"CLICK TO CHELATE": SYNTHESIS AND INSTALLATION OF METAL CHELATORS INTO BIOMOLECULES IN A SINGLE STEP

Thomas L. Mindt ${ }^{1}$, Harriet Struthers ${ }^{2}$, Luc Brans ${ }^{3}$, Todor Anguelov ${ }^{2}$, Christian Schweinsberg ${ }^{2}$, Veronique Maes ${ }^{3}$, Dirk Tourwé ${ }^{3}$, Roger Schibli ${ }^{1}$
${ }^{1}$ Dept. of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
${ }^{2}$ Center for Radiopharmaceutical Science ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
${ }^{3}$ Faculty of Sciences Vrije Universiteit Brussels 1050, Brussels, Belgium
* Corresponding author:
Roger Schibli
Dept. of Chemistry and Applied Biosciences of the ETH Zürich, 8093 Zürich, Switzerland
Phone: +41-56-310 2837; fax:+41-56-310 2849; e-mail: roger.schibli@pharma.ethz.ch

Table of Contents

Table of Contents 2
1 Synthesis of triazole ligand systems 3
1.1 General methods 3
1.2 Synthesis of triazole ligands with unprotected click substrates 3
1.3 Synthesis of triazole ligands using Boc-protected substrates 9
1.4 ee-Determination of click compounds $\mathbf{5}$ and $\mathbf{7}$ by NMR-spectroscopy 17
1.5 Syntheses on solid support (peptide derivative 9) 20
2 Synthesis of Re-complexes 22
3 Structural assignment of $\left[\operatorname{Re}(\mathrm{CO})_{3}(5-7)\right]$ by NMR-spectroscopy 29
4 Density Functional Theory Calculations 32
5 Synthesis of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-complexes 34
5.1 General two-step procedure 34
5.2 One-step procedures 35
6 In vitro and in vivo studies of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-labeled bombesin derivatives 36
7 HPLC analysis of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ - and Re-complexes 38

1 Synthesis of triazole ligand systems

1.1 General methods

Melting points were taken on a Büchi-535 apparatus and are uncorrected. Infrared spectra were recorded on either a Jasco FT/IR-6200 ATR-IR or a Perkin Elmer Spectrum BX II FT-IR, with a Pike MIRacle(TM) ATR accessory. Nuclear magnetic resonance spectra were recorded with a Bruker 400 MHz or 300 MHz Varian Gemini 2000 spectrometer with the corresponding solvent signals as an internal standard. Chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (0.00 ppm). Values of the coupling constant, J, are given in Hertz (Hz); the following abbreviations are used in the experimental section for the description of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of doublets (dd), broad singlet (bs). The chemical shifts of complex multiplets are given as the range of their occurrence. Further assignment of NMR-signals was achieved using $\mathrm{D}_{2} \mathrm{O}$-exchange experiments and two-dimensional NMR experiments when appropriate (COSY, NOESY, HMQC and HMBC). Low resolution mass spectra (LR-MS) were recorded with a Micromass Quattro micro ${ }^{\text {TM }}$ API LC-ESI or an LCT Premier ESI-TOF from Waters, using either the negative or positive ionization mode. High resolution mass spectra (HR-MS) were recorded with a Bruker FTMS 4.7T BioAPEXII (ESI) or an Ionspec Ultima FTMS 4.7T (MALDI). Optical rotation values were measured in a 0.5 mL cell using a Jasco P-1020 polarimeter.
$\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}\left(\mathrm{OH}_{2}\right)_{3}(\mathrm{CO})_{3}\right]^{+}$was prepared using the Isolink ${ }^{\mathrm{TM}}$-kit (Mallinkrodt-Tyco, Petten, the Netherlands). $[\mathrm{Na}]\left[{ }^{99 \mathrm{~m}} \mathrm{TcO}_{4}\right]$ was eluted from a ${ }^{99} \mathrm{Mo} /{ }^{99 \mathrm{~m}} \mathrm{Tc}$-generator (Mallinckrodt-Tyco, Petten) with a 0.9% saline solution. Commercial Boc-propargylglycine dicyclohexylamine salt (Aldrich) was dissolved in ethyl acetate and washed with citric acid (1M) and brine. The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to yield the free acid for click reactions. Sep-Pak ${ }^{\circledR}$ columns (Waters) were washed with methanol and water prior to use. $\left[\operatorname{Re}(B r)_{3}(\mathrm{CO})_{3}\right]\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}$, pentanoic acid ethyl ester and L-azido-alanine (2) were prepared according to literature procedures ${ }^{1}$ QuadraPure-IDA ${ }^{\mathrm{TM}}$ metal scavenging resin (Aldrich) was washed well with methanol prior to use. All other commercially available reagents and solvents were used as supplied unless stated otherwise.
Reactions were monitored by thin layer chromatography (TLC, performed on EM Science 0.25 mm thick, pre-coated silica gel 60 F-254 glass supported plates) or HPLC. HPLC was performed on a Merck-Hitachi L-7000 system equipped with an L-7400 tunable absorption detector and a Berthold LB 506 B radiometric detector. Analytical HPLC was performed with either an XTerra ${ }^{\circledR}$ column (MSC18, $5 \mu \mathrm{~m}, 4.6 \times 150 \mathrm{~mm}$, Waters) or a Nucleosil ${ }^{\circledR} 5 \mathrm{C} 18$ column ($5 \mu \mathrm{~m}, 4.6 \times 250 \mathrm{~mm}$, Macherey-Nagel). An XBridge ${ }^{\mathrm{TM}}$ column (Prep C18, $5 \mu \mathrm{~m}, 10 \times 150 \mathrm{~mm}$, Waters) was used for semi-preparative HPLC. HPLC solvent system I: Aqueous 0.05 M triethylammonium phosphate buffer, pH 2.25 (solvent A), methanol (solvent B). The HPLC system started with 95% A, with a linear gradient to 20% A and 80% B over 15 min , followed by 5 min of $100 \% \mathrm{~A}$, with a flow rate of $1 \mathrm{ml} / \mathrm{min}$. System II: Aqueous 0.05 M triethylammonium phosphate buffer, pH 2.25 (solvent A), methanol (solvent B). $0 \mathrm{~min}, 95 \% \mathrm{~A}, 1 \mathrm{~mL} / \mathrm{min} ; 3 \mathrm{~min}$ $95 \% \mathrm{~A}, 1 \mathrm{~mL} / \mathrm{min} ; 6 \mathrm{~min}, 75 \% \mathrm{~A}, 1 \mathrm{~mL} / \mathrm{min} ; 9 \mathrm{~min}, 67 \% \mathrm{~A}, 1 \mathrm{~mL} / \mathrm{min} ; 20 \mathrm{~min}, 0 \% \mathrm{~A}, 1 \mathrm{~mL} / \mathrm{min} ; 22 \mathrm{~min}, 0 \% \mathrm{~A}, 2$ $\mathrm{mL} / \mathrm{min} ; 25 \mathrm{~min} 95 \%$ A, $2 \mathrm{~mL} / \mathrm{min} ; 30 \mathrm{~min}, 95 \%$ A, $1 \mathrm{~mL} / \mathrm{min}$. System III: 90% water, 10% acetonitrile, 0.1% trifluoroacetic acid (solvent A), acetonitrile (solvent B). $0 \mathrm{~min}, 95 \% \mathrm{~A}, 1 \mathrm{~mL} / \mathrm{min} ; 12 \mathrm{~min}, 10 \% \mathrm{~A}, 1 \mathrm{~mL} / \mathrm{min} ; 15$ $\mathrm{min}, 10 \% \mathrm{~A}, 1 \mathrm{~mL} / \mathrm{min} ; 19 \mathrm{~min}, 95 \% \mathrm{~A}, 1 \mathrm{~mL} / \mathrm{min}$.

1.2 Synthesis of triazole ligands with unprotected click substrates

All investigated click reactions proceeded quantitatively with unprotected substrates (determined by HPLC or ${ }^{1} \mathrm{H}$ NMR, see Table 1 below). For ease of purification and chemical characterization of some of the compounds they were synthesized in 2-3 steps via protected click substrates (see Section 1.3).

[^0]Table 1: Conversion of click substrates after 45 min at $75^{\circ} \mathrm{C}$: ${ }^{\text {a) }} 25 \mathrm{mM}$ in $\mathrm{D}_{2} \mathrm{O}^{2}$, conversion of substrates determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$; ${ }^{\text {b) }}$ click products, which precipitated from the reaction mixture were dissolved for NMR measurements by adding a few drops of $10 \% \mathrm{DCl}$ and gently heating; ${ }^{\text {c) }} 0.2 \mathrm{mM}$ in water, conversion of substrates determined by HPLC.

Azide substrate	Alkyne substrate	Product (\% conversion)
 3a	 1	$5\left(>95 \%{ }^{\text {a,b }}\right)$
 3b		$6 \quad\left(>95 \%{ }^{\text {a }}\right.$)
		7 ($>95 \%$ \% $\left.{ }^{\text {a,b }}\right)$
 2	 4b	$8 \quad\left(>95 \%{ }^{\text {a }}\right.$)
	 1	10 ($>95 \%{ }^{\text {c }}$)
	 1	11 ($>95 \%{ }^{\text {a }}$)

[^1]
Selected example of click product formation with unprotected substrates

Figure $1 .{ }^{1} \mathrm{H}$-NMR spectrum showing formation of compound $\mathbf{6}$ from L-propargyl glycine $\mathbf{1}$ and azide $\mathbf{3 b}$.

Compound 6. Azidoacetic acid ethyl ester ($129 \mathrm{mg}, 1.0 \mathrm{mmol}$), L-propargyl glycine ($113 \mathrm{mg}, 1.0 \mathrm{mmol}$), copper (II) acetate ($18 \mathrm{mg}, 0.1 \mathrm{mmol}$) and sodium ascorbate ($40 \mathrm{mg}, 0.2 \mathrm{mmol}$) were mixed in t-butanol / water (1:1; 6.0 $\mathrm{mL})$ and stirred at rt overnight. QuadraPure-IDA ${ }^{\circledR}$ resin $(0.2 \mathrm{~g})$ was added and the mixture was gently shaken at rt for 2 h during which the blue color of the solution faded. The resulting brown solution was decanted and added drop wise to ethanol (100 mL). Filtration at $0{ }^{\circ} \mathrm{C}$ yielded compound $\mathbf{6}$ as a white powder ($220 \mathrm{mg}, 91 \%$): mp 272-274 ${ }^{\circ} \mathrm{C}$; IR (neat) v 3126, 2980, 2909, 1745, 1577, 1491, 14.09, 1220, 1197, $1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 5.40$ $(\mathrm{s}, 2 \mathrm{H}), 4.31(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.10(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.39(\mathrm{dd}, 1 \mathrm{H}, J=15.7$ and 4.9 Hz$), 3.36$ (dd, $1 \mathrm{H}, J=15.7$ and 7.1 Hz), $1.31(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 173.1,169.0,142.1,125.9,63.4,54.3,51.0,26.3,13.2$ ppm; HiRes-ESI-MS: $[\mathrm{M}+\mathrm{H}]^{+}=243.109$ (calc. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{4}$: 243.109); elemental analysis (calculated $\%$-values in parenthesis) C 44.51 (44.63), H 5.70 (5.83), N 22.88 (23.13), O 26.52 (26.42); $[\alpha]_{D}^{20}=-10.5$ ($\mathrm{c}=1.0$ in $\mathrm{H}_{2} \mathrm{O}$).

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR of compound $6, \mathrm{D}_{2} \mathrm{O}$

Compound 10. 3-Azidothymidine ($30.0 \mathrm{mg}, 0.112 \mathrm{mmol}$), L-propargyl glycine (13.0 mg , $0.115 \mathrm{mmol})$, copper (II) acetate ($0.8 \mathrm{mg}, 0.004 \mathrm{mmol}$) and sodium ascorbate $(2.2 \mathrm{mg}$, $0.011 \mathrm{mmol})$ were mixed in t-butanol / water $(1: 1 ; 0.5 \mathrm{~mL})$ and stirred at rt overnight. Water (0.5 ml) and QuadraPure-IDA ${ }^{\circledR}$ resin (50 mg) were added and the mixture was gently shaken at $50^{\circ} \mathrm{C}$ for 2 h during which time the blue color of the solution disappeared. The solution was added drop wise to methanol (5 mL). Filtration of the resulting suspension yielded compound $11(34.8 \mathrm{mg}, 82 \%)$ as a white solid: $\mathrm{mp}>190{ }^{\circ} \mathrm{C}$ (decomp.); IR (neat) v 3535, 3426, 3136, 3018, 2990, 2930, 2880, 2815, 2750, 1690, 1665, $1652,1628,1598,1538,1473,1410,1388,1345,1306,1272,1255,1235,1214,1150$, 1093, 1047, 1020, 1000, 955, 929, 902, 882, 857, 785, 761, 669, $614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}$, $1 \mathrm{H}), 6.45(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-5.36(\mathrm{dd}, 1 \mathrm{H}), 4.79-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J$ $=12.6$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=12.6$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=14.6,7.5$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.82(\mathrm{ddd}, 1 \mathrm{H}, J=14.6,8.6$ and 6.1 Hz$), 1.90(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 185.2,166.4,151.4,137.6,111.3$, 99.9, 85.4, 84.1, 60.4, 59.5, 36.7, 26.2, 21.8, 11.4 ppm; HR-MS: $[\mathrm{M}-\mathrm{H}]^{-}=379.1370$ (calc. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{6} \mathrm{O}_{6}$: 379.1372).
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR of compound $10, \mathrm{D}_{2} \mathrm{O}$

Azido-phospholipid intermediate: 5-Azido-pentanoicacid-NHS-ester ${ }^{3}$ ($48 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in DMF R (1.0 mL) and a solution of 1,2-dipalmitoyl-R/S-glycero-3phosphoethanolamine ($124 \mathrm{mg}, \quad 0.18 \mathrm{mmol})$ and triethylamine ($50 \mu \mathrm{~L}, 36 \mathrm{mg}, 0.36 \mathrm{mmol}$) in $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ ($2: 1 ; 9.0 \mathrm{~mL}$) was added. The resulting mixture was stirred at rt overnight and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel with mixtures of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10: 1 \rightarrow 4: 1)$ to afford the azido phospholipid intermediate as a white wax $(125 \mathrm{mg}$, 85%): mp 80-120 ${ }^{\circ} \mathrm{C}$; IR (neat) v 3385, 2919, 2855, 2096 $\left(\mathrm{N}_{3}\right), 1735,1642,1459,1237,1108,1066 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.55-5.50(\mathrm{bs}, 2 \mathrm{H}), 4.25-3.30(\mathrm{~m}, 7 \mathrm{H}), 3.27(\mathrm{t}$, $2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 2.50-2.20(\mathrm{~m}, 7 \mathrm{H}), 1.75-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.23(\mathrm{~s}, 50 \mathrm{H}), 0.86(\mathrm{t}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{31} \mathrm{P}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta-2.47$ ppm; LRLC-MS: $[\mathrm{M}+\mathrm{H}]^{+}=817.60$ (calc. for $\mathrm{C}_{42} \mathrm{H}_{81} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{P}: 817.11$).
Compound 12. Azido-phospholipid ($100 \mathrm{mg}, 0.12 \mathrm{mmol}$), propargyl glycine ($14 \mathrm{mg}, 0.12 \mathrm{mmol}$), copper (II) acetate $(5 \mathrm{mg}, 0.02 \mathrm{mmol})$ and sodium ascorbate ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$) were mixed in t-butanol / water ($1: 1 ; 1.5 \mathrm{~mL}$) and stirred at $50^{\circ} \mathrm{C}$ for 8 hours. The resulting green solution was filtered and added to acetonitrile (100 mL). Filtration at $0{ }^{\circ} \mathrm{C}$ gave a green solid which was dissolved in hot THF (30 mL) and filtered through Celite. Treatment of the bluegreen solution with QuadraPure-IDA ${ }^{\circledR}$ resin $(0.5 \mathrm{~g})$ at rt for 4 days resulted in a pale yellow solution. Filtration through Celite ${ }^{\circledR}$ and concentration under reduced pressure yielded compound $\mathbf{1 2}$ as a colorless oil ($65 \mathrm{mg}, 60 \%$): IR (neat) $v 3299,2923,2855,1735,1652,1054 \mathrm{~cm}^{-1} ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-2.29 \mathrm{ppm} ;$ LRLC-MS: $[\mathrm{M}+\mathrm{H}]^{+}=930.60$ (calc. for $\mathrm{C}_{42} \mathrm{H}_{81} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{P}: 930,23$).

[^2]
1.3 Synthesis of triazole ligands using Boc-protected substrates

Compounds 5, 7, $\mathbf{8}$ and $\mathbf{1 1}$ were prepared using either N^{α}-Boc-propargyl-L-glycine or N^{α}-Boc-azido-L-alanine, to facilitate isolation of the triazole ligands. Unlike the water soluble deprotected triazoles, Boc-protected intermediates could be readily isolated by extraction und purified by flash chromatography on silica gel.

$\mathbf{N}(\boldsymbol{\alpha})$-Boc-5. Benzylazide ($53 \mathrm{mg}, 0.4 \mathrm{mmol}$), $\mathrm{N}(\alpha)$-Boc-L-propargylglycine (85 $\mathrm{mg}, 0.4 \mathrm{mmol}$) copper (II) acetate ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$) and sodium ascorbate (16 $\mathrm{mg}, 0.08 \mathrm{mmol}$) were mixed in t-butanol / water $(1: 1 ; 3.0 \mathrm{~mL})$ and stirred at rt overnight. The resulting green solution was diluted with ethyl acetate (5 mL) and washed with brine ($2 \times 5 \mathrm{~mL}$). The aqueous solutions were extracted with ethyl acetate $(2 \times 5 \mathrm{~mL})$. The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel with mixtures of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(4: 1 \rightarrow 2: 1)$ to afford the Boc-protected intermediate as a pale yellow solid ($86 \mathrm{mg}, 62 \%$): $\mathrm{mp}>170^{\circ} \mathrm{C}$ (decomp.); IR (neat) $v 3359$, 2977, 2927, 1691, 1562, 1402, $1051 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 4.30$ (bs, 1H), 3.27-3.01 (m, 2H), $1.36(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 157.6,136.8,130.0,129.5,129.0,124.8$ (broad), 80.4, 62.7, 54.9, 30.2, 28.7 ppm (one carbon (carbonyl) not observed); LRLC-MS: $[\mathrm{M}+\mathrm{H}]^{+}=347.05$ (calc. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}: 346.38$); $[\alpha]_{D}^{20}=+11.0\left(\mathrm{c}=0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

Compound 5. $\mathrm{N}(\alpha)$-Boc-5 ($65 \mathrm{mg}, 0.19 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ TFA $(2: 1 ; 2.0 \mathrm{~mL})$ and stirred at rt overnight. Concentration under reduced pressure followed by repeated dissolving of the residue in MeOH and evaporation under reduced pressure provided compound 5 as a hygroscopic, white solid ($68 \mathrm{mg}, 98 \%$): $\mathrm{mp}>195{ }^{\circ} \mathrm{C}$ (decomp.); IR (neat) v 3130, 2930, 2859, 1674, 1592, 1198, 1137, $718 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right.$ containing $\left.0.5 \% \mathrm{DCl}\right) \delta$ $7.96(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{t}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 3.37(\mathrm{~d}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right.$ containing $0.5 \% \mathrm{DCl}) \delta 170.4,162.5(\mathrm{q}, J=36.0 \mathrm{~Hz}, \mathrm{TFA}), 140.6,134.4,129.1,128.8,128.1,125.4,116.1(\mathrm{q}, J=$ 291.8 Hz, TFA), $54.2,52.2,25.3 \mathrm{ppm}$; LRLC-MS: $[\mathrm{M}+\mathrm{H}]^{+}=247.06$ (calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}: 246.11$); HR-MALDIMS $[\mathrm{M}+\mathrm{H}]^{+}=247.1185$ (calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$: 246.11); elemental analysis (calculated \%-values for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}\left(\mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}\right)_{0.2}$ in parenthesis) C 55.65 (55.35), H 5.69 (5.32), N 21.17 (20.82).
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR of compound $5,0.5 \%$ DCl

$\mathbf{N}(\boldsymbol{\alpha})$-Boc-7. 3-Phenyl-1-propyne ($93 \mu \mathrm{~L}, 87 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{N}(\alpha)$-Boc-Lazidoalanine ($173 \mathrm{mg}, 0.75 \mathrm{mmol}$) copper (II) acetate ($14 \mathrm{mg}, 0.08 \mathrm{mmol}$) and sodium ascorbate ($30 \mathrm{mg}, 0.15 \mathrm{mmol}$) were mixed in t-butanol / water ($1: 1 ; 6.0$ mL) and stirred at rt overnight. The resulting green solution was diluted with ethyl acetate $(10 \mathrm{~mL})$ and washed with brine ($2 \times 10 \mathrm{~mL}$). The aqueous solutions were extracted with ethyl acetate (2 x 5 mL). The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel with mixtures of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(4: 1 \rightarrow 2: 1)$ to afford the Boc protected intermediate as a pale yellow solid ($177 \mathrm{mg}, 68 \%$): $\mathrm{mp}>190{ }^{\circ} \mathrm{C}$ (decomp.); IR (neat) v 3206, 2980, 1688, 1602, 1368, 1190, 1151, $1066 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.91-4.79(\mathrm{~m}$, partly covered by HDO signal, $1 \mathrm{H}, J=4.2 \mathrm{~Hz}$), $4.62(\mathrm{dd}, 1 \mathrm{H}, J=13.6$ and 7.1 Hz$), 4.38$ (dd, $1 \mathrm{H}, J=7.1$ and 4.2 Hz), $4.00(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 157.5,140.3,131.2,129.7,129.6,127.5,125.1$ (broad), 101.5, 80.6, 52.9, 32.6, 28.7 ppm . (One carbon (carbonyl) not observed); LRLC-MS: $[\mathrm{M}+\mathrm{H}]^{+}=347.02$ (calc. for $\left.\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}: 346.38\right) ;[\alpha]_{D}^{20}=+24.7\left(\mathrm{c}=0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
Compound 7. $\mathrm{N}(\alpha)$-Boc-7 $(113 \mathrm{mg}, 0.33 \mathrm{mmol})$ was deprotected in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA}(2: 1 ; 3.0 \mathrm{~mL})$ by the procedure described for compound 5 to give a hygroscopic, white solid ($7,110 \mathrm{mg}, 93 \%$): $\mathrm{mp}>220{ }^{\circ} \mathrm{C}$ (decomp.); IR (neat) v 3363, 2977, 1710, 1674, 1198, $721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right.$ containing $\left.0.5 \% \mathrm{DCl}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.13(\mathrm{~m}, 5 \mathrm{H})$, $5.03(\mathrm{dd}, 1 \mathrm{H}, J=15.3$ and 5.4 Hz$), 4.99(\mathrm{dd}, 1 \mathrm{H}, J=15.3$ and 4.5 Hz$), 4.64(\mathrm{dd}, 1 \mathrm{H}, J=5.4$ and 4.5 Hz$) 4.04(\mathrm{~s}, 2 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right.$ containing $\left.0.5 \% \mathrm{DCl}\right) \delta 167.9,162.1(\mathrm{q}, J=37.0 \mathrm{~Hz}, \mathrm{TFA}), 145.8,129.0,128.7,127.3,127.0$, 115.8 (q, $J=289.8 \mathrm{~Hz}, \mathrm{TFA}$), $51.9,50.0,29.5 \mathrm{ppm}$; LRLC-MS: $[\mathrm{M}+\mathrm{H}]^{+}=247.06$ (calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}: 246.27$); HR-MALDI-MS $247.1185=[\mathrm{M}+\mathrm{H}]^{+}$(calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$: 246.11); elemental analysis (calculated \%-values for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}\left(\mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}\right)_{0.08}$ in parenthesis) C 57.59 (57.19), H 5.73 (5.56), N 22.12 (21.94).
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR of compound $7,0.5 \% \mathrm{DCl}$

$\begin{aligned} \square & R=B o c \\ \longrightarrow & 8: R=H \cdot T F A\end{aligned}$
$\mathbf{N}(\alpha)$-Boc-8. Pent-4-ynoic acid ethyl ester (4b, $202 \mathrm{mg}, 1.60 \mathrm{mmol}$), $\mathrm{N}(\alpha)$-Boc-L-azidoalanine ($369 \mathrm{mg}, 1.60 \mathrm{mmol}$) copper (II) acetate (29 $\mathrm{mg}, 0.16 \mathrm{mmol}$) and sodium ascorbate ($63 \mathrm{mg}, 0.32 \mathrm{mmol}$) were mixed in t-butanol / water $(1: 1 ; 12 \mathrm{~mL})$ and stirred at rt overnight. The resulting green solution was diluted with ethyl acetate $(10 \mathrm{~mL})$ and washed with brine ($2 \times 10 \mathrm{~mL}$). The aqueous solutions were extracted with ethyl acetate $(2 \times 10 \mathrm{~mL})$. The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel with mixtures of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(5: 1 \rightarrow 2: 1)$ to afford the Bocprotected intermediate as a pale yellow oil ($233 \mathrm{mg}, 41 \%$) : IR (neat) v 3382, 2984, 1694, 1381, 1233, 1192, 1155, $1062,951 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.71(\mathrm{~s}, 1 \mathrm{H}), 4.88-4.82(\mathrm{~m}, 1 \mathrm{H}), 469-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz})$, $2.98(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.69(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $174.1,157.5,124.3$ (broad), 123.4, 119.2, 80.7, 61.7, 52.6, 34.5, 28.7, 21.8, 14.5 ppm (one carbon (carbonyl) not observed); LR-ES 357.10 $=[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calc. $\left.\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{6}: 356.17\right) ;[\alpha]_{D}^{20}=+8.9(\mathrm{c}=1.0$ in MeOH$)$.
Compound 8. $\mathrm{N}(\alpha)$-Boc-8 ($200 \mathrm{mg}, 0.56 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / TFA $(9: 1 ; 10 \mathrm{~mL})$ and stirred at rt overnight. After concentration under reduced pressure followed by repeated dissolving of the residue in MeOH and evaporation under reduced pressure, compound $\mathbf{8}$ precipitated as a white solid ($62 \mathrm{mg}, 43 \%$): $\mathrm{mp}>200^{\circ} \mathrm{C}$ (decomp.); IR (neat) v 3062, 1728, 1622, 1580, 1483, 1438, 1402, 1323, 1164, 1054, $865 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{DCl}\right) \delta 8.01$ (s, $1 \mathrm{H}), 4.99(\mathrm{t}, 2 \mathrm{H}, J=4.9 \mathrm{~Hz}), 4.62(\mathrm{t}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}), 3.96(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.94(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.64(\mathrm{t}, 2 \mathrm{H}, J$ $=7.0 \mathrm{~Hz}), 1.04(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{DCl} / \mathrm{CD}_{3} \mathrm{OD}\right) \delta 177.2,175.5,169.0,146.6$ (broad), 127.2, $62.8,58.4,53.1,33.3,20.3,17.8 \mathrm{ppm} ;$ HR-MS $257.1244=[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calc. for $\left.\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{4}: 257.1244\right) ;[\alpha]_{D}^{20}=+4.1$ ($\mathrm{c}=1.0$ in $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$).

Supporting Information Mindt et al.
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{8 , 1 \%} \mathbf{~ D C l}$

pme(f1)

jpm (f1)

$R=A c, R^{\prime}=B o c$
$\longrightarrow \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{BOC}$
\rightarrow 11: R = H, R' = H TFA
$\mathbf{N}(\alpha)$-Boc-11-tetraacetate. $\quad 1$-Azido-1-deoxy- β-D-galactopyranoside tetraacetate $(187 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{N}(\alpha)$-Boc-L-propargylglycine $(106 \mathrm{mg}, 0.5$ mmol) copper (II) acetate ($9 \mathrm{mg}, 0.05 \mathrm{mmol}$) and sodium ascorbate (20 mg , 0.10 mmol) were mixed in t-butanol / water ($1: 1 ; 4.0 \mathrm{~mL}$) and stirred at rt overnight. The resulting green solution was diluted with ethyl acetate $(10 \mathrm{~mL})$ and washed with brine $(2 \times 10 \mathrm{~mL})$. The aqueous solutions were extracted with ethyl acetate ($2 \times 5 \mathrm{~mL}$). The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel with mixtures of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{MeOH}(10: 1 \rightarrow 4: 1)$ to afford $\mathrm{N}(\alpha)$-Boc-12-tetraacetate as a white solid ($217 \mathrm{mg}, 74 \%$): $\mathrm{mp}>190{ }^{\circ} \mathrm{C}$ (decomp.);IR (neat) v 3406, 2977, 2934, 1752, 1684, 1588, 1395, 1366, 1215, $1254 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.95$ (s, 1H), 6.06 $(\mathrm{d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 5.65(\mathrm{t}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}), 5.55(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 5.41(\mathrm{dd}, 1 \mathrm{H}, J=10.3$ and 3.4 Hz$), 4.46(\mathrm{t}, 1 \mathrm{H}$, $J=6.5 \mathrm{~Hz}), 4.30-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{dd}, 1 \mathrm{H}, J=11.4$ and 6.9 Hz$), 3.38-3.25\left(\mathrm{~m}\right.$, partly covered by $\mathrm{CD}_{3} \mathrm{OD}$ signal, $1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 3.15(\mathrm{dd}, 1 \mathrm{H}, J=14.8$ and 6.6 Hz), $2.21(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 172.0,171.9,171.3,170.6,158.3,146.5,123.4,87.0,80.4,75.0,72.4,69.6,68.7,62.6$, 49.0, 29.6, 28.8, 20.6, 20.5, 20.4, 20.2 ppm (one quaternary carbon is not visible); LRLC-MS: $[\mathrm{M}+\mathrm{H}]^{+}=587.12$ (calc. for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{13}$: 586.55).
$\mathbf{N}(\alpha)$-Boc-11. Tetraacetate ($152 \mathrm{mg}, 0.26 \mathrm{mmol}$) was dissolved in methanol (2.0 mL) and a catalytic amount of sodium methoxide ($1.4 \mathrm{mg}, 0.03 \mathrm{mmol}$) was added. The solution was stirred at rt overnight and then concentrated under reduced pressure to yield $\mathrm{N}(\alpha)$-Boc-12 as a white solid ($107 \mathrm{mg}, 98 \%$): $\mathrm{mp}>110{ }^{\circ} \mathrm{C}$ (decomp.); IR (neat) v $3345,2980,2930,1681,1592,1398,1162,1090,1054,886 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.9 \mathrm{~Hz}), 4.27(\mathrm{bs}, 1 \mathrm{H}), 4.17(\mathrm{t}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 4.09(\mathrm{bs}, 1 \mathrm{H}), 3.90-3.18(\mathrm{~m}, 4 \mathrm{H}), 3.29-3.07(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 179.4,157.8,145.5,123.4,90.4,80.7,79.9,75.3,71.6,70.5,62.5,56.6,29.9,28.9 \mathrm{ppm} ;$ LRLC-MS: $[\mathrm{M}+\mathrm{H}]^{+}=419.06$ (calc. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{9}: 418.40$).
Compound 11. $\mathbf{N}(\alpha)$-Boc- $11(113 \mathrm{mg}, 0.33 \mathrm{mmol})$ was deprotected in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA}(2: 1 ; 3.0 \mathrm{~mL})$ by the procedure described for compound 5 to give as an off-white solid ($11,80 \mathrm{mg}, 96 \%$): $\mathrm{mp}>145{ }^{\circ} \mathrm{C}$ (decomp.); IR (neat) $\vee 3298,2919,1670,1438,1198,1134,1093,1065,725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.2 \mathrm{~Hz}), 4.15(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.08-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{t}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}), 3.81(\mathrm{dd}, 1 \mathrm{H}, J=9.8$ and 3.3 Hz$), 3.71$ $(\mathrm{d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.34(\mathrm{dd}, 1 \mathrm{H}, J=15.7$ and 5.2 Hz$), 3.29(\mathrm{dd}, 1 \mathrm{H}, J=15.7$ and 6.8 Hz$) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta$ $172.9,163.0(\mathrm{q}, J=35.6 \mathrm{~Hz}), 142.2,123.6,116.3(\mathrm{q}, J=291.7 \mathrm{~Hz}), 87.9,78.3,72.9,69.7,68.5,60.8,54.2,26.3$ ppm; LRLC-MS: $[\mathrm{M}+\mathrm{H}]^{+}=319.03$ (calc. for $\left.\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{7}: 318.28\right) ;[\alpha]_{D}^{20}=+5.5(\mathrm{c}=4.2$ in MeOH$)$.
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR of compound $11, \mathrm{D}_{2} \mathrm{O}$

1.4 ee-Determination of click compounds $\mathbf{5}$ and $\mathbf{7}$ by NMR-spectroscopy

For the preparation of racemic material for NMR-comparison, commercial D and L isomers of $N(\alpha)$-Bocdiaminopropionic acid were mixed in equal amounts and the mixture was converted to $\mathrm{N}(\alpha)$-Boc-D/L-azidoalanine according to literature procedure. ${ }^{4}$ Likewise, commercial D and L isomers of $N(\alpha)$-Boc-propargylglycine were mixed in equal amounts. Both racemic mixtures were converted to the corresponding triazole products $\mathrm{rac}-\mathrm{N}(\alpha)-$ Boc-5 and rac-N(α)-Boc-7 by the procedures described for the chiral compounds 5 and 7 and in similar yields. With the exception of the optical rotation [α], the obtained racemic products were identical in all respects to the chiral triazoles $\mathrm{N}(\alpha)$-Boc- 5 and $\mathrm{N}(\alpha)$-Boc-7.

General procedure for the coupling of intermediates with H-Ala-OMe hydrochloride. The Boc-protected intermediate ($35 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in DMF (2.0 mL) and H-Ala-OMe hydrochloride ($14 \mathrm{mg}, 0.1 \mathrm{mmol}$), triethylamine ($42 \mu \mathrm{~L}, 30 \mathrm{mg}, 0.3 \mathrm{mmol}$) and HBTU ($38 \mathrm{mg}, 0.1 \mathrm{mmol}$) were added. After stirring at rt overnight, the reaction mixture was concentrated under reduced pressure and the residue purified by flash chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (50:1).

L-N(α)-Boc-5-Ala-OMe. Yellow oil (35 mg, 82 \%): IR (neat) v 3302, 2973, 1738, 1705, 1663, 1516, 1212, 1162, $1051,725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.35-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.1(\mathrm{bs}, 1 \mathrm{H}), 5.90(\operatorname{broad~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 5.45(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.2 \mathrm{~Hz}), 5.41(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 4.55-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.40$ (quint., $1 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, 1 \mathrm{H}, J=$ 15.1 and 4.8 Hz$), 3.05(\mathrm{dd}, 1 \mathrm{H}, J=15.1$ and 5.5 Hz$), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $172.8,170.7,155.7,143.9,134.5,129.1,128.8,128.1,122.5,80.3,54.2,53.7,52.4,48.1,28.3,27.8,18.1 \mathrm{ppm} ;$ HiResMALDI: $[\mathrm{M}+\mathrm{H}]^{+}=432.224$ (calc. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{5}: 432.225$); $[\alpha]_{D}^{20}=-12.6(\mathrm{c}=0.8$ in MeOH$)$.

rac-N(α)-Boc-5-Ala-OMe. Yellow oil (37 mg, 86 \%): IR (neat) v 3309, 2980, 1738, 1706, 1663, 1498, 1455, 1366, 1212, 1158, $1054 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.36-7.2(\mathrm{~m}, 6 \mathrm{H}), 7.15$ and 6.92 (each bs, each 0.5 H), 5.89 and 5.80 (each bs, each 0.5 H$), 5.53-5.33(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.65$ and 3.64 (each s , each 1.5 H$), 3.28-3.18(\mathrm{~m}, 1 \mathrm{H})$, 3.05 and 3.02 (each t , each $0.5 \mathrm{H}, J=5.4$ and 5.2 Hz in the order given), 1.39 and 1.38 (each s, each 4.5 H), 1.28 and 1.22 (each t , each 1.5 H , each $J=7.2 \mathrm{~Hz}$) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 172.9,172.8,170.8,170.7,155.8,155.7$, 143.9, $143.7,134.6,134.5,129.1,129.06,128.8,128.76,128.71,128.1,122.7,122.5,80.4,80.3,54.14,54.11,54.0,53.7$, $52.4,52.3,48.1,28.3,27.9,18.2,17.9$ ppm; LRLC-MS: $[\mathrm{M}+\mathrm{H}]^{+}=432.14$ (calc. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5}: 431.49$); $[\alpha]_{D}^{20}=$ $+3.0(\mathrm{c}=1.0$ in MeOH$)$.

[^3]$\mathbf{L - N}(\boldsymbol{\alpha})$-Boc-7-Ala-OMe. White solid (38 mg, 88\%): mp 139-140 ${ }^{\circ} \mathrm{C}$; IR (neat) v 3309, 2977, 1738, 1713, 1663, $1516,1495,1452,1366,1215,1162,1047,729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.25-7.10(\mathrm{~m}, 6 \mathrm{H}), 7.05($ broad d, $1 \mathrm{H}, J=$ $5.8 \mathrm{~Hz}), 5.74(\operatorname{broad} \mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.78-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.61-4.48(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~m}$ (quintet), $1 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $3.97(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 172.7,168.6,155.6$, $147.8,138.9,128.9,128.8,126.7,123.6,81.2,54.5,52.7,51.0,48.4,32.3,28.4,18.2 \mathrm{ppm} ;$ LRLC-MS: $[\mathrm{M}+\mathrm{H}]^{+}=$ 432.15 (calc. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5}: 431.49$); $[\alpha]_{D}^{20}=-21.7$ (c=1.1 in MeOH).

$\operatorname{rac-N}(\boldsymbol{\alpha})$-Boc-7-Ala-OMe. Yellow oil (21 mg, 47\%): IR (neat) v 3310, 2980, 1742, 1665, 1527, 1455, 1367, 1323, 1210, 1323, 1210, 1162, 1054, 1027, 913, 855, 728, 698, $637 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.26-7.14(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~d}$, $0.5 \mathrm{H}, J=5.9 \mathrm{~Hz}), 6.91(\mathrm{~d}, 0.5 \mathrm{H}, J=6.4 \mathrm{~Hz}), 5.74(\mathrm{~d}, 0.5 \mathrm{H}, J=7.3 \mathrm{~Hz}), 5.67(\mathrm{~d}, 0.5 \mathrm{H}, J=7.3 \mathrm{~Hz}), 4.79-4.73(\mathrm{~m}$, $1 \mathrm{H}), 4.58-4.53(\mathrm{~m}, 2 \mathrm{H}), 4.43-4.32(\mathrm{~m}$ (overlapping quintets), $1 \mathrm{H}, J=7.1$ and 7.3 Hz for both), $4.00(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}$, $1 \mathrm{H}), 3.66(\mathrm{~s}, 1.5 \mathrm{H}), 3.65(\mathrm{~s}, 1.5 \mathrm{H}), 1.39(\mathrm{~s}, 4.5 \mathrm{H}), 1.38(\mathrm{~s}, 4.5 \mathrm{H}), 1.29(\mathrm{~d}, 1.5 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.13(\mathrm{~d}, 1.5 \mathrm{H}, J=7.1$ $\mathrm{Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 172.7,168.63,168.56,155.8,139.0,138.9,130.7,128.9,128.8,128.6,126.80$, $126.75,123.6,81.4,54.5,52.8,52.7,51.0,50.7,48.5,48.4,41.0,32.3,29.9,28.4,18.3,18.1 \mathrm{ppm}$; TOF-ES-MS $432.13=[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calc. for $\left.\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5}: 431.22\right) ;[\alpha]_{D}^{20}=-7.7\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CDCl}_{3}\right)$.

Figure 2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ comparison of racemic versus chiral isomers of click products

1.5 Syntheses on solid support (peptide derivative 9)

General Methods

The Fmoc-protected L-amino acids used in solid-phase peptide synthesis (SPPS), Fmoc-Nle-OH, Fmoc-Cha-OH, Fmoc-Gln(Trt)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc-Trp(Boc)-OH, Fmoc-Val-OH, Fmoc-Dap-OH, Fmoc-$\mathrm{Pra}-\mathrm{OH}$ as well as diisopropylcarbodiimide (DIC), 1-hydroxybenzotriazole (HOBt), thioanisole and trifluoroacetic acid were purchased from Fluka (Bornem, Belgium). The Rink amide resin and Fmoc-Ala-OH were obtained from NovaBiochem (Läufelfingen, Switzerland). Piperidine was obtained from Aldrich (Bornem, Belgium) and DMF, diisopropylethylamine and ethanedithiol from Acros (Geel, Belgium).
Analytical HPLC:

- \quad system $=$ Waters Breeze, Waters 1525 pump
- column type $=$ reverse phase C18 column (Discovery®BIO SUPELCO Wide Pore C_{18} column , $25 \mathrm{~cm} \times 4.6$ $\mathrm{mm}, 5 \mu \mathrm{~m}$)
- gradient = linear gradient, from $3 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ to $100 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (containing 0.1% TFA) in 20 min
- \quad detection $=$ UV detection, 215 nm - Waters 2487
- flow rate $=1 \mathrm{ml} / \mathrm{min}$

Purification of peptides:

- \quad system $=$ semipreparative high-performance liquid chromatography system (Gilson) Gilson 322 pump
- column type $=$ reverse phase C18 column (Discovery®BIO SUPELCO Wide Pore C_{18} column , 25 cm x $2.21 \mathrm{~cm}, 5 \mu \mathrm{~m}$)
- gradient = linear gradient, from $3 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ to $80 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (containing 0.1% TFA) in 20 \min
- \quad detection $=$ UV detection, $215 \mathrm{~nm}-$ Gilson UV/VIS-156
- flow rate $=20 \mathrm{ml} / \mathrm{min}$

MS:

- VG Quatro II spectrometer (electrospray ionisation, cone voltage 70V)
- MassLynx2.22 software for data analysis

LCMS:

- MS: see above
- HPLC:
o HPLC Waters system, Waters 600E pump
o RP column (Discovery®BIO SUPELCO Wide Pore C_{18} column, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$)
o Flow rate $=1 \mathrm{ml} / \mathrm{min}$
o Detection: UV (Waters 2487), 215 nm
TLC:
Glass-silica-coated plates with F_{254} indicator from Merck (Darmstadt, Germany), using EtOAc/n$\mathrm{BuOH} / \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}(1: 1: 1: 1)$ as eluent. The plates were treated with a permanganate solution $\left(\mathrm{KMnO}_{4}(3 \mathrm{~g})\right.$, $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~g}), 5 \%$ aqueous $\mathrm{NaOH}(5 \mathrm{ml})$ and $\left.\mathrm{H}_{2} \mathrm{O}(300 \mathrm{ml})\right)$ to reveal the spots.
Boc- $\beta-\mathrm{N}_{3} \mathrm{Ala}-\mathrm{OH}$ and azido acetic acid were synthesised according to literature procedures ${ }^{[5]}$

Compound 9

SPPS was performed on a Rink amide polystyrene resin. Fluorenylmethyloxycarbonyl main-chain protected amino acids were used. The Fmoc deprotection was performed in a mixture of 20% piperidine in DMF ($2 \times 10 \mathrm{~min}$). After filtration and washing of the resin, the couplings were performed by using 3 equiv of protected amino acid and DIC (3 equiv) in the presence of HOBt (3 equiv). The completeness of the couplings was checked with the ninhydrin test.

[^4]After coupling and deprotection of Fmoc- β Ala-OH, azido-acetic acid was coupled using the same protocol. After filtration and washing of the resin (with DMF, $\mathrm{iPrOH}, \mathrm{DMF}$), $0.2 \mathrm{eq} \mathrm{Cu}(\mathrm{I}) \mathrm{Br}, 2$ eq DIPEA and 2 eq Fmoc-L-Pra-OH in DMF were added to the resin ${ }^{6}$. The click reaction was left shaking overnight at room temperature, after which the Fmoc protection was removed. The peptide was cleaved from the resin with 10% thioanisole/ethanedithiol (7:3) in TFA. After 3 h the resin was removed by filtration and the filtrate was added dropwise to dry, cold ether to precipitate the product. HPLC purification of the peptide gave an overall yield of 38%. (TLC, $R_{f}=0.58$). Analytical data of the compound are presented in Table 2.

Table 2: Analytical data for compounds 9.

Compd	\% purity	MW calcd m/z	ES-MS $\left[\mathrm{M}+\mathrm{H}^{+}\right]$	HPLC $t_{\mathrm{R}}(\mathrm{min})$
$\mathbf{9}$	$>90 \%$	1228.6 $\left[\mathrm{M}+2 \mathrm{H}^{+}\right] / 2=615.3$	1229.2 not present	13.4

Click reaction on solid support. HPLC analysis of peptide samples cleaved before and after the click reactions indicated quantitative conversion without formation of detectable amounts of side products.

[^5]
2 Synthesis of Re-complexes

$\left[\operatorname{Re}(\mathbf{C O})_{3}(5)\right]$. Ligand $5(9.5 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Br}_{3}\right]\left[\mathrm{NEt}_{4}\right]_{2}(27 \mathrm{mg}$, 0.04 mmol) were added to a $1: 1$ mixture of methanol and water (4 mL) and stirred at $65{ }^{\circ} \mathrm{C}$. The reaction was followed by HPLC. After 2 hours all of the starting material had been consumed. The solvent was removed under reduced pressure, and the residue redissolved in water. The product was purified with a Sep-Pak column $\left(\mathrm{H}_{2} \mathrm{O} /\right.$ methanol ratio $\left.1: 0,3: 1,2: 1,1: 1,1: 2,1: 3,0: 1\right)$. The product was eluted with a 1:2 ratio of water to methanol. The fractions containing the product were combined and the solvent removed under reduced pressure to give $\left[\operatorname{Re}(\mathrm{CO})_{3}(5)\right]$ as a white powder ($15 \mathrm{mg}, 82 \%$): IR (neat) $v 2923,2022,1902,1867,1633,1074,734$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.33(\mathrm{~m}, 5 \mathrm{H}), 5.88(\mathrm{dd}, 1 \mathrm{H}, J=5.8$ and 11.2$), 5.64(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{~d}, 1 \mathrm{H}$, $J=11.2), 4.14-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.29\left(\mathrm{~m}, 1 \mathrm{H}\right.$, obscured by solvent signal), $3.22(\mathrm{dd}, 1 \mathrm{H}, J=4.0,17.7) \mathrm{ppm} ;{ }^{13} \mathrm{C}-$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 198.3,197.5,196.7,184.7,144.1,135.4,130.2,130.1,129.6,126.4,56.0,52.7,27.5 \mathrm{ppm}$; LR-MS $516.94=[\mathrm{M}+\mathrm{H}]^{+}$(calc. For $\left.\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{5} \operatorname{Re} 516.04\right)$; HR-MS $515.0370=[\mathrm{M}-\mathrm{H}]^{-}\left(\right.$calc. for $\left.\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5} \operatorname{Re} 515.0371\right)$.
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR of $\left[\operatorname{Re}(\mathrm{CO})_{3}(5)\right], \mathrm{CD}_{3} \mathrm{OD}$

1	1	1	1
200	150	100	50
गpm (t1)			

$\left[\operatorname{Re}(\mathbf{C O})_{\mathbf{3}}(\mathbf{6})\right]$. Ligand $\mathbf{6}(12 \mathrm{mg}, 0.05 \mathrm{mmol})$ was dissolved in 5 mL ethanol. $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Br}_{3}\right]\left[\mathrm{NEt}_{4}\right]_{2}(37 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added and the mixture was stirred at $50^{\circ} \mathrm{C}$. The reaction was followed by HPLC. After 2 hours all of the starting material had been consumed. The solvent was removed under reduced pressure, and the residue redissolved in water. The product was purified with a Sep-Pak column $\left(\mathrm{H}_{2} \mathrm{O} /\right.$ methanol ratio $1: 0,3: 1,2: 1,1: 1,1: 2$, $1: 3,0: 1)$. The product was eluted with a $1: 1$ ratio of water to methanol. The fractions containing the product were combined and the solvent removed under reduced pressure to give $\left[\operatorname{Re}(\mathrm{CO})_{3}(6)\right]$ as a white powder ($19 \mathrm{mg}, 77 \%$): IR (neat) $v 2360,2337,2025,1871$, $1748,1636,1376,1220,656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{dd}, 1 \mathrm{H}, J=5.8$ and 11.2 Hz$), 5.44(\mathrm{~d}$, $1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 5.38(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 4.27(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.15-4.03(\mathrm{~m}, 1 \mathrm{H})$, $3.40(\mathrm{dd}, 1 \mathrm{H}, J=2.6$ and 17.6 Hz$), 3.35-3.26(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 198.1$, 197.4, 196.7, 184.7, 167.5, 143.9, 128.2, 63.5, 52.8, 52.7, 27.4, 14.3 ppm ; TOF-ES-MS: $512.97=[\mathrm{M}+\mathrm{H}]^{+}$(calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Re}$: 512.03); HR-ESI-MS $511.0272=[\mathrm{M}-\mathrm{H}]^{-}$(calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Re}$: 511.0269); elemental analysis (calculated \%-values in parenthesis) C 28.13 (28.18), H 2.77 (2.56), N 10.95 (10.95).
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR of $\left[\operatorname{Re}(\mathrm{CO})_{3}(6)\right], \mathrm{CD}_{3} \mathrm{OD}$

$\left[\operatorname{Re}(\mathbf{C O})_{3}(7)\right]$. Ligand $7(19.6 \mathrm{mg}, 0.08 \mathrm{mmol})$ and $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Br}_{3}\right]\left[\mathrm{NEt}_{4}\right]_{2}(59 \mathrm{mg}$, 0.08 mmol) were added to a $1: 1$ mixture of methanol and water (8 mL) and stirred at $65^{\circ} \mathrm{C}$. The reaction was followed by HPLC. After 4 hours all of the starting material had been consumed. The solvent was removed under reduced pressure, and the residue re-dissolved in water. The product was purified with a Sep-Pak column $\left(\mathrm{H}_{2} \mathrm{O} /\right.$ methanol ratio $\left.1: 0,3: 1,2: 1,1: 1,1: 2,1: 3,0: 1\right)$. The product was eluted with a $1: 2$ ratio of water to methanol. The fractions containing the product were combined and the solvent removed under reduced pressure to give $\left[\operatorname{Re}(\mathrm{CO})_{3}(7)\right]$ as a pale yellow powder $(22 \mathrm{mg}, 55 \%$): IR (neat) v 2025, 1876, 1643, 1370, 1147, 729 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.13(\mathrm{dd}, 1 \mathrm{H}, J=6.0$ and 11.1 Hz$), 5.50(\mathrm{~d}, 1 \mathrm{H}, J=11.1$ $\mathrm{Hz}), 5.00-4.79\left(\mathrm{~m}, 1 \mathrm{H}\right.$, obscured by $\mathrm{H}_{2} \mathrm{O}$ signal), $4.65(\mathrm{dd}, 1 \mathrm{H}, J=2.9$ and 14.9 Hz$), 4.41-4.32(\mathrm{~m}, 1 \mathrm{H}, J=2.9$ and 6.0 Hz), 4.09 (s, 2H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 197.8,197.1,196.1,181.7,151.5,139.3,129.81,129.77$, 128.8, 127.9, 53.73, 53.68, 32.4 ppm ; TOF-ES-MS $517.06=[\mathrm{M}+\mathrm{H}]^{+}$(calc. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{5}$ Re: 516.04); HR-ESI-MS $515.0376=[\mathrm{M}-\mathrm{H}]^{-}\left(\right.$calc. for $\left.\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Re}: 515.0371\right)$.
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR of $\left[\operatorname{Re}(\mathrm{CO})_{3}(7)\right], \mathrm{CD}_{3} \mathrm{OD}$

- 1	I	1	1
200	150	100	50
ppm (t1)			

$\left[\operatorname{Re}(\mathbf{C O})_{\mathbf{3}}(\mathbf{8})\right]$. Ligand $\mathbf{8}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ was dissolved in 6 mL ethanol. $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Br}_{3}\right]\left[\mathrm{NEt}_{4}\right]_{2}(45 \mathrm{mg}, 0.06 \mathrm{mmol})$ was added and the mixture was stirred at $50^{\circ} \mathrm{C}$. The reaction was followed by HPLC. After 1 hour all of the starting material had been consumed. The solvent was removed under reduced pressure, and the residue redissolved in water. The product was purified with a Sep-Pak column $\left(\mathrm{H}_{2} \mathrm{O} /\right.$ methanol ratio 1:0, 3:1, $2: 1,1: 1,1: 2,1: 3,0: 1)$. The product was eluted with a $1: 2$ ratio of water to methanol. The fractions containing the product were combined and the solvent removed under reduced pressure to give $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathbf{8})\right]$ as a pale yellow powder ($20 \mathrm{mg}, 64 \%$): $\mathrm{mp}>220^{\circ} \mathrm{C}$; IR (neat) v 2024, 1881, 1716, 1643, 1445, 1375, 1348, 1158, 1034, 910, $836,654 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{dd}, 1 \mathrm{H}, J=5.1$ and 10.3 Hz$), 5.51(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 4.97$ $(\mathrm{d}, 1 \mathrm{H}, J=14.9 \mathrm{~Hz}), 4.69(\mathrm{dd}, 1 \mathrm{H}, J=2.4$ and 14.9 Hz$), 4.41-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.04(\mathrm{t}, 2 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}), 2.75(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.24(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 197.8,197.1,196.0$, 181.6, $174.0,150.3,128.7,61.8,53.6,53.6,33.7,21.5,14.5 \mathrm{ppm}$; TOF-ES-MS $527.04=[\mathrm{M}+\mathrm{H}]^{+}$(calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Re}$ 526.05).

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR of $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathbf{8})\right], \mathrm{CD}_{3} \mathrm{OD}$

$\left[\operatorname{Re}(\mathbf{C O})_{3}(9)\right]$. An aqueous solution of bombesin derivative $9\left(10^{-3} \mathrm{M}, 100 \mu \mathrm{~L}\right)$ was mixed with $\left[\operatorname{Re}(\mathrm{Br})_{3}(\mathrm{CO})_{3}\right]\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}\left(10^{-3} \mathrm{M}\right.$ in water, $\left.200 \mu \mathrm{~L}\right)$. The solution was heated to $100{ }^{\circ} \mathrm{C}$ for 60 min . HPLC analysis of the reaction mixture revealed complete consumption of the starting material. MS of the product confirmed formation of the complex. The data are presented in Table 3.

Table 3. MS data of $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathbf{9})\right]$ and $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathbf{1 0})\right]$

Compound	MW calcd. m / z	ESI-MS $\left[\mathrm{M}+\mathrm{H}^{+}\right]$
$\left[\operatorname{Re}(\mathrm{CO})_{3}(9)\right]$	1497.8	1499.6
	$[\mathrm{M}+2 \mathrm{H}] / 2=749.9$	$[\mathrm{M}+2 \mathrm{H}] / 2=750.1$

$\left[\operatorname{Re}(\mathbf{C O})_{\mathbf{3}}(\mathbf{1 0})\right]$. Compound $\mathbf{1 0}(15.0 \mathrm{mg}, 0.039 \mathrm{mmol})$ and $\left[\operatorname{Re}(\mathrm{Br})_{3}(\mathrm{CO})_{3}\right]\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}$ $(30.0 \mathrm{mg}, 0.039 \mathrm{mmol})$ were mixed in methanol / water $(1: 2 ; 1.5 \mathrm{~mL})$ and stirred at $80^{\circ} \mathrm{C}$ for 1.5 hours. The reaction mixture was diluted with water (3.5 ml) and loaded on a 5 g RP-C18 SepPak ${ }^{\circledR}$ column. Elution with mixtures of water / acetonitrile $(10 \rightarrow 35 \%$ acetonitrile) and subsequent evaporation under reduced pressure yielded $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathbf{1 0})\right](20.4 \mathrm{mg}, 81 \%)$ as a white solid: IR (neat) $v 3384,2948,2831,2412$, $2324,2022,1879,1627,1474,1433,1373,1274,1152,1095,1076,1021,970,900$, $819,768,654,636 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz})$, $6.38(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 5.87(\mathrm{~m}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 5.46(\mathrm{dt}, 1 \mathrm{H}, J=8.5$ and 5.6 Hz$)$, $5.17(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.34(\mathrm{dt}, 1 \mathrm{H}, J=5.8$ and 3.0 Hz$), 4.05(\mathrm{q}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz})$, $3.86(\mathrm{dd}, 1 \mathrm{H}, J=12.2$ and 3.0 Hz$), 3.75(\mathrm{dd}, 1 \mathrm{H}, J=12.2$ and 3.2 Hz$), 3.33(\mathrm{dd}, 1 \mathrm{H}, J$ $=17.3$ and 2.4 Hz$), 3.23(\mathrm{dd}, 1 \mathrm{H}, J=17.3$ and 4.1 Hz$), 2.90(\mathrm{ddd}, 1 \mathrm{H}, J=14.1,6.7$ and 6.2 Hz$), 2.76(\mathrm{ddd}, 1 \mathrm{H}, J=14.1,8.6$ and 6.0 Hz$), 1.85(\mathrm{~d}, 3 \mathrm{H}, J=0.9 \mathrm{~Hz}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 198.2,197.4,196.7,184.6,166.5,156.7,156.4,152.3,144.3$,
$138.4,126.5,111.7,101.5,86.9,86.1,62.3,62.0,52.9,38.9,27.6,12.5 \mathrm{ppm}$; HR-MS: $[\mathrm{M}-\mathrm{H}]^{-}=649.0688$ (calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{9}$ Re: 649.0698).

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR of $\left[\operatorname{Re}(\mathrm{CO})_{3}(10)\right], \mathrm{CD}_{3} \mathrm{OD}$

$\left[\operatorname{Re}(\mathbf{C O})_{\mathbf{3}}(\mathbf{1 1})\right]$. Carbohydrate ligand $\mathbf{1 1}(22 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\left[\operatorname{Re}(\mathrm{Br})_{3}(\mathrm{CO})_{3}\right]\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}(39 \mathrm{mg}, 0.05 \mathrm{mmol})$ were dissolved in water $(3 \mathrm{~mL})$ and the pH was adjusted to $\mathrm{pH} 7-8$ with an aqueous solution of $\mathrm{Et}_{4} \mathrm{NOH}$ ($10 \%, 3$ drops). The resulting solution was stirred at $50{ }^{\circ} \mathrm{C}$ for 3 h . Concentration under reduced pressure followed by HPLC purification of the residue yielded $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathbf{1 1})\right]$ as a white solid $(17 \mathrm{mg}, 58 \%): \mathrm{mp}>195$ ${ }^{\circ} \mathrm{C}$ (decomp.); IR (neat) v 3274, 3157, 2027, 1889, 1671, 1631, 1391, 1202, 1140, 1086, $1046 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 5.82-5.70(\mathrm{~m}, 1 \mathrm{H})$, $5.76(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.35-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.16$ $(\mathrm{t}, 1 \mathrm{H}, J=9.7 \mathrm{~Hz}), 4.12(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}), 4.05(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.91$ (dd, $1 \mathrm{H}, J=9.7$ and 3.3 Hz), $3.87-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{dd}, 1 \mathrm{H}, J=18.2$ and $2.4 \mathrm{~Hz}), 3.45(\mathrm{dd}, 1 \mathrm{H}, J=28.2$ and 4.4 Hz$) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 197.0,195.8,195.4,184.9,142.7,124.9,88.8$, 78.7, 72.7, 69.6, 68.5, 60.8, 51.3, 26.2 ppm; HR-MS: $[\mathrm{M}+\mathrm{Na}]^{+}=611.0397$ (calc. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{ReNa}$ 611.040).
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathbf{1 1)}), \mathrm{D}_{2} \mathrm{O}\right.$

3 Structural assignment of $\left[\operatorname{Re}(\mathrm{CO})_{3}(5-7)\right]$ by NMR-spectroscopy

NMR signals of the metal chelator in the rhenium complexes exhibit a low field shift compared to the corresponding signals of the free ligand. We were able to record ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compound 6 and the corresponding complex $\left[\operatorname{Re}(\mathrm{CO})_{3}(6)\right]$ in the same solvent $\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{DCl}\right)$, although comparisons for other complexes were made difficult by the low water solubility of the rhenium complexes, and the low solubility of the ligands in common organic solvents.

For all complexes signals are observed for the NH_{2} protons even in protic solvents, as a result of a large decrease in the rate of H/D exchange. There are two distinct NH signals, with well defined coupling to each other, and in the case of one signal, to the α-proton of the amino acid. Both NH signals disappear after 24 hours in $\mathrm{CD}_{3} \mathrm{OD}$.

Finally as evidence for the suggested structures, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\left[\operatorname{Re}(\mathrm{CO})_{3}(5)\right]$ and $\left[\operatorname{Re}(\mathrm{CO})_{3}(7)\right]$ are compared with the spectrum of $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{Me}-\mathrm{His})\right]$.

Comparison of the ${ }^{1} \mathrm{H}$ spectra of ligand 6 and the complex $\left[\operatorname{Re}(\mathrm{CO})_{3}(6)\right]$ in $1 \% \mathrm{DCl}$

Ligand 6 [

Table 4. Chemical shifts of protons in the ${ }^{1} \mathrm{H}$ spectra of ligand 6 and the complex $\left[\operatorname{Re}(\mathrm{CO})_{3}(6)\right]$

	Ligand 6			$\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathbf{6})\right]$
Protons	$\delta(\mathrm{ppm})$	$J(\mathrm{~Hz})$	$\delta(\mathrm{ppm})$	$J(\mathrm{~Hz})$
1	4.72	5.16		
2	7.49		7.83	
3	2.80	6.4	3.15	
4	3.76	6.4	4.02	
NH	-		5.88	11.8
NH	-		$6.0,11.8$	

(A)

(B)
$\mathrm{H}_{2} \mathrm{O}$

Figure 3. ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathbf{5})\right]$ after 15 minutes (A), and after 24 hours (B) in $\mathrm{CD}_{3} \mathrm{OD}$

Figure 4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\left[\operatorname{Re}(\mathrm{CO})_{3}(5)\right],\left[\operatorname{Re}(\mathrm{CO})_{3}(7)\right]$ and $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{Me}-\mathrm{His})\right]$

4 Density Functional Theory Calculations

All calculations were conducted using density functional theory (DFT) as implemented in the Gaussian 03, Revision C. 02 suite of $a b$ initio quantum chemistry programs. ${ }^{7}$ Geometry optimizations and vibrational frequency calculations were performed using the restricted B3LYP exchange and correlation functionals and either the double- $\zeta 6-31 \mathrm{G}(\mathrm{d})$ or triple- $\zeta 6-311+\mathrm{G}(\mathrm{d})$ basis sets for all atoms. Normal SCF and geometry convergence criteria were used and no symmetry constraints were imposed. Harmonic frequency analysis based on analytical second derivates was used to characterize the optimized geometries as local minima.

(a)
(b)

Figure 5: B3LYP/6-31G(d) optimized geometries and atom numbering scheme for (a) 1,4-dimethylimidazole and (b) 1,4-dimethyltriazole.

Figure 5 shows the B3LYP/6-31G(d) optimized geometries and atom numbering scheme for 1,4-dimethylimidazole and 1,4 -dimethyltriazole, used as models for the histidine and click based ligands respectively. The Cartesian coordinates for the optimized structures are given in Table 5 below. Mulliken population analysis and Natural population analysis charges on the atoms of the imidazole and triazole rings are given in Table 6.

[^6]Table 5. Cartesian coordinates for the optimized structures of 1,4-dimethylimidazole and 1,4-dimethyltriazole.

1,4-Dimethylimidazole				1,4-Dimethyltriazole			
B3LYP/6-31G(d)				B3LYP/6-31G(d)			
7	1.088731000	-0.090134000	-0.000104000	7	-1.062618000	0.084371000	0.000000000
6	0.608147000	1.188692000	-0.000038000	7	-0.643424000	-1.200536000	0.000000000
7	-0.705946000	1.233387000	0.000026000	7	0.661155000	-1.188628000	0.000000000
6	-1.117087000	-0.085824000	0.000001000	6	1.105173000	0.105509000	0.000000000
6	-0.020716000	-0.916196000	-0.000060000	6	0.000000000	0.930740000	0.000000000
1	1.272352000	2.044191000	0.000004000	1	-0.111268000	2.004848000	0.000000000
1	0.073909000	-1.992662000	-0.000084000	6	2.562250000	0.445378000	0.000000000
6	-2.568004000	-0.455011000	0.000056000	1	3.062194000	0.030207000	0.882291000
1	-3.078395000	-0.049540000	0.881840000	1	3.062194000	0.030207000	-0.882291000
1	-3.078533000	-0.049042000	-0.881478000	1	2.713897000	1.529073000	0.000000000
1	-2.699123000	-1.542052000	-0.000305000	6	-2.482197000	0.384928000	0.000000000
6	2.479898000	-0.500940000	0.000071000	1	-2.756916000	0.954591000	0.893167000
1	2.712620000	-1.093401000	0.891564000	1	-2.756916000	0.954591000	-0.893167000
1	2.712312000	-1.094887000	-0.890454000	1	-3.010326000	-0.569293000	0.000000000
1	3.111933000	0.390286000	-0.000722000				
B3LYP/6-311+G(d)				B3LYP/6-311+G(d)			
7	1.088086000	-0.088825000	-0.000067000	7	-1.061640000	0.081473000	0.000000000
6	0.608145000	1.187965000	-0.000014000	7	-0.640121000	-1.198739000	0.000000000
7	-0.704518000	1.228401000	0.000039000	7	0.661537000	-1.184883000	0.000000000
6	-1.117727000	-0.087708000	0.000003000	6	1.105613000	0.106002000	0.000000000
6	-0.020650000	-0.914969000	-0.000046000	6	-0.000126000	0.927395000	0.000000000
1	1.266820000	2.045334000	-0.000020000	1	-0.111987000	1.999836000	0.000000000
1	0.073574000	-1.990027000	-0.000089000	6	2.559957000	0.445873000	0.000000000
6	-2.566207000	-0.455095000	0.000022000	1	3.058781000	0.032127000	0.880238000
1	-3.074085000	-0.049633000	0.879955000	1	3.058781000	0.032127000	-0.880238000
1	-3.074196000	-0.049229000	-0.879659000	1	2.713682000	1.526845000	0.000000000
1	-2.700944000	-1.539265000	-0.000218000	6	-2.481135000	0.384988000	0.000000000
6	2.479515000	-0.501277000	0.000089000	1	-2.753071000	0.953188000	0.891450000
1	2.710901000	-1.091608000	0.889791000	1	-2.753071000	0.953188000	-0.891450000
1	2.710631000	-1.092968000	-0.888773000	1	-3.013999000	-0.563435000	0.000000000
1	3.112753000	0.385770000	-0.000697000				

From the atomic charge analysis using different two basis sets and the two different methods (MPA and NPA) it can been seen that Mulliken charges are highly sensitive to the basis set used whereas the Natural Population charges vary less between the two calculations.

Table 6: Mulliken population analysis (MPA) and natural population analysis (NPA) charges on the atoms of the imidazole and triazole rings. The atomic numbering is shown in Figure 5.

	Imidazole				Triazole			
Atom	MPA	NPA	MPA	NPA	MPA	NPA	MPA	NPA
N1	-0.365	-0.399	0.283	-0.412	-0.218	-0.198	0.409	-0.208
N2	-	-	-	-	-0.083	-0.071	-0.098	-0.078
C2	0.196	0.187	-0.042	0.217	-	-	-	-
N3	-0.474	-0.502	-0.125	-0.511	-0.327	-0.268	-0.188	-0.277
C4	0.232	0.106	0.517	0.107	0.259	0.083	0.442	0.086
C5	-0.028	-0.106	-0.468	-0.083	-0.014	-0.086	-0.545	-0.060

5 Synthesis of ${ }^{99 \mathrm{~m}} \mathbf{T c}$-complexes

5.1 General two-step procedure

Step 1: The precursor $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{CO})_{3}\right]^{+}$was prepared according to the literature. ${ }^{8}$ Briefly, $1 \mathrm{~mL}\left[{ }^{99 \mathrm{~m}} \mathrm{TcO}_{4}\right]^{-}$in $0.9 \% \mathrm{NaCl}$ was added to the IsoLink ${ }^{\mathrm{TM}}$ kit (Mallinckrodt-Tyco, Petten, Holland) via the septum. The reaction was heated for 20 min at $100^{\circ} \mathrm{C}$. The solution was cooled and neutralized $(\mathrm{pH}=7.2)$ with 1 M phosphate buffer $\mathrm{pH}=7.4$ and $1 \mathrm{M} \mathrm{HCl}(1: 1$ mixture).
Step 2: $50 \mu \mathrm{~L}$ of a stock solution $\left(10^{-2} \mathrm{M}\right.$ to $10^{-7} \mathrm{M}$ in physiological phosphate buffer $\left.\mathrm{pH}=7.4\right)$ of the relevant ligand 5-8 was added to a solution of $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}(\mathrm{CO})_{3}\left(\mathrm{OH}_{2}\right)_{3}\right]^{+}(100 \mu \mathrm{~L} ; \sim 1 \mathrm{GBq} / \mathrm{mL})$. Phosphate buffered saline (PBS pH 7.4, $350 \mu \mathrm{~L}$) was added to adjust the final concentration. The reaction was heated for 50 min at $100^{\circ} \mathrm{C}$. Radiolabeling yields were determined via HPLC. Complexes were analyzed via HPLC and the identity confirmed by comparison with the UV trace of the corresponding Re-complexes. This is common practice with Tc-99m complexes on the n.c.a. level.

Table 7: EC_{50} values (best-fit values) for ligands $\mathbf{5 - 8}$ and N^{ε}-methyl histidine.

Ligand	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	\mathbf{N}^{ε}-Me-His
LogEC $_{50}$	-6.61	-6.52	-4.528	-4.529	-7.024
EC_{50}	$2.45 \mathrm{E}-07$	$3.02 \mathrm{E}-07$	$2.97 \mathrm{E}-05$	$2.96 \mathrm{E}-05$	$9.47 \mathrm{E}-08$
Std. Error LogEC $_{50}$	0.08825	0.104	0.08478	0.1174	0.0636
R^{2}	0.9579	0.9842	0.9804	0.9774	0.983
Number of X values	24	26	27	26	26
Number of Y replicates	3	3	3	3	3

[^7]
5.2 One-step procedures

Procedure A:

In situ preparation and radiolabeling of compounds 5, 7, 10 and 11.
The following reagents were combined in a 10 mL vial: $40 \mu \mathrm{~L}$ of a $10^{-2} \mathrm{M}$ aqueous solution of copper (II) acetate, Na-ascorbate ($80 \mu \mathrm{~L}$ in $\mathrm{H}_{2} \mathrm{O}, 10^{-2} \mathrm{M}$), propargyl glycine or azido-alanine ($100 \mu \mathrm{~L}$ in $\mathrm{H}_{2} \mathrm{O}, 10^{-3} \mathrm{M}$) and $200 \mu \mathrm{~L}$ of benzyl azide, 3-phenyl propylene, 3 '-azidothymidine or 1-azido-1-deoxy- β-D-galactopyranoside ($10^{-3} \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}$). The reactions were heated at $50^{\circ} \mathrm{C}$ for $30 \mathrm{~min} .100 \mu \mathrm{~L}$ of $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}\left(\mathrm{OH}_{2}\right)_{3}(\mathrm{CO})_{3}\right]^{+}(\mathrm{pH}=7.4)$ was added to the pale yellow solutions. The reactions were incubated for 1 h at $100^{\circ} \mathrm{C}$ and monitored via HPLC (Figure 14). Yield: 84$92 \%$.

Procedure B:

For clinical applications it is desirable for ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-labeled products to be obtained in a single step directly from $\left[{ }^{99 \mathrm{~m}} \mathrm{TcO}_{4}\right]$ - as eluted from the ${ }^{99} \mathrm{Mo} /{ }^{99 \mathrm{~m}} \mathrm{Tc}$ generator. We were able to show that this can also be accomplished with the new click ligands by applying a different one-pot procedure.
$0.9 \mathrm{~mL}\left[{ }^{99 \mathrm{~m}} \mathrm{TcO}_{4}\right]^{-}$in $0.9 \% \mathrm{NaCl}$ was added to the IsoLink ${ }^{\mathrm{TM}}$ kit (Mallinckrodt-Tyco) via the septum. 0.1 mL of stock solution ($10^{-4}-10^{-3} \mathrm{M}$ in saline) of the relevant ligand ($\mathbf{1 0}$ or $\mathbf{1 1}$) was added. The reactions were heated for 60 min at $100^{\circ} \mathrm{C}$ and then cooled to room temperature. The solution was cooled and neutralized ($\mathrm{pH}=7.2$) with 1 M phosphate buffer $\mathrm{pH}=7.4$ and $1 \mathrm{M} \mathrm{HCl}(1: 1$ mixture $)$. Reactions were analyzed via HPLC.

1

10 or 11

1) $\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{Na}$ ascorbate $30 \mathrm{~min} 50^{\circ} \mathrm{C}$

$\left.\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}(\mathrm{CO})_{3}(\mathbf{1 0})\right],{ }^{99 \mathrm{~m}} \mathrm{Tc}(\mathrm{CO})_{3}(\mathbf{1 1})\right]$

Figure 6: One-pot procedures \mathbf{A} and \mathbf{B} for the preparation of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ complexes.

6 In vitro and in vivo studies of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-labeled bombesin derivatives

Figure 7: Amino acid sequence of bombesin derivatives included in these studies (receptor binding sequence in bold).

In vitro characterizazion: The human prostate adenocarcinoma cell line PC-3 was purchased from the European Collection of Cell Culture (ECACC; Salisbury, England). Cells were maintained in DMEM GLUTAMAX-I supplemented with $10 \% \mathrm{FCS}, 100 \mathrm{IU} / \mathrm{ml}$ penicillin G sodium, $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin sulphate, $0.25 \mu \mathrm{~g} / \mathrm{ml}$ amphotericin B. The cell culture was incubated at $37^{\circ} \mathrm{C}$ in an atmosphere containing $7.5 \% \mathrm{CO}_{2}$. The cells were subcultured weekly after detaching them with trypsin/EDTA (0.25%).

Inhibition studies $\left(I C_{50}\right)$: PC-3 cells at confluence were placed in 48 -well plates ($1.5 \times 10^{5} /$ well $)$. Cells were incubated in triplicate for 1 h at $37^{\circ} \mathrm{C}$ in a special binding buffer (0.2 ml final volume per well) including protease inhibitors (50 mM HEPES, $125 \mathrm{mM} \mathrm{NaCl}, 7.5 \mathrm{mM} \mathrm{KCl}, 5.5 \mathrm{mM} \mathrm{MgCl} 2_{2}, 1 \mathrm{mM}$ EGTA, $5 \mathrm{~g} / 1 \mathrm{BSA}, 2 \mathrm{mg} / \mathrm{l}$ chymostatin, $100 \mathrm{mg} / \mathrm{l}$ soybean trypsin inhibitor, $50 \mathrm{mg} / \mathrm{l}$ bacitracin) with $150000-250000 \mathrm{cpm}$ of the corresponding $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}(\mathrm{CO})_{3}(\mathrm{BBN})\right]$ complex per well and increasing concentrations of the different unlabeled BBN analogs ($0-$ $30000 \mathrm{nM})$. After incubation cells were washed twice with cold PBS and solubilized with $400 \mu \mathrm{l}(2 \mathrm{x})$ of 1 N NaOH at $37^{\circ} \mathrm{C}$ and the final suspension measured in a γ-counter. IC_{50} values were calculated by non-linear regression analysis using GraphPad Prism ${ }^{\mathrm{TM}}$. Experiments were performed twice in triplicate.

Saturation studies (K_{D}): C-3 cells were prepared as described above and were incubated in triplicate with increasing concentrations ($0.001-1 \mathrm{nM}$) of the ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-bombesin analogs for 1 h at $37^{\circ} \mathrm{C}$ in the binding buffer already described. The total concentrations of technetium $\left({ }^{99} \mathrm{Tc}+{ }^{99 \mathrm{~m}} \mathrm{Tc}\right)$ were estimated according to Bauer and Pabst. ${ }^{9}$ After incubation cells were washed twice with cold PBS and solubilized with $400 \mu \mathrm{l}(2 \mathrm{x})$ of 1 N NaOH at $37^{\circ} \mathrm{C}$. The bound radioactivity was measured in a γ-counter. Non-specific binding was determined under the same conditions by coincubation of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-bombesin analogs and $1 \mu \mathrm{M}$ unlabeled BBN. Experiments were performed two to four times in triplicate.

Table 8: IC_{50} and K_{D} values of bombesin analogs.

	n	$\mathrm{IC}_{50}[\mathrm{nM}]^{*}$	n	$\mathrm{K}_{\mathrm{D}}[\mathrm{nM}]^{* *}$
${\mathrm{BBN}-\mathrm{N}^{\alpha} \mathrm{AcHis}}^{\text {9 }}$	2	5.10 ± 1.75	2	0.19 ± 0.12
* non-radiolabeled peptides	1.96 ± 1.55	3	0.19 ± 0.06	
** ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-labeled peptides				

[^8]In vivo characterization: The bombesin derivative has a β-Ala spacer between the binding sequence and the chelator/chelate has been shown previously to improve the pharmacokinetic profile of the radioconjugates. ${ }^{10} \mathrm{~N}^{\alpha}$-AcHis is currently being used in our ongoing peptide projects as a tridentate chelator for radiolabeling with $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}\left(\mathrm{OH}_{2}\right)_{3}(\mathrm{CO})_{3}\right]^{+}$and $\left[{ }^{188} \mathrm{Re}\left(\mathrm{OH}_{2}\right)_{3}(\mathrm{CO})_{3}\right]^{+} .{ }^{11}$

All animal experiments were conducted in compliance with the Swiss animal protection laws and with the ethical principles and guidelines for scientific animal trials established by the Swiss Academy of Medical Sciences and the Swiss Academy of Natural Sciences. Studies were performed with 6 to 8 weeks old female CD-1 nu/nu mice (20-25 g), purchased from Charles River Laboratories (Sulzfeld, Germany). On the day of the assay 3 groups of 3 mice each received the radiolabeled BBN analog ($3.7 \mathrm{MBq} /$ mouse) intravenously into the tail vein. To determine in vivo nonspecific uptake another group of 3 mice received $100 \mu \mathrm{~g}$ of unlabeled Bombesin, co-injected with the radiolabeled BBN analog.
The first three groups of mice were sacrificed $0.5,1.5$ or $5 \mathrm{~h}^{12}$ after injection by cervical dislocation and dissected. Samples of blood and tissues (heart, lung, spleen, kidneys, stomach, pancreas, ileum, colon, liver, muscle and bone) were removed, wet weighed and the amount of radioactivity was determined with a γ-counter. Results are expressed as a percentage of the injected dose per gram of tissue ($\%$ i.d. $/ \mathrm{g}$).

Table 9 shows the tissue distribution of radioactivity 1.5 h (unblocked and blocked) and 24 h post injection in female CD-1 mice. The conjugate exhibited a rapid clearance from the blood pool and most tissues. The highest non-specific uptake was found in the kidneys and the liver. A significant uptake of radioactivity was observed in the GRP receptor-bearing pancreas and colon. The specificity of the uptake was confirmed by the receptor blocking study which led to an almost complete loss of radioactivity uptake in the pancreas and colon. The differences in uptake in other organs were not significant.

Table 9: Biodistribution (\% I.D./g) of $\left.{ }^{99 \mathrm{~m}} \mathrm{Tc}(\mathrm{CO})_{3}\left(\mathbf{N}^{\boldsymbol{\alpha}} \mathbf{A c H i s - B B N}\right)\right]$ and $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}(\mathrm{CO})_{3}(\mathbf{9})\right]$ in CD-1 mice 1.5 h post injection of the radiotracers. Animals received the labeled analog by i.v. administration. Data, expressed as a percentage of the injected dose per gram of tissue, are mean $\pm \mathrm{SD}(\mathrm{n}=3)$.

Organ	N^{α} AcHis-BBN	N^{α} AcHis-BBN (blocked)*	$\mathbf{9}$	$\mathbf{9}$ (blocked)*
Blood	0.13 ± 0.01	0.35 ± 0.14	0.17 ± 0.01	0.19 ± 0.08
Heart	0.05 ± 0.01	0.14 ± 0.06	0.08 ± 0.02	0.16 ± 0.08
Kidneys	0.67 ± 0.04	1.36 ± 0.60	0.99 ± 0.11	0.84 ± 0.40
Liver	0.52 ± 0.13	1.66 ± 0.02	1.05 ± 0.17	1.59 ± 0.31
Pancreas	8.31 ± 3.36	3.73 ± 0.52	12.76 ± 2.91	0.80 ± 0.27
Stomach	0.68 ± 0.08	0.60 ± 0.09	0.89 ± 0.26	0.28 ± 0.10
Colon	5.80 ± 1.52	0.80 ± 0.01	2.87 ± 1.01	0.40 ± 0.15
Muscle	0.03 ± 0.02	0.60 ± 0.77	0.08 ± 0.07	0.37 ± 0.38
Bone	0.10 ± 0.05	0.24 ± 0.01	0.10 ± 0.03	0.20 ± 0.21

* Co-injection of $100 \mu \mathrm{~g}$ unlabeled bombesin
${ }^{10}$ C. J. Smith, H. Gali, G. L. Sieckman, C. Higginbotham, W. A. Volkert, T. J. Hoffman, Bioconjugate Chem. 2003, 14, 93.
${ }^{11}$ (a) R. La Bella, E. Garcia-Garayoa, M. Bahler, P. Blauenstein, R. Schibli, P. Conrath, D. Tourwe, P. A. Schubiger, Bioconjugate Chemistry 2002, 13, 599. (b) E. Garcia-Garayoa, P. Blauenstein, M. Bruehlmeier, A. Blanc, K. Iterbeke, P. Conrath, D. Tourwe, P. A. Schubiger, Journal of Nuclear Medicine 2002, 43, 374. (c) A. Egli, R. Alberto, L. Tannahill, R. Schibli, U. Abram, A. Schaffland, R. Waibel, D. Tourwe, L. Jeannin, K. Iterbeke, P. A. Schubiger, Journal of Nuclear Medicine 1999, 40, 1913.
${ }^{12}$ Data for 0.5 h and 5 h will be published elsewhere.

7 HPLC analysis of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ - and Re-complexes

The serial arrangement of the detectors (UV and radiometric detector) is responsible for the observed small differences of the retention time of Re - and ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-complexes.

(B)

Figure 8: (A) HPLC trace of the purified complex $\left[\operatorname{Re}(\mathrm{CO})_{3}(5)\right]$ recorded at a wavelength of 254 nm . (B) HPLC trace (gamma trace) of $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}(\mathrm{CO})_{3}(\mathbf{5})\right]$. Ligand concentration $10^{-5} \mathrm{M}$. HPLC parameters: Solvent system II; Nucleosil column.

Figure 9: (A) HPLC trace of the complex $\left[\operatorname{Re}(\mathrm{CO})_{3}(7)\right]$ recorded at a wavelength of 254 nm . Signal at 3.5 min corresponds to $\left[\mathrm{Re}(\mathrm{CO})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$. (B) HPLC trace (gamma trace) of $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}(\mathrm{CO})_{3}(7)\right]$. Ligand concentration 10^{-4} M. HPLC parameters: Solvent system II; Nucleosil column.

A

B

Figure 10: (A) HPLC trace of the purified complex $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathbf{1 0})\right]$ recorded at a wavelength of 254 nm . (B) HPLC trace (gamma trace) of $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}(\mathrm{CO})_{3}(\mathbf{1 0})\right]$. Ligand concentration $10^{-5} \mathrm{M}$. HPLC parameters: Solvent system I; XTerra column.

A

B

Figure 11: (A) HPLC trace of the purified complex $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathbf{1 1})\right]$ recorded at a wavelength of 254 nm . (B) HPLC trace (gamma trace) of $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}(\mathrm{CO})_{3}(11)\right]$. Ligand concentration $10^{-5} \mathrm{M}$. HPLC parameters: Solvent system I; XTerra column.

Figure 12: HPLC traces (gamma traces) of the radioactive labeling reaction of compound 9 with $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}\left(\mathrm{OH}_{2}\right)_{3}(\mathrm{CO})_{3}\right]^{+}$at a ligand concentration of $10^{-5} \mathrm{M}$. HPLC parameters: Solvent system I; Nucleosil C-18 column.

Figure 13: HPLC trace (gamma trace) of [${ }^{99 \mathrm{~m}} \mathrm{Tc}(\mathrm{CO})_{3}(\mathbf{1 2})$]. Ligand concentration $10^{-4} \mathrm{M}$. HPLC parameters: Solvent system I; Nucleosil C-18 column. Signal around 4 min corresponds to $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}\left(\mathrm{OH}_{2}\right)_{3}(\mathrm{CO})_{3}\right]^{+}$, signal around 10 min corresponds to $\left[{ }^{99 \mathrm{~m}} \mathrm{TcO}_{4}\right]^{-}$.

Supporting Information Mindt et al.

Figure 14: HPLC traces (gamma trace) of the Tc-99m complexes $\left[{ }^{99 m} \mathrm{Tc}(\mathrm{CO})_{3}(\mathbf{5})\right],\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}(\mathrm{CO})_{3}(\mathbf{1 1})\right]$ and $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}(\mathrm{CO})_{3}(\mathbf{1 0})\right]$ prepared via the one-pot procedure A described in Section 5.2. HPLC parameters: Solvent system II; XTerra column.

[^0]: ${ }^{1}$ R. Alberto, A. Egli, U. Abram, K. Hegetschweiler, V. Gramlich, P.A. Schubiger, J. Chem. Soc. Dalton. Trans. 1994, 2815; S.B. Rosenblum, T. Huynh, A. Afonso, H.R. Davis Jr., Tetrahedron 2000, 56, 5735; A.J. Link, M. K.S Vink, D.A. Tirrell, J. Am. Chem. Soc. 2004, 126, 10598.

[^1]: ${ }^{2}$ Reactions in $\mathrm{D}_{2} \mathrm{O}$ yielded triazole products bearing a Deuterium atom at the triazole heterocycle. This is presumably a result of proteolysis of the click intermediates (Rodionov, V. O.; Fokin V.V.; Finn F. G. Angew. Chem. Int. Ed. 2005, 44, 2210-2215).

[^2]: ${ }^{3}$ T.S, Seo, Z. Li, H. Ruparel, J. Ju, J. Org. Chem. 2003, 68, 609.

[^3]: ${ }^{4}$ A. J. Link, M. K. S. Vink, D. A. Tirrell, J. Am. Chem. Soc. 2004, 126, 10598.

[^4]: ${ }^{5}$ (a) J. T. Lundquist, J. C. Pelletier, Org. Lett. 2001, 5, 781. (b) L. A. Banaszynski, C. W. Liu, T. J. Wandless, J. Am. Chem. Soc. 2005, 13, 4715.

[^5]: ${ }^{6}$ C. W. Tornoe, C. Christensen, M. Meldalm, J. Org. Chem. 2002, 9, 3057.

[^6]: ${ }^{7}$ R. C. Gaussian 03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

[^7]: ${ }^{8}$ R. Alberto, K. Ortner, N. Wheatley, R. Schibli, A. P. Schubiger, Journal of the American Chemical Society 2001, 123, 3135.

[^8]: ${ }^{9}$ R. Bauer, H. Pabst, Eur. J. Nucl. Med. 1982, 7, 35.

