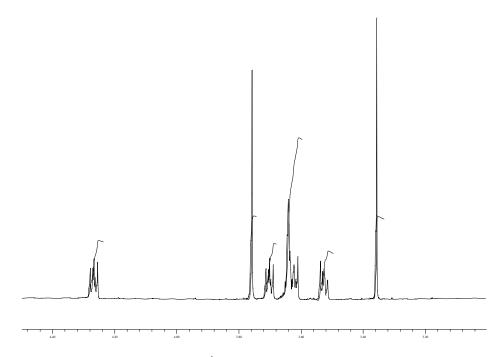


Figure 1. ¹H NMR of carbonate 1a

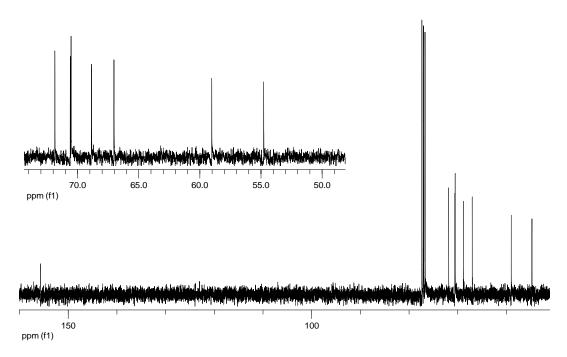


Figure 2. ¹³C NMR of carbonate 1a

(2-Methoxy)ethyl methyl carbonate, 1c. 2 ¹H NMR (400 MHz, CDCl₃) δ 3.40 (s, 3H), 3.63 (t, 2H, J = 4.71 Hz), 3.80 (s, 3H), 4.31 (t, 2H, J = 4.70 Hz). 13 C NMR (100 MHz, CDCl₃) δ 54.8, 58.9, 66.8, 70.1, 155. 7. GC-MS, 70 eV, m/z: 134 (M⁺, <1%), 103 (11), 77 (18), 59 (85), 58 (100).

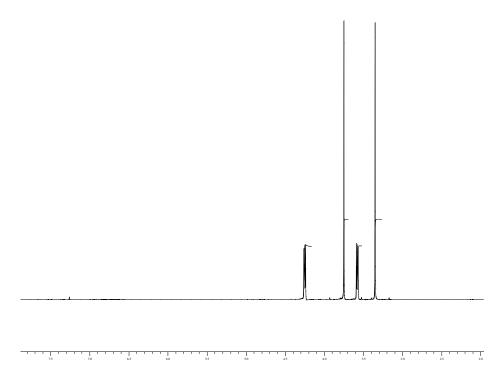
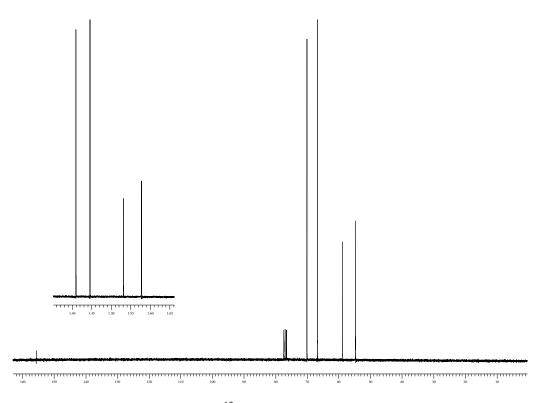



Figure 3. 1 H NMR of carbonate 1c

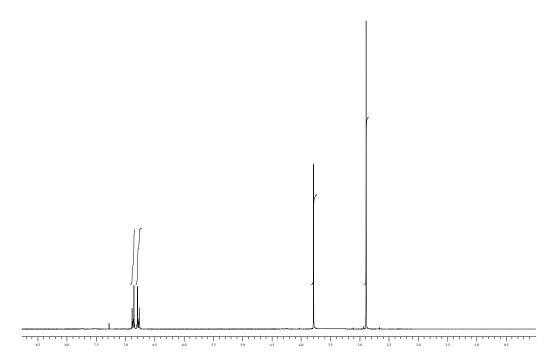
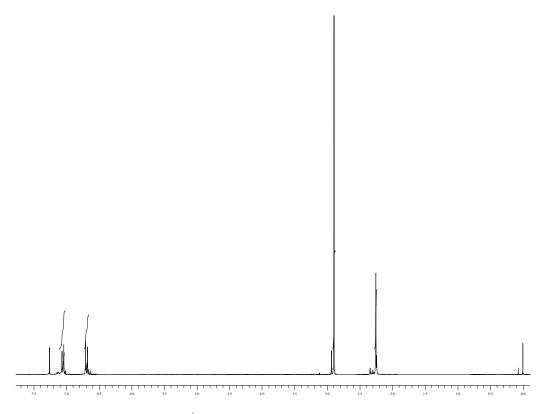
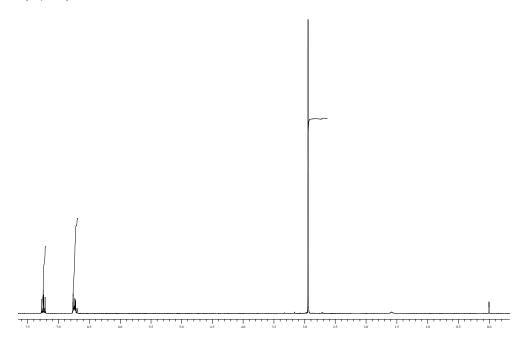


Figure 4. ¹³C NMR of carbonate **1c**

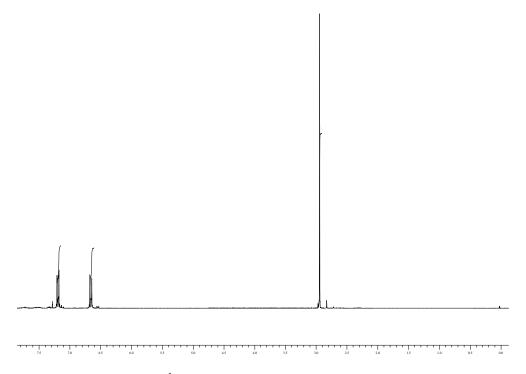
Isolation and characterisation of N,N-dimethylanilines D_x.


N,N-dimethylanilines **D**_x were purified by FCC on silica gel F60 (eluant: petroleum ether/diethyl ether in 10:1 v/v), and characterized by ¹H NMR (Figures 5-11) and GC/MS. All compounds **D**_x were known products whose spectroscopic data were fully reported in the literature. **N,N-dimethyl** *p*-anisidine (98%, by GC): ³ mp 43-45 °C, lit. ⁴ mp 45-47 °C; *N,N*-dimethyl *p*-toluidine (98%, by GC): ³ pale yellow liquid, lit. ^{5a} bp 89-89.5 °C /11 mm; *N,N*-dimethyl aniline (99%, by GC): pale yellow liquid, lit. ^{5b} bp 77 °C / 13 mm; *N,N*-dimethyl *p*-chloroaniline (97%, by GC): ⁶ mp 32-34 °C, lit. ^{5c} mp 35.5 °C; methyl *N,N*-dimethylaminobenzoate (96%, by GC): ⁷ mp 100-102 °C, lit. ^{5d} mp 102 °C; *N,N*-dimethyl *o*-ethyl aniline (97%, by GC): ⁸ mp 132-134 °C, lit. ³ 135 °C; *N,N*-dimethyl 2,3-dimethylaniline (97%, by GC): ⁹ yellow liquid, lit. ^{5e} bp 75 °C / 7 mm. The structures of *N,N*-dimethyl *p*-toluidine, *N,N*-dimethyl aniline, *N,N*-dimethyl *p*-chloroaniline, and *N,N*-dimethyl 2,3-dimethylaniline were confirmed also by comparison (GC analyses) to authentic commercial samples.

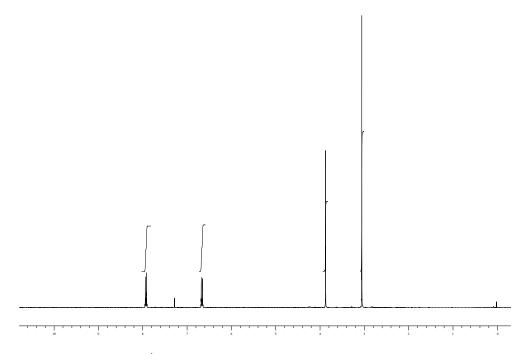
N,N-dimethyl *p*-anisidine (Figure 5). ¹H NMR (300 MHz, CDCl₃) δ 2.89 (s, 6H), 3.79 (s, 3H), 3.80 (s, 3H), 6.78 (d, 2H, J = 9.23 Hz), 6.87 (d, 2H, J = 9.04 Hz).


Figure 5. ¹H NMR of *N*,*N*-dimethyl *p*-anisidine

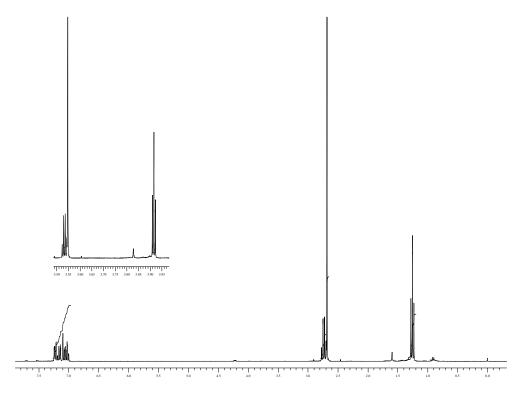
N,N-dimethyl *p*-toluidine (Figure 6). 1 H NMR (300 MHz, CDCl₃) δ 2.25 (s, 3H), 2.89 (s, 6H), 6.69 (d, 2H, J = 8.85 Hz), 7.06 (d, 2H, J = 8.85 Hz).


Figure 6. ¹H NMR of *N*,*N*-dimethyl *p*-toluidine

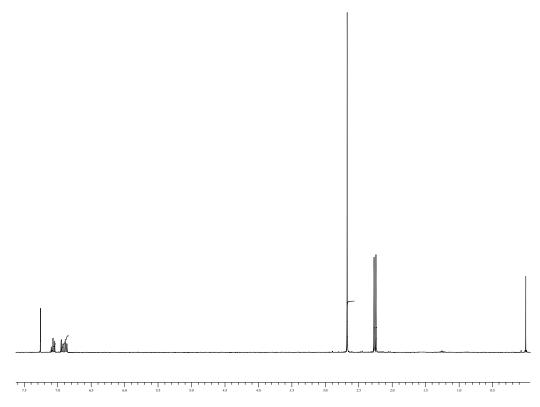
N,N-dimethyl aniline (Figure 7). 1 H NMR (300 MHz, CDCl₃) δ 2.94 (s, 6H), 6.68-6.77 (m, 3H), 7.20-7.28 (m, 2H).


Figure 7. ¹H NMR of *N*,*N*-dimethylaniline

N,N-dimethyl *p*-chloroaniline (Figure 8). 1 H NMR (300 MHz, CDCl₃) δ 2.94 (s, 6H), 6.66 (d, 2H, J = 9.23 Hz), 7.19 (d, 2H, J = 9.23 Hz).

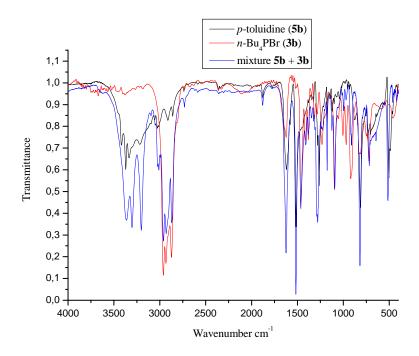

Figure 8. ¹H NMR of *N*,*N*-dimethyl *p*-chloroaniline

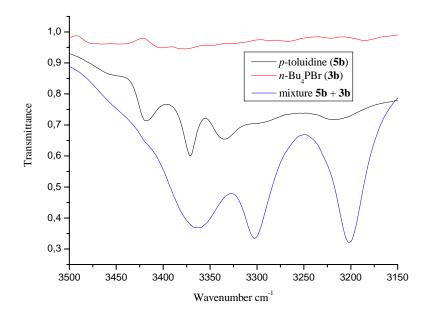
Methyl *N,N*-dimethyl aminobenzoate (Figure 9). 1 H NMR (300 MHz, CDCl₃) δ 3.05 (s, 6H), 3.87 (s, 3H), 6.66 (d, 2H, J = 9.04 Hz), 7.92 (d, 2H, J = 9.04 Hz).


Figure 9. ¹H NMR of methyl *N*,*N*-dimethylaminobenzoate

N,N-dimethyl *o*-ethylaniline (Figure 10). 1 H NMR (300 MHz, CDCl₃) δ 1.25 (t, 3H, J = 7.54 Hz), 2.68 (s, 6H), 2.73 (q, 2H, J = 7.54 Hz), 6.99-7.25 (m, 5H).

Figure 10. ¹H NMR of *N*,*N*-dimethyl *o*-ethylaniline


N,N-dimethyl 2,3-dimethylaniline (Figure 11). ¹H NMR (300 MHz, CDCl₃) δ 2.24 (s, 3H), 2.27 (s, 3H), 2.67 (s, 6H), 6.85-6.95 (m, 2H), 7.03-7.1 (m, 1H).


Figure 11. ¹H NMR of *N*,*N*-dimethyl 2,3-dimethylaniline

N-Ethyl,N-methyl *m***-toluidine** (**7b**, ¹⁰ Scheme 6) was not isolated from the reaction mixture: its structure was assigned by GC/MS: 149 (M⁺, 38), 134 (M⁺-Me, 100), 120 (M⁺-Et, 4), 119 (15), 118 (14), 91 (24), 65 (12).

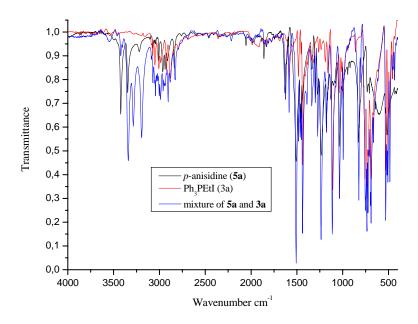

IR Investigations

Figure 1. Overlap of IR spectra of pure *p*-toluidine (**5b**, black), pure *n*-Bu₄PBr (**3b**, red), and a mixture of **5b** and **3b** (blue), recorded at room temperature.

Figure 2. Enlargement of Figure 1 between 3500 and 3150 cm⁻¹.

Figure 3. Overlap of IR spectra of pure *p*-anisidine (**5a**, black), ¹¹ pure Ph₃PEtI (**3a**, red), and a mixture of **5a** and **3a** (blue), recorded at room temperature.

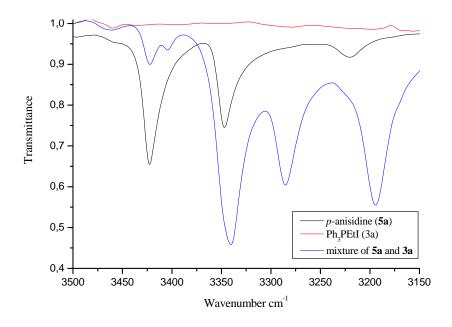


Figure 4. Enlargement of Figure 4 between 3500 and 3150 cm⁻¹.

IR spectra were recorded on commercial *p*-anisidine (**5a**), *p*-toluidine (**5b**), ethyltriphenyl phosphonium iodide (**3a**), and tetrabutylphosphonium bromide (**3b**). Mixtures of **5a** and **3a**, of **5b** and **3b**, were equimolar.

References

- 1 (a) Perosa, A.; Selva, M.; Tundo, P.; Zordan, F. *Synlett* **2000**, *1*, 272-274; (b) Selva, M.; Tundo, P.; Perosa; A. *J. Org. Chem.* **2001**, *66*, 677-680; (c) Selva, M.; Tundo, P.; Foccardi, T. *J. Org. Chem.* **2005**, *70*, 2476-2485.
- 2 Chuchani, G.; Marquez, E.; Herize, A.; Dominguez, R. M.; Tosta, M.; Brusco, D. J. Phys. Org. Chem. 2003, 11, 839-848.
- 3 Yoo, S.-D.; Tsuno, Y.; Fujo, M.; Sawada, M.; Yukawa, Y. J. Chem. Soc., Perkin Trans. 2, 1989, 7-13.
 - 4 Guarr, T.; McGuire, M. E.; McLendon, G. J. Am. Chem. Soc. 1985, 107, 5104-5111.
- 5 (a) Dictionary of Organic Compounds, 5th Ed.; Chapman and Hall: New York 1982, Vol. 2, p. 2063; (b) ibid. Vol. 2, p. 2068; (c) ibid. Vol. 1, p. 1055; (d) ibid. Vol. 2, p. 2060; (e) ibid. Vol. 2, p. 2066.
- 6 (a) Borkowski, W.L.; Wagner, E. C. J. Org. Chem. 1952, 17, 1128-1140; (b) Bhattacharyya, S.; Chatterjee, A.; Duttachowdhury, S.-K. J. Chem. Soc., Perkin Trans. 1, 1994, 1-2.
 - 7 Sim, T. B.; Ahn, J. H.; Yoon, N. M. Synthesis 1996, 324-326
 - 8 Katritzky, A. R.; Rachwal, S., Wu, J. Can. J. Chem. 1989, 68, 456-463.
 - 9 Bertrand, S.; Hofmann, N.; Humbel, S.; Pete, J. P. J. Org. Chem. 2000, 65, 8690-8703.
 - 10 Fahim, H. A.; Galaby, M. J. Chem. Soc. 1950, 3529-3532.
 - 11 Borisenko, E.; Morev, A.V.; Koll, A. J. Mol. Struct. 1998, 444, 183-198.