Supporting Information for

Evolution of Pyrrolidine-Type Asymmetric Organocatalysts by Click Chemistry

 $Sanzhong\ Luo, *^{\dagger}\ Hui\ Xu, ^{\dagger}\ Xueling\ Mi, ^{\sharp}\ Jiuyuan\ Li, ^{\dagger}\ Xiaoxi\ Zheng, ^{\dagger}\ and\ Jin-Pei\ Cheng *^{\dagger\sharp}$

Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Molecular Science,

Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China and Department of

Chemistry, State Key Laboratory of elemento-organic Chemistry, Nankai University, Tianjin,

300071, China.

luosz@iccas.ac.cn, chengjp@mail.most.gov.cn

General information	S2
Synthesis of CP-1-20	S2
General experimental procedure	S12
HPLC data	S13
NMR spectra for new compounds	S16
¹ H NMR spectra for Michael addition products	S36

General Information: Commercial reagents were used as received, unless otherwise stated. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift mutiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, b = broad. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Mass spectra were obtained using fast-atom bombard (FAB) spectrometer or electrospray ionization (ESI) mass spectrometer. Optical rotations were measured using a 1 mL cell with a 1 dm path length on a Perkin-Elmer 341 digital polarimeter and are reported as follows: $[\alpha]_{D}^{rt}$ (c = 100 mL of solvent). HPLC analysis was performed using ChiralPak columns purchased.

Method A:

Synthesis of chiral catalyst CP-2:

To a solution of **A** (226 mg, 1 mmol) in toluene and *t*-butanol (4mL and 1mL) was added phenylacetylene (122 mg, 1.2 mmol), CuI (10 mg, 0.05 mmol) and DIPEA (170 μ L, 2 mmol). The reaction mixture was stirred at rt overnight. After removal of the solvent under *vacuo*, the residue was purified by flash chromatograph on silica gel to afford **B** as white solid (314 mg, yield 96%). ¹H NMR (300 MHz, CDCl₃): δ 1.37-1.65 (10H, m), 1.67-1.83 (1H, m), 1.89-2.07 (2H, m), 3.08-3.50 (2H, m), 4.15 (1H, s), 4.37-4.79 (2H, m), 7.29-7.38 (1H, m), 7.38-7.48 (2H, m), 7.62-7.90 (3H, m).

Chiral product **B** was deprotected in 5M HCl in ethanol to give the hydrogen chloride salts, which was subsequently dissolved in CH₂Cl₂ (5 mL) and then treated with saturated NaHCO₃ solution (15 mL). This mixture was stirred for 1 hour. The aqueous layer was extracted with CH₂Cl₂ (5 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated in *vacuo* after filtration to give essentially pure **CP-2** as pale yellow solid (301 mg, 96%). [α]_D ^{rt}= +41 ° (c=1.0, CH₃OH); ¹H NMR (300 MHz, CDCl₃): δ 1.35-1.52 (1H, m), 1.58-1.83 (3H, m), 1.85-1.99 (1H, m), 2.89 (2H, t, *J*= 6.6 Hz), 3.51-3.64 (1H, m), 4.11-4.21 (1H, dd, *J*= 7.9 Hz, 7.7 Hz, 13.8 Hz), 4.35-4.44 (1H, dd, *J*= 4.5 Hz, 4.3 Hz, 13.4 Hz), 7.21-7.30 (1H, t, *J*= 7.5 Hz), 7.35 (2H, t, *J*= 7.4 Hz), 7.77 (2H, t, *J*= 7.3), 7.86 (1H, s); ¹³C NMR (CDCl₃, 75 MHz): δ 25.5, 29.1, 46.6, 55.5, 58.0, 120.5, 125.7, 128.0, 128.8, 130.7, 147.5; HRMS for C₁₃H₁₇N₄⁺ (M+1⁺), calcd. 229.1448, found 229.1446.

Method B:

Synthesis of chiral catalyst CP-2:

To a solution of **A** (452 mg, 2 mmol) in CH₂Cl₂ (5 mL) was added dropwise TFA (5 mL) at 0°C. The mixture was warmed to room temperature and stirred overnight. After removal of the organic solvents under *vacuo*, the residue was dissolved in CH₂Cl₂ (5 mL) and then treated with saturated NaHCO₃ solution (15 mL) for 1 hour at rt. The aqueous layer was extracted with CH₂Cl₂ three times (5 mL×3) and the combined extracts were dried over anhydrous Na₂SO₄. Concentration in *vacuo* after filtration gave **CP-1** as yellow oil (438 mg, 97%). [α]_D ^{rt}= -32 ° (c=0.75, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 1.35-1.50 (1H, m), 1.66-2.00 (3H, m), 2.44-2.61 (1H, m), 2.86-3.04 (2H, m),

3.17-3.39 (3H, m); 13 C NMR (CDCl₃, 75 MHz): δ 25.5, 29.0, 46.6, 56.2, 57.7. HRMS for $C_5H_{11}N_4^+$ (M+1⁺), calcd. 127.0984, found 127.0982.

To a solution of **CP-1** (438mg) and phenylacetylene (245 mg, 2.4 mmol) in a mixed solvent of toluene (8 mL) and *t*-butanol (2 mL) was added CuI (20 mg, 10 mmol) and DIPEA (500 μL, 6 mmol). The reaction mixture was stirred at room temperature overnight. After removal of the solvents, the resulting residue was purified by flash chromatograph on silica gel to give **CP-2** as yellow solid (365 mg, 83%).

S N N CP-3

The title product was prepared according to **method A** as white solid (87% yield). [α]_D ^{rt}=+10 ° (c=0.5, CH₃OH); ¹H NMR (300 MHz, CDCl₃): δ 2.65-2.74 (1H, dd, J= 6.0 Hz, 6.0 Hz, 11.4 Hz), 2.99-3.07 (1H, dd, J= 6.4

Hz, 6.4 Hz, 10.6 Hz), 3.82-3.94 (1H, m), 4.22 (2H, s), 4.34-4.44 (1H, dd, J= 7.9 Hz, 7.9 Hz, 14.1 Hz), 4.56-4.67 (1H, dd, J= 5.0 Hz, 5.1 Hz, 14.1 Hz), 7.29-7.37 (1H, m), 7.37-7.47 (2H, m), 7.79-7.88 (2H, m), 7.89 (1H, s); ¹³C NMR (CDCl₃, 75 MHz): δ 35.1, 50.4, 52.4, 63.0, 119.6, 124.7, 127.2, 127.8, 129.5, 146.8; HRMS for $C_{12}H_{15}N_4S^+$ (M+1⁺), calcd. 247.1012, found 247.1016.

S N

CP-4

1,5-substituted triazole ring was formed following the published procedure.¹

To the dried flask containing a solution of EtMgBr (2 mmol) in anhydrous THF (2

mL) under a nitrogen atmosphere, phenylacetylene (204 mg, 2 mmol) was added

then cooled to room temperature. Neat (R)-tert-butyl 4-(azidomethyl)thiazolidine-3-carboxylate (244 mg, 1 mmol) was added dropwise. This reaction mixture was stirred under room temperature

dropwise at room temperature. After addition, the solution was heated to about 50 °C for 15 min and

for 30 min, then 50°C for 15 min. The reaction was quenched with saturated aqueous NH₄Cl and the

products were extracted using CH₂Cl₂ (5 mL×3). The combined organic phase was dried over anhydrous sodium sulphate and concentrated by rotary evaporator under reduced pressure. The residue was purified by flash chromatograph on silica gel to give Boc-protected **CP-4** as pale yellow oil (310mg, 90% yield).

The Boc-protected **CP-4** was deprotected using 4M HCl dioxane solution (5 mL). Concentration in *vacuo* afforded the hydrogen chlorides salts, which was subsequently neutralized in saturated NaHCO₃ solution (5 mL). The aqueous solution was extracted with CH₂Cl₂ (10 mL×3). The combined extracts were dried over anhydrous sodium sulphate, and then concentrated in *vacuo* to give **CP-4** as yellow oil (90% yield). $[\alpha]_{\rm b}^{\rm rt} = -10^{\circ}$, (c=0.6, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 2.10 (1H, s), 2.47-2.56 (1H, m), 2.79-2.88 (1H, m), 3.72-3.86 (1H, m), 3.88-.394 (1H, dd, J= 2.5 Hz, 2.5 Hz, 9.6 Hz), 3.99-4.06 (1H, dd, J= 2.8 Hz, 2.8 Hz, 9.6 Hz), 4.35-4.53 (2H, m), 7.33-7.42 (2H, m), 7.42-7.52 (3H, m), 7.63-7.68 (1H, m); ¹³C NMR (CDCl₃, 75 MHz): δ 36.0, 49.0, 53.3, 64.0, 126.9, 129.0, 129.1, 129.6, 133.0, 138.6; HRMS for C₁₂H₁₅N₄S⁺ (M+1⁺), calcd. 247.1012, found 247.1012.

The title compound was prepared according to **method A** as white solid (83% yield). $[\alpha]_{D}^{T} = -120.4^{\circ}$, (c=0.5, CH₃OH); 1 H NMR (300 MHz, CP-5 CDCl₃): δ 1.54 (3H, s), 1.64 (3H, s), 1.73-2.23 (1H, br), 2.80 (1H, t, J= 9.8 Hz), 3.15-3.23 (1H, dd, J= 6.0 Hz, 5.8 Hz, 10.6 Hz), 3.80-4.02 (1H, m), 4.53-4.61 (1H, dd, J= 6.8 Hz, 6.6 Hz, 14.1 Hz), 4.67-4.79 (1H, dd, J= 4.9 Hz, 5.1 Hz, 13.9 Hz), 7.28-7.37 (1H, m), 7.37-7.49 (2H, m), 7.78-7.85 (2H, m), 7.91 (1H, s); 13 C NMR (CDCl₃, 75 MHz): δ 30.6, 31.6, 38.4, 51.6, 62.1, 74.2, 119.6, 124.7, 127.3, 127.9, 129.4, 146.8; HRMS for C₁₄H₁₉N₄S⁺ (M+1⁺), calcd. 275.1325, found 275.1329.

N₃ N₃

To a stirred solution of (2S,4S)-(tert-Butoxycarbonyl)-4-(p-toluenesulfony-

-loxy)-2-[(p-toluenesulfonyloxy)methyl]pyrrolidine (1.44g, 1.74mmol) [J. Org. Chem. 1980, 45, 4728-4739] in DMF (15 mL) was added NaN₃ in portions at rt.

The reaction mixture was allowed to warm to $70\,^{\circ}$ C for 3 hours, and then $90\,^{\circ}$ C for 5 hours. After removal of solvent under reduced pressure, the residue was diluted in a mixture of H_2O (50 mL) and ethyl acetate (15 mL). The aqueous layer was extracted by ethyl acetate (10 mL×3). The combined organic phase was dried over anhydrous sodium sulphate and concentrated by rotary evaporator. The residue was purified by flash chromatograph on silica gel to afford **Boc-protected CP-6** as colorless oil (626 mg, 86% yield).

Boc-protected CP-6 from the former step (267 mg, 1 mmol) was deprotected in a mixture of CH₂Cl₂ (2 mL) and TFA (2 mL). Concentration in *vacuo* gave the TFA salts, which was subsequently neutralized in saturated NaHCO₃ solution (5 mL). The aqueous solution was extracted with CH₂Cl₂ (10 mL×3). The combined organic layer was dried with anhydrous sodium sulphate and concentrated in *vacuo* to afford **CP-6** as yellow oil (166mg, 99% yield). [α]_D ^{rt}= +18°, (c=0.3, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.52-1.62 (1H, m), 1.84 (1H, s), 2.17-2.30 (1H, m), 2.27-3.11 (2H, m), 3.26-3.42 (3H, m), 3.98-4.08 (1H, m); ¹³C NMR (CDCl₃, 75 MHz): δ 35.3, 52.6, 55.5, 57.3, 61.5; HRMS for C₅H₁₀N₇⁺ (M+1⁺), calcd. 168.0992, found 168.0993.

The "click reaction" between **Boc-protected CP-6** with phenylacetylene afforded simultaneously three products, i.e. the Boc-protected **CP-7**, **CP-8** and **CP-9** with 19%, 14%, 40% yield, respectively. Those Boc-protected products were deprotected using the standard procedure to give the final products **CP-7**, **CP-8** and **CP-9**.

N₃ N N N CP-7

Yellow solid. $[\alpha]_D^{\text{rt}} = +38.5^{\circ}$, (c=0.36, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.58-1.68 (1H, m), 2.06 (1H, s), 2.22-2.38 (1H, m), 2.96-3.20 (2H, m), 3.64-3.78 (1H, m), 3.98-4.10 (1H, m), 4.26-4.39 (1H, m), 4.42-4.58 (1H, m), 7.27-7.37 (1H, m), 7.37-7.47 (2H, t, J= 7.2 Hz),

7.78-7.87 (2H, d, J= 7.4 Hz), 7.90 (1H, s); 13 C NMR (CDCl₃, 75 MHz): δ 35.3, 52.2, 55.1, 57.1, 61.1, 120.7, 125.7, 128.1, 128.8, 130.6, 147.6; HRMS for $C_{13}H_{16}N_7^+$ (M+1⁺), calcd. 270.1462, found 270.1463.

$$N \ge N$$
 $N \ge N$
 $N \ge N$
 $N \ge N$

CP-8

Yellow solid. $[\alpha]_D$ ^{rt}= +16.0°, (c=0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.90-2.09 (3H, m), 2.58-2.69 (1H, m), 3.32-3.60 (4H, m), 5.15-5.25 (1H, m), 7.29-7.37 (1H, m), 7.38-7.48 (2H, t, J= 7.2 Hz),

7.84 (2H, d, J=7.3 Hz), 8.01 (1H, s); ¹³C NMR (CDCl₃, 75 MHz): δ 36.6, 53.6, 55.1, 57.8, 60.6, 118.1, 125.7, 128.2, 128.8, 130.6, 130.6, 148.1; HRMS for $C_{13}H_{16}N_7^+$ (M+1⁺), calcd. 270.1462, found 270.1465.

White solid. $[\alpha]_D^{\text{rt}} = +16.7^{\circ}$, (c=0.48, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 2.05-2.17 (2H, m), 2.65-2.78 (1H, m), 3.29-3.38 (1H, dd, J= 3.6 Hz, 3.6 Hz, 11.5 Hz), 3.38-4.48 (1H, dd, J= 6.4 Hz,

6.4 Hz, 11.5 Hz), 3.81-3.92 (1H, m), 4.46-4.67 (2H, m), 5.11-5.23 (1H, m), 7.29-7.46 (6H, m), 7.74-7.87 (5H, m), 7.93 (1H, s); 13 C NMR (CDCl₃, 75 MHz): δ 35.2, 52.5, 53.2, 56.7, 59.3, 117.1, 119.9, 124.7, 127.1, 127.2, 127.8, 127.9, 129.4, 146.7, 147.1; HRMS for $C_{21}H_{22}N_7^+$ (M+1⁺), calcd. 372.1931, found 372.1931.

Prepared according to **method A** as colorless oil (20% yield,

79% of the starting materials were recycled).
$$[\alpha]_D$$
 rt = +6.0°, (c=0.67, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.39-1.58 (1H, m), 1.97-2.15 (2H, m), 2.75-2.85 (1H, dd, J = 4.0 Hz, 4.2 Hz, 12.3

Hz), 2.95-3.06 (1H, m), 3.72-3.84 (1H, m), 3.95-4.05 (1H, m), 4.10-4.20 (1H, dd, J= 7.4 Hz, 7.4 Hz, 14.1 Hz), 4.30-4.44 (3H, m), 7.13-7.28 (5H, m), 7.28-7.40 (3H, m), 7.72-7.78 (2H, m), 7.88 (1H, s); ¹³C NMR (CDCl₃, 75 MHz): δ 34.6, 51.1, 51.3, 54.1, 55.8, 69.7, 78.8, 119.6, 124.7, 126.5, 126.6, 126.7, 127.0, 127.4, 127.8, 129.7, 137.1, 146.5; HRMS for $C_{20}H_{23}N_4O^+$ (M+1⁺), calcd. 335.1866, found 335.1867.

(2S,4R)-tert-butyl 4-(benzyloxy)-2-((4-phenyl-1H-1,2,3-triazol-

by TLC. The mixture was filtered through Celite and the resulting solution was concentrated in *vacuo* to give **Boc-CP-11** as colorless oil (125 mg, 32% yield, starting materials were recycled in 65% yield).

The **Boc- CP-11** obtained from former steps was deprotected in a mixture of CH_2Cl_2 (2 mL) and TFA (2 mL). After removal of solvents in *vacuo*, the resulting TFA salt was subsequently neutralized in saturated NaHCO₃ solution (5 mL). The aqueous solution was extracted with CH_2Cl_2 (10 mL×3). The combined extracts were dried over anhydrous sodium sulphate. The organic solvent was concentrated in *vacuo* to afford **CP-11** as colorless oil (82mg, 92% yield). $[\alpha]_D^{rt} = +8.0^\circ$, (c=0.25,

CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ1.57-1.72 (1H, m), 1.94-2.06 (1H, m), 2.06-2.33 (3H, m), 2.95 (1H, s), 3.89-4.02 (1H, m), 4.22-4.32 (1H, dd, *J*= 7.2 Hz, 7.5 Hz, 13.8 Hz), 4.37-4.60 (2H, m), 7.29-7.38 (1H, m), 7.38-7.49 (2H, m), 7.78-7.88 (2H, m), 7.98 (1H, s); ¹³C NMR (CDCl₃, 75 MHz): δ 29.7, 38.8, 55.0, 56.6, 72.7, 120.7, 125.7, 128.1, 128.9, 130.7, 147.6; HRMS for C₁₃H₁₇N₄O⁺ (M+1⁺), calcd. 245.1397, found 245.1399.

The title compound was prepared according to **method A** as yellow oil (90% yield). [α]_D ^{rt}= +9.5°, (c=0.42, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.36-1.55 (1H, m), 1.55-1.82 (2H, m), 1.82-1.98 (1H, m), 2.66-2.82 (1H, m), 2.89 (2H, t, J= 6.2 Hz), 3.50-3.68 (1H, m), 4.18-4.31

(1H, dd, J= 7.9 Hz, 7.9 Hz, 13.6 Hz), 4.37-4.48 (1H, dd, J= 4.5 Hz, 4.5 Hz, 13.4 Hz), 7.38-7.54 (3H, m), 7.66-7.73 (1H, m), 7.95 (1H, s), 8.37-8.43 (1H, m); 13 C NMR (CDCl₃, 75 MHz): δ 24.9, 28.6, 46.0, 54.7, 57.4, 123.1, 124.9, 125.0, 125.5, 126.1, 126.7, 127.7, 127.9, 128.3, 130.6, 133.4, 146.0; HRMS for $C_{17}H_{19}N_4^+$ (M+1⁺), calcd. 279.1604, found 279.1606.

CP-13

The title compound was prepared according to **method A** as white solid (92% yield). [α]_D ^{rt}= +10.3°, (c=0.58, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.44-1.62 (1H, m), 1.62-1.88 (2H, m), 1.88-2.04 (1H, m), 2.92-3.02 (1H, m), 3.56-3.76 (1H, br), 3.85-3.94 (3H, m), 4.22-4.37 (1H,

m), 4.39-4.51 (1H, m), 7.06-7.14 (2H, m), 7.10-7.18 (2H, m), 7.75 (2H, d, J= 8.5 Hz), 7.83-7.89 (1H, m), 8.00-8.06 (1H, m), 8.22 (1H, s); 13 C NMR (CDCl₃, 75 MHz): δ 24.4, 28.0, 45.5, 54.3, 57.2, 104.7, 118.2, 119.5, 123.1, 123.3, 126.3, 128.0, 128.7, 133.3, 146.7, 156.9; HRMS for $C_{18}H_{21}N_4O^+$ (M+1⁺), calcd. 309.1710, found 309.1708.

The title compound was prepared according to **method A** as yellow oil (92% yield). $[\alpha]_D^{\text{rt}}$ =

+42.9°, (c=0.42, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.34 (3H, t, *J*= 7.2 Hz), 1.37-1.52 (1H, m), 1.62-1.77 (2H, m), 1.85-2.00 (1H, m), 2.80-3.00 (2H, m), 3.52-3.68 (1H, m), 4.15-4.49 (5H, m), 8.26 (1H, s); ¹³C NMR (CDCl₃, 75 MHz): δ 14.3, 25.5, 29.0, 46.5, 55.3, 57.7, 61.2, 128.4,

CP-14

139.8, 160.8; HRMS for $C_{10}H_{17}N_4O_2^+$ (M+1⁺), calcd. 225.1346, found 225.1346.

The title compound was prepared according to **method A** as yellow solid (85% yield). $[\alpha]_D^{\text{rt}} = +14.5^{\circ}$, (c=0.83, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.31-1.61 (9H, m), 1.61-1.78 (2H, m), 1.78-1.94 (1H, m), 2.11 (1H, s), 2.16-2.30 (2H, m), 2.55 (2H, t, J= 6.3 Hz), 2.85 (2H, t, J= 6.6 Hz),

3.44-3.58 (1H, m), 4.03-4.17 (1H, dd, J= 7.9 Hz, 7.7 Hz, 13.6 Hz), 4.24-4.35 (1H, dd, J= 4.5 Hz, 4.3 Hz, 13.8 Hz), 6.38 (1H, t, J= 8.3 Hz), 7.53 (1H, s); ¹³C NMR (CDCl₃, 75 MHz): δ 24.4, 25.0, 25.6, 25.7, 26.1, 27.8, 28.0, 29.0, 45.5, 54.3, 57.0, 118.7, 126.4, 129.4, 148.1; HRMS for $C_{15}H_{25}N_4^+$ (M+1⁺), calcd. 261.2074, found 261.2074.

Ph Ph OH

CP-16

The title compound was prepared according to **method A** as yellow solid (90% yield). [α]_D ^{rt}= +10.7°, (c=0.75, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ

1.23-1.39 (1H, m), 1.51-1.65 (2H, m), 1.70-1.83 (1H, m), 2.69 (2H, t, J=6.8 Hz),

2.90-3.52 (3H, m), 3.96-4.08 (1H, dd, J= 7.7Hz, 7.7Hz, 13.6Hz), 4.11-4.21 (1H, dd, J= 4.9 Hz, 4.7 Hz, 13.6 Hz), 6.85-7.45 (11H, m); ¹³C NMR (CDCl₃, 75 MHz): δ 25.2, 29.0, 46.3, 55.2, 57.7, 76.5, 123.6, 127.2, 127.3, 127.4, 127.8, 127.9, 146.1, 146.2, 153.9; HRMS for $C_{20}H_{23}N_4O^+$ (M+1⁺), calcd. 335.1866, found 335.1866.

CP-17

The title compound was prepared according to **method A** as yellow oil (89% yield). $[\alpha]_D^{\text{rt}} = +4.8^{\circ}$, (c=0.83, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.00 (3H, t, J= 7.2 Hz), 1.24-1.39 (1H, m), 1.51-1.67 (2H, m), 1.70-1.86 (1H, m), 1.90-2.60 (1H, br), 2.69-2.85 (2H, m), 2.97 (2H, q, J= 14.1 Hz), 3.34-3.48 (1H, m), 3.90-4.01 (1H, m), 4.15-4.24 (1H, m),

7.14-7.35 (4H, m), 7.39 (1H, s), 7.47-7.55 (1H, m), 7.58 (3H, d, J= 7.3 Hz); 13 C NMR (CDCl₃, 75 MHz): δ 15.7, 25.2, 29.0, 46.4, 55.4, 57.8, 59.2, 83.8, 120.0, 122.3, 125.5, 128.0, 129.3, 140.5, 145.2, 149.7; HRMS for $C_{22}H_{25}N_4O^+$ (M+1 $^+$), calcd. 361.2023, found 361.2025.

CP-18

The title compound was prepared according to **method A** as white solid (95% yield). $[\alpha]_D^{rt}$ = +10.9°, (c=0.92, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.32-1.48 (10H, m), 1.60-1.79 (2H, m), 1.83-1.97 (1H, m), 2.00-2.40 (1H, br), 2.85-2.95 (2H, m), 3.47-.62 (1H, m), 4.15-4.25 (1H,

dd, J= 7.7 Hz, 7.5 Hz, 13.6 Hz), 4.34-4.43 (1H, dd, J= 4.7 Hz, 4.7 Hz, 13.6 Hz), 6.99 (1H, s), 8.15 (1H, s); ¹³C NMR (CDCl₃, 75 MHz): δ 24.5, 27.9, 28.0, 45.5, 50.4, 54.6, 56.7, 124.8, 143.1, 158.5; HRMS for $C_{12}H_{22}N_5O^+$ (M+1⁺), calcd. 252.1819, found 252.1820.

CP-19 was prepared following the similar procedure with that of **CP-4** to give a yellow oil (84% yield). $[\alpha]_D^{rt} = +3.4^\circ$, (c=0.58, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.28-1.43 (1H, m), 1.61-1.76 (2H, m), 1.76-1.89 (1H, m),

1.96-2.33 (1H, br), 2.88 (2H, t, J= 6.6 Hz), 3.54-3.78 (1H, m), 4.14-4.35 (1H, m), 7.38-7.54 (5H, m), 7.67 (1H, s); 13 C NMR (CDCl₃, 75 MHz): δ 24.1, 28.1, 45.2, 51.9, 56.8, 126.2, 128.0, 128.1, 128.4, 131.9, 137.3; HRMS for $C_{13}H_{17}N_4^+$ (M+1 $^+$), calcd. 229.1448, found 229.1447.

CP-20 was prepared following the similar procedure with that of CP-4

to give a yellow oil (63% yield). [α]_D ^{rt}= -3.0°, (c=0.67, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.31-1.45 (1H, m), 1.61-1.77 (2H, m), 1.77-1.90 (1H, m), 1.94-2.37 (1H, br), 2.91 (2H, t, J= 6.8 Hz), 3.61-3.78 (1H, m), 3.95 (3H, s), 4.20-4.40 (2H, m), 7.11-7.25 (2H, m), 7.48 (1H, d, J= 8.1 Hz), 7.70-7.86

(3H, m), 7.90 (1H, s); 13 C NMR $(CDCl_3, 75 MHz)$: δ 24.1, 28.1, 45.3, 52.0, 54.4, 56.8, 104.6, 118.9, 121.0, 125.6, 126.6, 127.5, 128.7, 132.0, 133.6, 137.5, 157.6; HRMS for $C_{18}H_{21}N_4O^+$ $(M+1^+)$, calcd. 309.1710, found 309.1710.

Procedure for the Michael reaction: Nitrostyrene (37 mg, 0.25 mmol) and CP-2 (12 mg, 10 mol%) were mixed with cyclohexanone (0.5 mL, 5 mmol) in the presence of TFA (0.00625 mmol, 0.2 μL) at room temperature (Bulk solution of TFA in cyclohexanone was freshly prepared and employed in the reaction, 20 μL TFA in 50 mL of cyclohexanone). The homogeneous reaction mixture was stirred at room temperature for 18 h. The reaction mixture was directly loaded onto silica gel column to afford the Michael adduct 1 (61 mg, 99%) as white solid: $[\alpha]_D^{\text{rt}} = -15.2^{\circ}$ (c= 0.5, CH₃OH), syn/anti=49:1 (by 1 H NMR), 92% ee (by HPLC on a chiral phase chiralpak AD-H column, $\lambda=254$ nm, iPrOH/hexane 10:90, 20 $^{\circ}$ C, 0.5 mL min⁻¹; $t_R=22.7$ min (minor), 29.4 min (major)). All the Michael addition products are known compounds.

HPLC conditions:

The enantiomeric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: hexane=10:90), 25 °C, 0.5 mL/min; t_R = 22.7 min (minor), 29.4 min (major).

The enantiomeric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: hexane=10:90), 20 °C, 0.5 mL/min; t_R = 27.4 min (minor), 41.6 min (major).

The enantiomeric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: hexane=10:90), 20 °C, 0.5 mL/min; t_R = 27.4 min (minor), 41.6 min (major).

The enantiomeric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: hexane=10:90), 20 °C, 0.5 mL/min; t_R = 27.4 min (minor), 41.6 min (major).

The enantiomeric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: hexane=10:90), 20 °C, 0.5 mL/min; t_R = 21.9 min (minor), 38.3 min (major).

The enantiomeric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: hexane=10:90), 20 °C, 0.5 mL/min; t_R = 18.0 min (minor), 23.5 min (major).

The enantiomeric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: hexane=20:80), 20 °C, 0.5 mL/min; t_R = 19.1 min (minor), 23.9

min (major).

OCH₃
OCH₃
NO₂

The enantiomeric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: hexane=20:80), 20 °C, 0.5 mL/min; t_R = 17.4 min (minor), 18.9 min (major).

min NO₂

The enantiomeric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: hexane=20:80), 20 °C, 0.5 mL/min; t_R = 20.5 (minor), 23.9 min (major).

O NO₂

The enantiomeric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: hexane=20:80), 20 °C, 0.5 mL/min; t_R = 23.2 min (minor), 24.7 min (major).

O NO₂

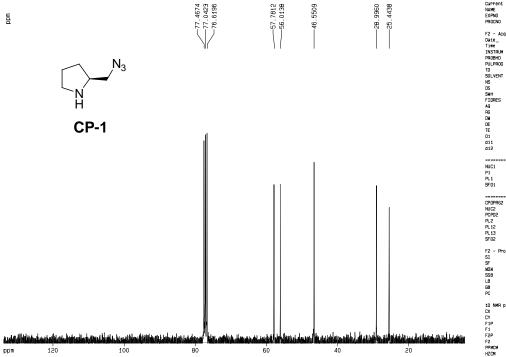
The enantiomeric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: hexane=20:80), 20 °C, 0.5 mL/min; t_R = 13.7 min (*anti*, major), 15.1 min (*anti*, minor), 16.2 min (*syn*, minor), 20.5 min (*syn*, major).

O NO₂

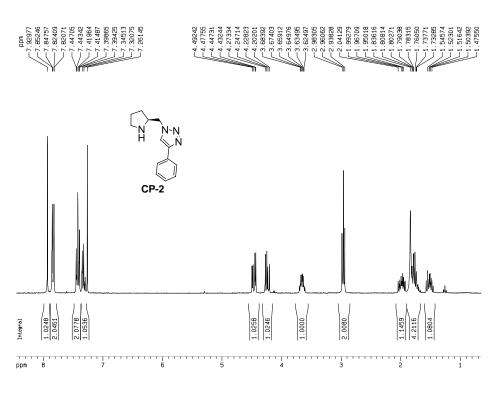
The enantiomeric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: hexane=20:80), 20 °C, 0.5 mL/min; t_R = 14.5 min (minor), 15.4 min (major)

H NO₂

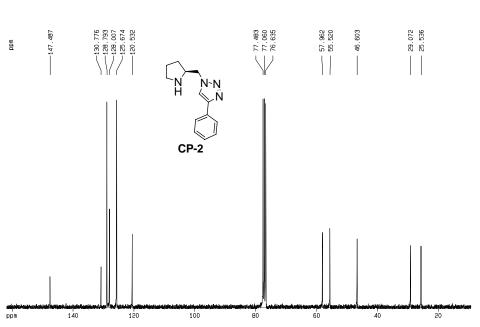
The enantiomeric excess was determined by HPLC with an AD-H column at 281 nm (2-propanol: hexane=3:97), 20 °C, 0.5 mL/min; t_R = 17.9 min (major), 21.0 min (minor)

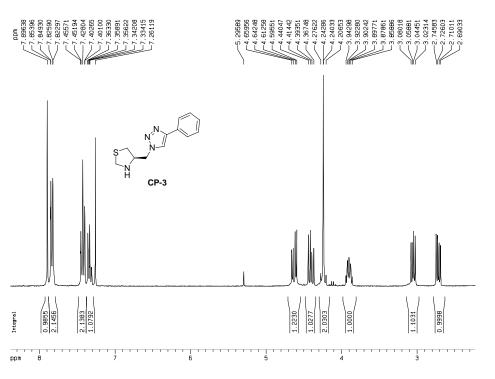

Reference:

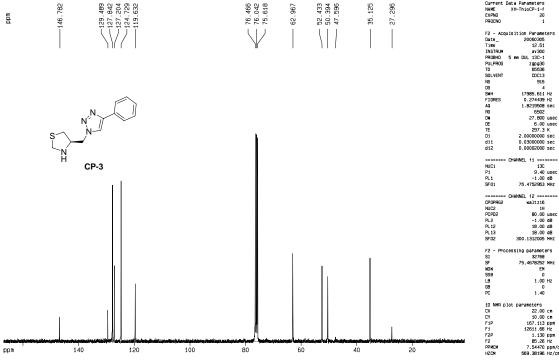
[1] Krasinski, A.; Fokin V. V.; Sharpless, K. B. Org. Lett. 2004, 6, 1237.


- [2] Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J.-P. *Angew. Chem. Int. Ed.* **2006**, *45*, 3093
- [3] (a) Ishii, T.; Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. *J. Am. Chem. Soc.* **2004**, *126*, 9558-9559; (b) Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Tanaka, F.; Barbas, C. F. III, *Synthesis* **2004**, 1509-1521. (c) List, B.; Pojarliev, P.; J. Martin, H. *Org. Lett.* **2001**, *3*, 2423-2425.
- [4] (a) Cobb, A. J. A.; Longbottom, D. A.; Shaw, D. M.; Ley, S. V. Chem. Commun. 2004, 1808-1809; (b) Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84-96;
- [5] (a) Wang, W.; Wang, J.; Li, H. Angew. Chem. Int. Ed. 2005, 44, 1369; (b) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212-4215.

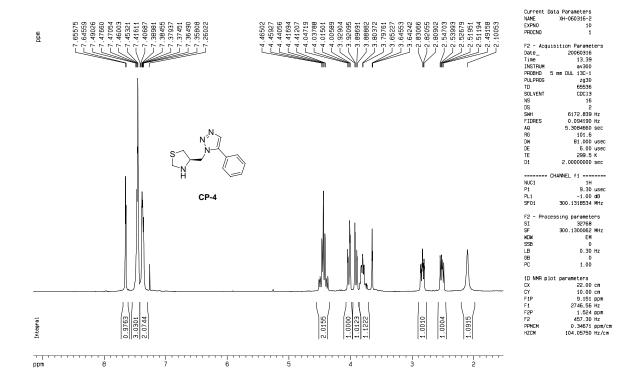
NMR spectra for the clicked catalysts

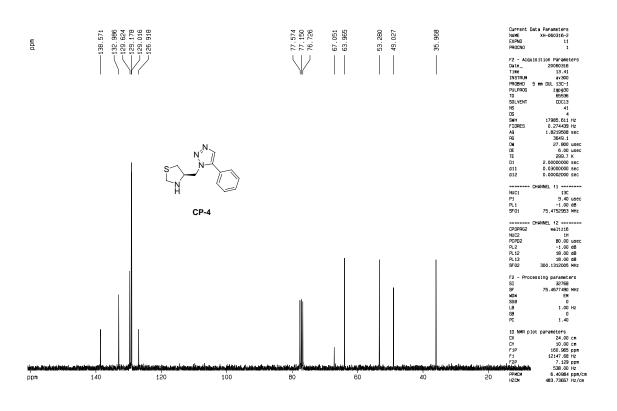


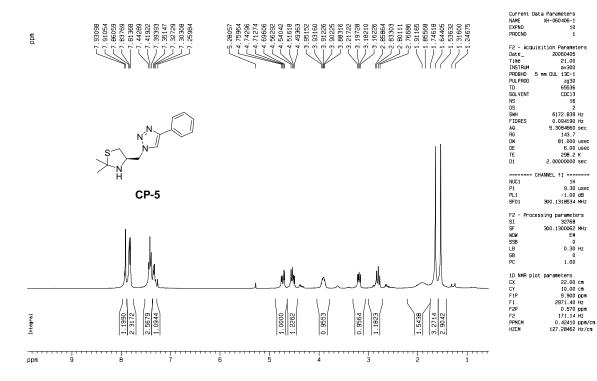

Current Data	Danamet ene	
	H-060510-5	
EXPNO	11	
PROCNO	1	
F2 - Acquisit	ion Denomo	
Date_	20060510	rena
Time	13.36	
INSTRUM	av 300	
PROBHD 5 mm		
PULPROG	zgpg30	
TD SOLVENT	65536 CDC13	
NS	132	
DS	4	
SMH	17985.611	
FIDRES	0.274439	
AG	1.8219508	
RG DM	4597.6 27.800	
DF		usec
TE	300.6	
D1	2.00000000	sec
	0.03000000	
d12	0.00002000	sec
CHAN	NEL f1 ===	
NUC1	130	
P1		usec
PL1 SE01	-1.00 75.4752953	
5F U1	/5.4/52553	MHZ
CHAN		
CPDPR62	waltz16	
NUC2 PCPD2	111	
PLPD2	80.00 -1.00	
PL12	18.00	
PL 13	18.00	
SF02 3	00.1312005	MHZ
F2 - Processi	no paramet	ens
SI	32768	
	75.4677490	
NDW	EM	
SSB LB	1.00	
GB .	1.00	nz
PC	1.40	
1D NMR plot p	onomokono	
CX	arameters 22.00	cn
CY	10.00	
F1P	133.927	ppm
F1	10107.16	
F2P	4.244	
F2 PPMCM	320.29 5.89467	
HZCM	5.8946/	
		, 6111

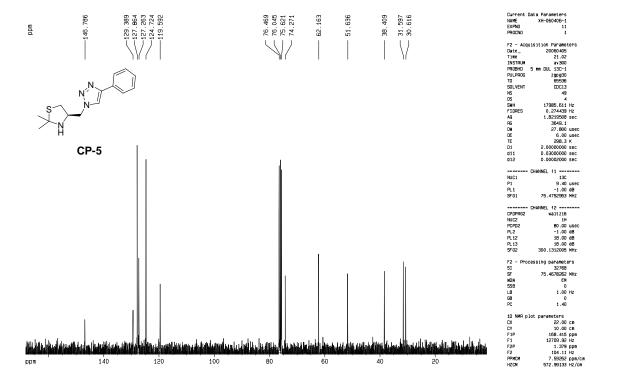


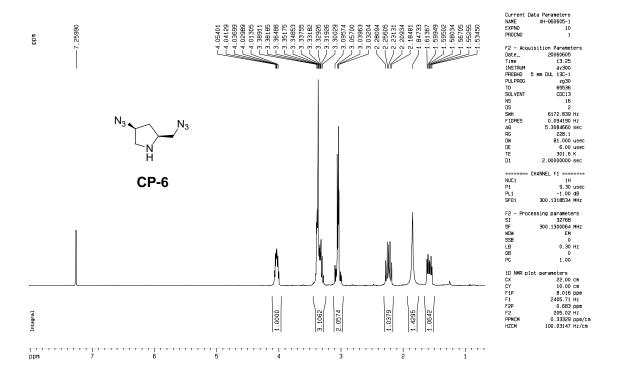
	Data Parameters	
NAME EXPNO	XH-060615-1	
PROCNO	10	
PHOUNU	1	
	quisition Paramet	ters
Date_	20060615	
Time	12.11	
INSTRUM	av300	
PROBHD	5 mm DUL 13C-1	
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	975	
DS	4	
SNH	17985.611	
FIDRES	0.274439	
AG	1.8219508	sec
RG	1824.6	
DM	27.800	usec
DE	6.00	usec
TE	302.1	K
D1	2.000000000	sec
011	0.03000000	sec
012	0.0002000	sec
	CHANNEL f1 ====	
NUC1	130	
P1	9.40	
PL1	-1.00	
SF01	75.4752953	MHZ
	CHANNEL f2 ====	
CPDPR62	waltz15	
NUC2	1H	
PCPD2	B0.00	usec
PL2	-1.00	dΒ
PL12	18.00	
PL13	18.00	
SF02	300.1312005	
	cessing paramete	ers
SI	32768	
SF	75.4677490	
MDM	EM	
SSB		
LB	1.00	HZ
6B		
PC	1.40	
1D NMR (olot parameters	
CX .	22.00	CM
CY	10.00	
F1P	161.894	
F1	12217.76	
F2P	9.198	
F2	694.16	
PPMCM	5.94071	ppm/cm
HZCM	523.79980	Hz/cm

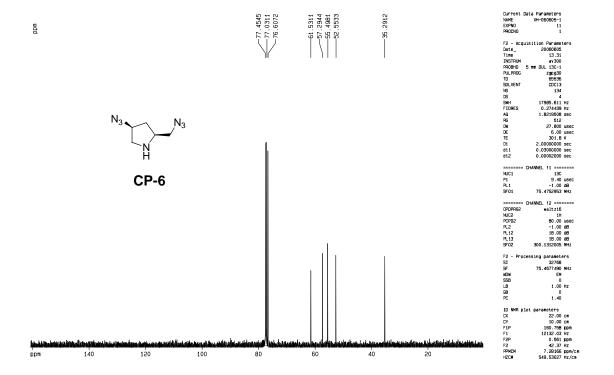


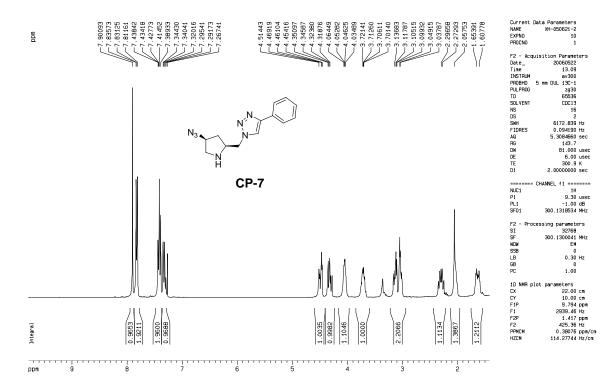

782

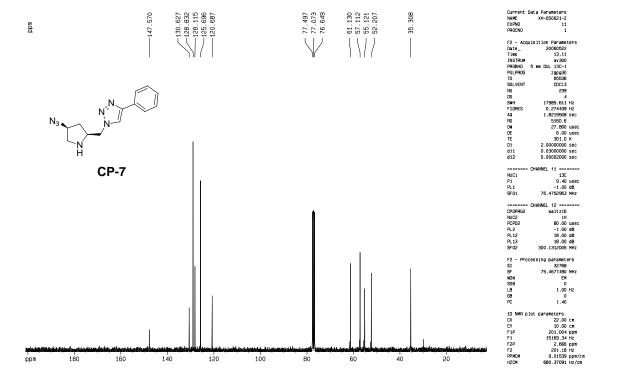


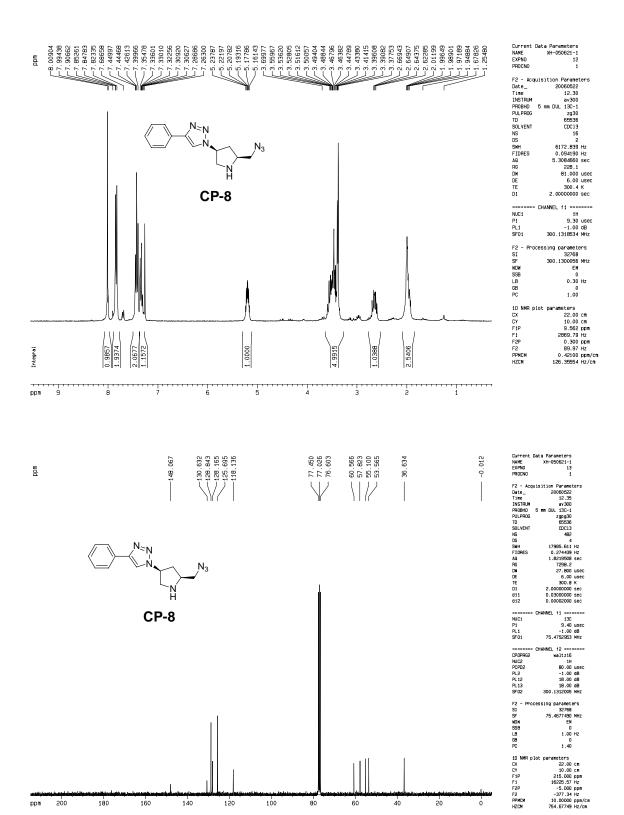


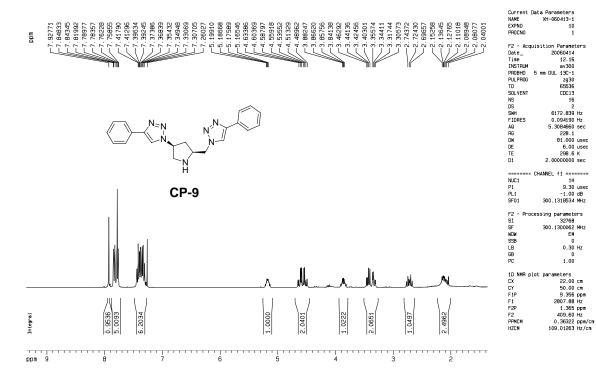

125

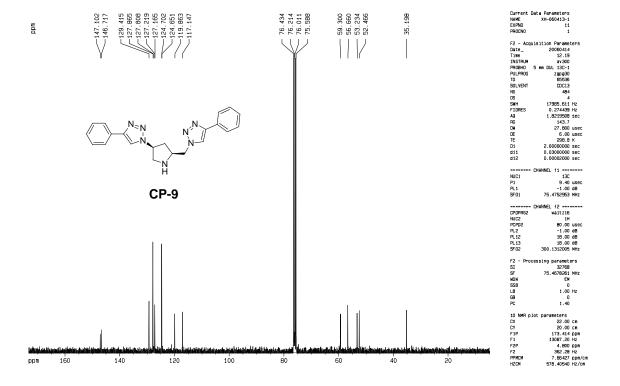


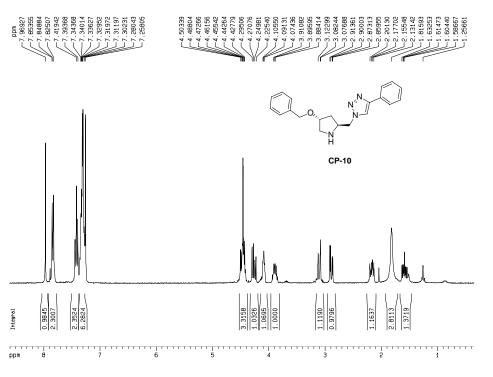


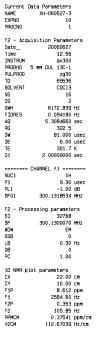


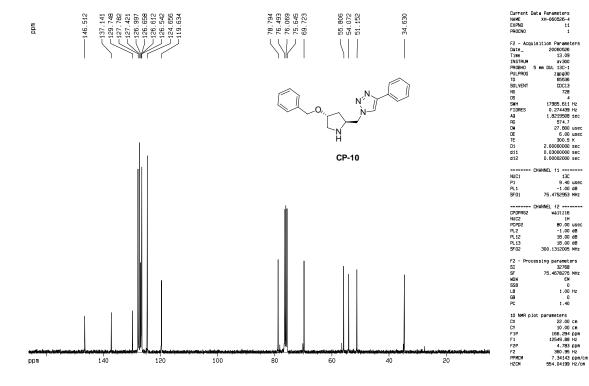


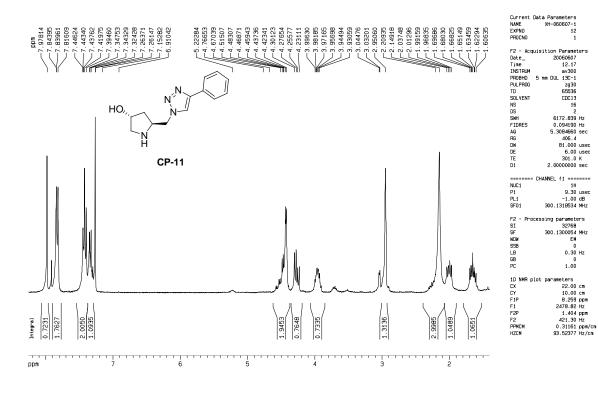


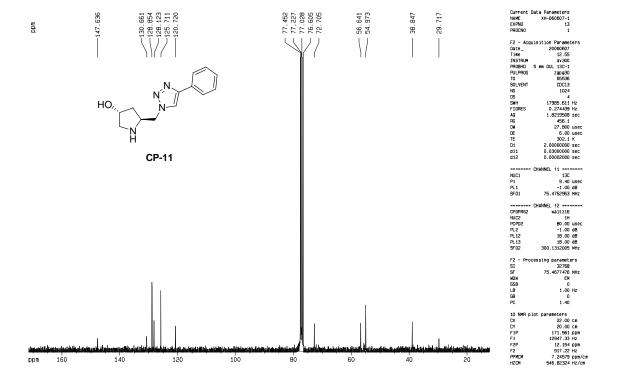


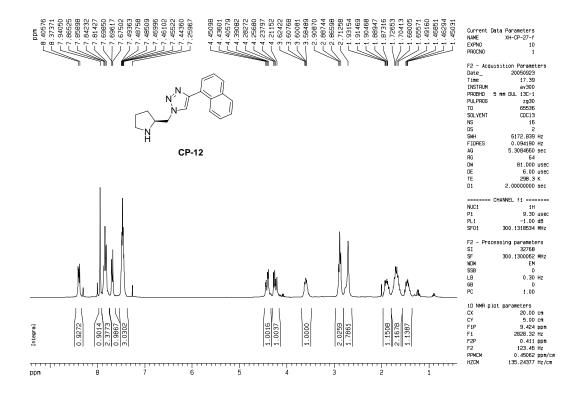


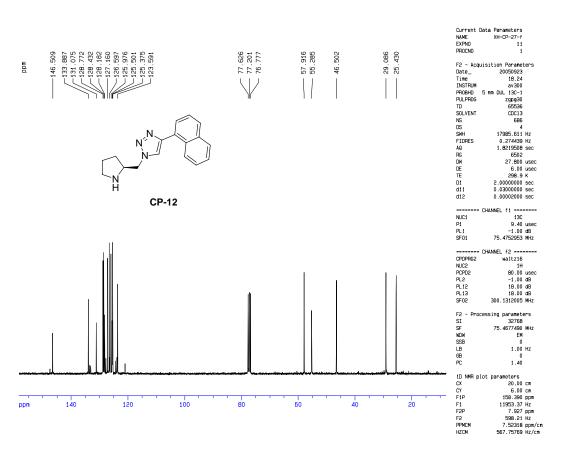


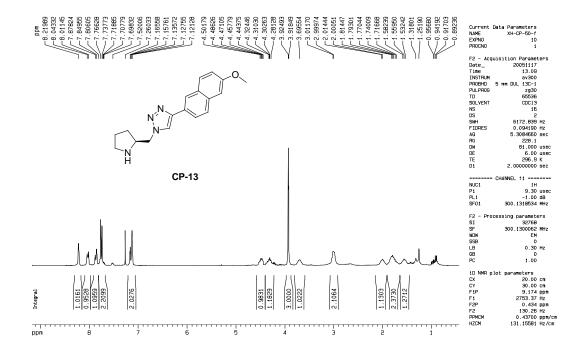


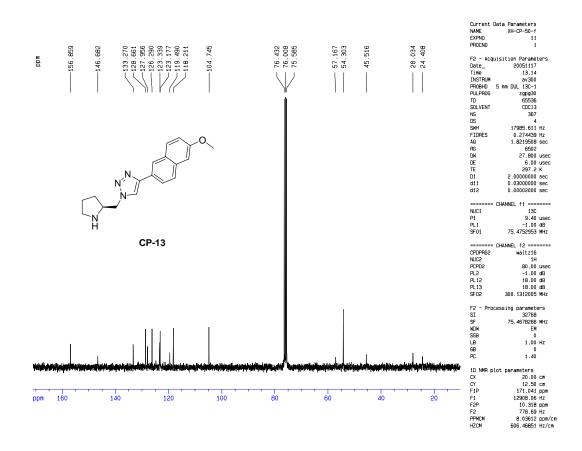


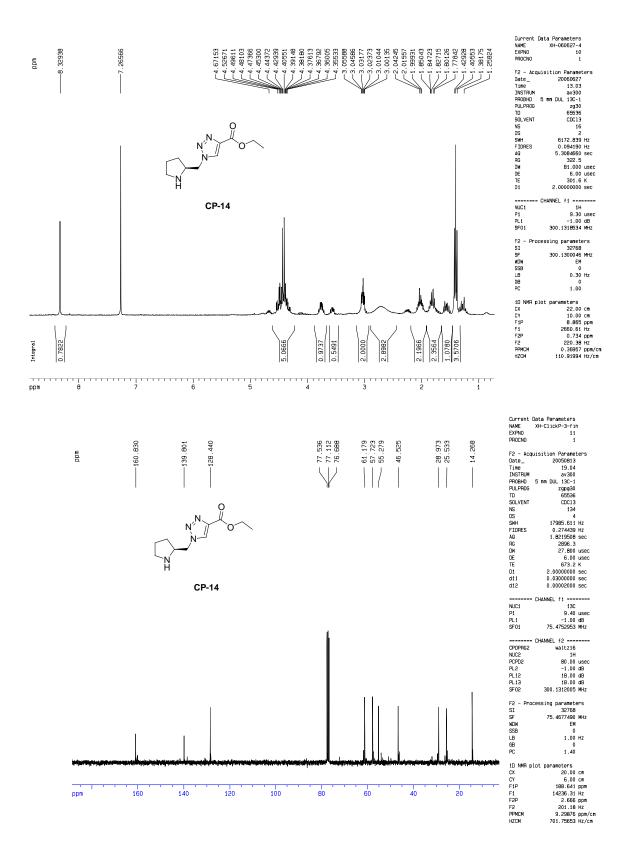


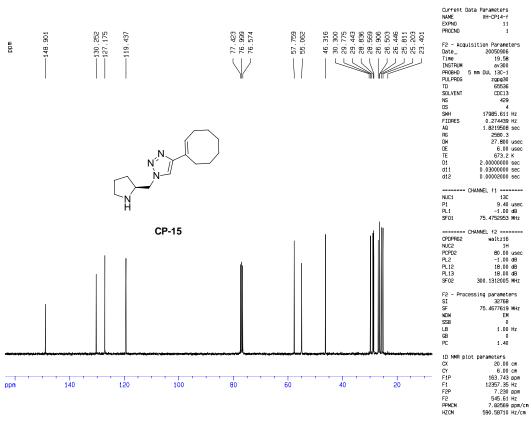


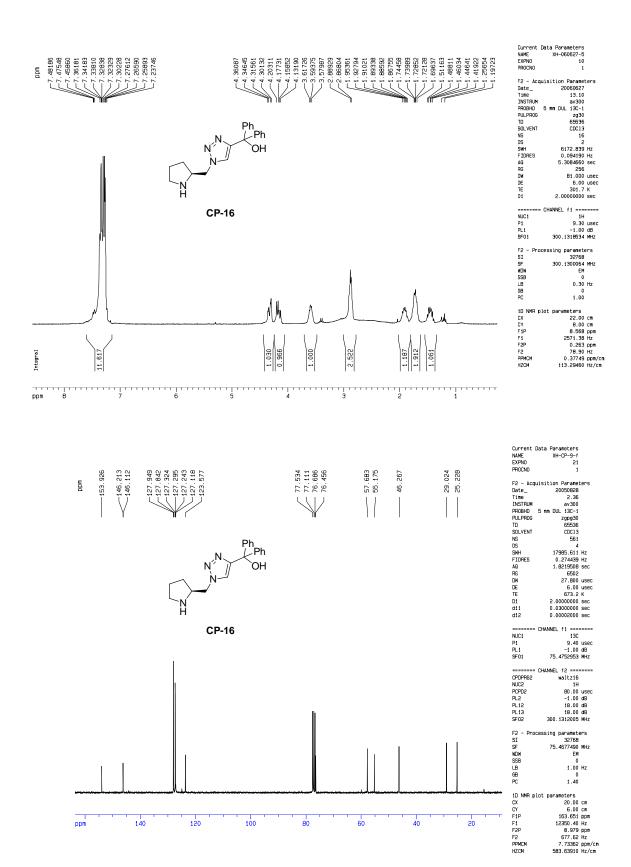


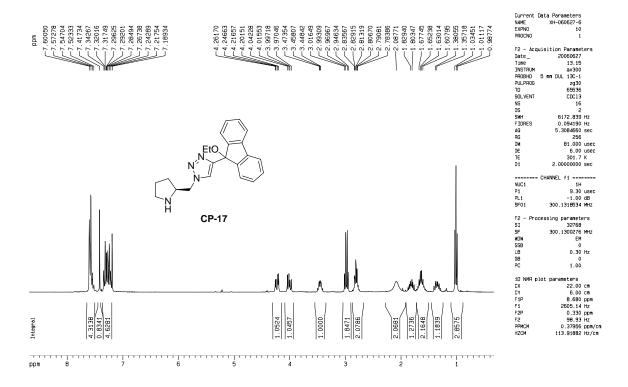


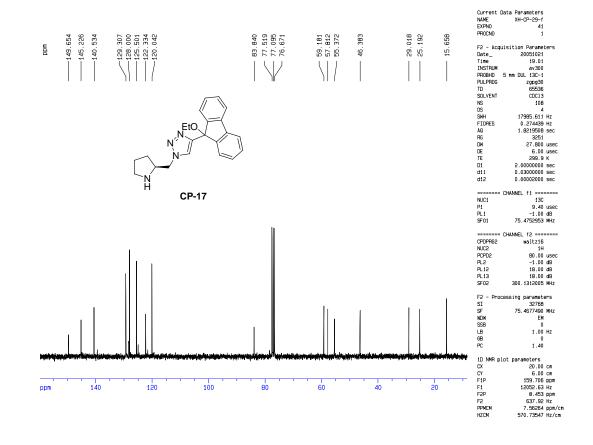

12

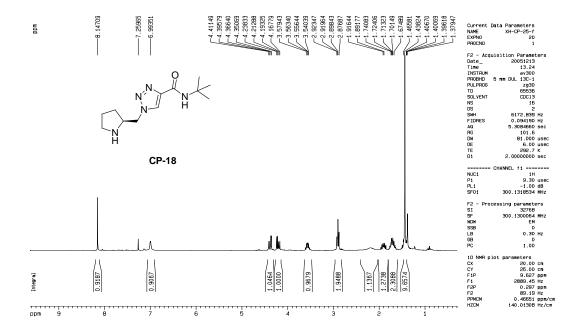


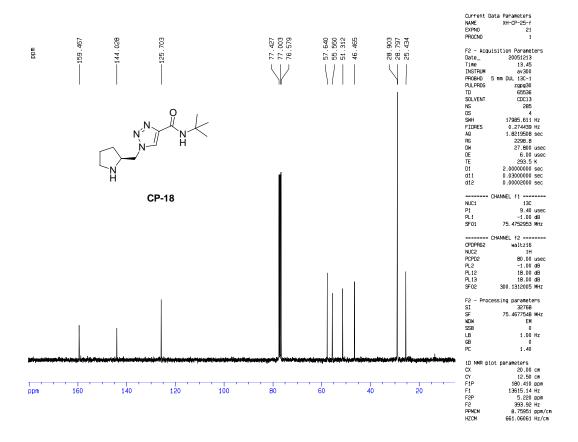


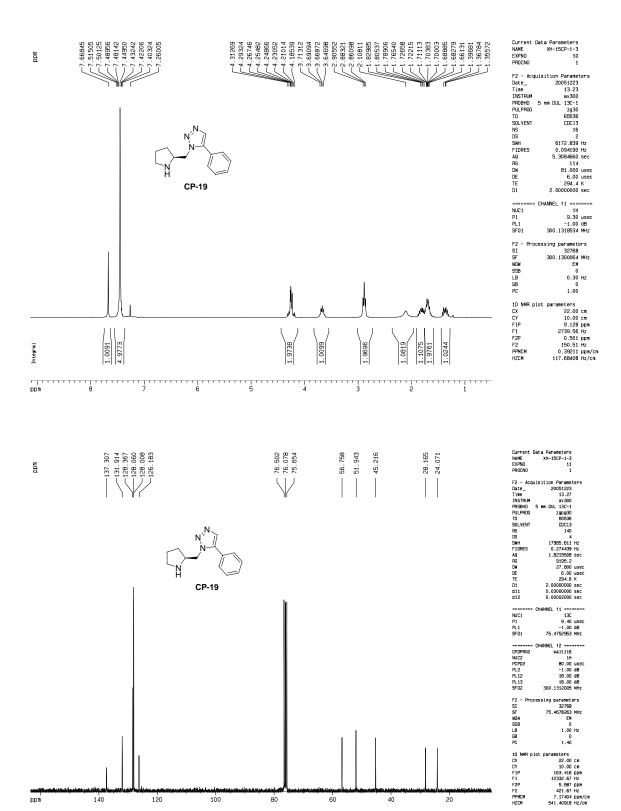


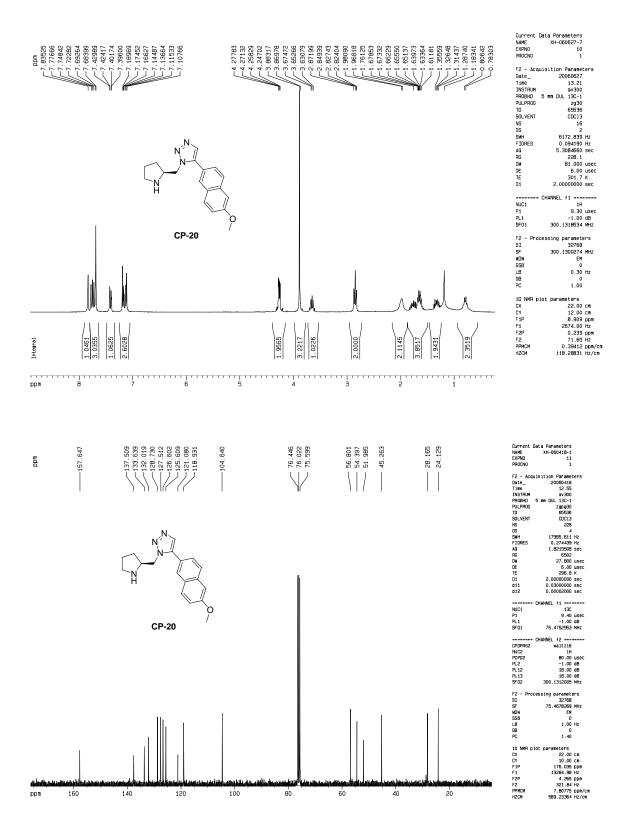


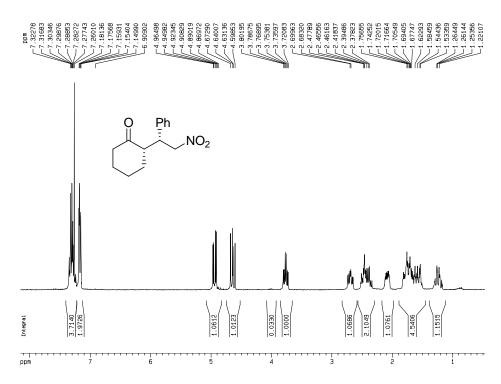


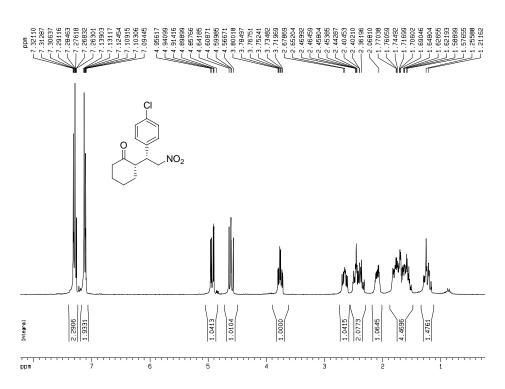


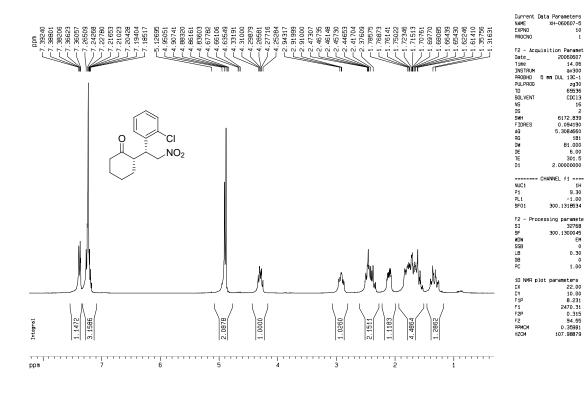


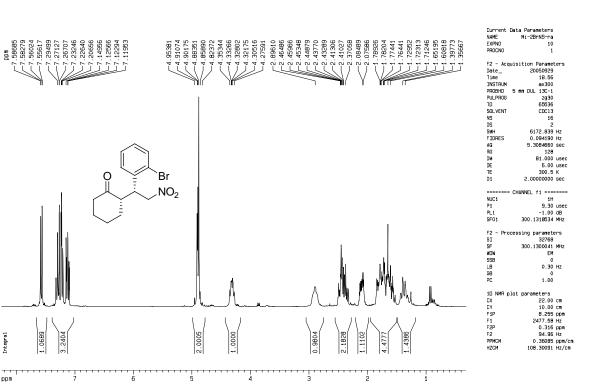







ppm


¹H NMR spectra for the Michael products



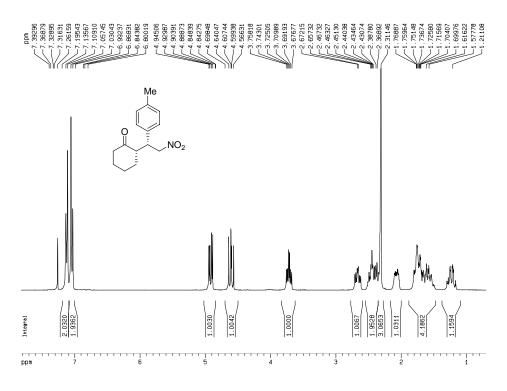
Current (NAME EXPNO PROCNO	Data Parameters XH-MCP1-3 10 1	
Dete_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW	visition Paramet 20050828 20050828 20050828 20050828 20050828 20050000000000	Hz Hz sec usec usec K
NUC1	2.00000000 CHANNEL f1 ===: 1H	
P1 PL1 SF01	9.30 -1.00 300.1318534	
F2 - Prod SI SF WDW SSB	essing paramete 32768 300.1300063 EM 0	MHz
LB GB PC	0.30 0 1.00	
10 NMR p: CX CY F1P F1 F2P F2 PPMCN HZCM	lot parameters 22.00 10.00 8.156 2447.92 0.469 140.83 0.34941 104.86773	cm ppm Hz ppm Hz ppm/cm

Current Dat NAME EXPNO PROCNO	a Parameters XH-060609-3 10 1	
Date_ Time INSTRUM	sition Paramet 20060609 13.48 av300 mm DUL 13C-1 2930 65536 CDC13 16 2 6172.839 0.094190 5.3084660	Hz Hz
RG	256	
DW	81.000	
DE	6.00	
TE	301.0	
D1	2.00000000	sec
PL1 SF01	HANNEL f1 ==== 1H 9.30 -1.00 300.1318534	usec dB
F2 - Proces	sing paramete	ers
SI	32768	
SF	300.1300054	MHz
MDM	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	1.00	
1D NMR plot	: parameters	
CX	22.00	
CY	10.00	
F1P	8.228	
F1	2469.41	
F2P	0.243	
F2	73.06	
PPMCM	0.36293	
HZCM	108.92511	HZ/CM

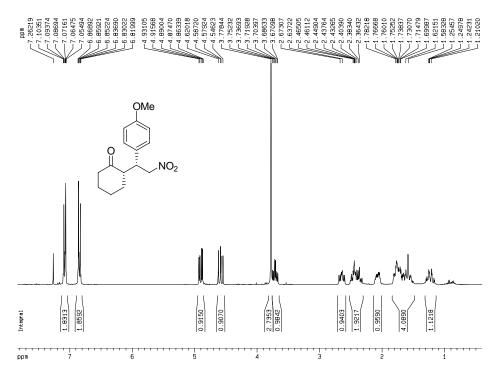
1
quisition Parameters
20060607
14.06
av300
5 mm DUL 13C-1
2930
65536
CDD13
16
2
6172.839 Hz
0.094190 Hz
5.3044660 sec
6.00 usec
301.5 K
2.00000000 Sec

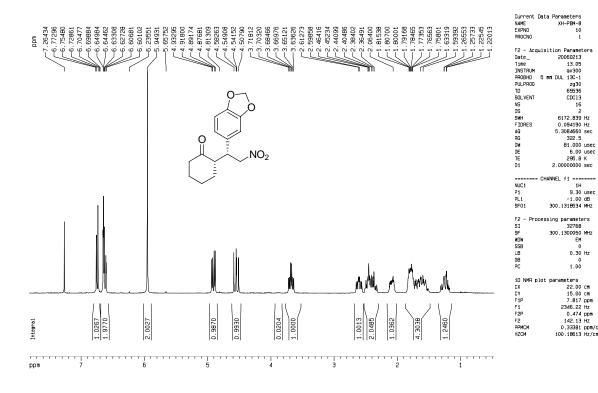
CHANNEL f1 ====== 1H 9.30 usec -1.00 dB 300.1318534 MHz

Processing parameters 32768 300.1300045 MHz EM 0

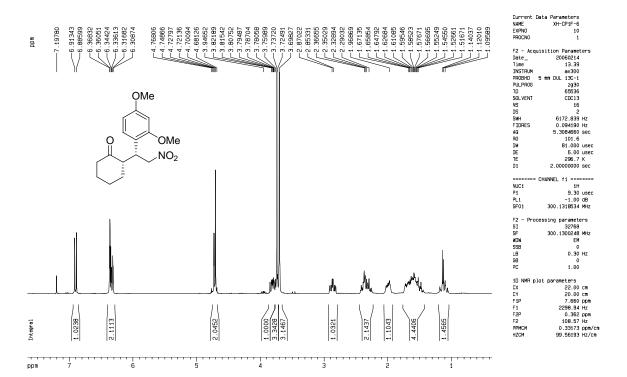

0.30 Hz 0 1.00

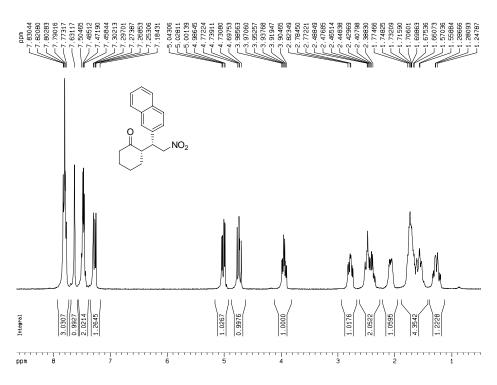
arameters 22.00 cm 10.00 cm 8.231 ppm 2470.31 Hz 0.315 ppm 94.55 Hz 0.35981 ppm/cm

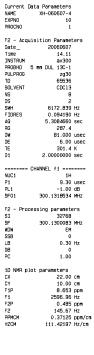

1.0689 3.2404

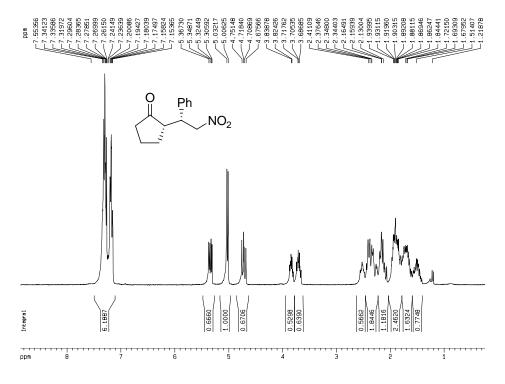

Integral

ppm

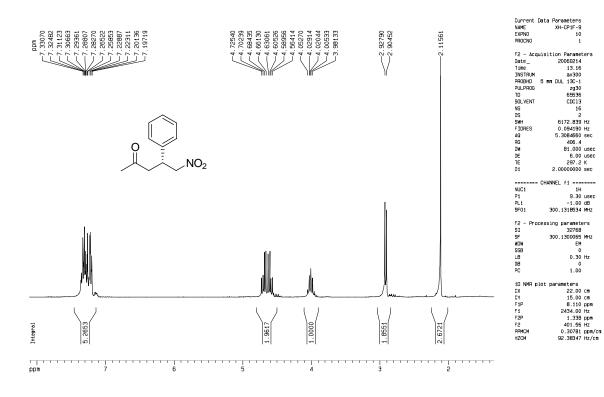


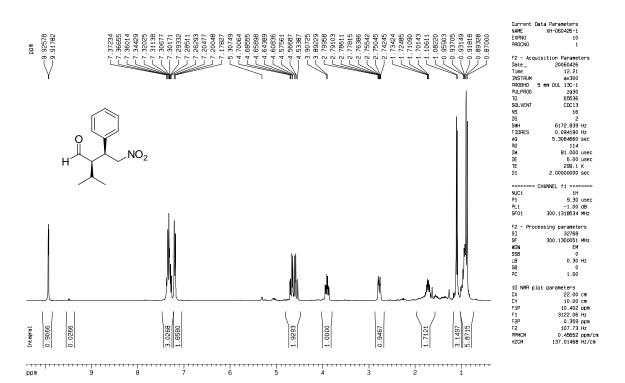

1
quisition Parameters
20060213
13.05
30.05
mm DUL 13C-1
2030
65936
CDD13
16
2
6172.839 Hz
0.004190 Hz
5.3044660 sec
6.00 usec
295.8 K
2.00000000 sec


Processing parameters 32768 300.1300050 MHz EM 0


0.30 Hz 0

arameters 22.00 cm 15.00 cm 7.817 ppm 2346.22 Hz 0.474 ppm 142.13 Hz 0.33381 ppm/cm





NAME	XH-0F1F-12	
EXPNO	10	
PROCNO	1	
PHOCINO		
F2 - Acquis	ition Paramet	ters
Date_	20060214	
Time	13.46	
INSTRUM	av300	
PROBHD 5	mm DUL 13C-1	
PULPROG	zq30	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	6172.839	Hz
FIDRES	0.094190	Hz
AG	5.3084660	
RG	362	
DW	81.000	usec
DE	6.00	
TE	296.7	K
D1	2.00000000	sec
011	ANNEL f1 ===	
NUC1	1H	
P1	9 30	usec
PL1	-1.00	
5F01	300.1318534	MHZ
F2 - Proces	sing paramete	ere
SI	32768	
SF	300.1300052	MHZ
MDM	FM	
SSB	0	
LB	0.30	HZ
GE	0	
PC	1.00	
	1.00	
1D NMR plat	parameters	
CX	22.00	Cm.
CY	10.00	
F1P	8.869	ppm
F1	2661.89	Hz
F2P	0.244	
F2	73.28	
PPMCM	0.39204	pon/cr
HZCM	117.66409	
HEON	117.00409	112/611

