## **Supporting Information**

## A New Class of S<sub>N</sub>2 Reactions Catalyzed by Protic Solvents: Facile Fluorination for Isotopic Labeling of Diagnostic Molecules

Dong Wook Kim,<sup>1</sup> Doo-Sik Ahn,<sup>2</sup> Young-Ho Oh,<sup>2</sup> Sungyul Lee,<sup>2</sup> Hee Seup Kil,<sup>1,4</sup> Seung Jun Oh,<sup>3</sup> Sang Ju Lee,<sup>3</sup> Jae Seung Kim,<sup>3</sup> Jin Sook Ryu,<sup>3</sup> Dae Hyuk Moon,<sup>3</sup> and Dae Yoon Chi<sup>1,4</sup>\*

<sup>1</sup>Department of Chemistry, Inha University, 253 Yonghyundong Namgu, Inchon 402-751, Korea. <sup>2</sup>Theoretical Chemistry Laboratory, College of Environmental Science and Applied Chemistry, Kyunghee University, Kyungki 449-701, Korea. <sup>3</sup>Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-2-dong, Songpa-gu, Seoul 138-736, Korea. <sup>4</sup>Research Institute of Labeling, FutureChem Co. Ltd., 388-1 Pungnap-2-dong, Songpa-gu, Seoul 138-736, Korea.

Synthesis of 2-[<sup>18</sup>F]Fluoro-2-deoxyglucose ([<sup>18</sup>F]FDG). [<sup>18</sup>F]Fluoride (370 MBq/ 0.1 mL) was trapped on QMA (Waters, USA), and it was eluted with 12 mg of Cs<sub>2</sub>CO<sub>3</sub>, 22 mg of Krytofix<sub>222</sub>, 300  $\mu$ L CH<sub>3</sub>CN and 300  $\mu$ L H<sub>2</sub>O solution into the reactor. After addition of 20 mg of mannose triflate in 0.1  $\mu$ L CH<sub>3</sub>CN and 500  $\mu$ L of *t*-BuOH, [<sup>18</sup>F]fluorination was carried out at 100 °C for 15 min. The [<sup>18</sup>F]fluorination yield was 96.4±1.8% by radioTLC analysis. After evaporation of the solvent, the intermediate tretraacetate was hydrolyzed with 2 N NaOH 1 mL at room temperature for 5 min. The product was neutralized and purified by chromatography with IC-H (Alltech, USA), C18 (Waters, USA) and Alumina N (Waters, USA) cartridges. The decay corrected radiochemical yield was 85.4±7.8, and synthesis time was 30.5±5.8 min. The radiochemical purity was 98.1±1.4%. (n = 10)

Synthesis of 3-Deoxy-3'-[<sup>18</sup>F]fluorothymidine ([<sup>18</sup>F]FLT). We used the GE TracerLab FX module for [<sup>18</sup>F]FLT synthesis. 37 GBq/1 mL of [<sup>18</sup>F]fluoride was trapped on PS-HCO<sub>3</sub> cartridge (Machery-Nagel, Germany) on the chemistry module. After elution of [<sup>18</sup>F]fluoride into the reaction vial with 0.3 mL H<sub>2</sub>O, 0.3 mL CH<sub>3</sub>CN and 10  $\mu$ L of TBAHCO<sub>3</sub>, the activity was dried with 1 mL of CH<sub>3</sub>CN with heating at 100 °C under vacuum and N<sub>2</sub> supply. After drying, 20 mg of (5'-*O*-DMTr-2'-deoxy-3'-*O*-nosyl- $\beta$ -D-threo-pentofuranosyl)-3-*N*-BOC-thymine in 0.8 mL *t*-BuOH and 0.2 mL of CH<sub>3</sub>CN was added to reaction vial. [<sup>18</sup>F]Fluorination was performed at 120 °C for 10 min, and the solvent was evaporated

under N<sub>2</sub> supply and vacuum at 90 °C. HCl (1 N, 1 mL) was added for hydrolysis, which was performed at 85 °C for 5 min. After neutralization with 2 N NaOH 0.5 mL and 1 mL citrate buffer, the reaction mixture was purified by HPLC with EtOH:H<sub>2</sub>O=10:90 at 5 mL/min. The decay-corrected radiochemical yield was  $65.5\pm5.4\%$ , and radiochemical purity was  $98.1\pm1.2\%$ . Total synthesis time was  $70.5\pm10.5$  min. (n = 10)

Synthesis of *N*-2-[<sup>18</sup>F]Fluoropropyl-2β-carbomethoxypropyl-3β-(4-iodophenyl)nortropane ([<sup>18</sup>F]FP-CIT). We used the GE TracerLab FX module for [<sup>18</sup>F]FP-CIT synthesis. [<sup>18</sup>F]Fluoride (37 GBq/1 mL) was moved to the reaction without any separation step between [<sup>18</sup>O]H<sub>2</sub>O and [<sup>18</sup>F]fluoride. After addition of 1 mL CH<sub>3</sub>CN, 0.1 mL H<sub>2</sub>O and 8 µL of TBAOH (40% solution), the mixture was completely dried under vacuum and heating at 100 °C. The precursor (4 mg) of *N*-[3'-(mesyloxy)propyl]-2β-carbomethoxy-3β-(4'-iodophenyl)nortropane in 0.1 mL CH<sub>3</sub>CN and 0.9 mL anhydrous *t*-BuOH was added to the reactor, and [<sup>18</sup>F]fluorination proceeded at 100 °C for 20 min. The reaction mixture was diluted with 2 mL of MeOH, and the mixture was injected onto an HPLC column for purification. The purified radiolabeled product was diluted 100 mL of H<sub>2</sub>O and [<sup>18</sup>F]FP-CIT was trapped on C<sub>18</sub> cartridge. After washing of cartridge with 10 mL H<sub>2</sub>O, [<sup>18</sup>F]FP-CIT was eluted with 1 mL EtOH and 4 mL of H<sub>2</sub>O. HPLC condition was MeOH:H<sub>2</sub>O:NEt<sub>3</sub>=750:250:2 solution at 4 mL/min. The decay-corrected radiochemical yield was 35.8±5.2%, and radiochemical purity was 98.5±1.2%. Total synthesis time was 80.8±10.5 min (n = 14).

Synthesis of 1-[<sup>18</sup>F]Fluoro-3-(2-nitroimidazol-1-yl)propan-2-ol ([<sup>18</sup>F]FMISO). We used the GE TracerLab MX module for [<sup>18</sup>F]FMISO synthesis. A disposable cassette was modified as previously reported<sup>S1</sup>; this cassette has 4 reagent supply vials, designated as blue, red, yellow, and green. We added 7 mL of CH<sub>3</sub>CN to blue vial, added 10 mg of 3-(2-nitroimidazol-1-yl)-2-*O*-tetrahydropyranyl-1-*O*-toluenesulfonylpropanediol as precursor in 0.2 mL CH<sub>3</sub>CN and 1.8 mL of *t*-amyl alcohol, added 0.2 mL of CH<sub>3</sub>CN and 2.8 mL of 1 N HCl, and added 2 mL 2 N NaOH and 1.8 mL of citrate buffer. [<sup>18</sup>F]Fluoride (37 GBq/1 mL) was trapped on PS-HCO<sub>3</sub> cartridge (Machery-Nagel, Germany) on the chemistry module. After elution of [<sup>18</sup>F]fluoride into the reaction vial with 0.3 mL H<sub>2</sub>O, 0.3 mL CH<sub>3</sub>CN and 10 µL of TBAHCO<sub>3</sub>, the activity was dried with CH<sub>3</sub>CN from the blue vial with heating at 100 °C under vacuum and N<sub>2</sub> supply. After drying, precursor from the red vial was added to the reaction vial. [<sup>18</sup>F]Fluorination was performed at 120 °C for 15 min, and the solvent was then evaporated under N<sub>2</sub> supply and vacuum at 90 °C. HCl solution from green vial was added for hydrolysis, which was

performed at 85 °C for 5 min. After neutralization with buffer solution from the yellow vial, the reaction mixture was purified by HPLC. HPLC conditions were EtOH:H<sub>2</sub>O=5:95 solution at 5 mL/min. The decay-corrected radiochemical yield was 69.6±1.8%, and radiochemical purity was 98.1±1.3%. Total synthesis time was 70.0 $\pm$ 12.5 min. (n = 10)

The Pictures of Formations of Gel-like Solid during the Reaction. In same concentrations, the higher yield obtained (cases (a) and (b)), the more gel-like solid formed. In case of (c), as the leaving group is iodide instead of sulfonate, there is no hydrogen bond with t-butanol and iodide, consequently less forming gel-like solid.



(a) 1 min 30 min 2.5 h (a) entry 8, Table 1



(b) 1 min 2 h (c) 1 min 4 h 24 h (b) entry 1, Table 2

## (c) entry 2, Table 2

## **References in SI**

S1. S. J. Oh, D. Y. Chi, C. Mosdzianowski, J. Y. Kim, H. S. Kil, S. H. Kang, J. S. Ryu, D. H. Moon, Nucl. Med. Biol. 2005, 32, 899.