

A [3 + 3] Annelation Approach to (+)-Rhopaloic acid B

Julien C.R. Brioche^a, Katharine M. Goodenough^a, David J. Whatrup^b and Joseph P.A. Harrity*^a

^aDepartment of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF

^bSynthetic Chemistry, GlaxoSmithKline, Tonbridge, Kent, TN11 9AN, U.K.

Supporting Information

Table of Contents

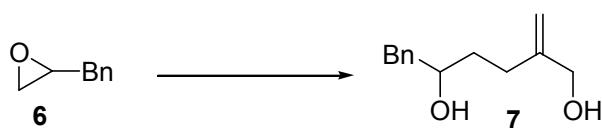
Epoxides **6ⁱ**, **9ⁱⁱ**, **12ⁱⁱⁱ** were prepared according to known procedures.

Preparation/titration of Grignard Reagent	3
Preparation of 7	3
Preparation of 10	4
Preparation of 13	5
Preparation of 16	6
Preparation of 19a/b	6
Preparation of 8	7
Preparation of 11	8
Preparation of 14	9
Preparation of 17	10
Preparation of 20a	10
Preparation of 20b	11
Preparation of 21	12
Preparation of 22	13
Preparation of 23	13
Preparation of 24	14
Preparation of 25	15
Preparation of 26	16
Preparation of 28	17
Preparation of 29	18
Preparation of 30	19
¹ H/ ¹³ C NMR Spectrum of 7	22
¹ H/ ¹³ C NMR Spectrum of 10	23
¹ H/ ¹³ C NMR Spectrum of 13	24
¹ H/ ¹³ C NMR Spectrum of 16	25
¹ H/ ¹³ C NMR Spectrum of 19b	26
¹ H/ ¹³ C NMR Spectrum of 19a	27
¹ H/ ¹³ C NMR Spectrum of 8	28

$^1\text{H}/^{13}\text{C}$ NMR Spectrum of 11	29
$^1\text{H}/^{13}\text{C}$ NMR Spectrum of 14	30
$^1\text{H}/^{13}\text{C}$ NMR Spectrum of 17	31
$^1\text{H}/^{13}\text{C}$ NMR Spectrum of 20a	32
$^1\text{H}/^{13}\text{C}$ NMR Spectrum of 20b	33
$^1\text{H}/^{13}\text{C}$ NMR Spectrum of 22	34
$^1\text{H}/^{13}\text{C}$ NMR Spectrum of 23	35
$^1\text{H}/^{13}\text{C}$ NMR Spectrum of 24	36
$^1\text{H}/^{13}\text{C}$ NMR Spectrum of <i>trans</i> - 25	37
$^1\text{H}/^{13}\text{C}$ NMR Spectrum of <i>cis</i> - 25	38
$^1\text{H}/^{13}\text{C}$ NMR Spectrum of 28	39
$^1\text{H}/^{13}\text{C}$ NMR Spectrum of 29	40
Crude ^1H NMR Spectrum of intermediate aldehyde	41
Crude ^1H NMR Spectrum of intermediate enal	42
$^1\text{H}/^{13}\text{C}$ NMR Spectrum of 30	43
Comparative data for (+)-rhopaloic acid B	44

Preparation of the Grignard reagent

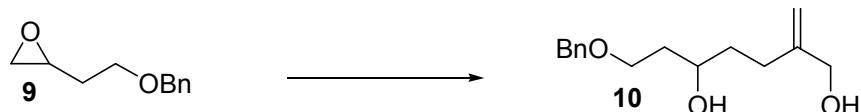
To BuLi (15 mL, 10 M, 2.1 eq.) at 0°C were added anhydrous ether (114 mL) and TMEDA (22.6 mL, 2.1 eq). After cooling the solution at -78°C, methallyl alcohol **5** was added dropwise (6.40 mL, 1 eq.) and the reaction was stirred at -78°C for 1h. The bath was then removed and the resulting mixture was vigorously stirred for 24h. After this time, stirring was stopped for 30 min and the solvent was removed via cannula filtration. Anhydrous ether (100 mL) was then added to the remaining orange solid and the suspension was cooled to 0°C. At this point a solution of freshly prepared MgBr₂ [prepared from magnesium (2.1 eq, 3.9 g), dibromoethane (2.1 eq, 13.8 mL) in ether (58 mL)] was transferred quickly via cannula to the suspension. After addition the bath was removed and the suspension was vigorously stirred for 30-45 min. At this stage, the stirring was stopped and the Grignard solution was then separated from colourless solid via cannula. The Grignard solution was titrated and stored in a refrigerator under argon.


Titration of the Grignard reagent^{iv}

To menthol (31 mg, 0.2 mmol) in dry THF (1.5 mL) was added 1,10-phenanthroline (4 mg). The Grignard reagent to be assayed was added dropwise by syringe until a distinct violet or burgundy colour persisted for longer than one minute.

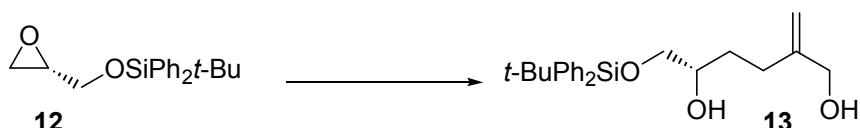
Concentration = (mol. menthol x 1000)/vol. Grignard added (usually 0.8 - 0.15 M)

Grignard addition to epoxides

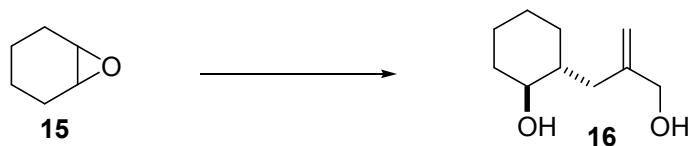

Preparation of 2-methylene-6-phenylhexane-1,5-diol (7).

To a solution of Grignard (19 mL, 0.10 M, 1.9 mmol) was added via cannula at RT a solution of epoxide **6** (170 mg, 1.26 mmol) in THF (12.5 mL) and the

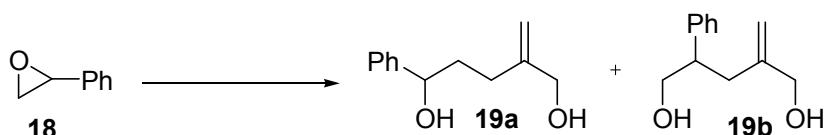
reaction stirred for 2h. The remaining organometallic reagent was quenched by the slow addition at 0°C of saturated aqueous NH₄Cl solution. The product was extracted with ethyl acetate. The organic layer was washed with 1N HCl, brine, dried over MgSO₄ and concentrated *in vacuo*. The crude residue was purified by flash chromatography (60:40 petroleum ether/ethyl acetate), to give the desired product **7** as an oil (199 mg, 76%); ¹H NMR (250 MHz, CDCl₃): δ 7.37-7.15 (m, 5H, Ar-*H*), 5.02 (br, 1H, alkene-*H*), 4.90 (br, 1H, alkene-*H*), 4.07 (s, 2H, alkene-CH₂OH), 3.89-3.77 (m, 1H, BnCH), 2.82 (dd, *J* = 13.5 Hz, *J* = 4.5 Hz, 1H, CH₂Ph), 2.67 (dd, *J* = 13.5 Hz, *J* = 8.0 Hz, 1H, CH₂Ph), 2.37-2.05 (m, 2H, alkene-CH₂CH₂), 2.01-1.81 (br, 2H, OH), 1.78-1.57 (m, 2H, alkene-CH₂CH₂); ¹³C NMR (62.9 MHz, CDCl₃): δ 148.7, 138.5, 129.5, 128.7, 126.6, 110.1, 72.4, 66.1, 42.2, 34.8, 29.1; FTIR (CH₂Cl₂): 3436 (br), 2924 (s), 1652 (m), 1603 (m), 1495 (m), 1454 (s), 1082 (s), 1023 (s), 899 (m), 745 (m), 701 (s), 6047 (w), 529 (w) cm⁻¹; HRMS (ES): m/z [M+Na]⁺ calcd for C₁₃H₁₈O₂Na: 229.1204, found: 229.1196.


Preparation of 7-(benzyloxy)-2-methyleneheptane-1,5-diol (**10**).

To a solution of Grignard (14.3 mL, 0.10 M, 1.43 mmol) was added via cannula at RT a solution of epoxide **9** (170 mg, 0.95 mmol) in THF (9.5 mL) and the reaction stirred for 2h. The remaining organometallic reagent was quenched by the slow addition at 0°C of saturated aqueous NH₄Cl solution. The product was extracted with ethyl acetate. The organic layer was washed with 1N HCl, brine, dried over MgSO₄ and concentrated *in vacuo*. The crude residue was purified by flash chromatography (60:40 petroleum ether/ethyl acetate), to give the desired product **10** as an oil (174 g, 74%); ¹H NMR (250 MHz, CDCl₃): δ 7.47-7.22 (m, 5H, Ar-*H*), 5.01 (br, 1H, alkene-CH₂), 4.87 (br, 1H, alkene-CH₂), 4.51 (s, 2H, OCH₂Ph), 4.06 (br, 2H, alkene-CH₂OH), 3.95-3.77 (m, 1H, CH₂CHOH), 3.77-3.58 (m, 2H, CH₂OBn), 3.22 (br, 1H, OH), 2.51-1.97 (m, 3H, CH₂, OH), 1.88-1.50 (m, 4H, CH₂); ¹³C NMR (62.9 MHz, CDCl₃): δ 149.0, 138.0, 128.6, 127.9, 127.8, 109.8, 73.4, 71.1, 69.3, 66.1, 36.5, 35.6, 29.0; FTIR (CH₂Cl₂):


3374 (br), 3088 (m), 3031 (m), 2920 (s), 2854 (s), 1652 (m), 1605 (w), 1586 (w), 1496 (m), 1454 (m), 1366 (m), 1316 (m), 1207 (m), 1174 (m), 1090 (m), 899 (m), 846 (w), 800 (w), 739 (m), 699 (m), 615 (w); HRMS (ES): m/z [M+Na]⁺ calcd for C₁₅H₂₂O₃Na: 273.1467, found: 273.1467.

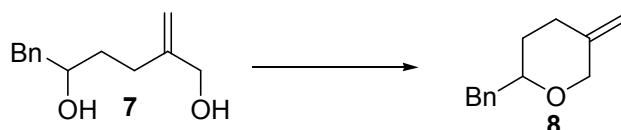
Preparation of (S)-6-(tert-butyldiphenylsilyloxy)-2-methylenehexane-1,5-diol (13).


To a solution of Grignard (17.6 mL, 0.085M, 1.5 mmol) was added via cannula at RT a solution of epoxide **12** (98% ee, 312 mg, 1.0 mmol) in THF (5 mL) and the reaction stirred for 2h. The remaining organometallic reagent was quenched by the slow addition at 0°C of saturated aqueous NH₄Cl solution. The product was extracted with ethyl acetate. The organic layer was washed with 1N HCl, brine, dried over MgSO₄ and concentrated *in vacuo*. The crude residue was purified by flash chromatography (60:40 petroleum ether/ethyl acetate), to give the desired product **13** as an oil (313 g, 82%); ¹H NMR (250 MHz, CDCl₃): δ 7.78-7.54 (m, 4H, Ar-CH), 7.50-7.28 (m, 6H, Ar-H), 5.01 (br, 1H, alkene-CH₂), 4.40 (br, 1H, alkene-CH₂), 4.04 (d, *J* = 5.0 Hz, 2H, alkene-CH₂OH), 3.81-3.66 (m, 1H, CHOH), 3.66 (dd, *J* = 10.0 Hz, *J* = 3.5 Hz, 1H, CH₂OSi), 3.51 (dd, *J* = 10.0 Hz, *J* = 3.5 Hz, 1H, CH₂OSi), 2.68 (d, *J* = 3.5 Hz, 1H, OH), 2.32-1.90 (m, 3H, CH₂, OH), 1.70-1.49 (m, 2H, CH₂), 1.07 (s, 9H, OSiPh₂C(CH₃)₃) ; ¹³C NMR (62.9 MHz, CDCl₃): δ 148.7, 135.6, 133.2, 130.0, 127.9, 109.9, 71.7, 68.0, 66.0, 30.9, 28.9, 27.0, 19.4; FTIR (CH₂Cl₂): 3356 (br), 3071 (m), 3050 (m), 2929 (s), 2857 (s), 1655 (w), 1472 (m), 1428 (m), 1391 (w), 1362 (w), 1308 (w), 1264 (w), 1189 (w), 1113 (s), 1075 (s), 940 (w), 900 (m), 824 (m), 740 (m), 702 (s), 614 (m), 505 (s); HRMS (ES): m/z [M+Na]⁺ calcd for C₂₃H₃₂O₃NaSi: 407.2018, found: 407.2024; [α]_D²³ = -0.9 (c = 1.17 in CHCl₃).

Preparation of 2-(2-(hydroxymethyl)allyl)cyclohexanol (16)

To a solution of Grignard (30 mL, 0.08 M, 2.4 mmol) was added via cannula at RT a solution of epoxide **15** (162 μ L, 1.6 mmol) in THF (4 mL) and the reaction stirred for 2h. The remaining organometallic reagent was quenched by the slow addition at 0°C of saturated aqueous NH₄Cl solution. The product was extracted with ethyl acetate. The organic layer was washed with 1N HCl, brine, dried over MgSO₄ and concentrated *in vacuo*. The crude residue was purified by flash chromatography (60:40 petroleum ether/ethyl acetate), to give the desired product **16** as a white solid (136 mg, 50%); ¹H NMR (250 MHz, CDCl₃): δ 5.03 (br, 1H, alkene-CH₂), 4.87 (br, 1H, alkene-CH₂), 4.09 (d, *J* = 5.0 Hz, 2H, alkene-CH₂OH), 3.31-3.16 (m 1H, cyclohexane-CHOH), 2.58-2.51 (m, 3H, cyclohexane-CH, and CH₂), 2.00-1.56 (m, 5H, CH₂, OH), 1.50-0.78 (m, 5H, CH₂); ¹³C NMR (62.9 MHz, CDCl₃): δ 148.1, 111.8, 75.5, 66.0, 43.7, 37.2, 35.8, 31.1, 25.6, 25.2; FTIR (CH₂Cl₂): 3329 (br), 2927 (s), 2855 (s), 1654 (w), 1448 (m), 1355 (w), 1310 (w), 1236 (w), 1133 (w), 1104 (w), 1060 (m), 1034 (s), 928 (w), 897 (m), 852 (w), 827 (w), 668 (w), 563 (w); HRMS (EI): m/z [M]⁺ calcd for C₁₀H₁₈O₂: 170.1307, found: 170.1306; Mp: 73-74°C.

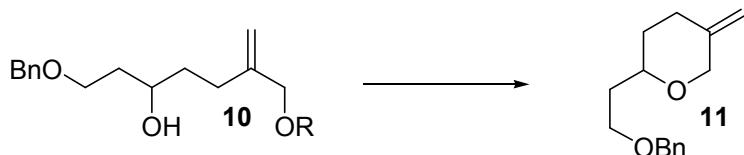
Preparation of 4-methylene-1-phenylpentane-1,5-diol (**19a**) and 2-methylene-4-phenylpentane-1,5-diol (**19b**).



To a solution of Grignard (21.2 mL, 0.10 M, 2.12 mmol) was added via cannula at RT a solution of epoxide **18** (170 mg, 1.41 mmol) in THF (14 mL) and the reaction stirred for 2h. The remaining organometallic reagent was quenched by the slow addition at 0°C of saturated aqueous NH₄Cl solution. The product was extracted with ethyl acetate. The organic layer was washed with 1N HCl, brine, dried over MgSO₄ and concentrated *in vacuo*. The crude residue was purified by flash chromatography (60:40 petroleum ether/ethyl acetate), to give the

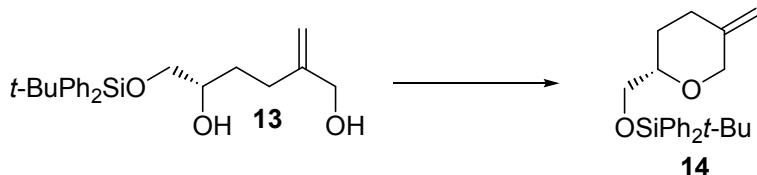
desired products as yellow oils: **19b** (165 mg, 61%) and **19a** (55 mg, 20%); **19b**; ¹H NMR (250 MHz, CDCl₃): δ 7.31-7.05 (m, 5H, Ar-H), 4.87 (br, 1H, alkene-H), 4.69 (br, 1H, alkene-H), 3.85 (br, 2H, alkene-CH₂OH), 3.6 (d, *J* = 6.5 Hz, 2H, CH(Ph)CH₂OH), 2.61 (m, 3H, CHPh, and OH), 2.49 (dd, 1H, *J* = 14.0 Hz, *J* = 6.0 Hz), 2.24 (dd, 1H, *J* = 14.0 Hz, *J* = 6.5 Hz, CH₂) ; ¹³C NMR (62.9 MHz, CDCl₃): δ 146.7, 142.3, 128.9, 128.3, 127.1, 112.5, 67.4, 66.2, 47.0, 35.8; FTIR (CH₂Cl₂): 3335 (br), 3085 (m), 3029 (m), 2926 (s), 2874 (s), 1651 (m), 1602 (m), 1583 (w), 1494 (m), 1453 (s), 1337 (m), 1312 (m), 1211 (m), 1062 (s), 1026 (s), 901 (s), 840 (w), 759 (s), 701 (s), 572 (m), 538 (m); HRMS (EI): m/z [M-H₂O]⁺ calcd for C₁₂H₁₄O: 174.1044, found: 174.1049, and **19a**, ¹H NMR (250 MHz, CDCl₃): δ 7.42-7.20 (m, 5H, Ar-H), 5.06 (br, 1H, alkene-H), 4.91 (br, 1H, alkene-H), 4.68 (dd, *J* = 7.5 Hz, *J* = 5.5 Hz, 1H, PhCH), 4.05 (s, 2H, alkene-CH₂OH), 2.41-1.77 (m, 6H, CH₂, OH) ; ¹³C NMR (62.9 MHz, CDCl₃): δ 148.5, 144.7, 128.6, 127.6, 126.0, 110.0, 74.1, 66.0, 37.1, 29.1; FTIR (CH₂Cl₂): 3336 (br), 2923 (s), 1653 (m), 1494 (m), 1453 (s), 1311 (m), 1267 (m), 1204 (m), 1062 (s), 1026 (s), 901 (m), 764 (m), 701 (m), 630 (w), 544 (w); HRMS (EI): m/z [M]⁺ calcd for C₁₂H₁₆O₂: 192.1150, found: 192.1153.

Palladium catalyzed cyclisation

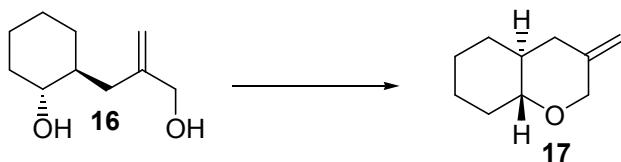

Preparation 2-benzyl-5-methylenetetrahydro-2H-pyran (8).

A round bottom flask with molecular sieves 4Å (500 mg) was flame dried under vacuo and placed under a nitrogen atmosphere. To this was added palladium acetate (34 mg, 0.15 mmol), triphenylphosphine (159 mg, 0.12 mmol) and anhydrous toluene (7 mL). The suspension was stirred for 10 min, and a solution of allylic alcohol **7** (625 mg, 3.03 mmol) in anhydrous toluene (23 mL) was transferred *via* cannula to the reaction mixture. Titanium isopropoxide (224 μ L, 0.76 mmol) was added and the reaction mixture was heated at reflux for 1.5 h. After cooling to RT, direct purification by chromatography on silica gel (gradient starting with petroleum ether and ending with 98:2 petroleum ether/EtOAc) provided the pyran **8** as an oil (420 mg, 82%); ¹H NMR (250 MHz,

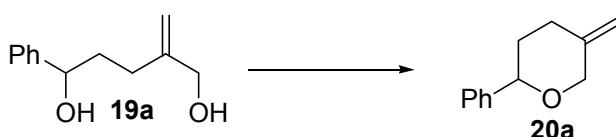
CDCl_3): δ 7.41-7.12 (m, 5H, Ar-*H*), 4.83-4.73 (m, 2H, alkene- CH_2), 4.18 (d, *J* = 12.0 Hz, 1H, pyran-O*CH*₂), 3.94 (d, *J* = 12.0 Hz, 1H, pyran-O*CH*₂), 3.70-3.55 (m, 1H, pyran-O*CH*), 2.91 (dd, *J* = 14.0 Hz, *J* = 7.0 Hz, CH_2Ph), 2.66 (dd, *J* = 14.0 Hz, *J* = 6.0 Hz, CH_2Ph), 2.47-2.33 (m, 1H, CH_2), 2.29-2.12 (m, 1H, CH_2), 1.82-1.70 (m, 1H, CH_2), 1.53-1.33 (m, 1H, CH_2); ¹³C NMR (62.9 MHz, CDCl_3): δ 143.9, 138.8, 129.5, 128.4, 126.3, 109.3, 78.4, 72.6, 42.7, 33.0, 31.6; FTIR (CH_2Cl_2): 3066 (m), 3028 (m), 2940 (s), 2834 (s), 1654 (w), 1605 (w), 1496 (m), 1454 (m), 1437 (m), 1371 (m), 1339 (m), 1287 (w), 1250 (w), 1210 (w), 1080 (s), 1029 (m), 899 (s) cm^{-1} ; HRMS (EI): *m/z* [M]⁺ calcd for $\text{C}_{13}\text{H}_{16}\text{O}$: 188.1201, found: 188.1208.


Preparation of 2-(2-(benzyloxy)ethyl)-5-methylenetetrahydro-2*H*-pyran (11)

Following the representative procedure above, a solution of allylic alcohol **10** (150 mg, 0.60 mmol) in anhydrous toluene (7 mL) was transferred *via* cannula to the suspension (molecular sieves 4Å (150 mg), $\text{Pd}(\text{OAc})_2$ (6.7 mg, 0.03 mmol), PPh_3 (31.5 mg, 0.12 mmol) and anhydrous toluene (2 mL)). Titanium isopropoxide (43.0 μL , 0.15 mmol) was added and the reaction mixture was heated at reflux for 1.5 h. After cooling to RT, direct purification by chromatography on silica gel (gradient starting with petroleum ether and ending with 98:2 petroleum ether/EtOAc) provided the desired product **11** as an oil (80 mg, 85%); ¹H NMR (250 MHz, CDCl_3): δ 7.39-7.23 (m, 5H, Ar-*H*), 4.81-4.73 (m, 2H, alkene- CH_2), 4.51 (s, 2H, OCH_2Bn), 4.16 (dd, *J* = 12.5 Hz, *J* = 1.5 Hz, 1H, pyran-O*CH*₂), 3.95 (d, *J* = 12.5 Hz, 1H, pyran-O*CH*₂), 3.67-3.51 (m, 3H, pyran-O*CH*, and CH_2OBn), 2.46-2.35 (m, 1H, CH_2), 2.34-2.18 (m, 1H, CH_2), 1.84-1.70 (m, 3H, CH_2), 1.50-1.32 (m, 1H, CH_2); ¹³C NMR (62.9 MHz, CDCl_3): δ 144.1, 138.7, 128.5, 127.7, 127.6, 109.2, 74.4, 73.1, 72.5, 67.0, 36.3, 33.6, 31.7; FTIR (CH_2Cl_2): 3069 (m), 3030 (m), 2941 (s), 2853 (s), 1656 (m), 1496 (m), 1453 (m), 1441 (m), 1364 (m), 1339 (m), 1206 (m), 1083 (s), 1053 (s), 1028 (m), 900

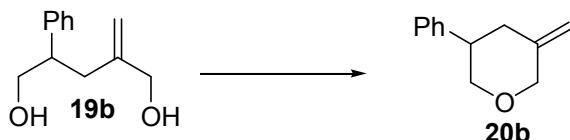

(m), 884 (m), 736 (m), 698 (m), 670 (w), 612 (w) cm^{-1} ; HRMS (EI): m/z [M]⁺ calcd for $\text{C}_{15}\text{H}_{20}\text{O}_2$: 232.1463, found: 232.1472.

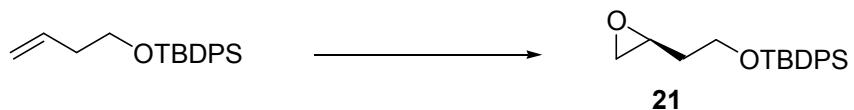
Preparation of (S)-tert-butyl((5-methylenetetrahydro-2H-pyran-2-yl)methoxy)diphenylsilane (14)


Following the representative procedure above, a solution of allylic alcohol **13** (1.04 g, 2.70 mmol) in toluene (25 mL) was transferred *via* cannula to the suspension (molecular sieves 4Å (450 mg), $\text{Pd}(\text{OAc})_2$ (30.4 mg, 0.13 mmol), PPh_3 (142 mg, 0.54 mmol) in anhydrous toluene (10 mL)). Titanium isopropoxide (200 μL , 0.68 mmol) was added and the reaction mixture was heated at reflux for 1.5 h. After cooling to RT, direct purification by chromatography on silica gel (gradient starting with petroleum ether and ending with 98:2 petroleum ether/EtOAc) provided the desired product **14** as an oil (820 mg, 83%, 98% ee). The enantiomeric purity of pyran **14** was determined by chiral HPLC analysis (Chiral Technologies Chiraldak AD, RT, 99.5:0.5 hexane/isopropanol, 1.0 mL/min, t_{R} (minor) = 5.38 min, t_{R} (major) = 4.52 min); ¹H NMR (250 MHz, CDCl_3): δ 7.72-7.63 (m, 4H, Ar-H), 7.47-7.32 (m, 6H, Ar-H), 4.81-4.75 (m, 2H, alkene- CH_2), 4.18 (dd, J = 12.5 Hz, J = 1.5 Hz, 1H, pyran-OCH₂), 3.96 (d, J = 12.5 Hz, 1H, pyran-OCH₂), 3.82-3.70 (m, 1H, pyran-OCH), 3.62-3.48 (m, 2H, CH_2OSi), 2.50-2.38 (m, 1H, CH_2), 2.35-2.18 (m, 1H, CH_2), 1.96-1.84 (m, 1H, CH_2), 1.49-1.29 (m, 1H, CH_2), 1.06 (s, 9H, OSiPh₂C(CH₃)₃); ¹³C NMR (62.9 MHz, CDCl_3): δ 144.2, 135.8, 133.8, 129.7, 127.8, 109.3, 77.8, 72.3, 67.1, 31.3, 30.2, 27.0, 19.4; FTIR (CH_2Cl_2): 3072 (s), 3050 (s), 2999 (s), 2932 (s), 2854 (s), 1657 (m), 1590 (m), 1472 (m), 1428 (m), 1390 (m), 1362 (m), 1338 (w), 1325 (w), 1287 (w), 1263 (w), 1240 (w), 1204 (w), 1187 (m), 1135 (m), 1113 (m), 1083 (m), 1047 (m), 1008 (m), 969 (w), 938 (w), 901 (m), 824 (m), 807 (m), 740 (m), 702 (m), 614 (m), cm^{-1} ; HRMS (ES): m/z [M+Na]⁺ calcd for $\text{C}_{23}\text{H}_{30}\text{O}_2\text{NaSi}$: 389.1913, found: 389.1928; $[\alpha]_D^{22} = -4.8$ (c = 1.16 in CHCl_3)

Preparation 3-methyleneoctahydro-2H-chromene (17)

Following the representative procedure above, a solution of allylic alcohol **16** (100 mg, 0.59 mmol) in anhydrous toluene (4 mL) was transferred *via* cannula to the suspension (molecular sieves 4Å (80 mg), Pd(OAc)₂ (6.6 mg, 0.029 mmol), PPh₃ (30.9 mg, 0.12 mmol) and anhydrous toluene (1.5 mL)). Titanium isopropoxide (44 µL, 0.68 mmol) was added and the reaction mixture was heated at reflux for 1.5 h. After cooling to RT, direct purification by chromatography on silica gel (gradient starting with petroleum ether and ending with 98:2 petroleum ether/EtOAc) provided the desired product **17** as an oil (60 mg, 67%). The compound showed satisfactory spectra data^v ; ¹H NMR (250 MHz, CDCl₃): δ 4.88-4.63 (m, 2H, alkene-CH₂), 4.21 (dd, *J* = 12.0 Hz, *J* = 2.0 Hz, 1H, pyran-OCH₂), 3.97 (d, *J* = 12.0 Hz, 1H, pyran-OCH₂), 3.10-2.90 (m, 1H, pyran-OCH), 2.32 (ddd, *J* = 13.5 Hz, *J* = 4.0 Hz, *J* = 1.5 Hz, 1H, alkene-(CH₂)CH), 1.96-1.74 (m, 3H, alkene-(CH₂)CH, and CH₂), 1.70-1.63 (m, 2H, CH₂), 1.43-1.13 (m, 4H, CH₂), 1.11-0.96 (m, 1H, alkene-CH₂CH); ¹³C NMR (62.9 MHz, CDCl₃): δ 144.5, 109.1, 81.5, 72.6, 43.9, 39.1, 32.4, 32.1, 25.6, 25.1; HRMS (EI): m/z [M]⁺ calcd for C₁₀H₁₆O: 152.1201, found: 152.1201.

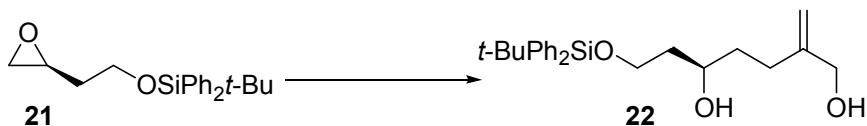

Preparation 5-methylene-2-phenyltetrahydro-2H-pyran (20a).


Following the representative procedure above, a solution of diol **19a** (195 mg, 1.01 mmol) in toluene (8.5 mL) was transferred *via* cannula to the suspension (molecular sieves 4Å (150 mg), Pd(OAc)₂ (11.3 mg, 0.05 mmol), PPh₃ (53 mg, 0.20 mmol) and anhydrous toluene 1.5 mL)). Titanium isopropoxide (75 µL, 0.25 mmol) was added and the reaction mixture was heated at toluene reflux for 1.5 h. After cooling to RT, direct purification by chromatography on silica gel (gradient starting with petroleum ether and ending with 98:2 petroleum

ether/EtOAc) provided the desired product **20a** as an oil (116 mg, 66%): ^1H NMR (250 MHz, CDCl_3): δ 7.40-7.22 (m, 5H, Ar-*H*), 4.90-4.80 (m, 2H, alkene- CH_2), 4.47 (dd, *J* = 11.0 Hz, *J* = 2.0 Hz, 1H, pyran-OCH), 4.36 (dd, *J* = 12.5 Hz, *J* = 1.5 Hz, 1H, pyran-OCH₂), 4.16 (d, *J* = 12.5 Hz, 1H, pyran-OCH₂), 2.60-2.37 (m, 2H, alkene- CH_2), 2.05-1.93 (m, 1H, CH_2CHPh), 1.84-1.65 (m, 1H, alkene- CH_2CH_2); ^{13}C NMR (62.9 MHz, CDCl_3): δ 143.5, 142.5, 128.4, 127.6, 126.0, 109.7, 79.7, 72.9, 35.5, 32.2; FTIR (CH_2Cl_2): 3069 (w), 3030 (w), 2942 (s), 2831 (s), 1495 (w), 1452 (m), 1439 (w), 1357 (w), 1337 (w), 1285 (w), 1244 (w), 1089 (s), 1070 (s), 1028 (s), 902 (s), 754 (m), 699 (s) cm^{-1} ; HRMS (EI): m/z [M]⁺ calcd for $\text{C}_{12}\text{H}_{14}\text{O}$: 174.1045, found: 174.1051.

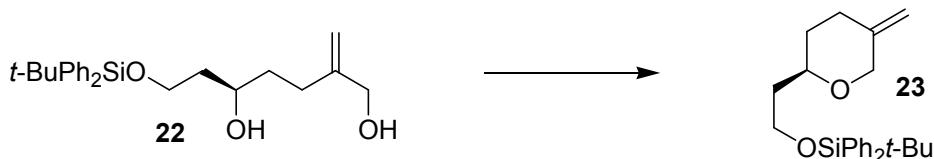
Preparation 3-methylene-5-phenyltetrahydro-2*H*-pyran (**20b**)

Following the representative procedure above, a solution of allylic alcohol **19b** (75 mg, 0.39 mmol) in toluene (3.5 mL) was transferred *via* cannula to the suspension (molecular sieves 4 \AA (60 mg), $\text{Pd}(\text{OAc})_2$ (4.4 mg, 0.019 mmol), PPh_3 (20.4 mg, 0.078 mmol) and anhydrous toluene 1.0 mL). Titanium isopropoxide (75 μL , 0.25 mmol) was added and the reaction mixture was heated at toluene reflux for 1.5 h. After cooling to RT, direct purification by chromatography on silica gel (gradient starting with petroleum ether and ending with 98:2 petroleum ether/EtOAc) provided the desired product **20b** as an oil (54 mg, 79%): ^1H NMR (250 MHz, CDCl_3): δ 7.40-7.18 (m, 5H, Ar-*H*), 4.95-4.78 (m, 2H, alkene-*H*), 4.87 (d, *J* = 12.0 Hz, 1H, alkene- CH_2), 4.23 (d, *J* = 12.0 Hz, 1H, pyran-OCH), 4.08-3.95 (m, 2H, pyran-OCH₂), 3.52 (t, *J* = 10.5 Hz, 1H, pyran-OCH₂), 3.07-2.90 (m, 1H, CHPh), 2.72-2.60 (m, 1H, CH_2CHPh), 2.57-2.42 (m, 1H, alkene-(CH_2) CHPh ; ^{13}C NMR (62.9 MHz, CDCl_3): δ 143.1, 141.7, 128.7, 127.4, 126.9, 110.3, 73.2, 72.3, 44.6, 38.7; FTIR (CH_2Cl_2): 3072 (m), 3029 (m), 2957 (s), 2901 (s), 2835 (s), 1656 (m), 1603 (m), 1494 (s), 1453 (s), 1436 (m), 1337 (w), 1281 (w), 1252 (w), 1199 (w), 1174 (m), 1085 (s), 1030 (w), 984 (m), 932 (m), 905 (s), 871 (m), 756 (s), 700 (s), 654 (m), 524 (m) cm^{-1} ; HRMS (EI): m/z [M]⁺ calcd for $\text{C}_{12}\text{H}_{14}\text{O}$: 174.1045, found: 174.1048.

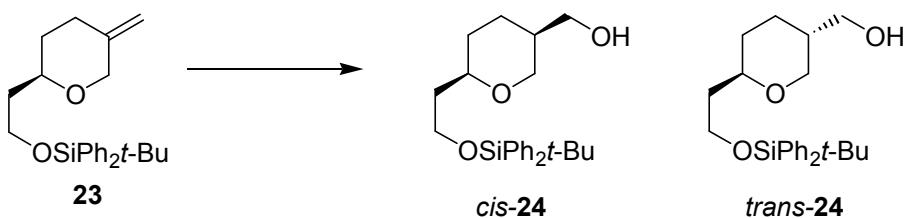

(+)-Rhopaloic Acid B**Preparation of (S)-(2-(oxiran-2-yl)ethoxy)(tert-butyl)diphenylsilane (21)**

To a solution of tert-butyl(3-oxiran-2-yl)ethoxydiphenylsilane^{vi} (8.76 g, 28.20 mmol) in DCM (65 mL) at 0°C was added portionwise m-CPBA (12.6 g, 56.40 mol). The resulting suspension was warmed gradually to temperature, and stirred for 20 h. The reaction mixture was filtered to remove the white precipitate, concentrated *in vacuo*, and re-dissolved in petroleum ether. The suspension was filtered, the filtrate concentrated *in vacuo* and purified by flash chromatography (90:10 petroleum ether/ethyl acetate), to give the racemic epoxide (8.80 g, 95 %) as pale yellow oil.

The kinetic resolution of epoxide **21** was conducted following the procedure of Jacobsen.^{vii} The catalyst (S, S)-salen-Co (145 mg, 0.24 mmol) was dissolved in DCM (3.1 ml) and treated with acetic acid (136 µL, 2.40 mmol). The solution was allowed to stir at RT open to air for 30 min over which time the colour changed from orange-red to dark brown. The solution was concentrated *in vacuo* to leave a crude brown solid. The resulting catalyst residue was dissolved in THF (1.6 mL), and then racemic epoxide **21** (7.8 g, 23.90 mmol) was added to the solution. The reaction was cooled at 0°C and H₂O (236 µL, 13.14 mmol) was added dropwise over a 5 min period. The reaction was allowed to warm to RT and stirred for 40h. Direct purification by flash chromatography on silica gel (90:10 petroleum ether/ethyl acetate) provided the enantioenriched epoxide **21** (3.45 g, 44%, >99% ee). The enantiomeric purity of epoxide **21** was determined by chiral HPLC analysis (Chiral Technologies Chiraldpak OD, RT, 98:2 hexane/isopropanol, 1.0 mL/min, *t*_R (minor) = 5.34 min, *t*_R (major) = 6.09 min). [α]_D²³ = -4.7 (c = 1.06, CHCl₃); lit.^{viii} [α]_D¹⁸ = -6.0 (c = 8.49, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 7.73-7.60 (m, 4H, Ar-H), 7.44-7.33 (m, 6H, Ar-H), 3.90-3.74 (m, 2H, CH₂OSi), 3.14-3.06 (m, 1H, epoxide-CHO), 2.78 (dd, *J* = 5.0 Hz, *J* = 4.0 Hz 1H, epoxide-CH₂O), 2.51 (dd, *J* = 5.0 Hz, *J* = 2.5 Hz 1H, epoxide-CH₂O), 1.82-1.72 (m, 2H, CH₂CH₂OSi), 1.05 (s, 9H, CH₃);

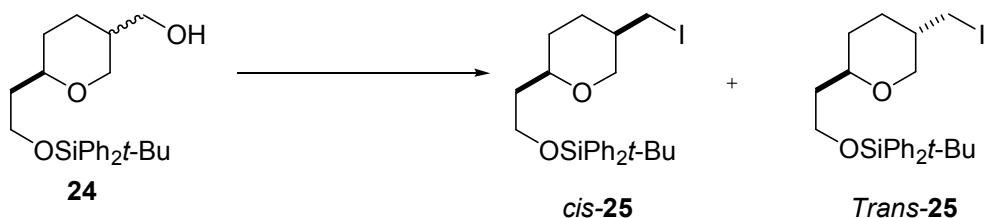

¹³C NMR (62.9 MHz, CDCl₃): δ 135.6, 133.8, 139.8, 127.8, 61.0, 50.2, 47.3, 35.8, 26.9, 19.3.

Preparation of (R)-7-(tert-butyldiphenylsilyloxy)-2-methyleneheptane-1,5-diol (22).


To a solution of Grignard (10 mL, 0.14M, 1.4 mmol) was added via cannula at RT a solution of epoxide **21** (304 mg, 0.93 mmol) in THF (9.5 mL) and the reaction stirred for 2h. The remaining organometallic reagent was quenched by the slow addition at 0°C of saturated aqueous NH₄Cl solution. The product was extracted with ethyl acetate. The organic layer was washed with 1N HCl, brine, dried over MgSO₄ and concentrated *in vacuo*. The crude residue was purified by flash chromatography (60:40 petroleum ether/ethyl acetate), to give the desired product **22** as an oil (293 mg, 79%); ¹H NMR (250 MHz, CDCl₃): δ 7.70-7.63 (m, 4H, Ar-H), 7.48-7.33 (m, 6H, Ar-H), 5.06-5.01 (m, 1H, alkene-H), 4.92-4.88 (m, 1H, alkene-H), 4.09 (br, 2H, alkene-CH₂OH), 3.99-3.78 (m, 3H, CHOH and CH₂OSi), 3.50 (br, 1H, OH), 2.33-1.94 (m, 3H, alkene-CH₂CH₂ and OH), 1.84-1.54 (m, 4H, CH₂CH(OH)CH₂), 1.04 (s, 9H, OSiPh₂C(CH₃)₃); ¹³C NMR (62.9 MHz, CDCl₃): δ 149.0, 135.7, 133.1, 133.0, 130.0, 127.9, 109.7, 71.5, 66.1, 63.6, 38.5, 35.7, 29.0, 26.9, 19.1; IR (film, cm⁻¹): 3354 (br), 3071 (w), 3050 (w), 2932 (s), 2858 (s), 1652 (w), 1472 (m), 1428 (s), 1390 (m), 1361 (m), 1112 (s), 1085 (s), 1029 (m), 900 (m), 823 (m), 737 (m), 702 (s), 688 (m), 614 (m), 504 (s); HRMS (ES): m/z [M+H]⁺ calcd for C₂₄H₃₅O₃Si: 399.2355, found: 399.2371; $[\alpha]_D^{23} = +14.4$ (c = 1.04 in CHCl₃).

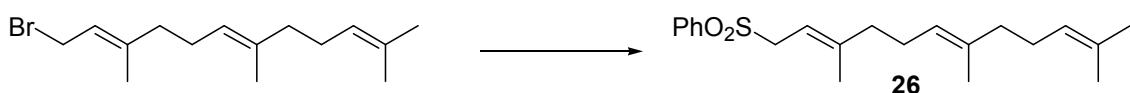
Preparation of (2-((R)-tetrahydro-5-methylene-2H-pyran-2-yl)ethoxy)(tert-butyl)diphenylsilane (23)

Following the representative procedure above, a solution of **22** (1.12 g, 2.81 mmol) in toluene (42 mL) was transferred *via* cannula to the suspension (molecular sieves 4Å (750 mg), Pd(OAc)₂ (32 mg, 0.14 mmol), PPh₃ (147 mg, 0.56 mmol) and anhydrous toluene 15 mL). Titanium isopropoxide (208 µL, 0.70 mmol) was added and the reaction mixture was heated at toluene reflux for 1.5 h. After cooling to RT, direct purification by chromatography on silica gel (gradient starting with petroleum ether and ending with 98:2 petroleum ether/EtOAc) provided the desired product as an oil (920 mg, 86%, >99% ee). The enantiomeric purity of pyran **23** was determined by chiral HPLC analysis (Chiral Technologies Chiraldpak AD, RT, 99.5:0.5 hexane/isopropanol, 1.0 mL/min, *t*_R (minor) = 3.86 min, *t*_R (major) = 4.22 min); ¹H NMR (250 MHz, CDCl₃): δ 7.72-7.62 (m, 4H, Ar-H), 7.46-7.32 (m, 6H, Ar-H), 4.79-4.73 (m, 2H, alkene-CH₂), 4.13 (dd, *J* = 12.5 Hz, *J* = 2.0 Hz, 1H, pyran-OCH₂), 3.92 (d, *J* = 12.5 Hz, 1H, pyran-OCH₂), 3.89-3.70 (m, 2H, CH₂OSi), 3.69-3.56 (m, 1H, pyran-OCH), 2.46-2.34 (m, 1H, CH₂), 2.33-2.16 (m, 1H, CH₂), 1.83-1.67 (m, 3H, CH₂), 1.48-1.28 (m, 1H, CH₂), 1.05 (s, 9H, OSiPh₂(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃): δ 144.2, 135.7, 134.2, 134.1, 129.7, 127.7, 109.2, 74.1, 72.4, 60.5, 39.0, 33.6, 31.8, 27.0, 19.4; IR (film, cm⁻¹): 3049 (w), 2932 (s), 2857 (s), 1472 (m), 1428 (m), 1389 (w), 1361 (w), 1263 (w), 1112 (s), 1086 (s), 944 (w), 900 (m), 823 (m), 737 (m), 702 (s), 614 (w), 505 (m); HRMS (ES): m/z [M+Na]⁺ calcd for C₂₄H₃₂O₂NaSi: 403.2069, found: 403.2064, [α]_D²² = -5.5 (c = 1.27, CHCl₃).

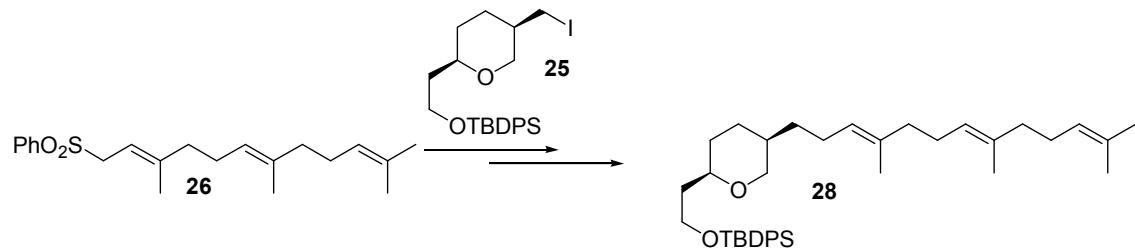

Preparation of *cis*-, *trans*-(6-(2-(tert-butyldiphenylsilyloxy)ethyl)tetrahydro-2H-pyran-3-yl)methanol (**24**)

To a solution of **23** (958 mg, 2.52 mmol) in anhydrous THF (25 mL) and RhCl(PPh₃)₃ (117 mg, 0.126 mmol) at -20°C, was added dropwise catecholborane^{ix} (940 µL, 8.82 mmol). The reaction was stirred for 20h at -20°C

and then quenched with NaOH (1M, 10.1 mL, 10.08 mmol), H₂O₂ (1.16 mL, 10.08 mmol), and stirred for 3h at RT. After this time, saturated aqueous NH₄Cl solution was added to the reaction and the product extracted with EtOAc. The combined organic extracts were washed with saturated aqueous K₂CO₃ solution, brine, dried over MgSO₄ and concentrated *in vacuo*. The crude residue was purified by flash chromatography (60:40 petroleum ether/ethyl acetate), to give a mixture of the desired products **24** as yellow oil (876 mg, 88%, 1:3 *trans/cis* ratio); δ 7.80-7.57 (m, 4H, Ar-H, (*trans* + *cis*)), 7.52-7.28 (m, 6H, Ar-H, (*trans* + *cis*)), 4.06 (ddd, J = 11.0 Hz, J = 4.0 Hz, J = 2.5 Hz, 0.25 H (*trans*), pyran-OCH), 3.95 (d, J = 12.0 Hz, 0.75 H (*cis*), pyran-OCH₂), 3.89-3.33 (m, 5.75 H, CH₂OSi, pyran-OCH₂, pyran-OCH, CH₂OH (*trans* + *cis*)), 3.13 (t, J = 11.0 Hz, 0.25 (*trans*), pyran-OCH₂) 2.43-1.15 (m, 8H, CH₂, CH, OH (*trans* + *cis*)), 1.06 (s, 9H, -OSiPh₂C(CH₃)₃) ; ¹³C NMR (62.9 MHz, CDCl₃): δ 135.7, 134.2, 134.1, 129.6, 127.7, 74.8, 74.7 (*trans*), 71.0 (*trans*), 68.5, 65.1 (*trans*), 63.4, 60.5, 60.3 (*trans*), 39.2 (*trans*), 39.1, 36.0, 31.5 (*trans*), 27.9, 27.0, 24.6, 19.4; IR (film, cm⁻¹): 3382 (br), 3071 (w), 3050 (w), 2931 (s), 2857 (s), 1472 (m), 1428 (m), 1112 (s), 1091 (s), 823 (m), 737 (m), 702 (s), 614 (m), 505 (m) HRMS (ES): m/z [M+Na]⁺ calcd for C₂₄H₃₄O₂NaSi: 421.2175, found: 421.2177.


Preparation of *cis*-, *trans*-tert-butyl(2-(5-(iodomethyl)tetrahydro-2H-pyran-2-yl)ethoxy)diphenylsilane (**25**)

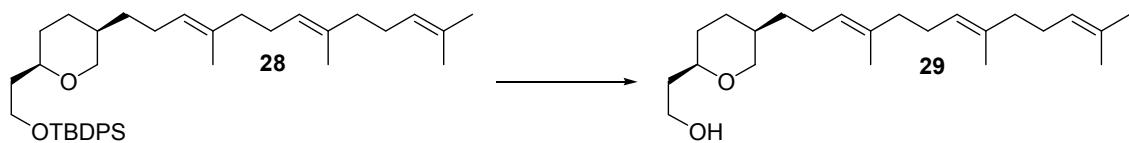
A *cis/trans* mixture (3:1) of **24** from (876 mg, 2.19 mmol) was dissolved in anhydrous THF (44 mL). Imidazole (300 mg, 4.40 mmol), triphenylphosphine (866 mg, 3.29 mmol), iodine (837 mg, 3.29 mmol) were added to the solution at RT. The reaction was stirred for 3h at RT, and then quenched with H₂O and EtOAc. The aqueous layer was extracted with EtOAc, and the combined


organic extracts were washed with saturated aqueous NaHSO_3 solution, aqueous 1N HCl solution, saturated aqueous NaHCO_3 solution, brine, dried over MgSO_4 and concentrated *in vacuo*. The crude residue was purified by flash chromatography (99:1; petroleum ether/EtOAc), to give the desired products as yellow oil; **cis-25** (765 mg, 68%) and of **trans-25** (258 mg, 23%):
(trans-25) ^1H NMR (250 MHz, CDCl_3): δ 7.72-7.63 (m, 4H, Ar-H), 7.48-7.33 (m, 6H, Ar-H), 4.09 (ddd, J = 11.0 Hz, J = 4.0 Hz, J = 2.5 Hz, 1H, CH_2O), 3.89-3.68 (m, 2H, CH_2OSi), 3.50-3.38 (m, 1H, CH-O), 3.09-2.91 (m, 3H, CH_2O , CH_2I) 2.06-1.95 (m, 1H, CHCH_2I), 1.84-1.62 (m, 4H, CH_2), 1.42-1.10 (m, 2H, CH_2), 1.06 (s, 9H, CH_3) ; ^{13}C NMR (100 MHz, CDCl_3): δ 135.9, 134.3, 134.2, 129.9, 127.9, 74.8, 73.4, 60.6, 39.1, 38.3, 31.7, 31.4, 27.2, 19.6, 8.4; IR (film, cm^{-1}): 3070 (w), 3048 (w), 2931 (s), 2856 (s), 1472 (m), 1461 (w), 1428 (m), 1389 (w), 1360 (w), 1297 (w), 1261 (w), 1233 (w), 1188 (m), 1184 (m), 1146 (w), 1112 (s), 1090 (s), 1015 (w), 941 (w), 907 (w), 823 (m), 737 (m), 702 (s), 688 (m), 614 (m), 504 (s), 488 (m); HRMS (ES): m/z [M+Na] $^+$ calcd for $\text{C}_{24}\text{H}_{33}\text{O}_2\text{INaSi}$: 531.1192, found: 531.1183, $[\alpha]_D^{22} = +3.4^\circ$ ($c = 1.19$ in CHCl_3); **(cis-25)** ^1H NMR (250 MHz, CDCl_3): δ 7.71-7.63 (m, 4H, Ar-H), 7.48-7.33 (m, 6H, Ar-H), 3.93 (dt, J = 12.0 Hz, J = 2.0 Hz, 1H, CH_2O), 3.88-3.67 (m, 2H, CH_2O and CH-O), 3.64-3.42 (m, 3H, CH_2OSi and CH_2I), 3.31 (dd, 1H, J = 9.5 Hz, J = 7.0 Hz, 1H, CH_2I), 2.00-1.57 (m, 5H, CH_2), 1.48-1.25 (m, 2H, CH_2 and CHCH_2I), 1.06 (s, 9H, CH_3) ; ^{13}C NMR (100 MHz, CDCl_3): δ 135.7, 134.1, 134.0, 129.7, 127.7, 74.6, 70.4, 60.5, 39.0, 37.4, 28.2, 27.2, 27.1, 19.6, 9.9; IR (film, cm^{-1}): 3070 (w), 3048 (w), 2931 (s), 2856 (s), 1472 (m), 1446 (w), 1428 (m), 1389 (w), 1360 (w), 1295 (w), 1271 (w), 1207 (w), 1177 (w), 1112 (s), 1090 (s), 1024 (m), 1007 (w), 969 (w), 940 (w), 906 (w), 823 (m), 800 (w), 736 (m), 703 (s), 614 (m), 504 (s), 490 (m); HRMS (ES): m/z [M+H] $^+$ calcd for $\text{C}_{24}\text{H}_{34}\text{IO}_2$: 509.1373, found: 509.1355, $[\alpha]_D^{22} = +8.6$ ($c = 1.04$ in CHCl_3).

Preparation of 1-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienylsulfonyl)benzene (26).

Sodium benzenesulfonic acid (581 mg, 3.54 mmol) and tetra-butyl-ammonium iodide (16 mg, 0.04 mmol) were dissolved in anhydrous DMF (22mL). After stirring for 10 min, farnesyl bromide (800 μ L, 2.95 mmol) was added dropwise and the reaction mixture was stirred at RT for 3.5h. The reaction was quenched with H_2O and Et_2O and the aqueous layer was extracted two times with Et_2O . The combined organic layers were washed three times with H_2O , brine, dried over Na_2SO_4 and concentrated *in vacuo*. The crude residue was purified by flash chromatography (90:10 petroleum ether/ethyl acetate), to give the desired product **26** as a yellow oil (900 mg, 88%). The compound showed satisfactory spectra data^x; ¹H NMR (250 MHz, $CDCl_3$): δ 7.90-7.83 (m, 2H, Ar-*H*), 7.67-7.47 (m, 3H, Ar-*H*), 5.18 (td, *J* = 7.9 Hz, *J* = 1.2 Hz, 1H, alkene-*H*- CH_2SO_2Ph), 5.12-5.00 (m, 2H, alkene-*H*), 3.79 (d, *J* = 7.9 Hz, 2H, CH_2SO_2Ph), 2.19-1.89 (m, 8H, CH_2), 1.66 (d, *J* = 1.0 Hz, 3H, $PhSO_2CH_2$ -alkene- CH_3), 1.61-1.56 (m, 6H, CH_3), 1.30 (d, *J* = 1.2 Hz, 3H, CH_3); ¹³C NMR (63 MHz, $CDCl_3$): δ 146.4, 138.7, 135.7, 133.5, 131.4, 128.9, 128.5, 124.2, 123.3, 110.3, 56.1, 39.7, 26.7, 26.2, 25.7, 17.7, 16.2, 16.0.

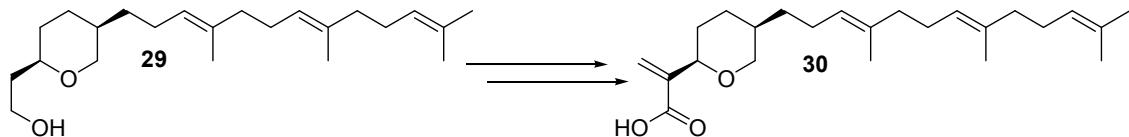
Preparation of tert-butyldiphenyl(2-((2R,5R)-5-((3E,7E)-4,8,12-trimethyltrideca-3,7,11-trienyl)tetrahydro-2H-pyran-2-yl)ethoxy)silane (28)



LDA (200 μ L of DIPA, 710 μ L of 1.9 M n-BuLi, 1.45 mL THF) was added to a cooled (-78°C) solution of the farnesyl sulfone **26** (131 mg, 0.378 mmol) in anhydrous THF (1.4 mL) and DMPU (520 μ L). The resulting bright orange solution was stirred for 45-60 min at -78°C, at which point a solution of pyran **25** (160 mg, 0.315 mmol) in anhydrous THF (0.5 mL), was added dropwise. The reaction was stirred an additional 1 h at -78°C, and then the cold bath was removed and the reaction stirred for another 3-4h. The reaction mixture was then quenched with a saturated solution of ammonium chloride. The aqueous solution was extracted three times with ether, dried over magnesium sulphate,

and concentrated *in vacuo*. The resulting oil residue was purified *via* flash chromatography on silica gel (petroleum ether/ethyl acetate 90:10) to give an inseparable mixture of the desired product **27** and farnesyl sulfone **25**.

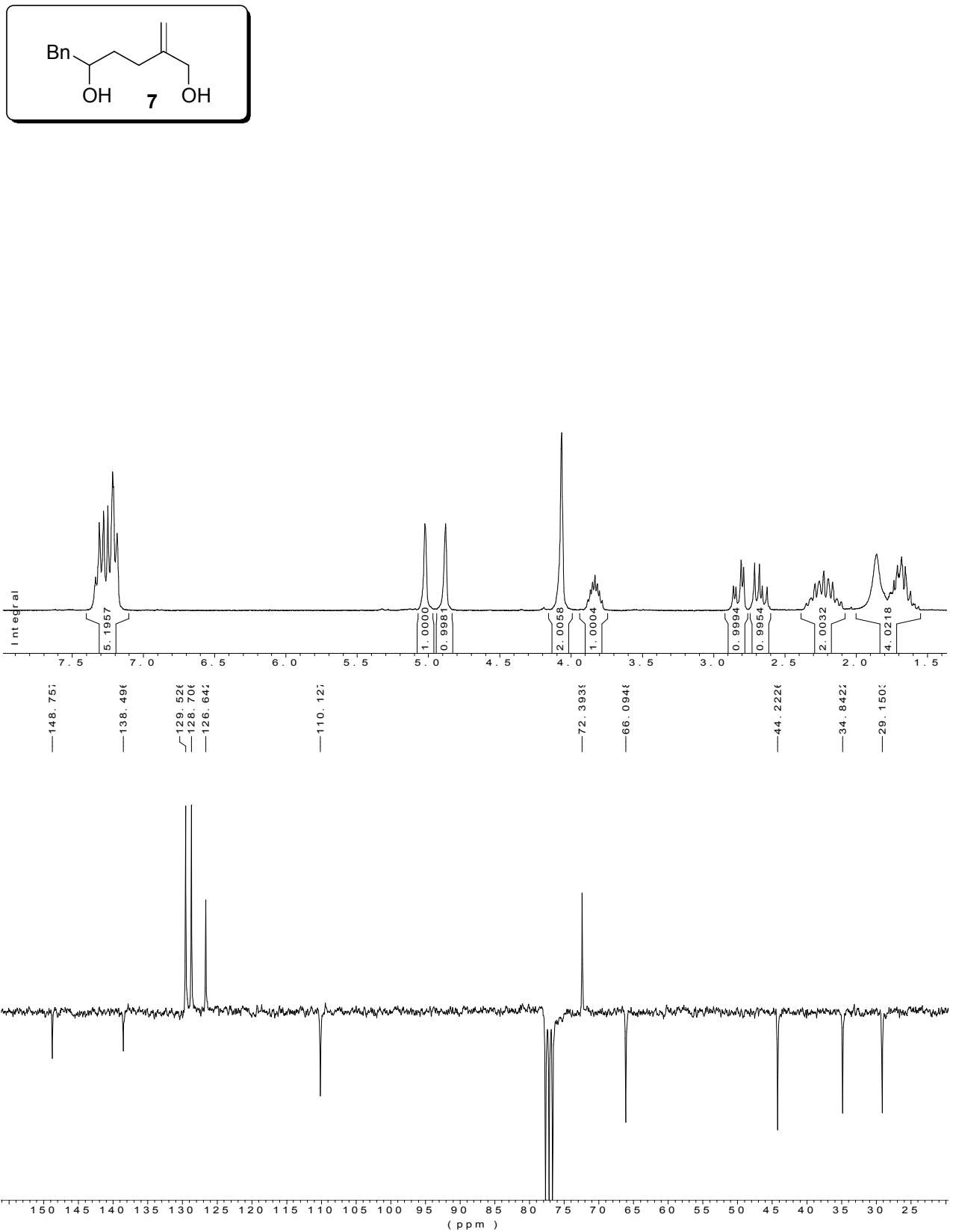
The crude mixture of sulfone (248 mg) was dissolved in anhydrous THF (3.8 mL) and $\text{PdCl}_2(\text{dppf})$ (27.7 mg, 0.04 mmol, based on the farnesyl sulfone) was added. Super Hydride (1M in THF, 1.13 mL, 1.13 mmol based on the farnesyl sulfone) was added dropwise at 10°C to the orange solution which quickly changed to red-brown. The cold bath was removed and the reaction was stirred at room temperature for 6 h, at which time it was quenched carefully at 0°C with saturated aqueous NH_4Cl solution. The resulting aqueous layer was extracted with ether three times. The combined organic layers were washed with brine, dried over MgSO_4 , filtered, and concentrated *in vacuo*. The resulting oily residue was purified *via* flash chromatography on silica gel (98:2; petroleum ether/EtOAc) to give the desired product **28** (135 mg, 73% over two steps) as a yellow oil. ^1H NMR (250 MHz, CDCl_3): δ 7.75-7.66 (m, 4H, Ar- H), 7.46-7.35 (m, 6H, Ar- H), 5.20-4.08 (m, 3H, alkene- H), 3.91-3.69 (m, 3H, CH_2O and $\text{CH}-\text{O}$), 3.65-3.51 (m, 2H, CH_2OSi), 2.10-1.80 (m, 10H, CH_2), 1.89-1.59 (m, 21H, alkene- CH_3 , CH_2 , CH), 1.09 (s, 9H, CH_3) ; ^{13}C NMR (62.9 MHz, CDCl_3): δ 135.7, 135.1, 135.0, 134.2, 134.1, 131.3, 129.6, 127.7, 124.6, 124.5, 124.4, 74.5, 70.8, 60.6, 39.9 (2C), 38.8, 33.4, 30.6, 27.6, 27.5, 27.0, 26.9, 26.7, 25.9, 19.4, 17.8, 16.2 (2C); IR (film, cm^{-1}): 3071 (s), 3050 (s), 2928 (s, br), 2738 (m), 1472 (s), 1428 (s), 1384 (s), 1360 (s), 1260 (m), 1206 (m), 1189 (m), 1112 (s, br), 1007 (m), 939 (m), 900 (w), 824 (s), 736 (s), 702 (s), 614 (s), 504 (s); HRMS (ES): m/z [M+H] $^+$ calcd for $\text{C}_{39}\text{H}_{59}\text{O}_2\text{Si}$: 587.4284, found: 587.4285, $[\alpha]_D^{22} = +7.4$ ($c = 1.08$ in CHCl_3).

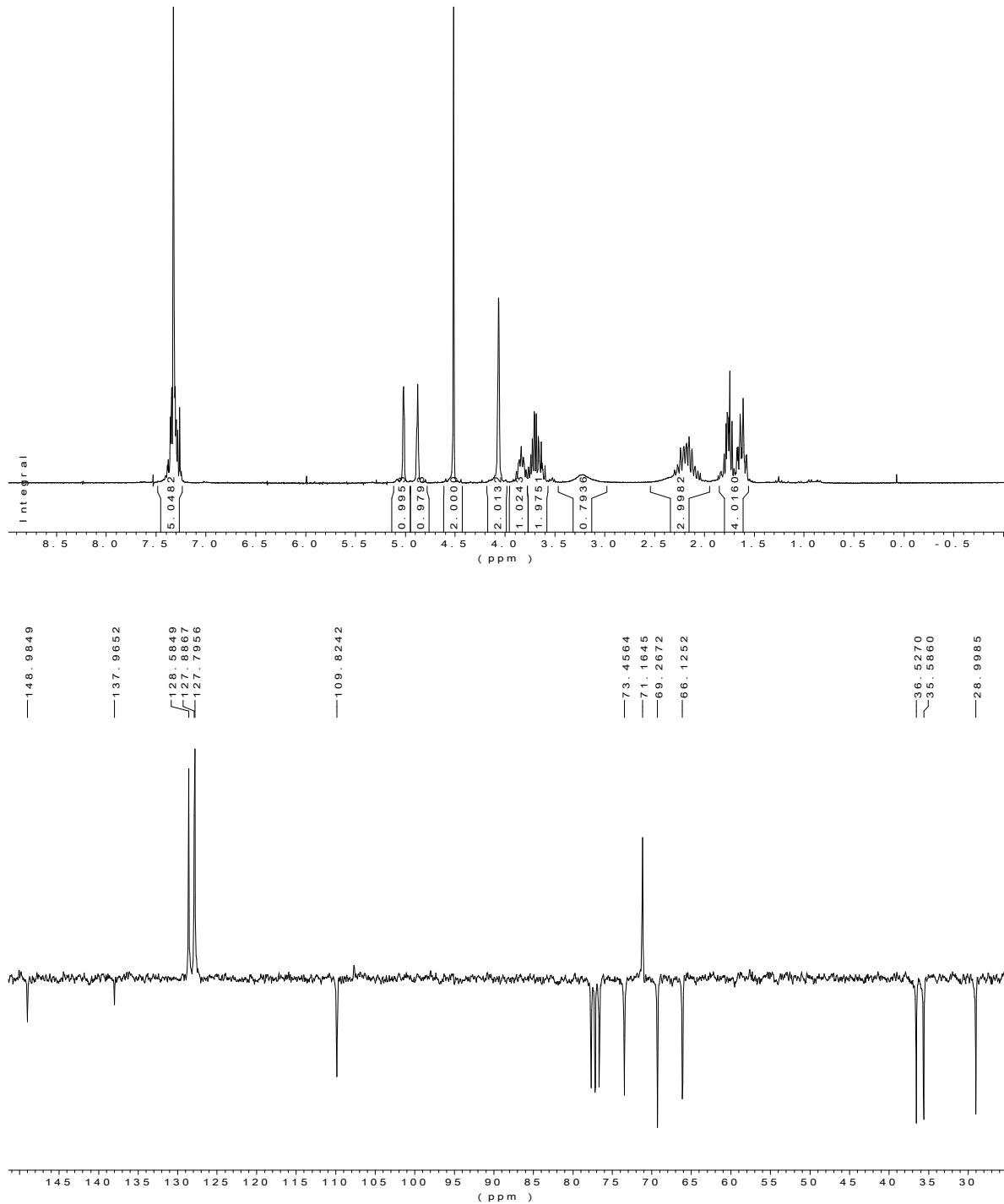
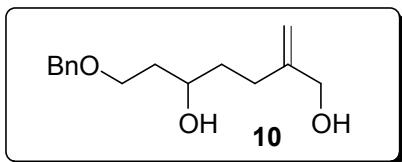

Preparation of 2-((2R,5R)-tetrahydro-5-((3E,7E)-4,8,12-trimethyltrideca-3,7,11-trienyl)-2H-pyran-2-yl)ethanol (29)

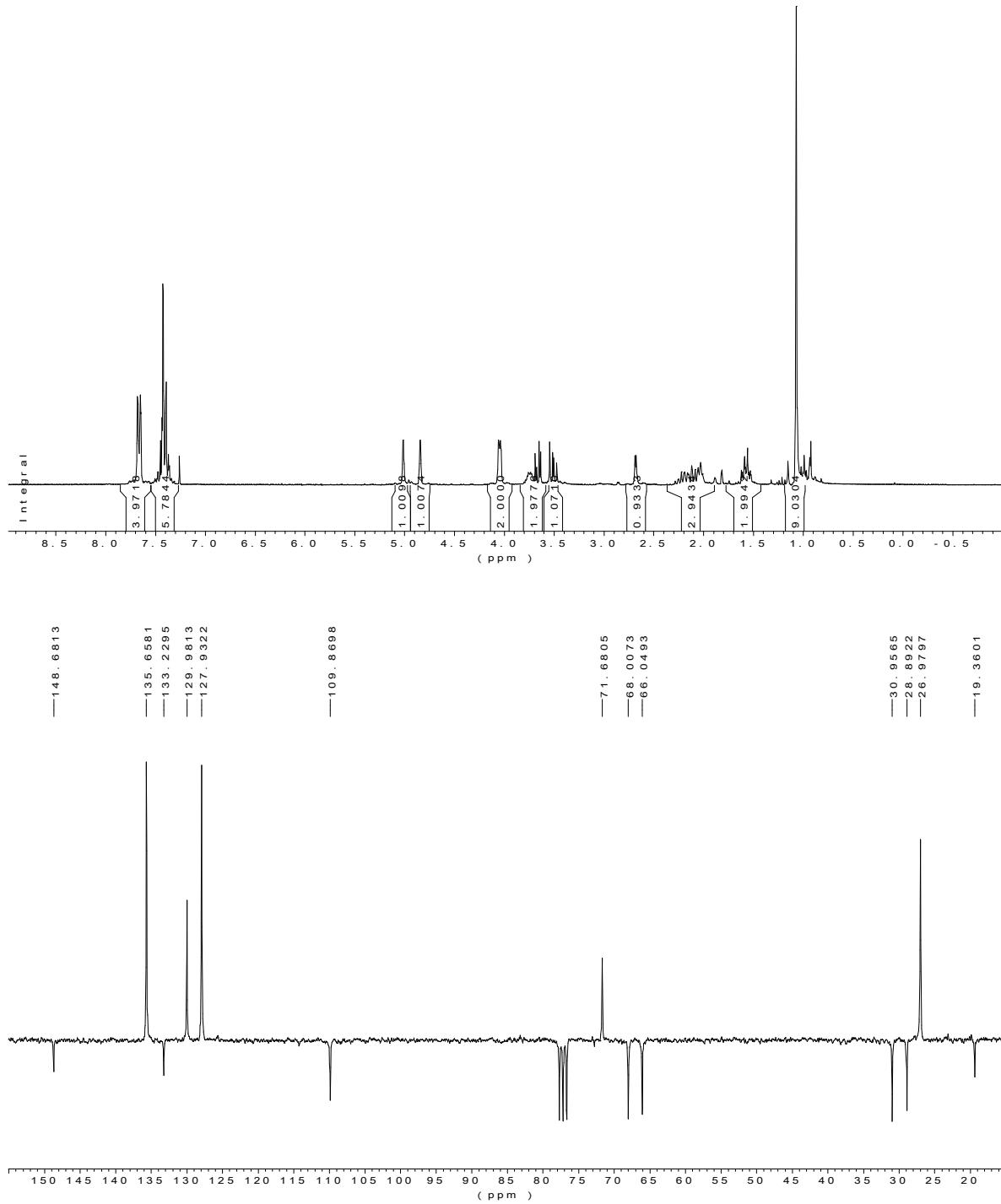
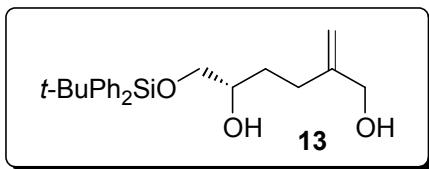
To a solution of **28** (143 mg, 0.24 mmol) in anhydrous THF (2.5 mL) was added dropwise TBAF (1M in THF, 370 μL , 0.37 mmol). The reaction was stirred at RT

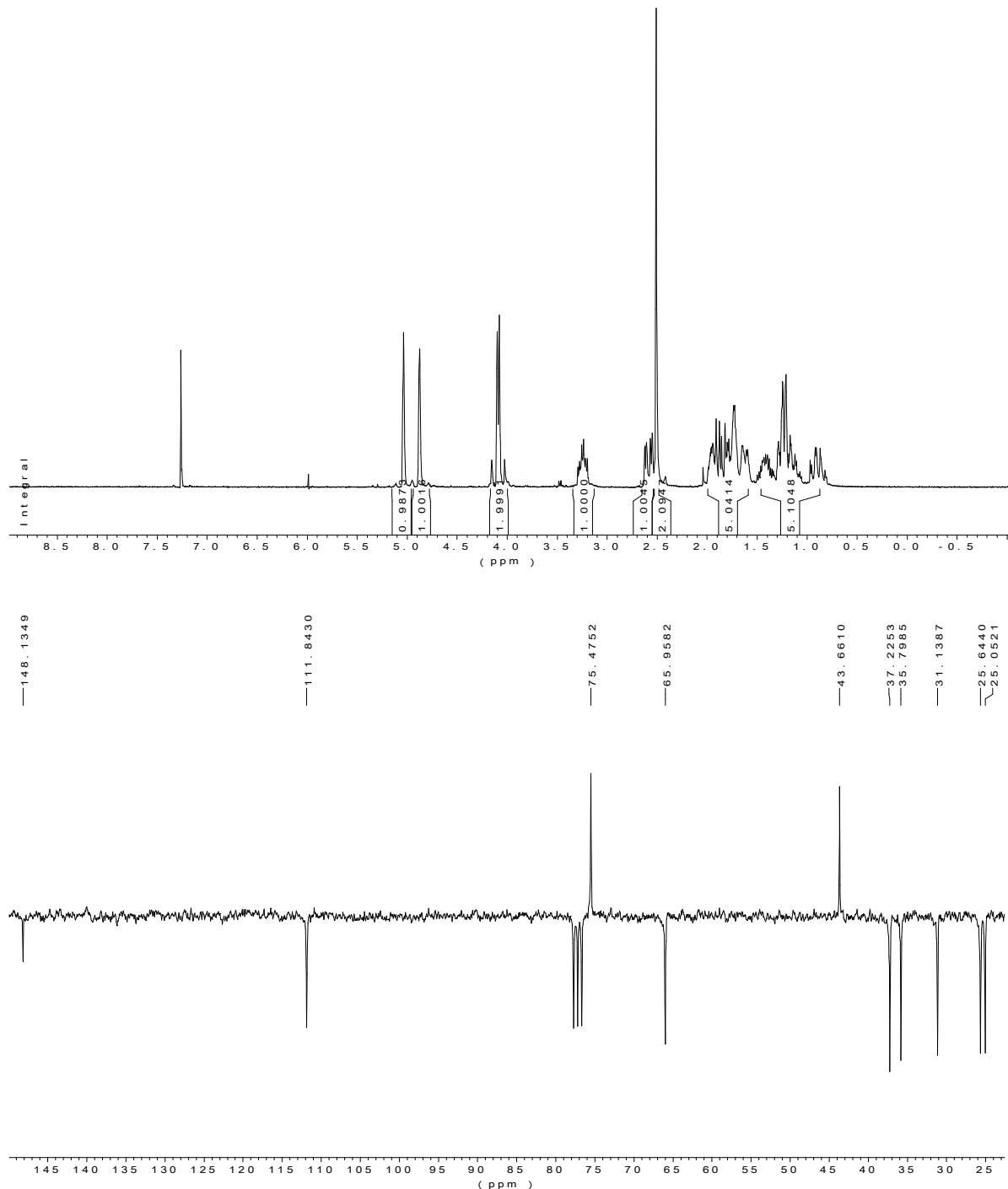
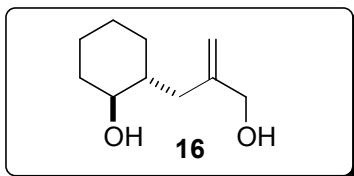
for 20 h. The reaction was quenched with H_2O . The aqueous layer was extracted two times with EtOAc. The combined organic extracts were washed with brine, dried over MgSO_4 and concentrated *in vacuo*. The crude residue was purified by flash chromatography (80:20 petroleum ether/ethyl acetate), to give the desired product **29** as colourless oil (84 g, 98%): ^1H NMR (250 MHz, CDCl_3): δ 5.14-4.99 (m, 3H, alkene- H), 3.80-3.67 (m, 3H, CH_2O and $\text{CH}-\text{O}$), 3.56-3.45 (m, 2H, CH_2OH), 2.94 (s, br, 1H, OH), 2.12-1.87 (m, 10H, CH_2), 1.82-1.31 (m, 21H, alkene- CH_3 , CH_2 , CH); ^{13}C NMR (62.9 MHz, CDCl_3): δ 135.2, 135.0, 131.3, 124.4 (2C), 124.3, 78.4, 71.0, 61.5, 39.8 (2C), 37.8, 33.0, 30.2, 27.4, 27.2, 26.8, 26.7, 25.9, 25.8, 17.8, 16.0 (2C); IR (film, cm^{-1}): 3396 (br), 2928 (s), 2854 (s), 1450 (s), 1381 (s), 1201 (w), 1110 (m), 1065 (s), 897 (w), 863 (w), 834 (w), 741 (w), 604 (w), 538 (w), 490 (w); HRMS (ES): m/z $[\text{M}+\text{H}]^+$ calcd for $\text{C}_{23}\text{H}_{41}\text{O}_2$: 349.3107, found: 349.3113, $[\alpha]_D^{22} = +13.9$ ($c = 1.01$, CHCl_3).

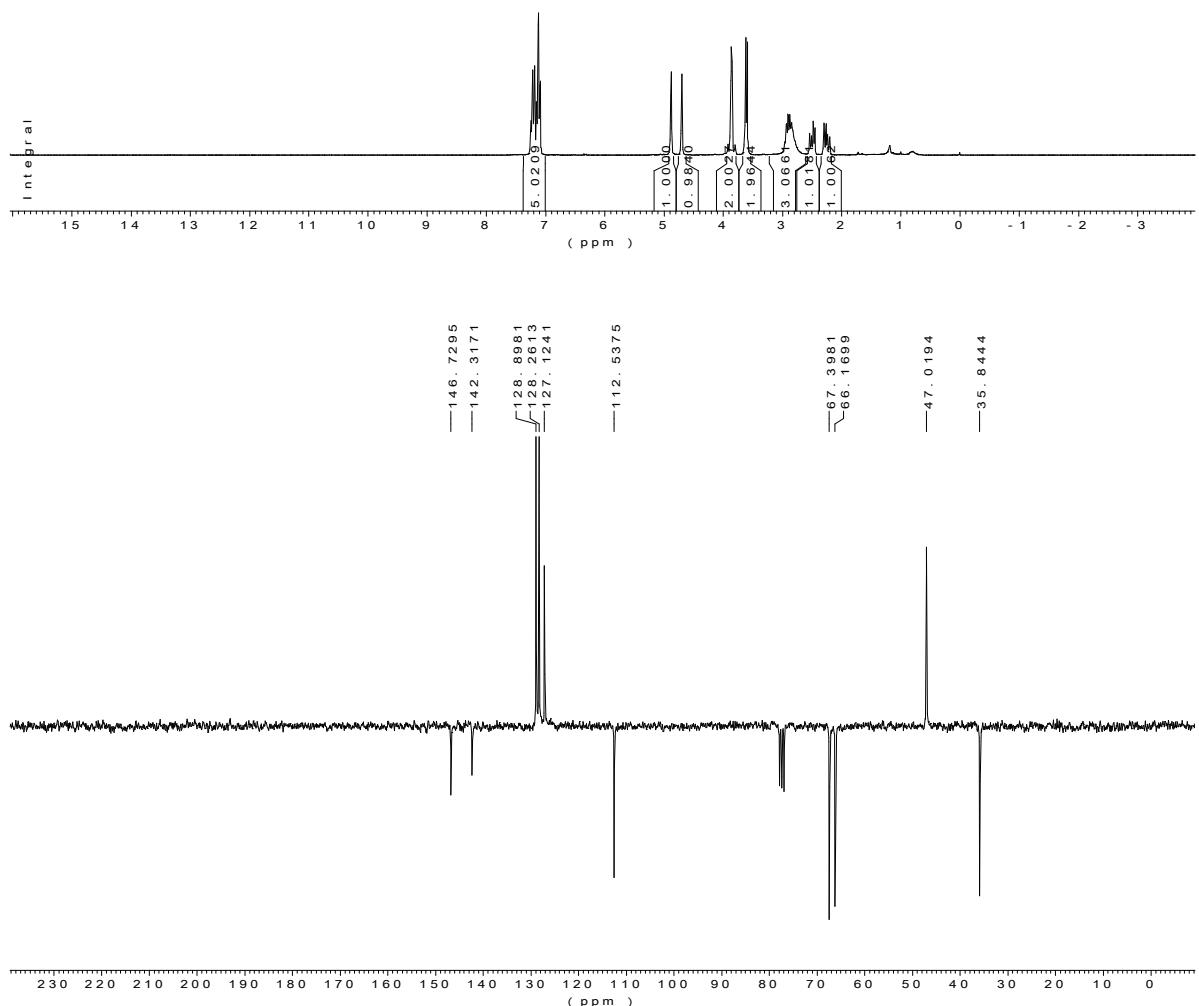
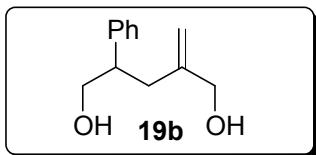
Preparation of (+)-Rhopaloic Acid B (30)

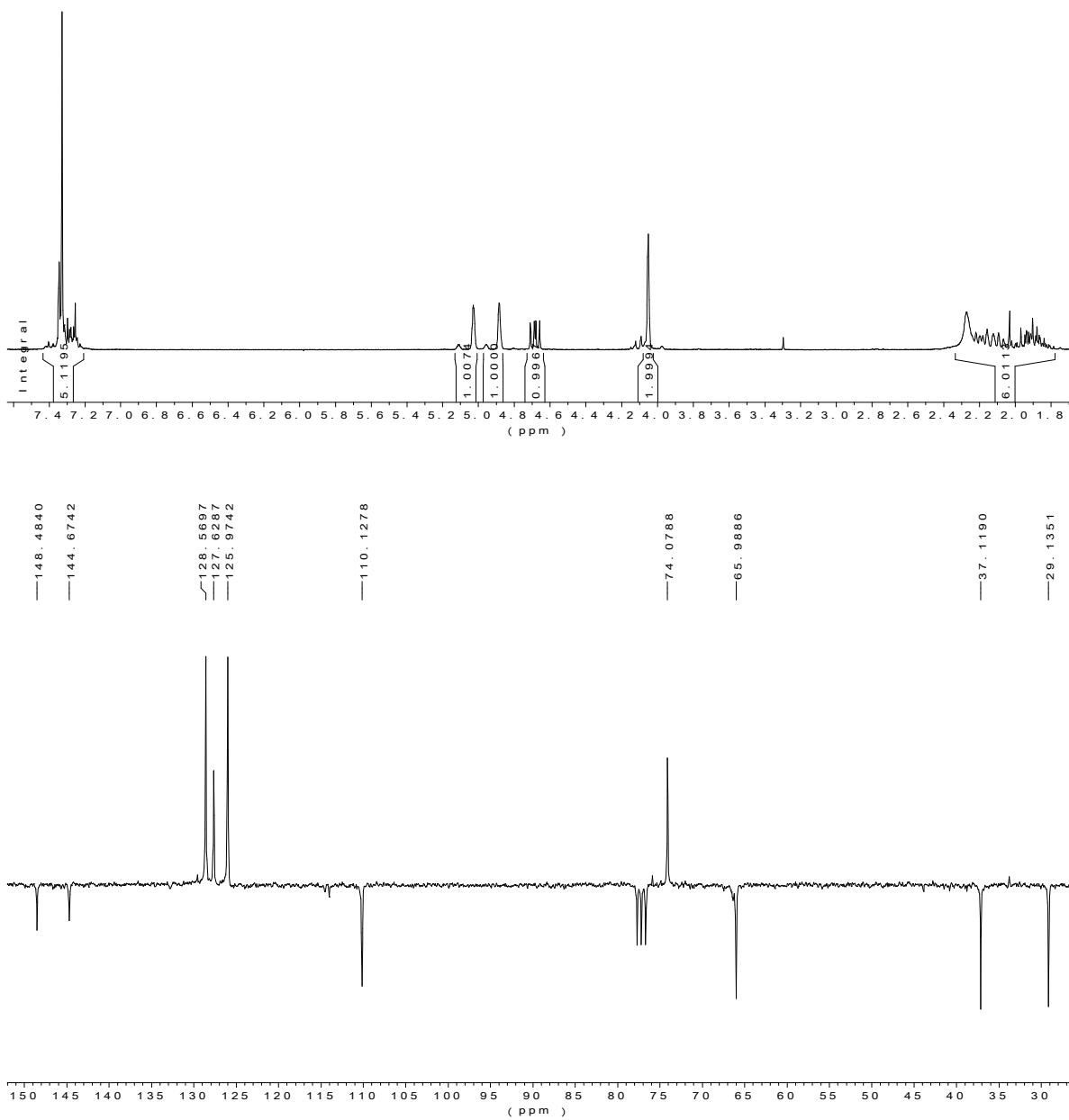
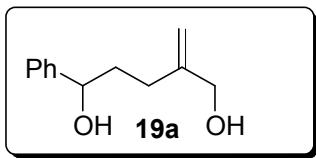

To a solution of oxalyl chloride (60 μL , 0.68 mmol) in anhydrous DCM (970 μL) was added dropwise at -78 $^{\circ}\text{C}$ a solution of DMSO (100 μL , 1.36 mmol) in anhydrous DCM (970 μL). The reaction was stirred at -78 $^{\circ}\text{C}$ for 20 min. A solution of **29** (119 mg, 0.34 mmol) in anhydrous DCM (850 μL) was added dropwise at -78 $^{\circ}\text{C}$ over 15 min period and the reaction mixture was stirred for 1h at -78 $^{\circ}\text{C}$. Et_3N (336 μL , 2.39 mmol) was added dropwise and the reaction was stirred for another 1h at -78 $^{\circ}\text{C}$. The cold bath was then removed and the reaction was stirred for 2h. Then reaction was quenched with brine, the aqueous layer was extracted two times with DCM. The combined organic extracts were washed with brine, dried over Na_2SO_4 , filter on silica gel pad, and concentrated *in vacuo* to give the corresponding aldehyde as yellow oil that was characterized by ^1H NMR only (100 mg, 85% crude). ^1H NMR (250 MHz, CDCl_3): δ 9.78 (dd, $J = 3.0$ Hz, $J = 2.0$ Hz, 1H, CH_2CHO), 5.15-5.04 (m, 3H, alkene- H), 3.93-3.81 (m, 1H, pyran-OCH), 3.74 (d, br, $J = 11.5$ Hz, 1H, pyran-

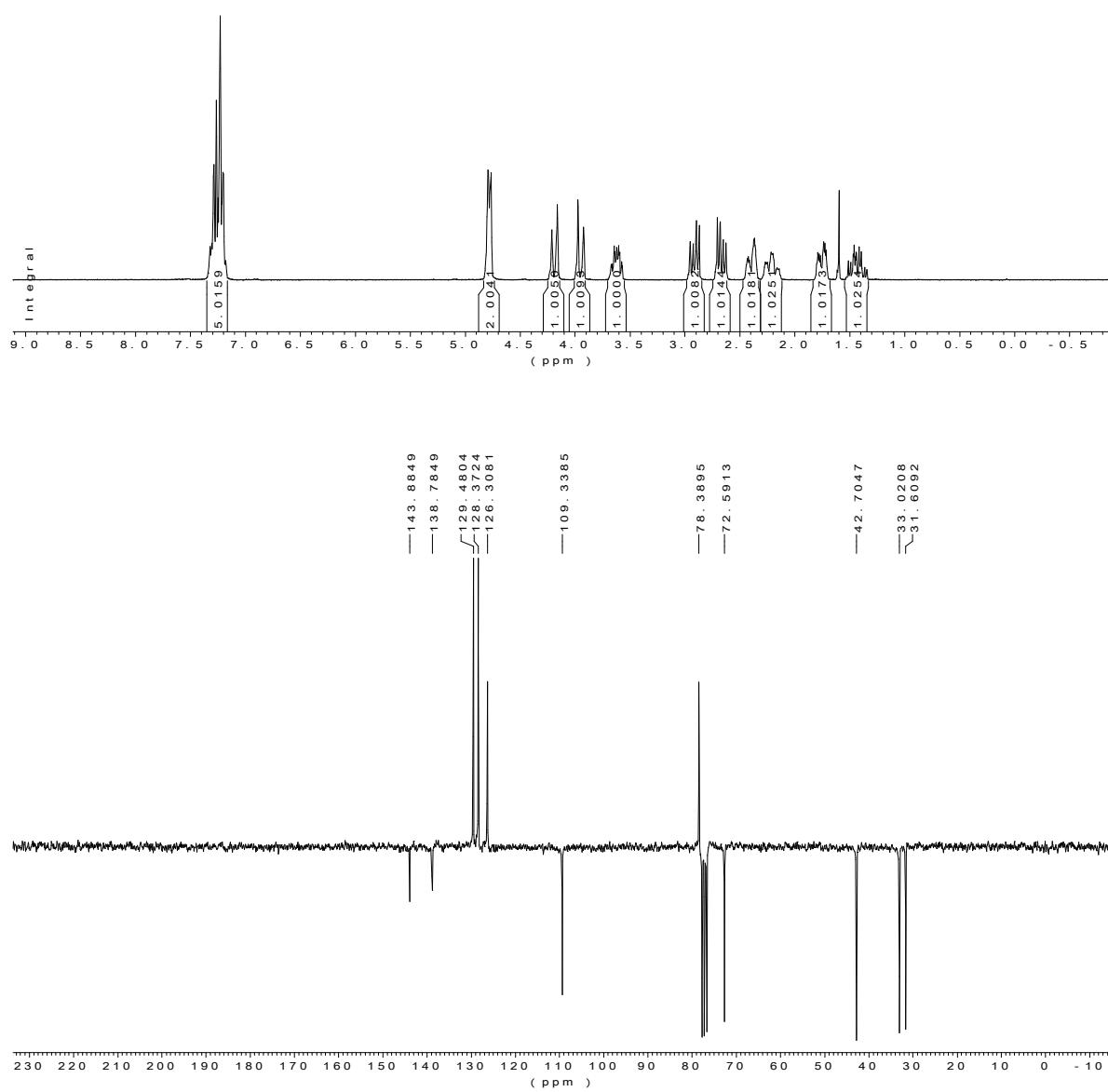
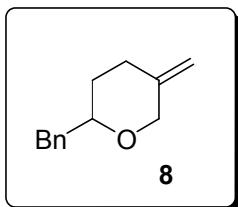


OCH₂), 3.58 (dd, *J* = 11.5 Hz, *J* = 11.5 Hz, 1H, pyran-OCH₂), 2.62 (ddd, *J* = 16.5 Hz, *J* = 8.0 Hz, *J* = 3.0 Hz, 1H, CH₂CHO), 2.44 (ddd, *J* = 16.5 Hz, *J* = 5.0 Hz, *J* = 2.0 Hz, 1H, CH₂CHO), 2.13-1.93 (m, 10H, CH₂), 1.76-1.65 (m, 3H, CH₂), 1.67 (s, 3H, alkene-CH₃), 1.64-1.57 (m, 1H, pyran-CH), 1.60 (s, 9H, alkene-CH₃), 1.56-1.40 (m, 3H, CH₂).

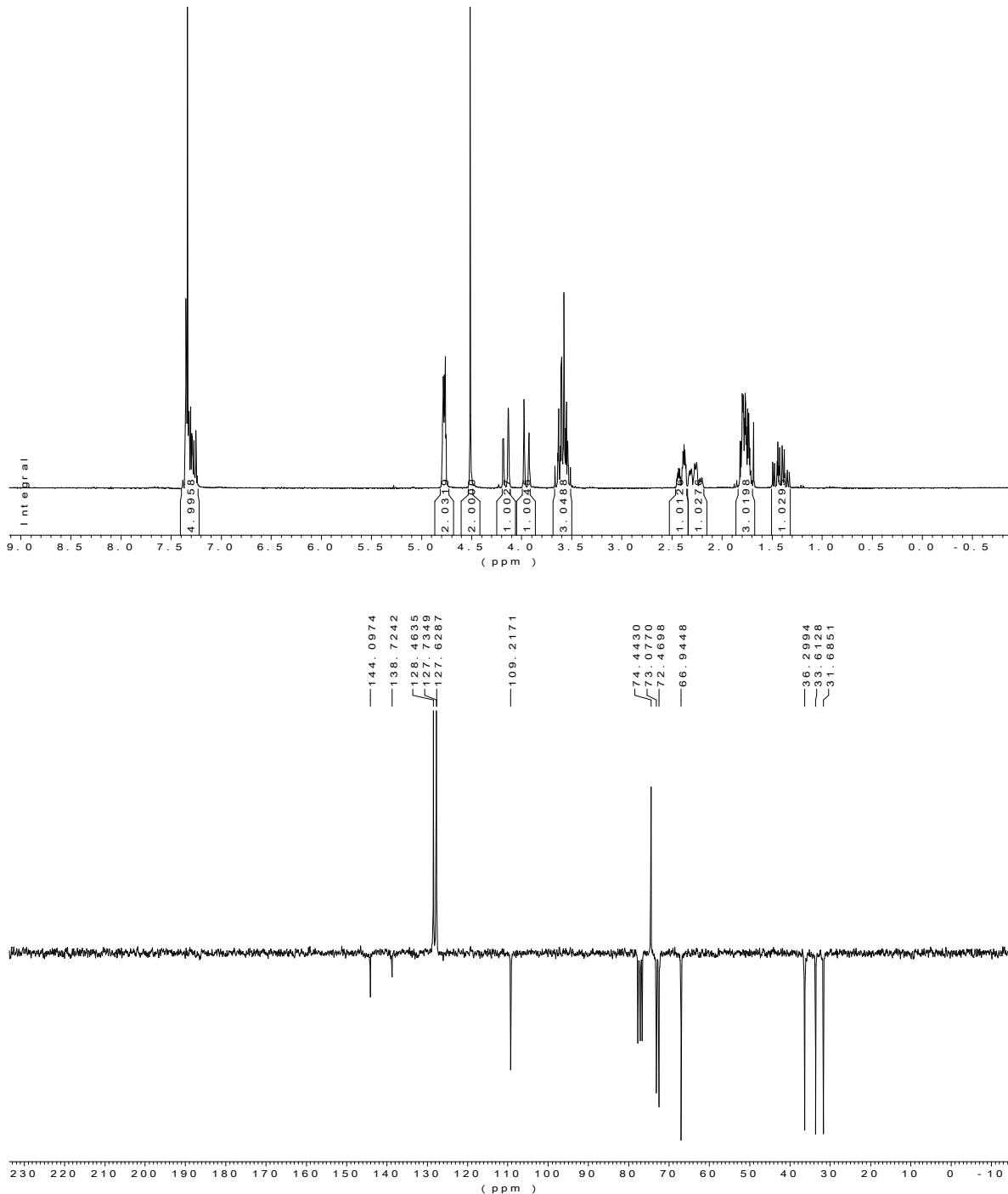
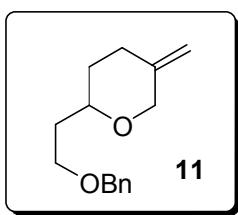


The crude residue was dissolved in DCM (7.0 mL) and Eschenmoser's salt (266 mg, 1.44 mmol), Et₃N (82 μ L, 0.57 mmol) were added. The reaction was stirred at RT for 24h. The reaction was quenched with saturated aqueous NaHCO₃ solution and the aqueous layer was extracted three times with DCM. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. After removal of DCM *in vacuo*, pentane was added in order to precipitate remaining Eschenmoser's salt. After filtration, the α - β -unsaturated aldehyde was concentrated *in vacuo* and was obtained as a yellow oil (103 mg, 100% crude).

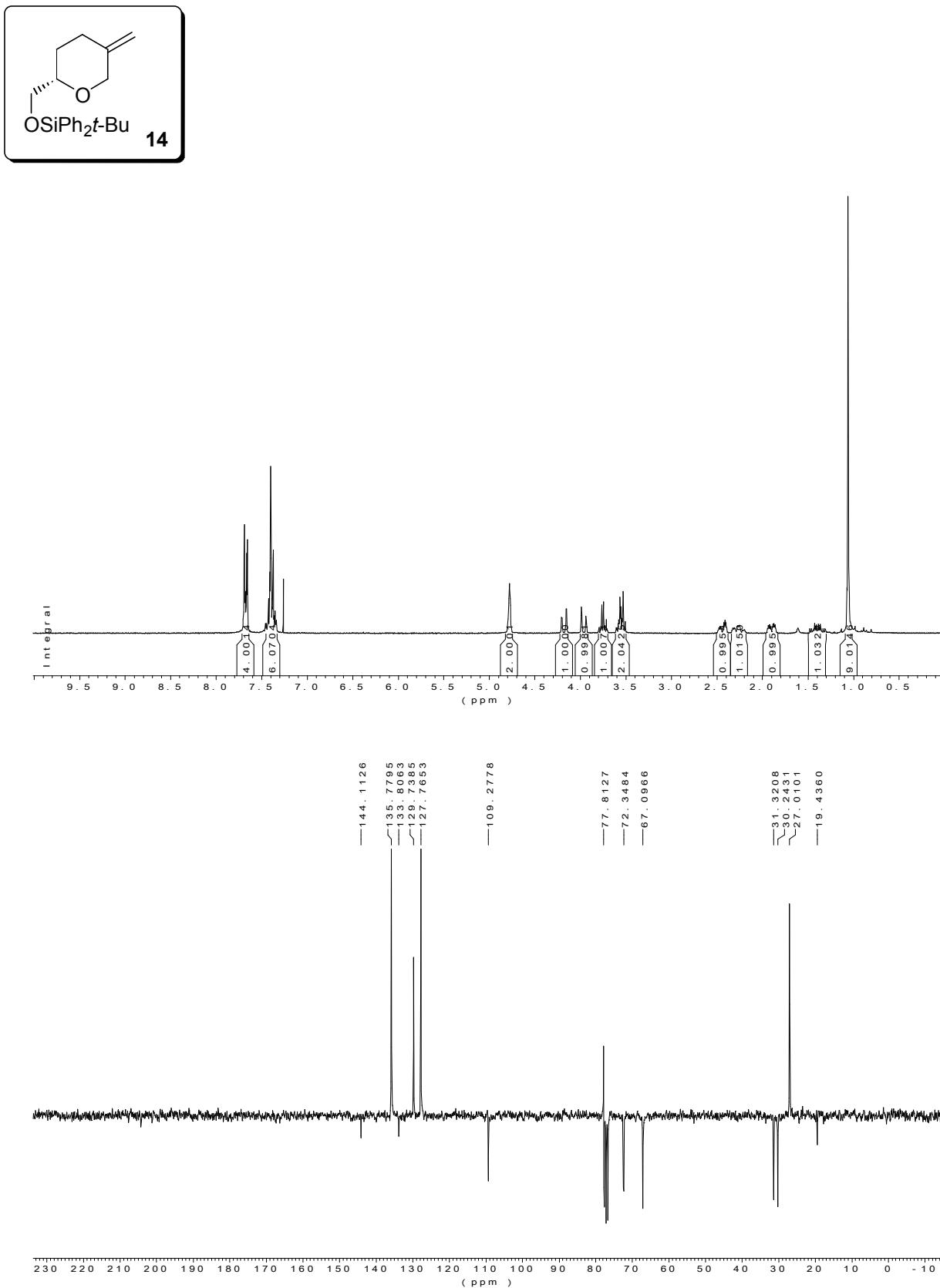


The crude residue was dissolved in t-BuOH/H₂O (4:1, 11.6 mL: 3 mL). To the solution was added at RT 2-methyl-2-butene (2M in THF, 36 mL, 71.9 mmol), NaH₂PO₄ (120.5 mg, 1.0 mmol), and NaClO₂ (113 mg, 1.00 mmol). The reaction was stirred at RT for 2-3 h. After this period, brine was added and the reaction mixture extracted three times with EtOAc. The combined organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified by flash chromatography (gradient starting with 90:10 and ending with 60:40 petroleum ether/Et₂O), to give the desired product **30** as a yellow oil (51 mg, 40% over three steps). The compound showed satisfactory spectra data^{xi}: ¹H NMR (250 MHz, CDCl₃): δ 6.39 (s, br, 1H, HO₂C-alkene-H), 5.95 (t, *J* = 1.0 Hz, 1H, HO₂C-alkene-H), 5.17-5.04 (m, 3H, alkene-H), 4.21 (d, *J* = 10.5 Hz, pyran-OCH), 3.90 (d, *J* = 11.5 Hz, pyran-OCH₂), 3.69 (dd, *J* = 11.5 Hz, *J* = 2.0 Hz, 1H, pyran-OCH₂), 2.14-1.91 (m, 10H, CH₂), 1.82-1.65 (m, 3H, CH₂), 1.68 (s, 3H, alkene-CH₃), 1.64-1.40 (m, 4H, CH, CH₂), 1.60 (s, 9H, alkene-CH₃); ¹³C NMR (62.9 MHz, CDCl₃): δ 169.4, 141.0, 135.6, 135.1, 131.4, 127.1, 124.5, 124.3 (2C), 76.4, 71.9, 39.9 (2C), 32.7, 30.2, 27.3 (2C), 26.9, 26.7, 25.9, 25.8, 17.8, 16.2 (2C); IR (film, cm⁻¹): 2926 (s), 2856 (s), 1694 (s), 1628 (m), 1441 (m),

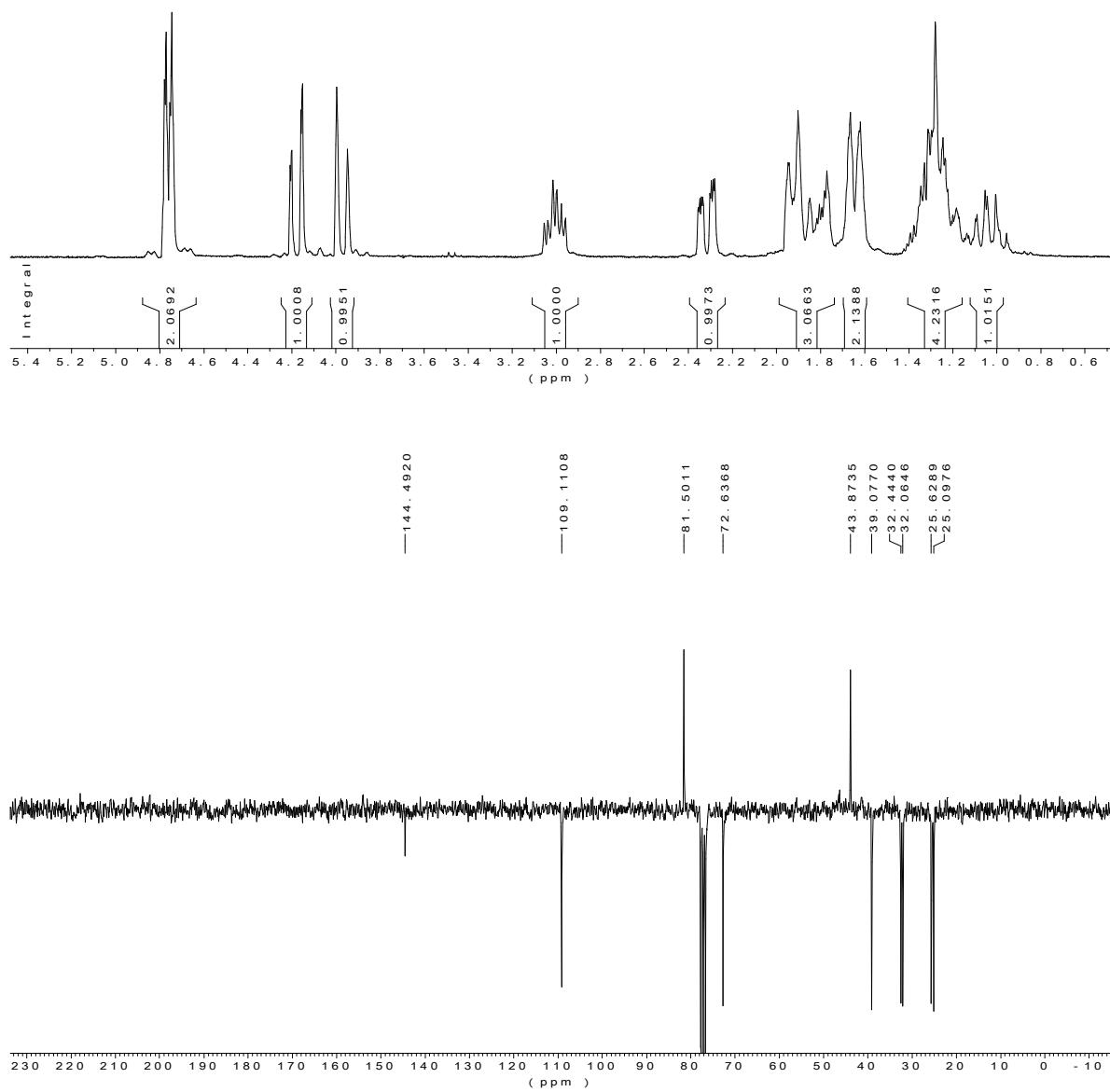
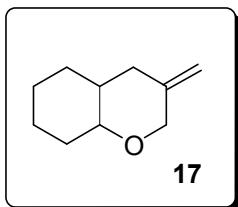


1378 (w), 1286 (w), 1168 (w), 1109 (m), 1065 (m), 1041 (m); HRMS (EI): m/z [M]⁺ calcd for C₂₄H₃₈O₃: 374.2821, found: 374.2811, $[\alpha]_D^{22} = + 56.0$ (c = 0.25 in CHCl₃, lit. ¹⁴ $[\alpha]_D^{25} = + 55.0$ (c = 0.23 in CHCl₃).

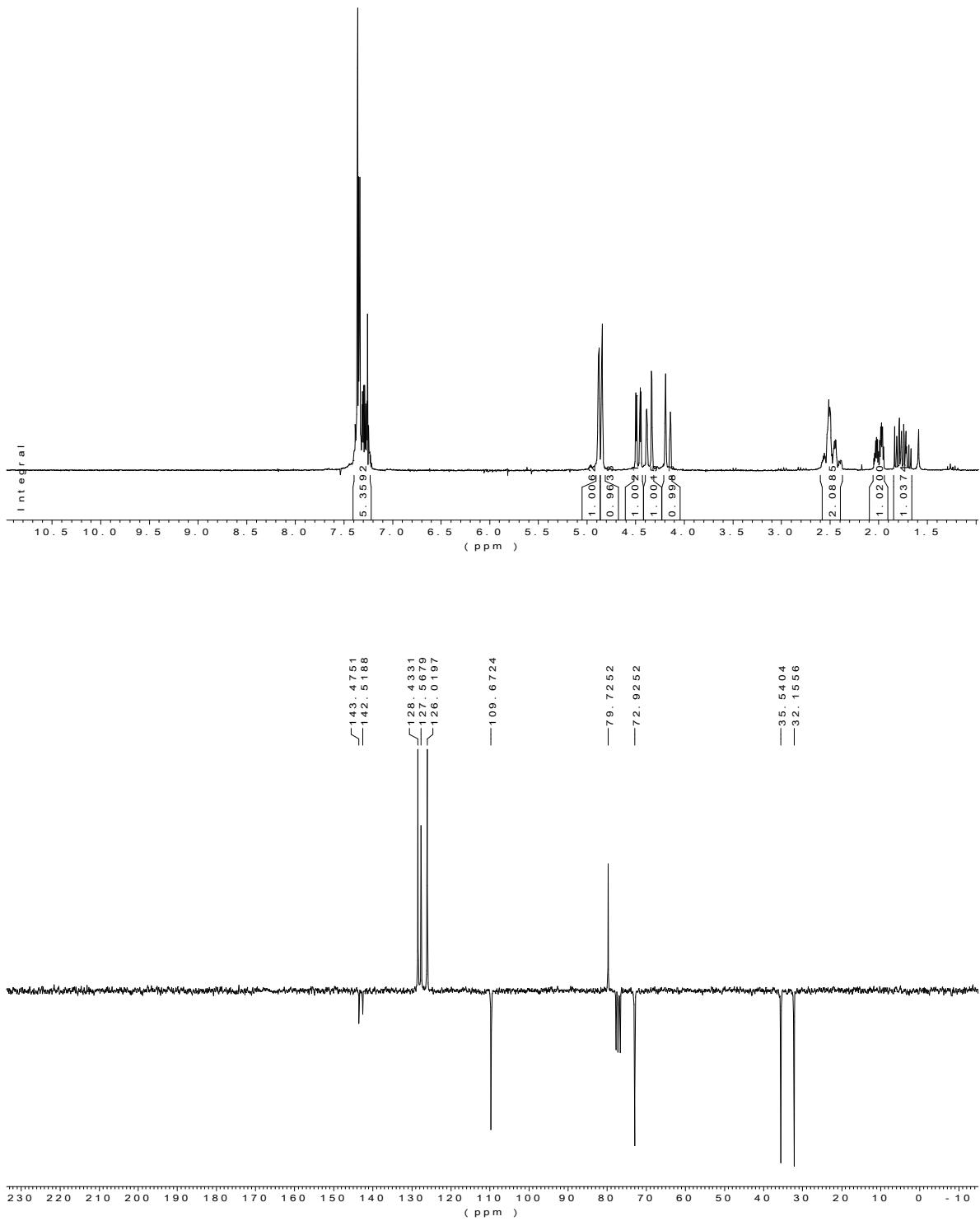
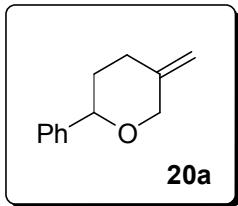



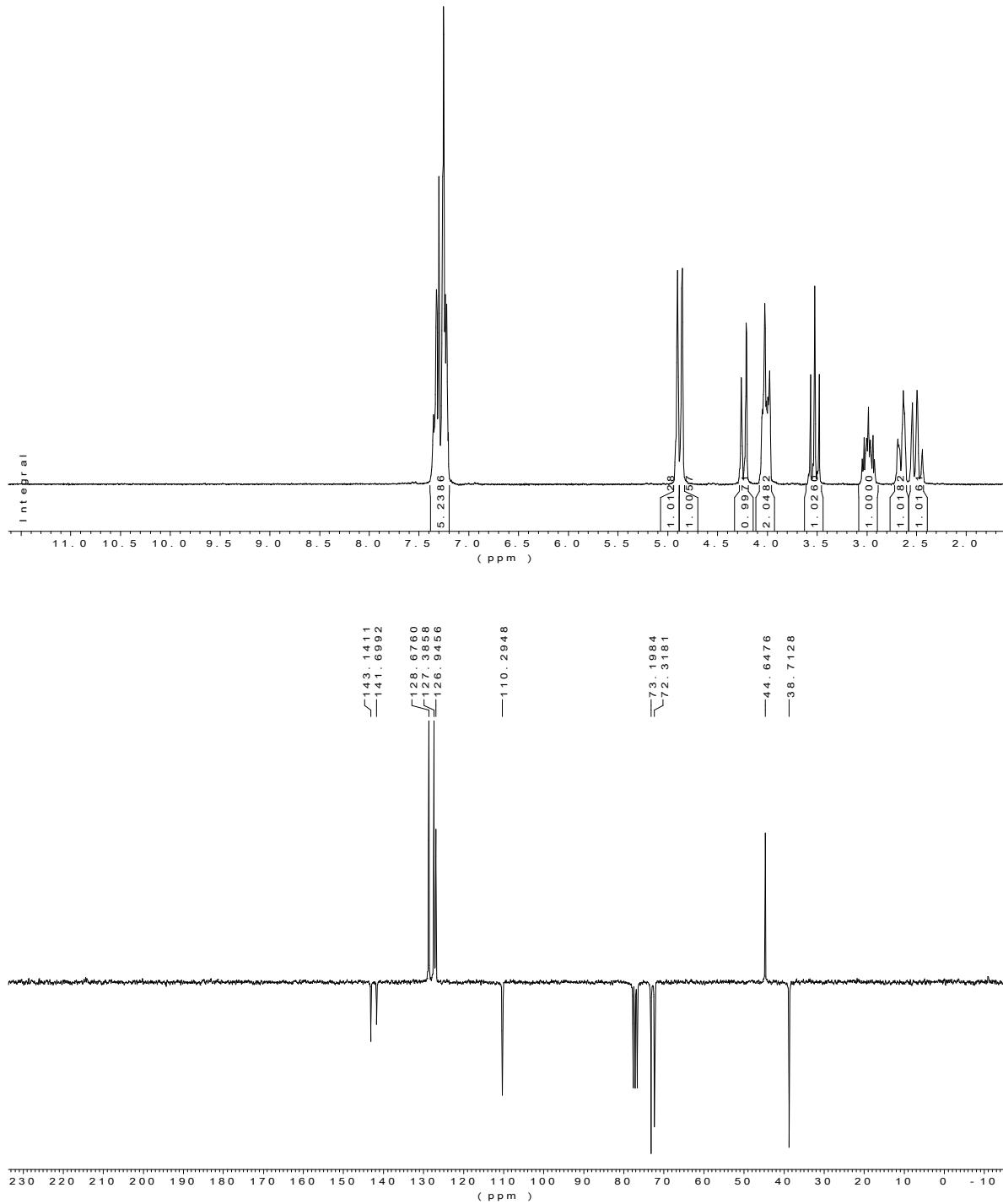
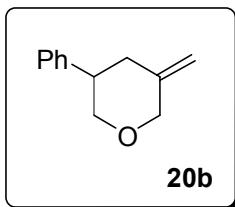



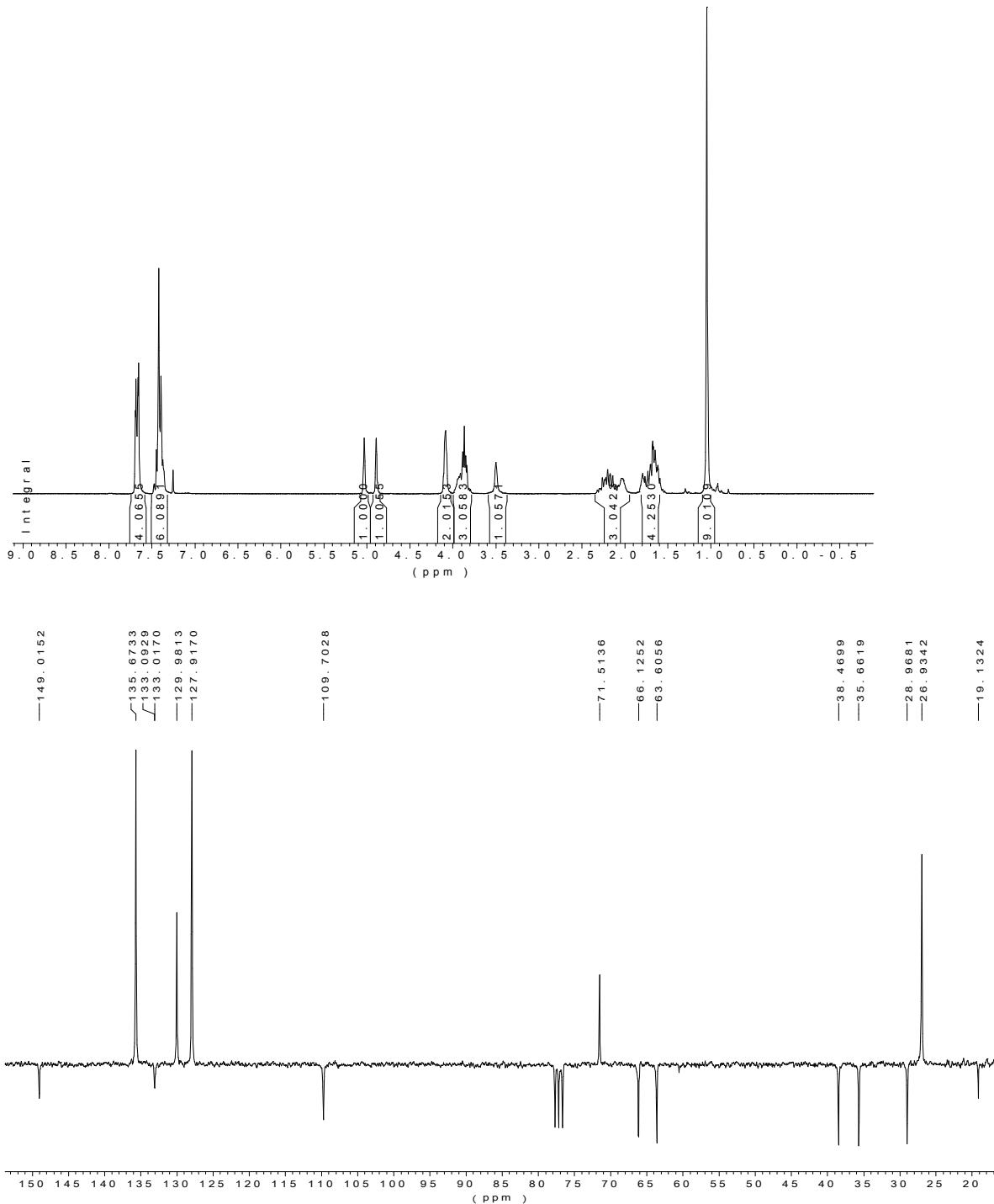
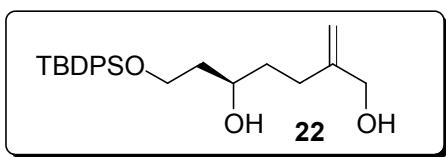



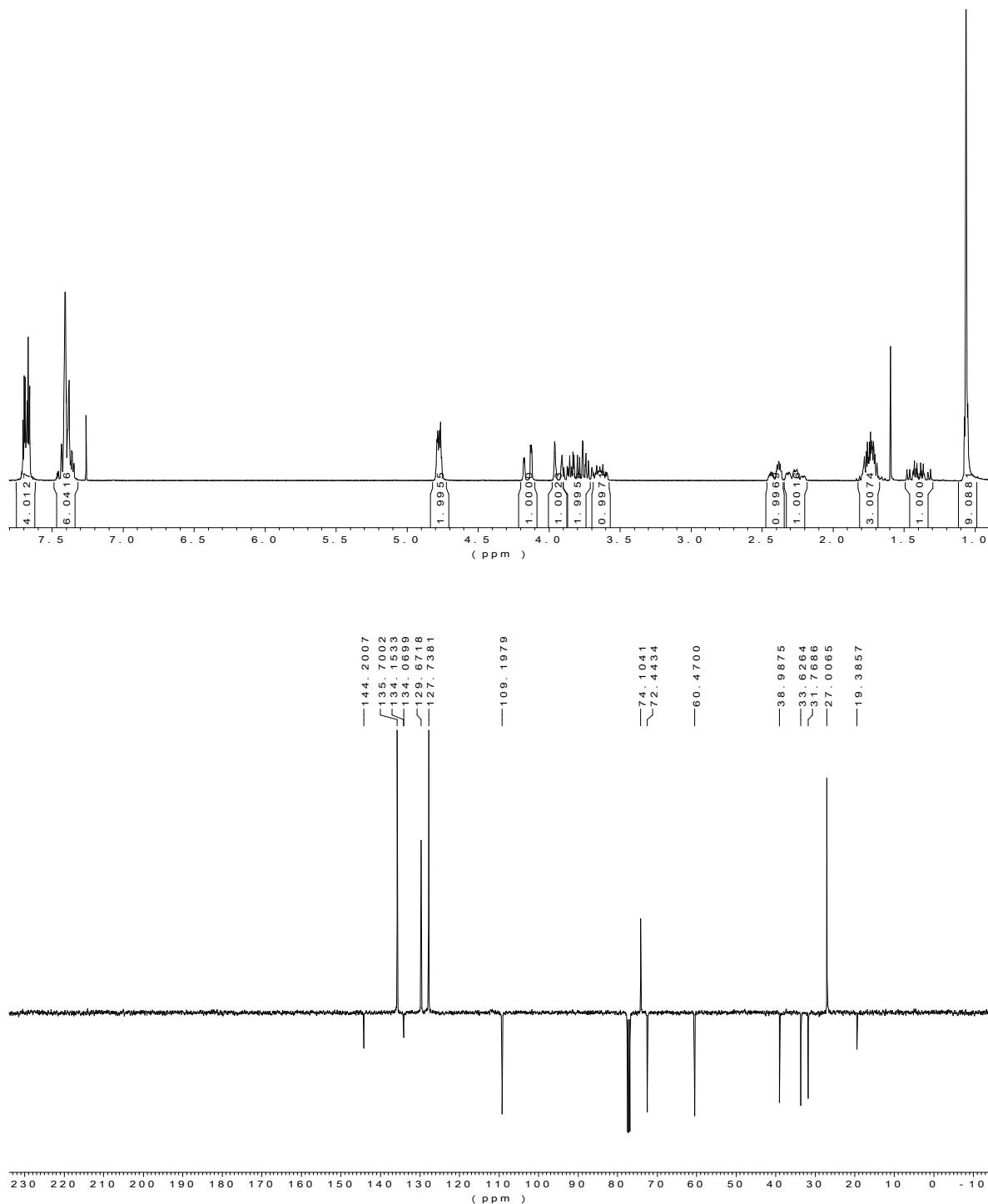
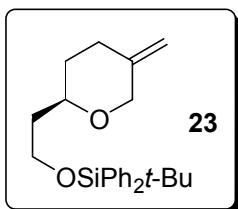


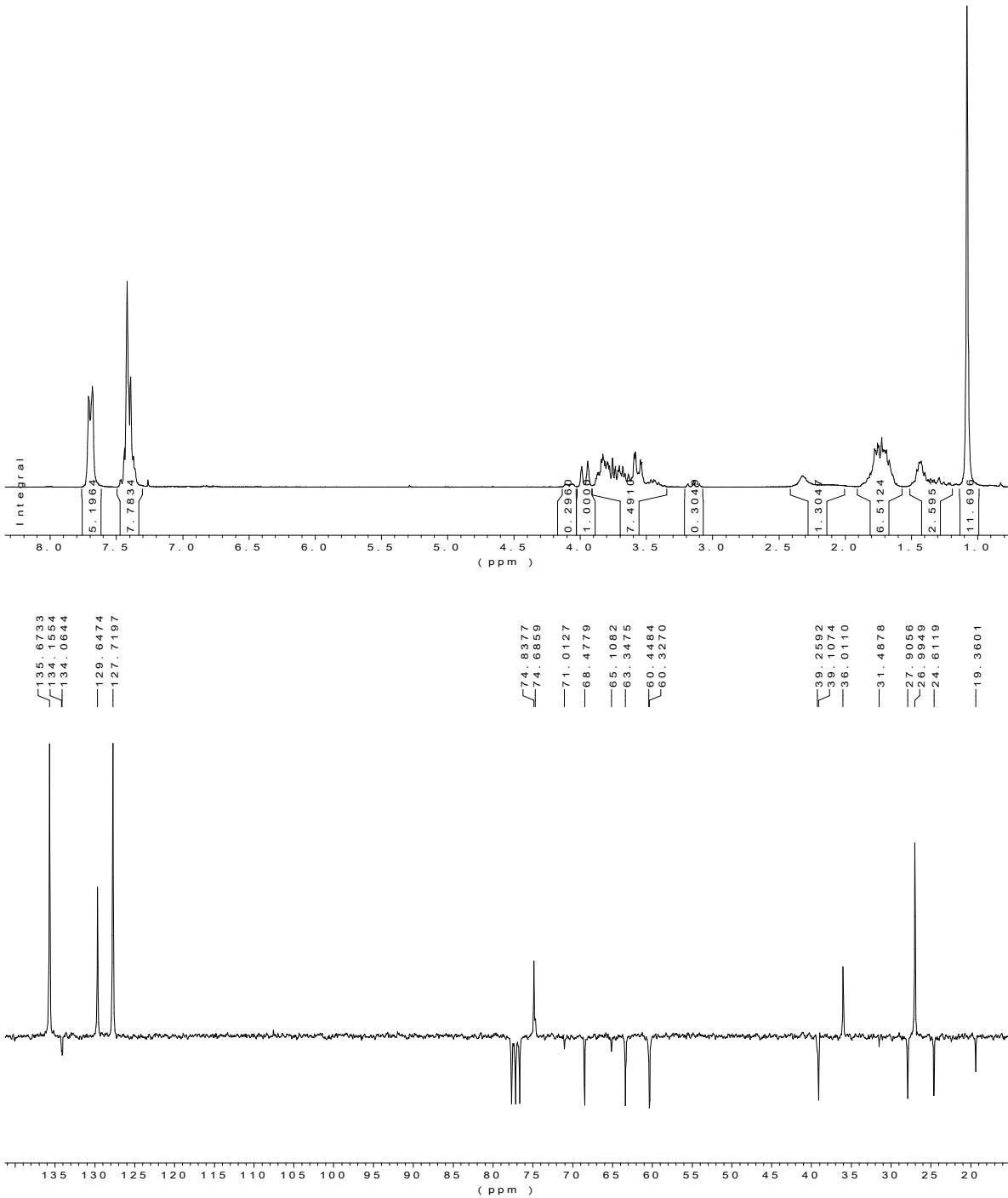
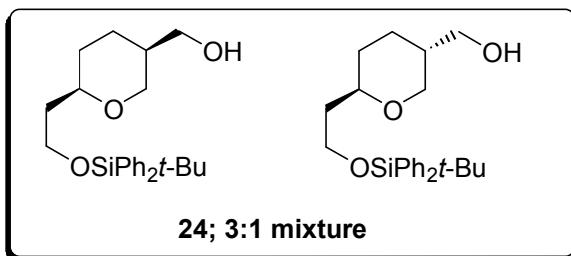



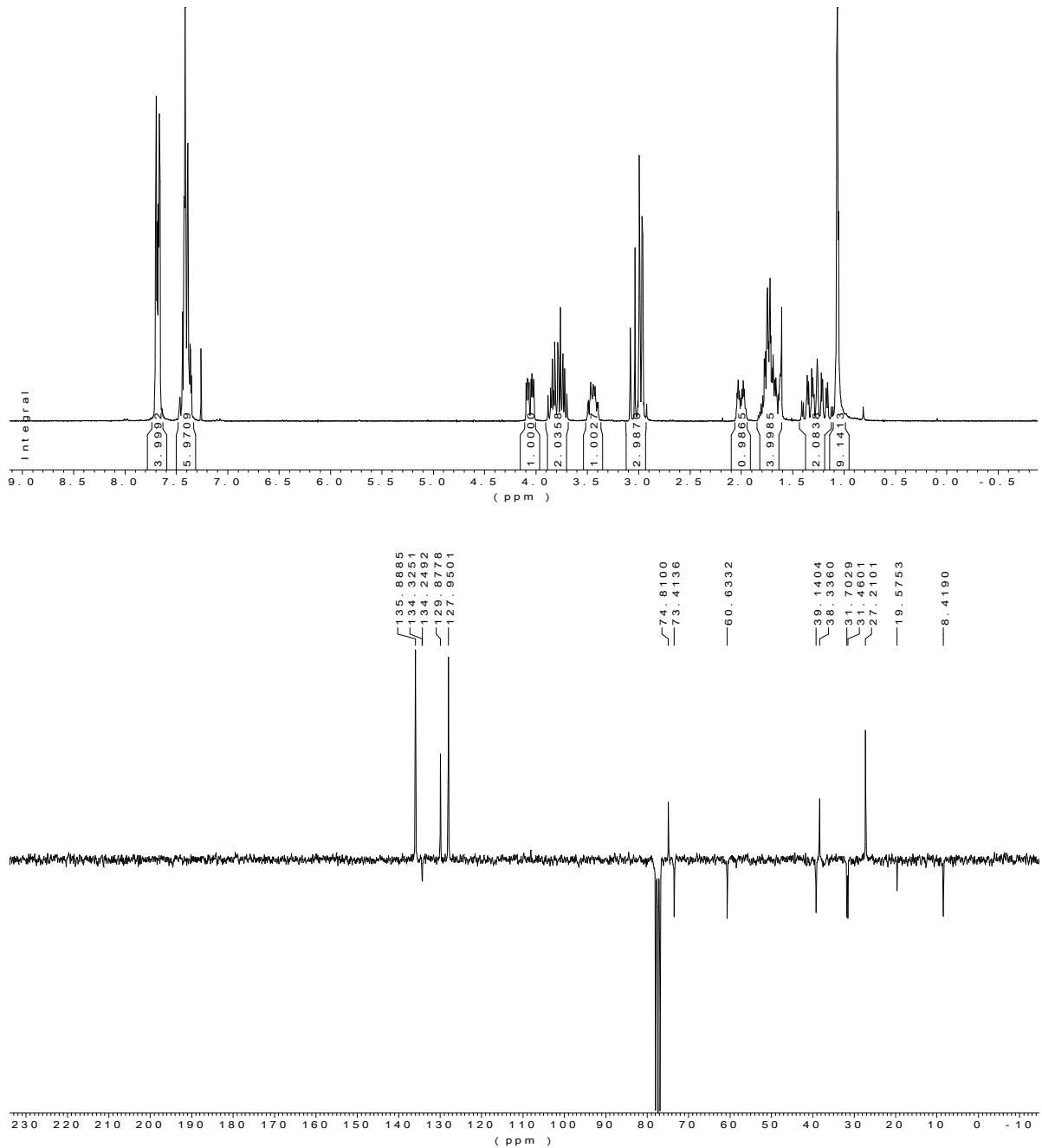
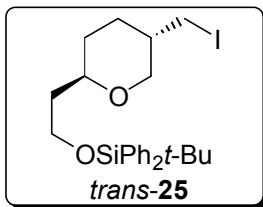



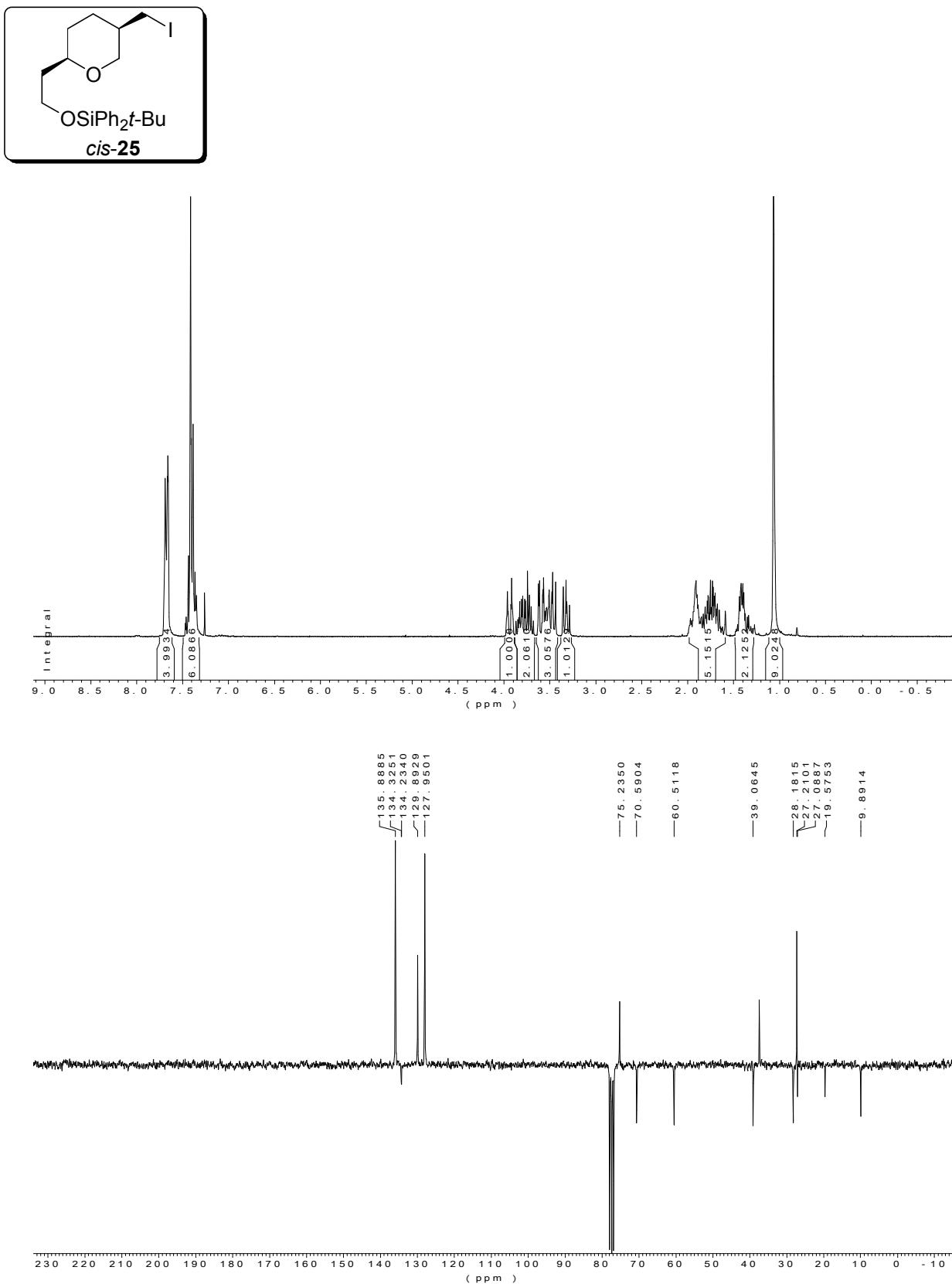



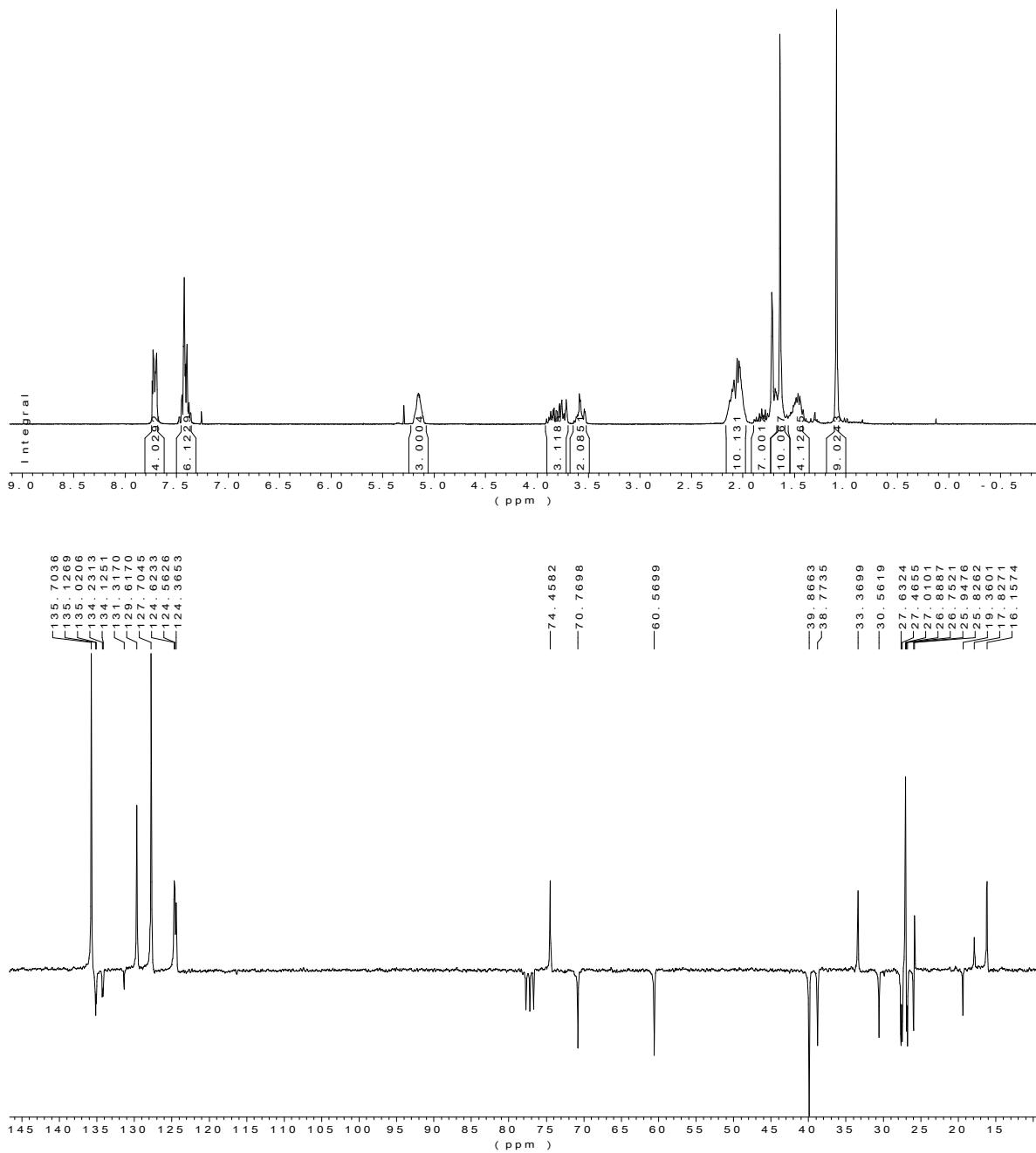
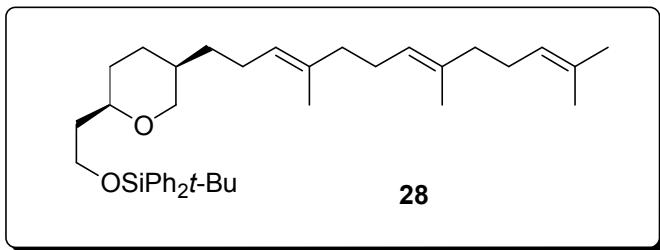



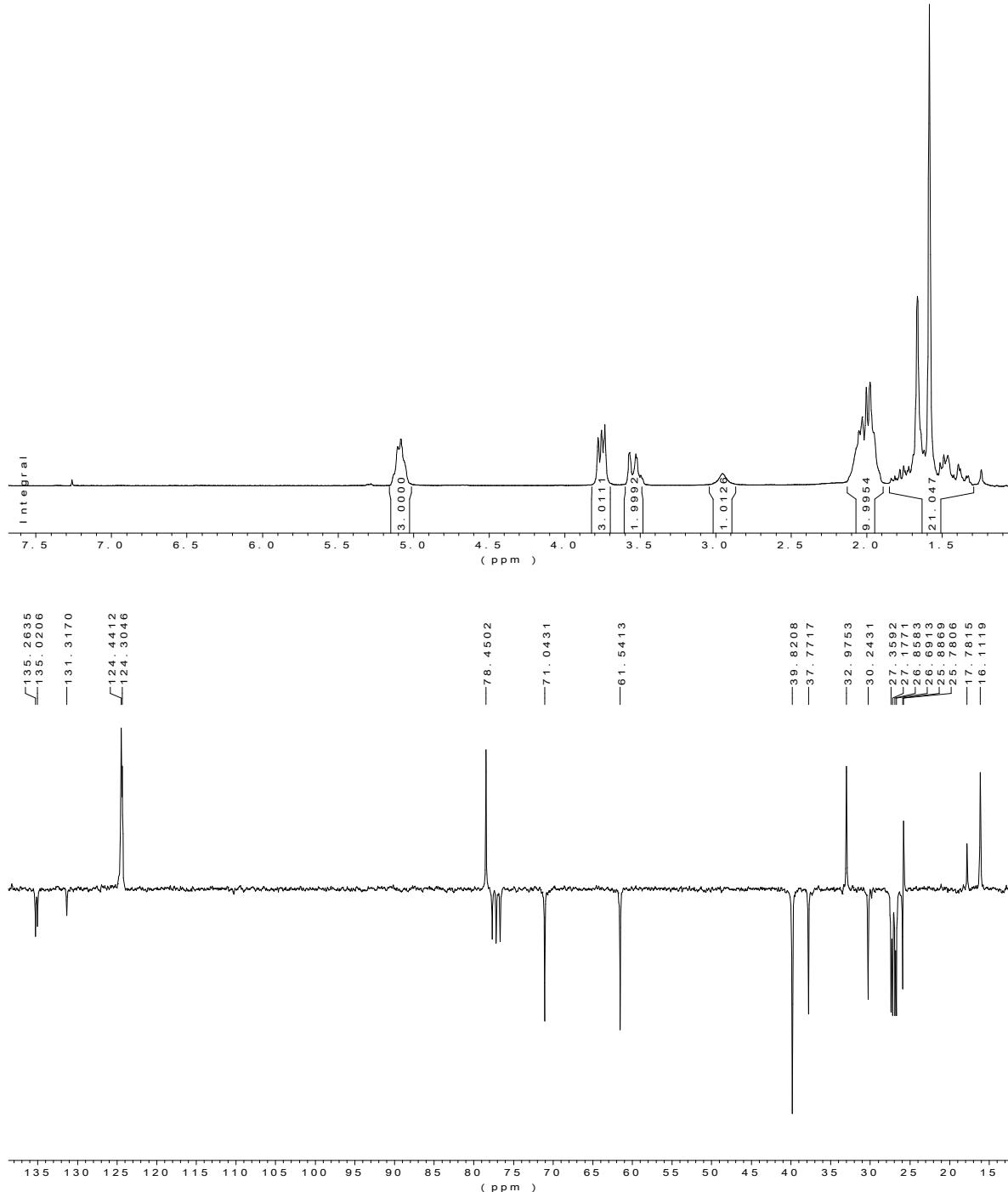
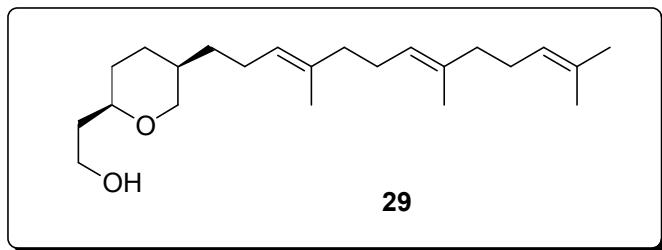



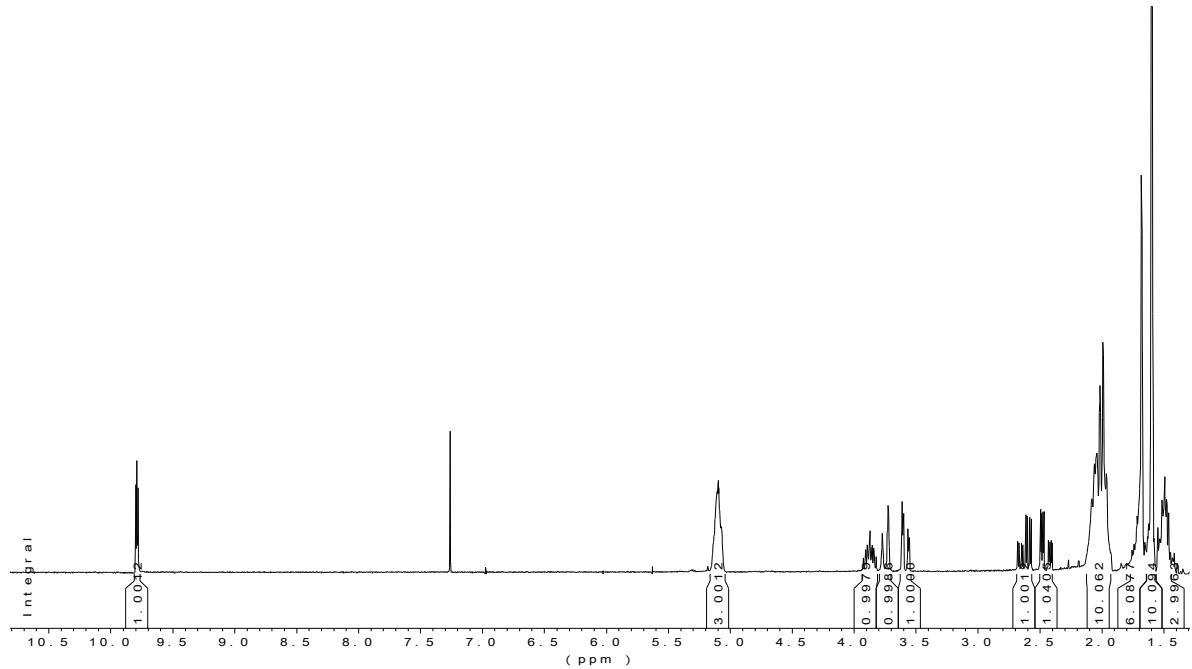
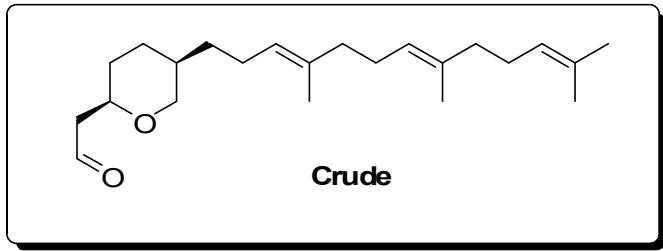



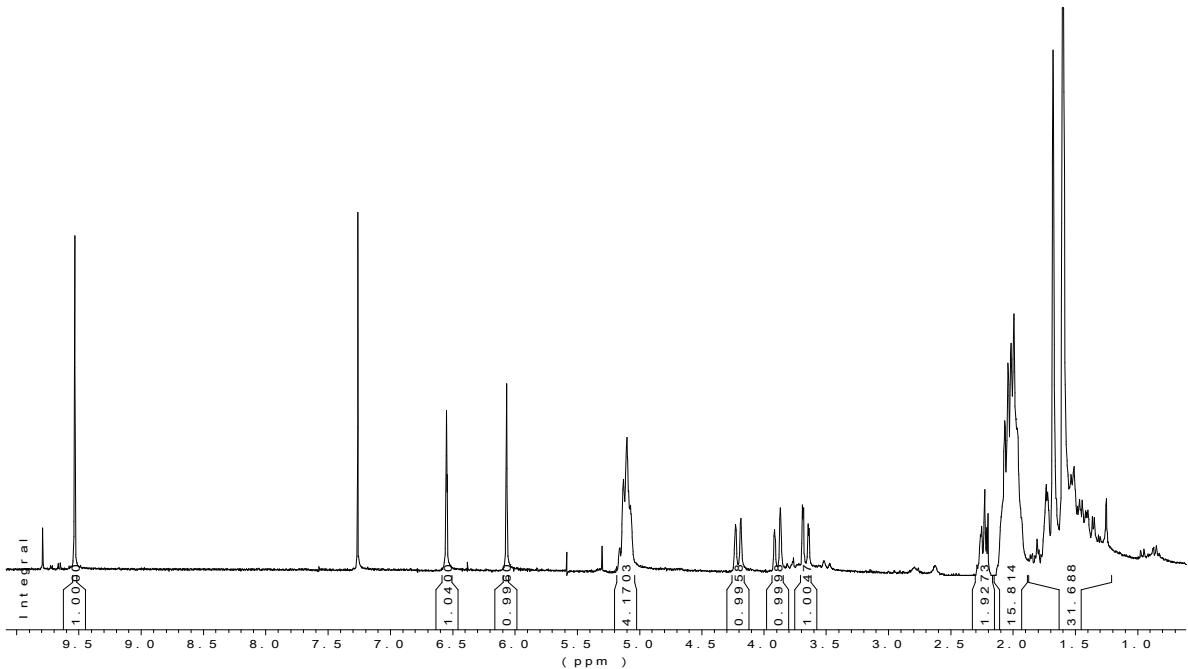
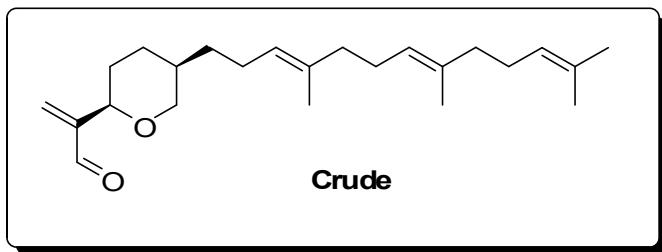



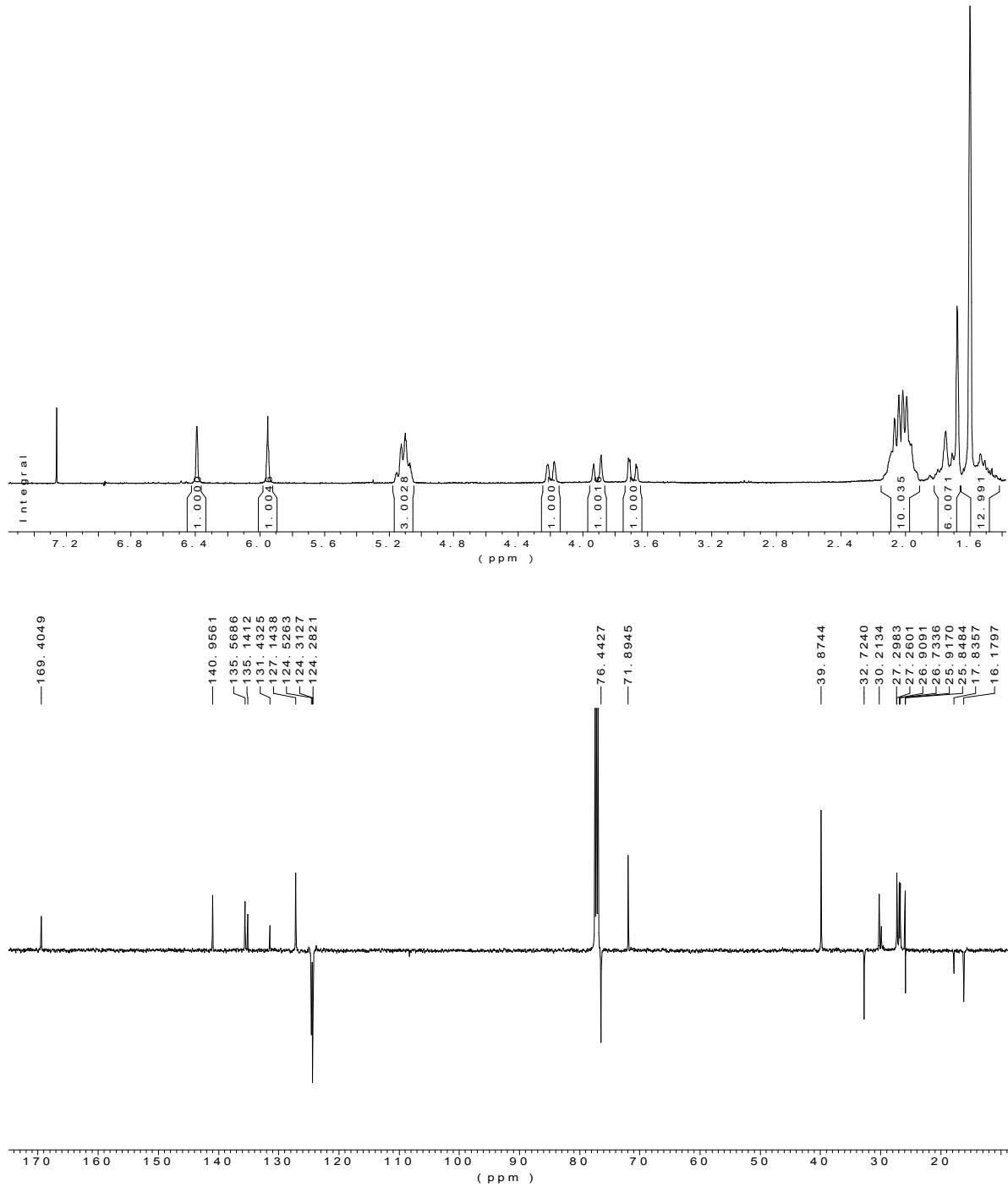


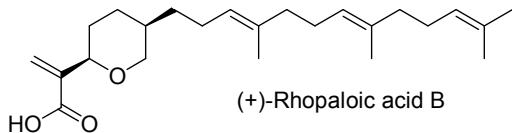





¹ H Literature	¹ H	¹³ C Literature	¹³ C
6.39 , br s, 1H	6.39 , br s, 1H	169.9	169.4
5.94 , br s, 1H	5.95 , t, 1.0 Hz 1H	141.0	141.0
5.10 m, 3H	5.17-5.04 m, 3H	135.4	135.6
4.20, d, 10.1 Hz, 1H	4.21, d, 10.1 Hz, 1H	135.0	135.1
3.91, d, 11.0 Hz, 1H	3.90, d, 11.5 Hz, 1H	131.2	131.4
3.69, dd, 11.0, 2.7 Hz, 1H	3.69, dd, 11.5, 2.0 Hz, 1H	127.0	127.1
2.07, m, 4H		124.4 (2C)	124.5
2.03, m, 2H	2.14-1.91, m, 10H	124.2	124.3 (2C)
1.99, m, 4H		76.1	76.4
1.75, m, 2H		71.7	71.9
1.73, m, 1H	1.82-1.65, m 3H	39.7 (2C)	39.9 (2C)
1.68, s, 3H	1.68, s, 3H	32.6	32.7
1.64, m, 1H	1.64-1.40, m, 4H	30.1	30.2
1.60 ,s, 9H	1.60 ,s, 9H	27.2 (2C)	27.3 (2C)
1.55, m, 2H		26.8	26.9
1.49, m, 1H		26.6	26.7
		25.8	25.9
		25.7	25.8
		17.7	17.8
		16.0 (2C)	16.2 (2C)

ⁱ: Grais, H. -J., Jurgen, M., Jadhav, V. *J. Org. Chem.* **2001**, *66*, 3384 – 3396

ⁱⁱ: M. Muehlbacher, C. D. Poulter, *J. Org. Chem.* **1991**, *53*, 1026 – 1030.

ⁱⁱⁱ: Dixon, D. J. , Ley, S. V. , Reynolds, D. J. *Chemistry-A European Journal*, **2002**, *8*, 1621-1636.

^{iv}: Lin H.S., Paquette L.A., *Synth. Commun.*, **1994**, *24*, 2503.

^v: Van der Louw, J.; Van der Bann, J.L.; Gerardus, J. J. Out; Franciscus J.J. de Kanter, Friedrich. B.; Gerhard, W. K. *Tetrahedron* **1992**, *45*, 9901 and references cited therein.

^{vi}: Wasser, J., Nambu, H., Carreira, E. M. *J. Am. Chem. Soc.*, **2005**, *127*, 8294-8295.

^{vii}: Achmatowicz, B., Kabat, M. M., Krajewski, J., Wicha, J. *Tetrahedron*, **1992**, *48*, 10201-10210

^{viii}: (a) Schaus, S.E., Brandes, B.D., Larrow, J.F., Tokunaga, M., Hansen, K.B., Gould, A.E., Furrow, M.E., Jacobsen, E.N. *J. Am. Chem. Soc.* **2002**, *124*, 1307-1315. (b) S.P. Romeril, V. Lee, J.E. Baldwin, T.D.W. Claridge, B. Odell, *Tetrahedron Lett.* **2003**, *44*, 7757-7761.

^{ix}: Scwier, J.R., Brown, H.C. *J. Org. Chem.* **1993**, *58*, 1546 – 1552.

^x: Yanai, M., Ohta, S., Ikegami, S., *Tetrahedron*, **1998**, *54*, 15607-15612.