

**A New Use of Wittig-Type Reagents as 1,3-Dipolar Cycloaddition Precursors and in
Pyrrole Synthesis**

Daniel J. St.Cyr and Bruce A. Arndtsen*

801 Sherbrooke St. W., Department of Chemistry, McGill University
Montreal, Quebec H3A 2K6 Canada

Supporting Information

	Page
I General Procedures	2
II Synthesis	2-4
III References	4
IV Spectroscopic Data	5-9
V ^1H and ^{13}C NMR Spectra	10-25

I. General Procedures

All reactions were performed in a Vacuum Atmospheres 553-2 dry box or under nitrogen using standard schlenk techniques. All reagents were purchased from Aldrich® and used as received, including PhPCl₂, catechol, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), LiHMDS (Lithium bis(trimethylsilyl)amide), dimethyl acetylenedicarboxylate, aldehydes, amines, and acid chlorides. Dichloromethane and acetonitrile were distilled from CaH₂ under nitrogen. Diethyl ether was distilled from Sodium benzophenone ketyl. Chloroform and deuterated chloroform were dried over 4Å molecular sieves. Imines¹ and dibenzoylacetylene² were prepared as per standard literature procedures. ¹H, ¹³C, and ³¹P NMR spectra were recorded on Varian Mercury 200, 300, 400 MHz, and Unity 500 MHz spectrometers. Reported *J*_{CP} and *J*_{CF} values were verified by obtaining ¹³C NMR spectra at both 300 and 500 MHz. Mass spectra were obtained from the McGill University mass spectral facilities.

II. Synthesis

Synthesis of 2-phenyl-benzo[1,3,2]dioxaphosphole [PhP(catechol)]

A modified version of the literature procedure was followed.³ A septum-sealed 500 mL schenk flask charged with catechol (11.01 g, 100 mmol) and placed under a nitrogen atmosphere. 100 mL of freshly distilled Et₂O was injected into the flask, followed by pyridine (16.2 mL, 200 mmol). The mixture was cooled to 0 °C and PhPCl₂ (13.6 mL, 100 mmol) was added dropwise over 15 min, stirred for 1 hr at this temperature, then warmed to ambient temperature for 2 hr. The pyridine hydrochloride was removed by filtration over a coarse (40-60 µM porosity) frit and washed with several portions of anhydrous Et₂O (N₂ degassed, non-distilled, total volume ca. 250 mL) directly into a 500 mL round bottom flask. An inverted funnel connected to a flow of nitrogen was used to cap the filtration apparatus in order to minimize exposure to air. The filtrate was concentrated *in vacuo* to yield an oil, which was distilled (84 – 88 °C, 115 mTorr) to yield 14.9 g (69%) of a clear colorless oil. This was stored in the glovebox over 4 Å molecular sieves. Alternatively, the product is also reasonably stable when stored in the freezer outside the glovebox. It was noted that with aging batches of PhP(catechol) can become quite malodorous. This does not however compromise its reactivity.

Synthesis of 2a'

In the glovebox, $(4\text{-CH}_3\text{C}_6\text{H}_4)\text{HC}\equiv\text{N}(\text{CH}_2\text{C}_6\text{H}_5)$ (210 mg, 1.00 mmol) and *p*-methoxybenzoyl chloride (171 mg, 1.00 mmol) were mixed in minimal acetonitrile and allowed to stand for 20 min. Triphenylphosphine (263 mg, 1.00 mmol) was added and the mixture concentrated *in vacuo* to replace the solvent with THF (ca. 10 mL). Outside the glovebox, a 2.5 M solution of butyllithium in hexanes (0.44 mL, 1.10 mmol) was added dropwise at -78 °C to the stirred suspension. The mixture was concentrated *in vacuo*, the solid was dissolved in dichloromethane, precipitated with diethyl ether and dried under high vacuum to yield the product as an orange solid (542 mg, 84% yield).

Synthesis of 2b

In the glovebox, $(4\text{-CH}_3\text{C}_6\text{H}_4)\text{HC}\equiv\text{N}(\text{CH}_2\text{C}_6\text{H}_5)$ (210 mg, 1.00 mmol) and *p*-methoxybenzoyl chloride (171 mg, 1.00 mmol) were mixed in minimal acetonitrile and allowed to stand for 20 min. PhP(catechol) (216 mg, 1.00 mmol) was added followed by DBU (304 mg, 2.00 mmol), and the mixture diluted to ca. 5 mL with acetonitrile yielding precipitated product within a few minutes. Cooling in the freezer overnight improves yield, after which the precipitate is filtered, washed with acetonitrile, and dried under high vacuum to yield the pure product as a yellow solid (508 mg, 91% yield).

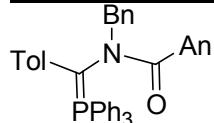
Typical procedure for the synthesis of pyrroles (Table 2)

In the glovebox, $(4\text{-CH}_3\text{C}_6\text{H}_4)\text{HC}\equiv\text{N}(\text{CH}_2\text{C}_6\text{H}_5)$ (105 mg, 0.50 mmol) and *p*-methoxybenzoyl chloride (85 mg, 0.50 mmol) were mixed in minimal chloroform and allowed to stand for 30 min. PhP(catechol) (162 mg, 0.75 mmol), DBU (152 mg, 1 mmol), and dimethyl acetylenedicarboxylate (184 μL , 1.5 mmol) were added in order as solutions in chloroform, bringing the final volume to 1 mL. The reaction is complete once all additions have been made. The solution was concentrated *in vacuo* to give the crude product as an oily mixture which was purified by column chromatography using ethyl acetate / hexanes as eluent. The pyrrole products are generally fluorescent blue spots with RF ca. 0.2 on TLC with 5-30% ethyl acetate: hexanes as eluent.

Synthesis of alkyl-acid chloride derived pyrroles (Table 2, entry 7)

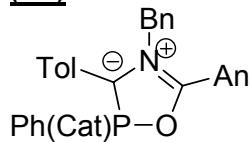
In the glovebox $\text{PhHC}=\text{N}(\text{CH}_2\text{C}_6\text{H}_5)$ (97.6 mg, 0.50 mmol) and isobutyryl chloride (53.3 mg, 0.50 mmol) 0.5 mL were mixed in minimal dichloromethane allowed to stand for 30 min. $\text{PhP}(\text{catechol})$ (108 mg, 0.5 mmol) was added. Outside the glovebox, the mixture was cooled to -78 °C under nitrogen, and LiHMDS (500 μL , 0.5 mmol, 1.0M solution in THF) was added dropwise. Methyl propiolate was injected (125 μL , 1.5 mmol), the cooling bath removed, and the mixture allowed to warm to rt over 0.5 h. The solution was concentrated *in vacuo* to give the crude product as an oily mixture which was purified by column chromatography using ethyl acetate / hexanes as eluent.

Synthesis of C-alkyl imine derived pyrroles (Table 2, entry 6)


To $(\text{CH}_3)_2\text{CHHC}=\text{N}(\text{CH}_2\text{C}_6\text{H}_5)$ (80.5 mg, 0.50 mmol) in dichloromethane (0.5 mL) under nitrogen at -78 °C was added *p*-toluoyl chloride (66 μL , 0.5 mmol) via syringe. The -78 °C bath was then replaced for a -15 °C bath (ethylene glycol/ dry ice) and $\text{PhP}(\text{catechol})$ (89 μL , 0.55 mmol, d = 1.34 g/ mL) was injected, followed by AgOTf (128.5 mg, 0.5 mmol, acetonitrile solution). The mixture was warmed to room temperature, then recooled to -78 °C and LiHMDS (500 μL , 0.5 mmol, 1.0M solution in THF) was added dropwise. Dimethyl acetylene dicarboxylate was injected (184 μL , 1.5 mmol), and the mixture allowed to warm to rt over 0.5 h. The solution was concentrated *in vacuo* to give the crude product as an oily mixture, which was purified by column chromatography using ethyl acetate / hexanes as eluent.

III. References

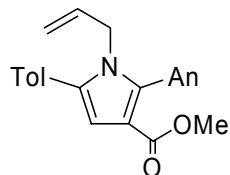
1. Layer, R. *Chem. Rev.* **1963**, 63, 489-510.
2. Zhang, J.-J.; Schuster, G. B. *J. Am. Chem. Soc.* **1989**, 111, 7149.
3. Previously reported syntheses of this compound did not include NMR and mass spectral data (a) Berlin, K. D.; Nagabhushanam, M. *J. Org. Chem.* **1964**, 29, 2056. (b) Wieber, M.; Hoos, W., R. *Tetrahedron Lett.* **1968**, 51, 5333. (c) Wieber, M.; Hoos, W. R. *Monatsh. Chem.* **1970**, 101, 776.


IV. Spectroscopic Data

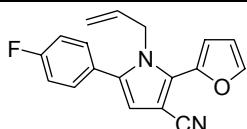
N-Benzyl-4-methoxy-N-[p-tolyl-(triphenyl-l5-phosphanylidene)-methyl]-benzamide (2a)

Isolated Yield: 84%. ^1H NMR (500 MHz, 25 °C, CDCl_3): δ (ppm) 7.46 (m, 6H), 7.60-6.95 (broad m, 10H), 7.16-7.08 (m, 4H), 7.05-6.98 (m, 2H), 6.84-6.76 (m, 2H), 6.72-6.58 (m, 4H), 5.15 (d, J = 13.0 Hz, 1H), 4.54 (d, J = 13.5 Hz, 1H), 3.77 (s, 3H), 2.22 (s, 3H). ^{13}C NMR (125 MHz, -19 °C, CDCl_3): δ (ppm) 175.7, 160.0, 142.3, 142.1, 138.5, 134.1 (broad), 134.0 (broad), 133.8 (broad), 133.7 (broad), 133.6, 133.4 (broad), 133.3 (broad), 131.9 (broad), 131.6, 131.4 (broad), 130.9, 130.2, 128.8-128.2 (m, broad), 128.5, 128.0 (broad), 127.9 (broad), 127.4, 126.9, 126.6, 125.8, 124.3, 123.9, 123.1, 119.1, 111.8, 77.2, 56.8, 56.5, 55.6, 55.1, 20.5. ^{31}P NMR (81.0 MHz, CDCl_3): δ (ppm) 10.2. HRMS (ESI $^+$) for $\text{C}_{41}\text{H}_{37}\text{NO}_2\text{P}^+$; calculated: 606.25564, found: 606.25627 (error m/z = 1.0 ppm).

4'-benzyl-5'-(4-methoxyphenyl)-3'-(4-methylphenyl)-2-phenyl-2',3'-dihydro-2λ⁵-spiro[[1,3,2]-benzodioxaphosphole-2,2'-[1,4 λ⁵,2]oxazaphosphol-4'-ylidium-3'-ide] (2b)


Isolated Yield: 91%. ^1H NMR (500 MHz, CDCl_3): δ (ppm) 7.68 (dd, J = 16.5, 7.0 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.40-7.20 (m, 4H), 7.05 (d, J = 7.5 Hz, 3H), 7.02-6.97 (m, 2H), 6.92 (d, J = 8.0 Hz, 2H), 6.85 (d, J = 9.0 Hz, 2H), 6.73 (dd, J = 5.5, 3.0), 6.46 (broad s, 1H), 4.99 (broad dd, 2H), 3.79 (s, 3H), 2.29 (s, 3H). ^{13}C NMR (125 MHz, CDCl_3): δ (ppm) 160.9, 149.6 (OCC₆H₅OMe, based on 2D NMR analysis), 148.0, 145.7, 142.9 (d, $^1\text{J}_{\text{C-P}}$ = 226.7 Hz), 135.7, 135.3 (d, $^5\text{J}_{\text{C-P}}$ = 1.9 Hz), 135.1 (d, $^3\text{J}_{\text{C-P}}$ = 6.2 Hz), 132.2 (d, $^2\text{J}_{\text{C-P}}$ = 17.6 Hz), 129.5, 128.5, 128.5 (d, $^4\text{J}_{\text{C-P}}$ = 3.8 Hz), 128.0 (d, 2 or $^3\text{J}_{\text{C-P}}$ = 11.4 Hz), 127.9, 127.8 (d, 2 or $^3\text{J}_{\text{C-P}}$ = 12.3 Hz), 127.5, 126.1, 121.6, 119.2, 118.9, 114.1, 110.7, 73.0 (d, $^1\text{J}_{\text{C-P}}$ = 261.6 Hz, P=C), 55.3, 50.9 (d, $^3\text{J}_{\text{C-P}}$ = 8.4 Hz), 21.1. ^{31}P NMR (81.0 MHz, CDCl_3): δ (ppm) -16.9. HRMS (ESI $^+$) for $\text{C}_{35}\text{H}_{31}\text{NO}_4\text{P}^+$; calculated: 560.19852, found: 560.19895 (error m/z = 0.8 ppm).

1-Benzyl-2-(4-methoxy-phenyl)-5-p-tolyl-1H-pyrrole-3,4-dicarboxylic acid dimethyl ester.


Isolated Yield: 85%. ^1H NMR (300 MHz, CDCl_3): δ (ppm) 7.24-7.02 (m, 9H), 6.88-6.76 (m, 2H), 6.63-6.51 (m, 2H), 4.89 (s, 2H), 3.79 (s, 3H), 3.67 (s, 6H), 2.33 (s, 3H). ^{13}C NMR (75.5 MHz, CDCl_3): δ (ppm) 165.6₉, 165.6₅, 159.9, 138.7, 137.6, 137.3, 137.2, 132.1, 130.6, 129.1, 128.5, 127.8, 127.4, 126.3, 122.9, 122.9, 114.8₁, 114.8₀, 113.8, 55.5, 52.0, 48.7, 21.8. HRMS (ESI $^+$) for $\text{C}_{29}\text{H}_{28}\text{NO}_5^+$; calculated: 470.19620, found: 470.19541 (error m/z = 1.7 ppm).

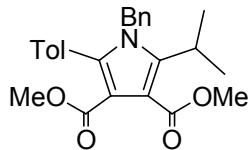
1-Allyl-5-(4-methoxy-phenyl)-2-p-tolyl-1H-pyrrole-3-carboxylic acid methyl ester

Isolated Yield: 89%. ^1H NMR (500 MHz, CDCl_3): δ (ppm) 7.38-7.26 (m, 4H), 7.21 (d, J = 7.0 Hz, 2H), 6.95 (d, J = 8.0 Hz, 2H), 6.69 (s, 1H), 5.65-5.55 (m, 1H), 5.01 (d, J = 10.0, 1H), 4.65 (d, J = 17.5 Hz, 1H), 4.39 (s, 2H), 3.85 (s, 3H), 3.68 (s, 3H), 2.39 (s, 3H). ^{13}C NMR (125.7 MHz, CDCl_3): δ (ppm) 165.5, 159.9, 139.8, 137.8, 134.8, 134.7, 132.2, 130.1, 129.4₅, 129.3₆, 124.4, 116.7, 113.6, 113.4, 110.3, 55.4, 51.0, 47.2, 21.5. HRMS (ESI $^+$) for $\text{C}_{23}\text{H}_{24}\text{NO}_3^+$; calculated: 362.17507, found: 362.17471 (error m/z = 1.0 ppm).

1-Allyl-5-(4-fluoro-phenyl)-2-furan-2-yl-1H-pyrrole-3-carbonitrile


Isolated Yield: 74%. ^1H NMR (300 MHz, CDCl_3): δ (ppm) 7.53 (s, 1H), 7.42-7.31 (m, 2H), 7.16-7.04 (m, 2H), 6.87 (d, J = 3.4 Hz, 1H), 6.54-6.50 (m, 1H), 6.48 (s, 1H), 5.92-5.76 (m, 1H), 5.14 (d, J = 10.6 Hz, 1H), 4.79 (d, J = 17.3 Hz, 1H), 4.72-4.63 (m, 2H). ^{13}C NMR (75.5 MHz, CDCl_3): δ (ppm) 164.7, 161.4, 143.8, 143.0, 136.0, 133.8, 131.6, 131.5, 127.3₀, 127.2₆, 117.1, 117.0, 116.1, 115.8, 112.5, 111.9, 111.1, 92.4, 48.8.

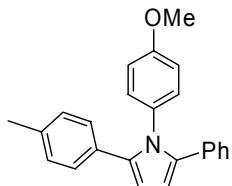
(4-Benzoyl-1-benzyl-2,5-di-thiophen-2-yl-1H-pyrrol-3-yl)-phenyl-methanone


Isolated Yield: 60%. ^1H NMR (400 MHz, CDCl_3): δ (ppm) 7.54 (d, J = 7.6 Hz, 2H), 7.40-7.10 (m, 11H), 7.05-6.95 (m, 2H), 6.93-6.80 (m, 4H), 5.26 (s, 2H). ^{13}C NMR (75.5 MHz, CDCl_3): δ (ppm) 192.0, 139.2, 137.8, 136.1, 132.3, 131.4, 130.1, 130.0, 129.2, 128.9, 128.5, 128.1, 127.7, 127.1, 126.1, 49.1. HRMS (ESI $^+$) for $\text{C}_{32}\text{H}_{20}\text{NO}_7^+$; calculated: 530.12343, found: 530.12378 (error m/z = 0.7 ppm).

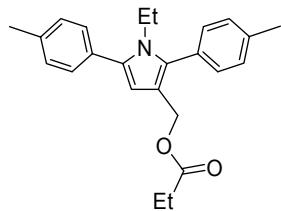
1-Benzyl-2-phenyl-1H-pyrrole-3,4-dicarboxylic acid dimethyl ester

Isolated Yield: 44%. ^1H NMR (400 MHz, CDCl_3): δ (ppm) 7.42-7.33 (m, 3H), 7.32-7.23 (m, 6H), 6.98-6.92 (m, 2H), 4.93 (m, 2H), 3.81 (m, 3H), 3.67 (m, 3H). ^{13}C NMR (125 MHz, CDCl_3): δ (ppm) 165.5, 164.1, 137.3, 136.3, 130.4, 130.0, 128.8, 128.3, 128.0, 127.0, 126.9, 115.5, 115.0, 51.7, 51.5, 51.2. HRMS (ESI $^+$) for $\text{C}_{21}\text{H}_{20}\text{NO}_4^+$; calculated: 350.13869, found: 350.13827 (error m/z = 1.2 ppm).

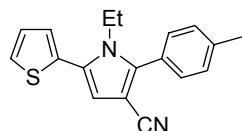
1-Benzyl-2-isopropyl-5-p-tolyl-1H-pyrrole-3,4-dicarboxylic acid dimethyl ester


Isolated Yield: 83%. ^1H NMR (400 MHz, CDCl_3): δ (ppm) 7.32-7.20 (m, 3H), 7.18-7.07 (m, 4H), 6.86 (d, J = 7.2 Hz, 2H), 4.97 (s, 2H), 3.86 (s, 3H), 3.62 (s, 3H), 3.02-2.90 (m, 1H), 2.32 (s, 3H), 1.20 (d, J = 7.2 Hz, 6H). ^{13}C NMR (75 MHz, CDCl_3): δ (ppm) 167.6, 165.3, 140.6, 138.7, 137.7, 136.9, 130.6, 129.1, 129.0, 128.1, 127.7, 125.7, 113.8, 113.4, 52.1, 51.6, 48.0, 26.7, 21.5, 21.5. HRMS (ESI $^+$) for $\text{C}_{25}\text{H}_{28}\text{NO}_4^+$; calculated: 406.20129, found: 406.20093 (error m/z = 0.9 ppm).

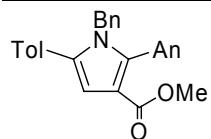
1-Benzyl-2-isopropyl-5-phenyl-1H-pyrrole-3-carboxylic acid methyl ester


Isolated Yield: 67%. ^1H NMR (400 MHz, CDCl_3): δ (ppm) 7.35-7.22 (m, 8H), 6.93 (d, J = 7.2 Hz, 2H), 5.19 (s, 2H), 3.83 (s, 3H), 3.25-3.13 (m, 1H), 1.29 (d, J = 7.2 Hz, 6H). ^{13}C NMR (100 MHz, CDCl_3): δ (ppm) 165.3, 146.2, 138.4, 133.6, 132.7, 129.3, 128.8, 128.4, 127.6, 127.3, 125.5, 111.6, 111.4, 50.9, 48.3, 26.7, 20.1. HRMS (ESI $^+$) for $\text{C}_{22}\text{H}_{24}\text{NO}_2^+$; calculated: 334.18016, found: 334.17984 (error m/z = 1.0 ppm).

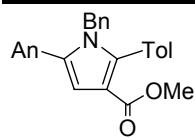
1-(4-Methoxy-phenyl)-2-phenyl-5-p-tolyl-1H-pyrrole


Isolated Yield: 42%. ^1H NMR (500 MHz, CDCl_3): δ (ppm) 7.22-7.07 (m, 5H), 7.04-6.93 (m, 6H), 6.77 (d, J = 9.0 Hz, 2H), 6.47 (s, 1H), 6.45 (s, 1H), 3.79 (s, 3H), 2.30 (s, 3H). ^{13}C NMR (125 MHz, CDCl_3): δ (ppm) 158.4, 136.0, 135.8, 135.6, 133.7, 132.0, 130.4, 129.8, 128.6₂, 128.5₆, 127.8, 126.0, 113.9, 109.5, 109.3, 55.3, 21.0. HRMS (ESI $^+$) for $\text{C}_{24}\text{H}_{22}\text{NO}^+$; calculated: 340.16959, found: 340.16952 (error m/z = 0.2 ppm). N.B.: rapid H \rightarrow D exchange in CDCl_3 yielded extra carbon and Mass Spec. signals: ^{13}C NMR (125 MHz, CDCl_3): δ (ppm) 135.9, 135.5, 109.4, 109.2. HRMS (ESI $^+$) for $\text{C}_{24}\text{H}_{21}\text{DNO}^+$; calculated: 341.17587, found: 341.17587 (error m/z = 0.0 ppm).

1-Ethyl-2,5-di-p-tolyl-1H-pyrrole

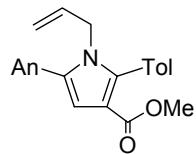

Isolated Yield: 24%. ^1H NMR (500 MHz, CDCl_3): δ (ppm) 7.36 (d, $J = 8.0$ Hz, 2H), 7.32-7.00 (m, 6H), 6.30 (s, 1H), 4.92 (s, 3H), 3.97 (q, $J = 7.5$ Hz, 2H), 2.42 (s, 3H), 2.41 (s, 3H), 2.34 (q, $J = 7.5$ Hz, 2H), 1.14 (t, $J = 7.5$ Hz, 3H), 0.87 (t, $J = 7.0$ Hz). ^{13}C NMR (125 MHz, CDCl_3): δ (ppm) 174.7, 137.6, 136.8, 134.4, 130.7₆, 130.7₄, 130.5, 129.1, 129.0, 116.3, 116.2, 109.8, 60.0₈, 60.0₆, 39.7, 27.7, 21.2₄, 21.1₇, 16.2, 9.1. HRMS (ESI $^+$) for $\text{C}_{24}\text{H}_{27}\text{NO}_2\text{Na}^+$; calculated: 384.19340, found: 384.19341 (error m/z = 0.1 ppm).

1-Ethyl-5-thiophen-2-yl-2-p-tolyl-1H-pyrrole-3-carbonitrile

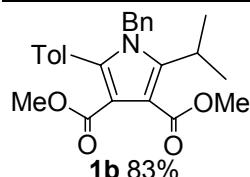

Isolated Yield: 69%. ^1H NMR (500 MHz, CDCl_3): δ (ppm) 7.42-7.34 (m, 3H), 7.30 (d, $J = 7.5$ Hz, 2H), 7.15-7.09 (m, 2H), 6.58 (s, 1H), 4.05 (q, $J = 7.5$ Hz, 2H), 2.42 (s, 3H), 1.03 (t, $J = 7.4$ Hz). ^{13}C NMR (125 MHz, CDCl_3): δ (ppm) 142.5, 139.3, 132.4, 129.6, 129.5, 127.5, 127.4, 127.3, 126.7, 126.5, 117.0, 113.3, 92.8, 40.4, 21.3, 16.2. HRMS (ESI $^+$) for $\text{C}_{18}\text{H}_{17}\text{N}_2\text{S}^+$; calculated: 293.11070, found: 293.11030 (error m/z = 1.3 ppm).

1-Benzyl-2-(4-methoxy-phenyl)-5-p-tolyl-1H-pyrrole-3-carboxylic acid methyl ester

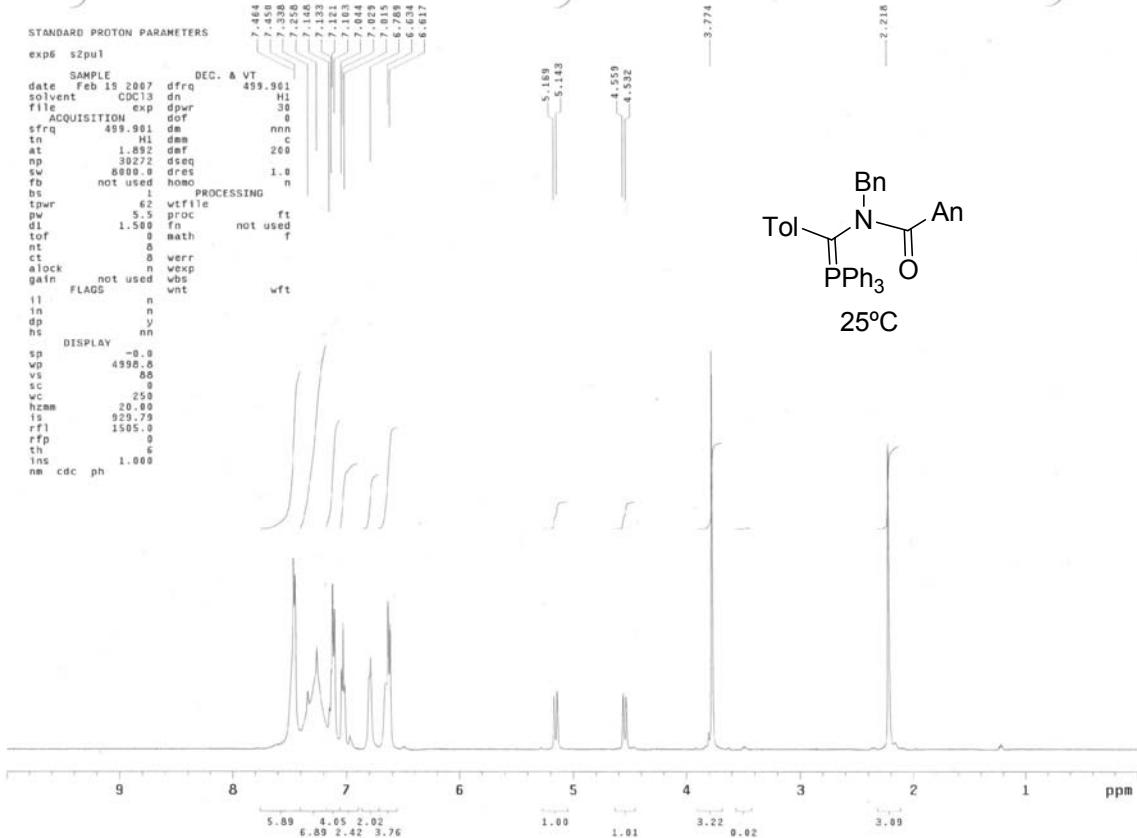
Isolated Yield: 88%. ^1H NMR (500 MHz, CDCl_3): δ (ppm) 7.26 (d, $J = 6.5$ Hz, 2H), 7.21 (d, $J = 8.0$ Hz, 2H), 7.19-7.11 (m, 5H), 6.88 (d, $J = 6.5$ Hz, 2H), 6.79 (s, 1H), 6.69-6.65 (m, 2H), 5.06 (s, 2H), 3.81 (s, 3H), 3.71 (s, 3H), 2.36 (s, 3H). ^{13}C NMR (125.7 MHz, CDCl_3): δ (ppm) 165.5, 159.8, 140.2, 138.6, 137.8, 135.3, 132.1, 130.0, 129.4₅, 129.4₂, 128.6, 127.3, 126.2, 124.3, 113.8, 113.6, 110.7, 55.4, 51.1, 48.6, 21.5. HRMS (ESI $^+$) for $\text{C}_{27}\text{H}_{26}\text{NO}_3^+$; calculated: 412.19072, found: 412.19040 (error m/z = 0.8 ppm).


1-Benzyl-5-(4-methoxy-phenyl)-2-p-tolyl-1H-pyrrole-3-carboxylic acid methyl ester

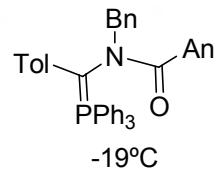
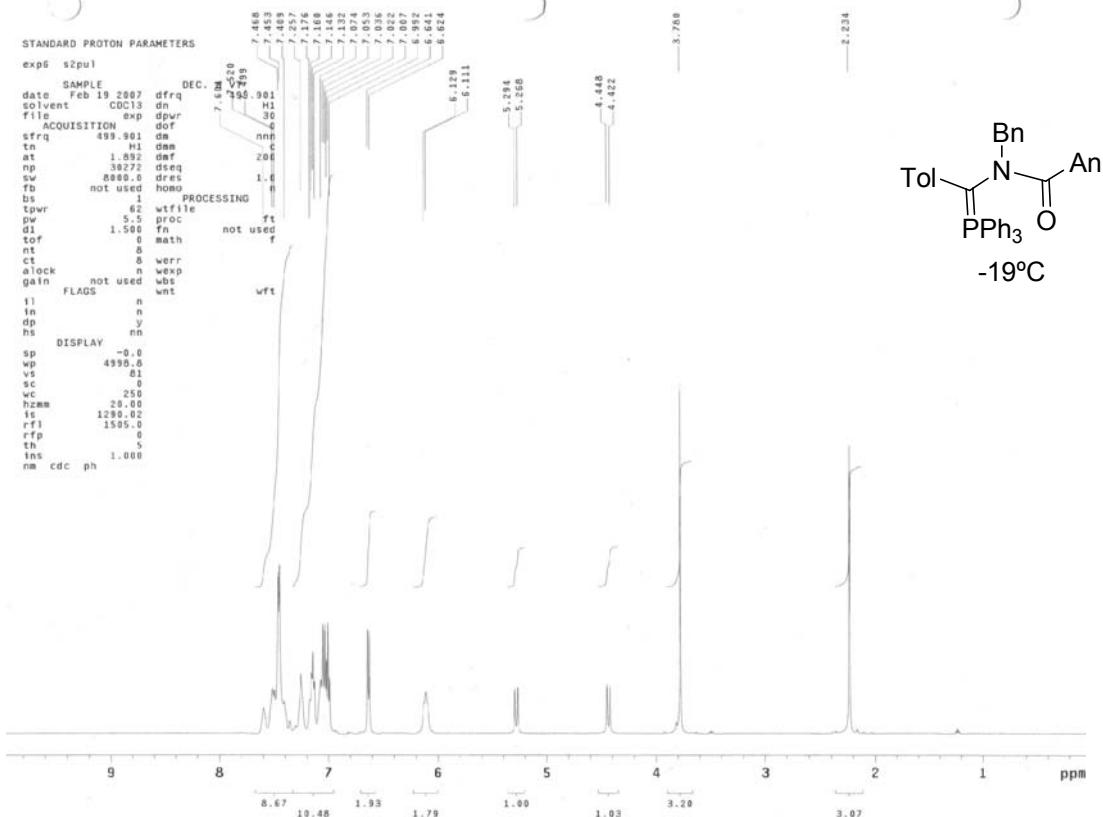
Isolated Yield: 91%. ^1H NMR (400 MHz, CDCl_3): δ (ppm) 7.24 (d, $J = 8.4$ Hz, 2H), 7.20-7.10 (m, 7H), 6.86 (d, $J = 7.6$ Hz, 2H), 6.74 (s, 1H), 6.69-6.61 (m, 2H), 5.02 (s, 2H), 3.80 (s, 3H), 3.70 (s, 3H), 2.36 (s, 3H). ^{13}C NMR (125.7 MHz, CDCl_3): δ (ppm) 165.5, 159.5, 140.2, 138.6, 138.3, 135.0, 130.9, 130.7, 129.1, 128.9, 128.5, 127.2, 126.1, 125.3, 114.1, 113.6, 110.5, 55.5,


51.1, 48.6, 21.6. HRMS (ESI⁺) for C₂₇H₂₆NO₃⁺; calculated: 412.19072, found: 412.19030 (error m/z = 1.0 ppm).

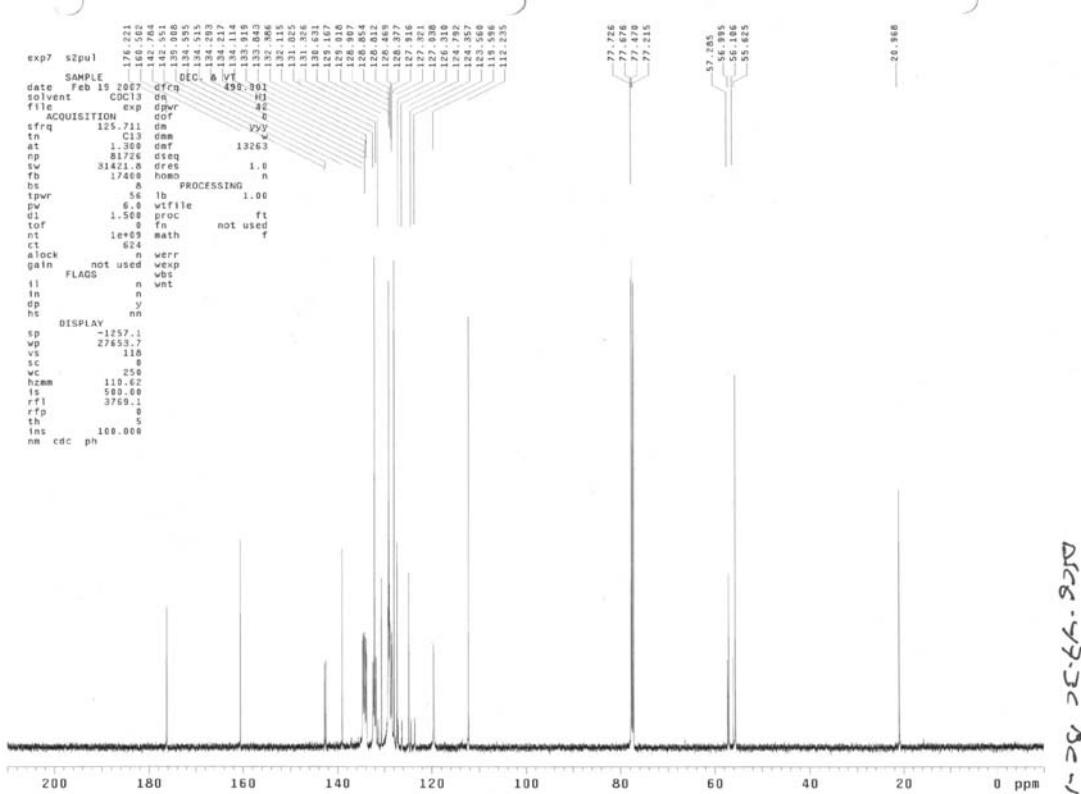
1-Allyl-2-(4-methoxy-phenyl)-5-p-tolyl-1H-pyrrole-3-carboxylic acid methyl ester

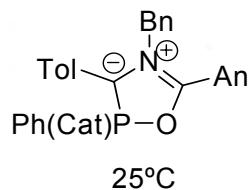
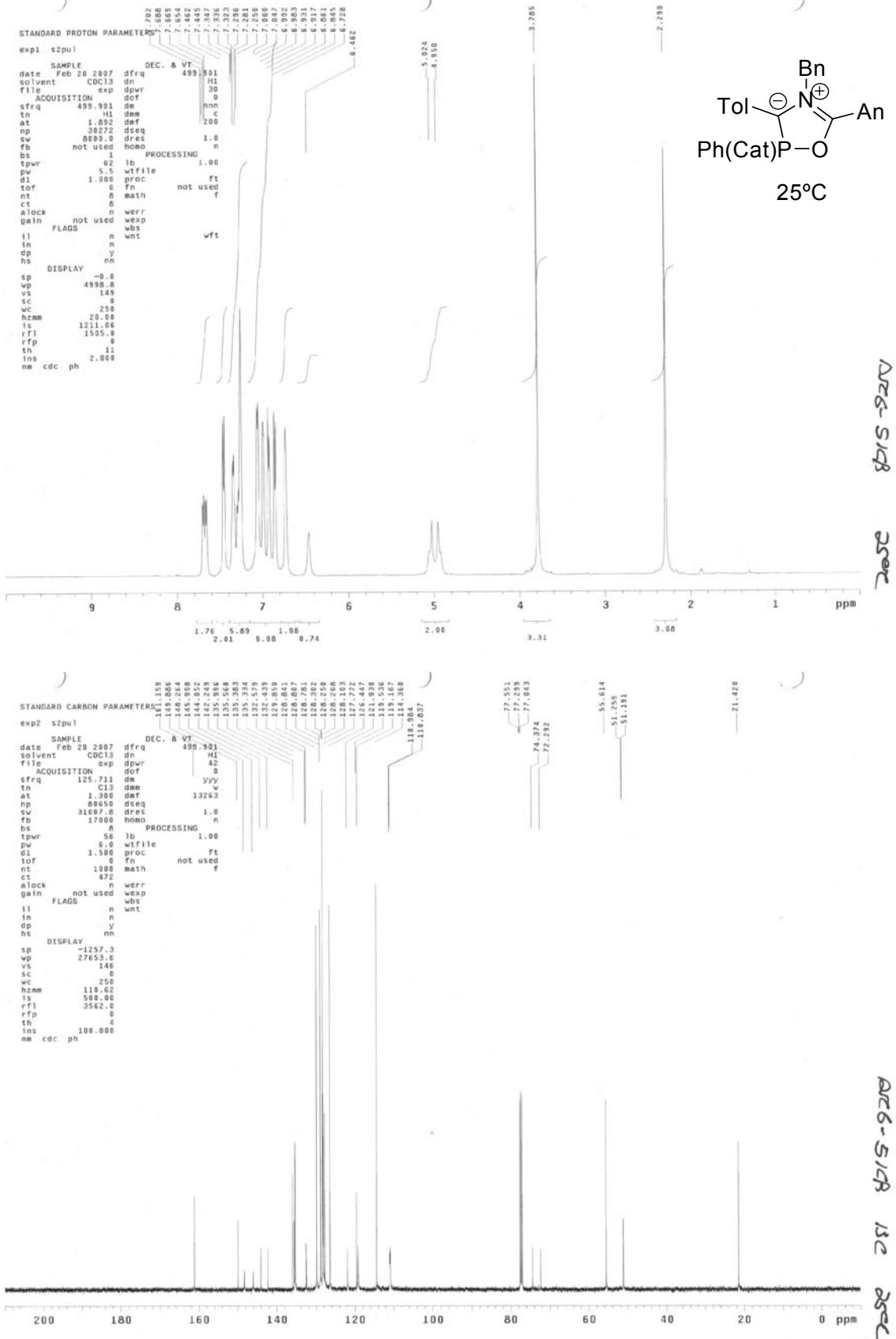

Isolated Yield: 90%. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.38 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 7.6 Hz, 2H), 6.95 (d, *J* = 8.4 Hz, 2H), 6.69 (s, 1H), 5.68-5.55 (m, 1H), 5.03 (d, *J* = 10.4 Hz, 1H), 4.67 (d, *J* = 17.2 Hz, 1H), 4.39 (s, 2H), 3.85 (s, 3H), 3.69 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃): δ (ppm) 165.2, 159.3, 139.6, 138.2, 134.4₄, 134.3₈, 130.7, 130.5, 129.1, 128.7, 125.1, 116.4, 113.8, 113.0, 109.9, 55.3, 50.8, 46.9, 21.5. HRMS (ESI⁺) for C₂₃H₂₄NO₃⁺; calculated: 362.17507, found: 362.17487 (error m/z = 0.6 ppm).

1-Benzyl-2-isopropyl-5-p-tolyl-1H-pyrrole-3,4-dicarboxylic acid dimethyl ester

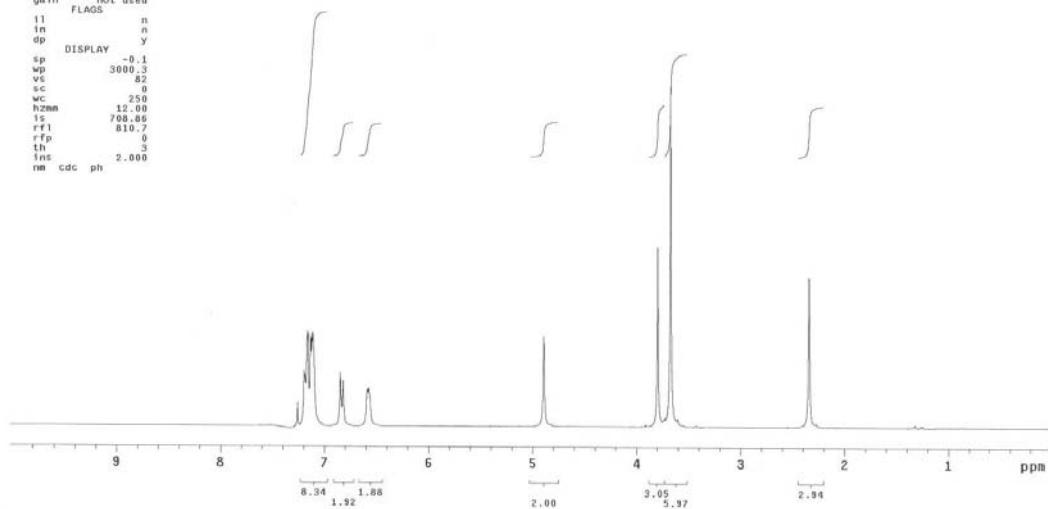
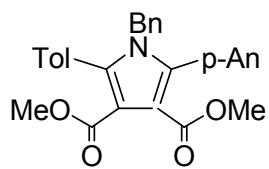



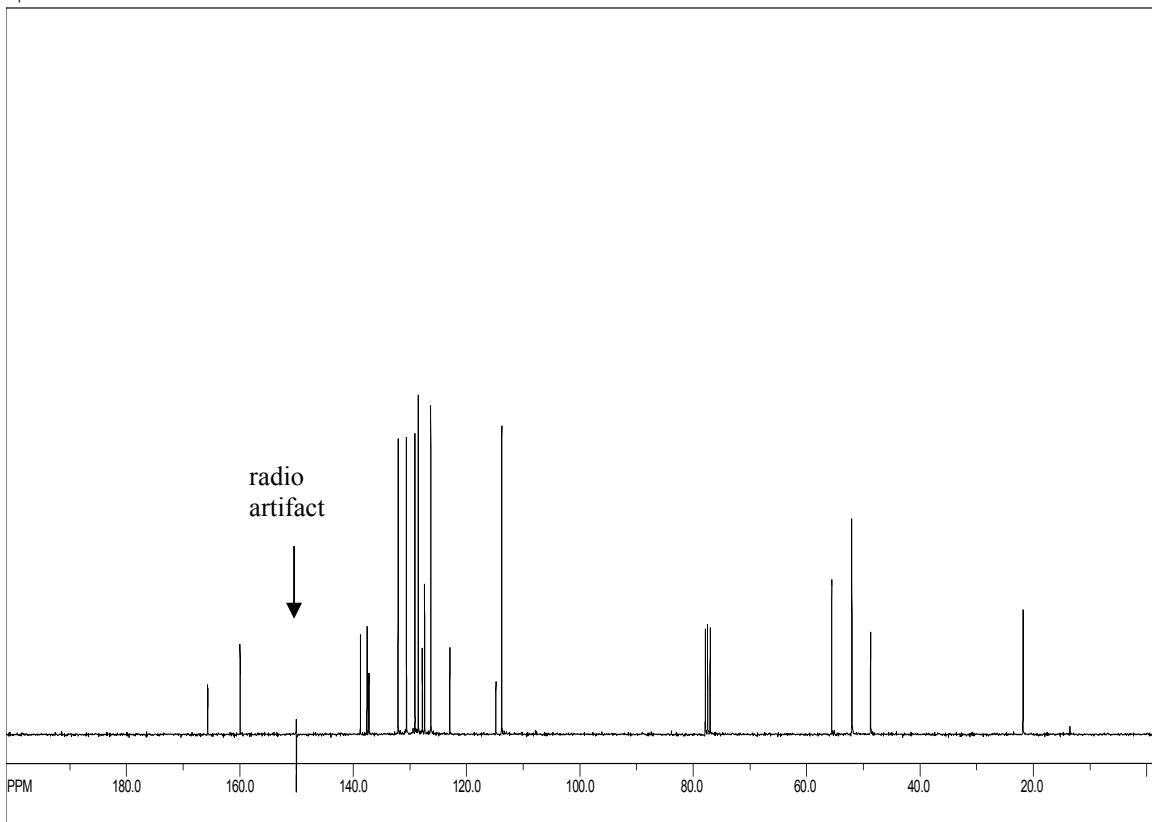
Isolated Yield: 83%. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.32-7.20 (m, 3H), 7.18-7.07 (m, 4H), 6.86 (d, *J* = 7.2 Hz, 2H), 4.97 (s, 2H), 3.86 (s, 3H), 3.62 (s, 3H), 3.02-2.90 (m, 1H), 2.32 (s, 3H), 1.20 (d, *J* = 7.2 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 167.6, 165.3, 140.6, 138.7, 137.7, 136.9, 130.6, 129.1, 129.0, 128.1, 127.7, 125.7, 113.8, 113.4, 52.1, 51.6, 48.0, 26.7, 21.5₉, 21.5₅. HRMS (ESI⁺) for C₂₅H₂₈NO₄⁺; calculated: 406.20129, found: 406.20093 (error m/z = 0.9 ppm).


V. ^1H and ^{13}C NMR Spectra



STANDARD PROTON PARAMETERS

-19°C

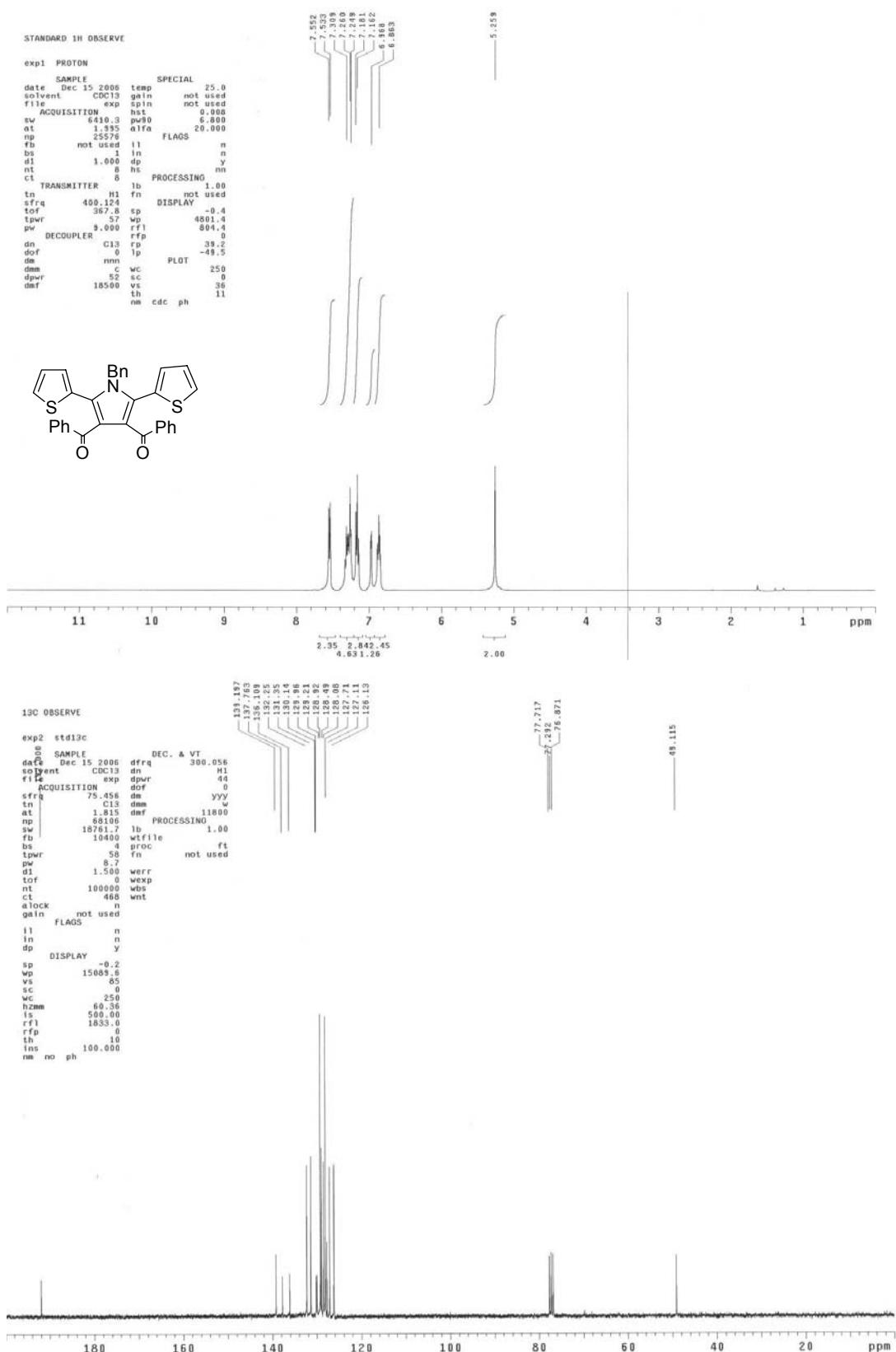


1932-1933-1934-1935

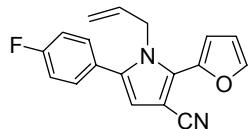


STANDARD 1H OBSERVE

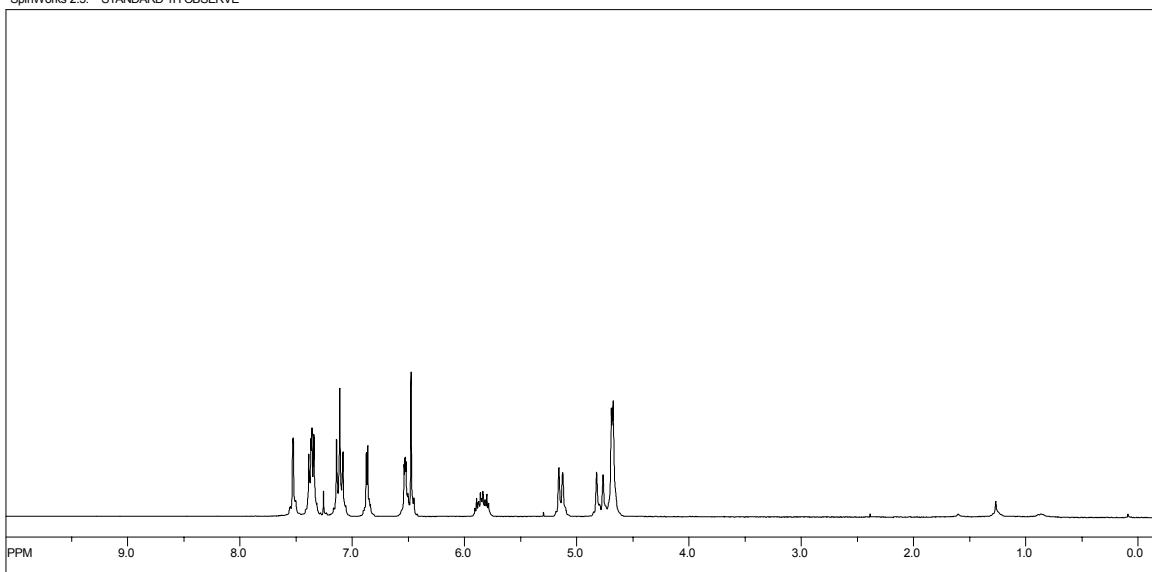
```
exp1 std1h
SAMPLE          DEC. & VT
date  May 4 2006 dfrq  300.056
solvent  CDCl3 dn  H1
f1      exp dppr  30
ACQUISITION dfr  0
sfreq  300.056 dm  nnn
tn      1.591 dms  c
tp      1.591 dmt  200
np      17384 dft  PROCESSING 200
sw      4506.5 lb  1.00
bs      not used
proc   60 profile  ft
tppr   60 fn  not used
dp      7.0
d1      1.000 werr
t0f    wexp
nt      16 wbs
sc      16 wnt
a1ock  1 n
gain   not used
FLAGS  n
in     n
dp     y
DISPLAY -0.1
sp      3000.3
wp      82
sc      0
wc      250
scsmm  12.00
is      708.06
rfl1   810.7
tp      0
th      3
ins    2.000
nm  cdc ph
```


SpinWorks 2.5: 13C OBSERVE


file: C:\Documents and Settings\Owner\My Documents\MI products\data\ds3-140FR_cdb3_13C_3ray05.fidfid block# 1 expt. "32pu"


transmitter freq.: 75.45351 MHz

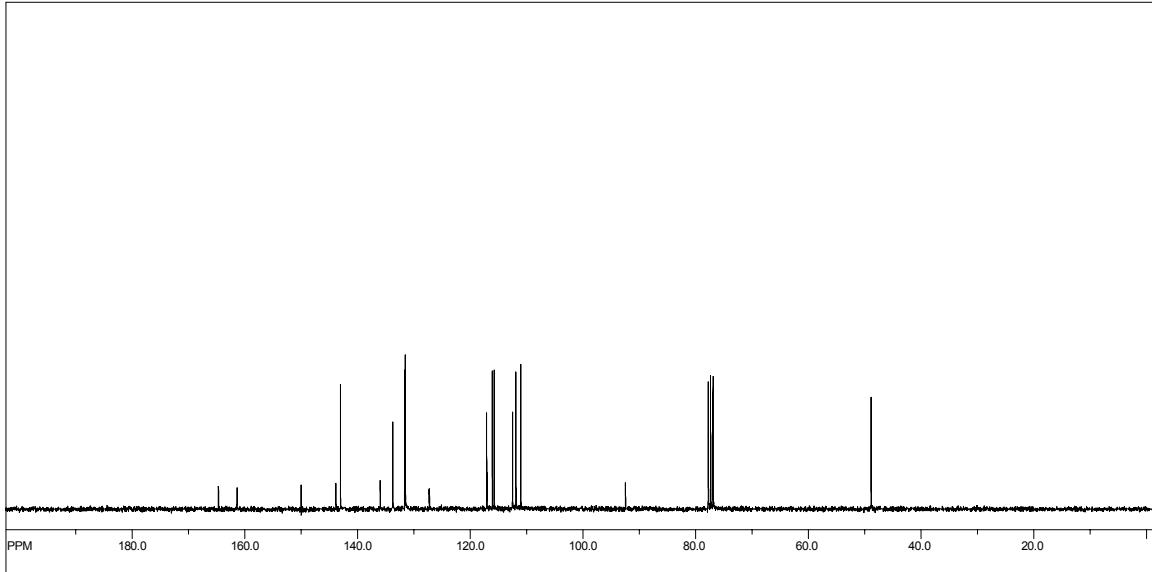
time domain size: 68492 points


width: 18867.92 Hz = 250.044338 ppm = 0.275476 Hz/pt

number of scans: 688

SpinWorks 2.5: STANDARD 1H OBSERVE

file: C:\Documents and Settings\Owner\My Documents\PhPCat\paper\PY\products\data\ds04-128-1E_cdk3_9nov05.fid.fid block# 1 expt: "2pu"


transmitter freq.: 300.061350 MHz

time domain size: 19194 points

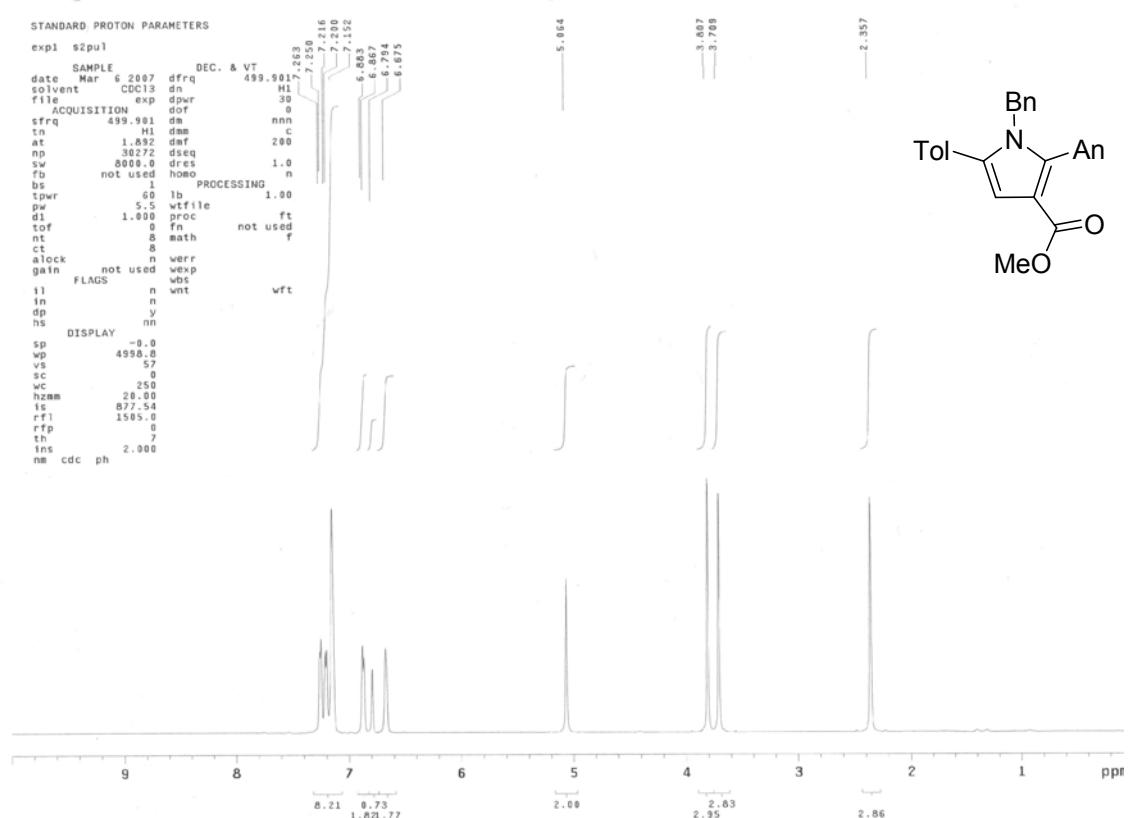
width: 481.97 Hz = 18.009973 ppm = 0.250238 Hz/pt

number of scans: 1352

SpinWorks 2.5: 13C OBSERVE

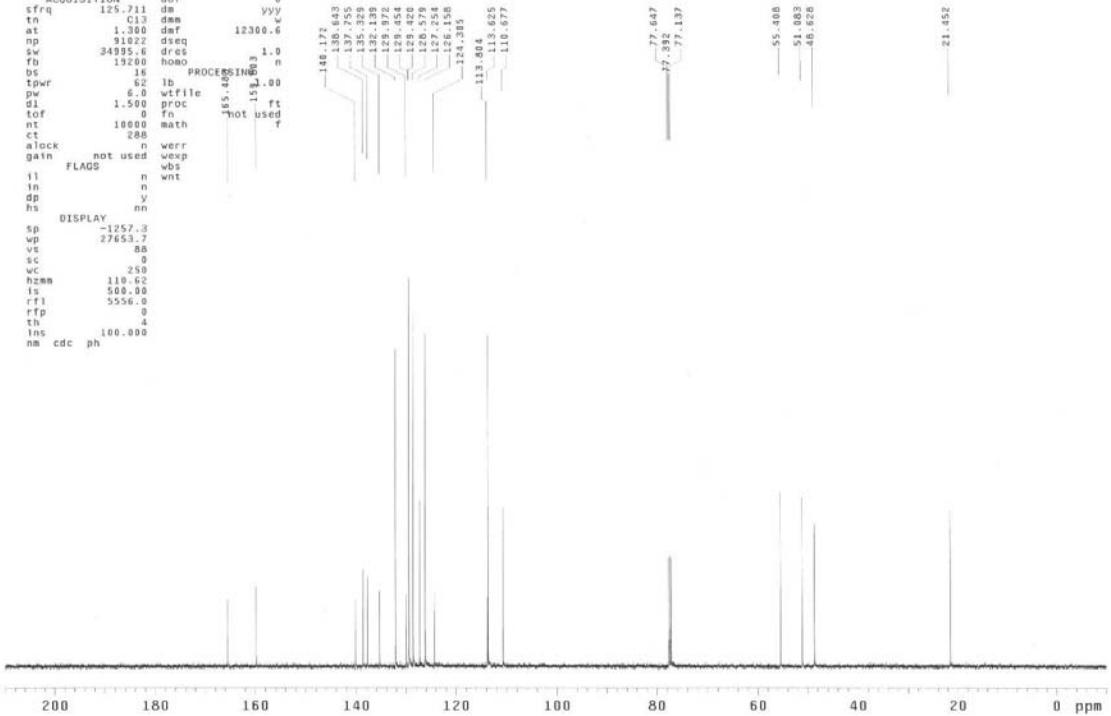
file: C:\Documents and Settings\Owner\My Documents\PhPCat\paper\PY\products\data\ds04-128-1E_cdk3_13C_9nov05.fid.fid block# 1 expt: "2pu"

transmitter freq.: 75.498315 MHz


time domain size: 19192 points

width: 18867.62 Hz = 25.044538 ppm = 0.275476 Hz/pt

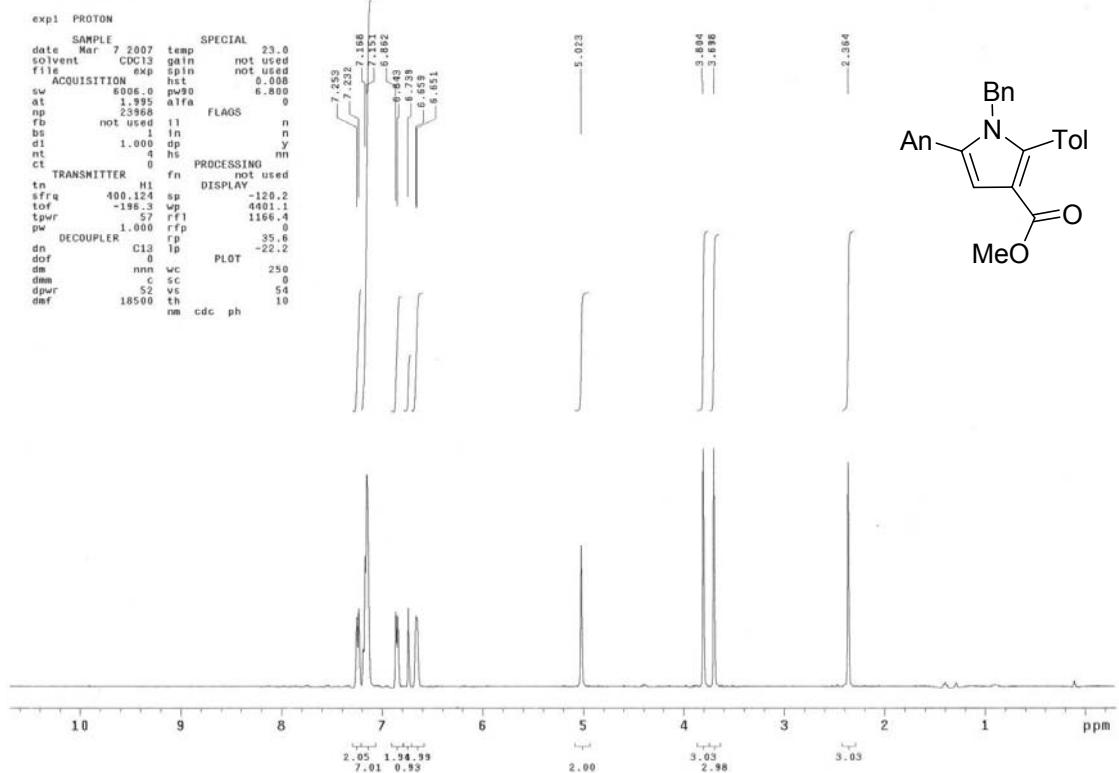
number of scans: 1352


STANDARD PROTON PARAMETERS

```
exp3 s2pul
SAMPLE          DEC. & VT      499.901
date  Mar  6 2007 dfrq      499.901
solvent  CDCl3 dn      H1
file      exp dprw      36
ACQUISITION dof      0
tfrq      499.901
tn      1.892 dmf      200
at      1.892 dmf      200
np      30272 dseq      1.0
ps      86080 dres      1.0
rb      not used homo      n
bs      1 lb      PROCESSING 1.00
tppr      60
pw      50
sl      1.000 wfile      ft
dl      0 fn      not used
tof      0
nt      8 math      f
rt      0
clock      0
gain      0
alock      0
gain      not used wexp
wbs      wbs
ii      n wnt      wft
in      n
dp      y
hs      nn
FLAGS
sp      -0.0
wp      4998.8
vs      57
sc      0
wc      250
hzzm      20.00
is      877.54
r1      1505.0
rtfp      0
th      7
ins      2.000
nm cdc ph
```


STANDARD CARBON PARAMETERS

```
exp3 s2pul
SAMPLE          DEC. & VT      499.901
date  Mar  6 2007 dfrq      499.901
solvent  CDCl3 dn      H1
file      exp dprw      36
ACQUISITION dof      0
tfrq      125.711
tn      1.131 dnm      vvv
at      1.300 daf      12300.6
np      91022 dseq      1.0
ps      34900 dres      1.0
rb      13200 homo      n
bs      16 lb      PROCESSING 1.00
tppr      60
pw      5.0 wfile      41.00
sl      1.500 proc      1.00
tof      0 fn      not used
nt      10000 math      f
rt      288
clock      0
gain      not used wexp
wbs      wbs
ii      n wnt      wft
in      n
dp      y
hs      nn
FLAGS
sp      -1257.3
wp      27653.7
vs      88
sc      0
wc      250
hzzm      110.62
is      518.0
r1      5556.0
rtfp      0
th      4
ins      100.000
nm cdc ph
```

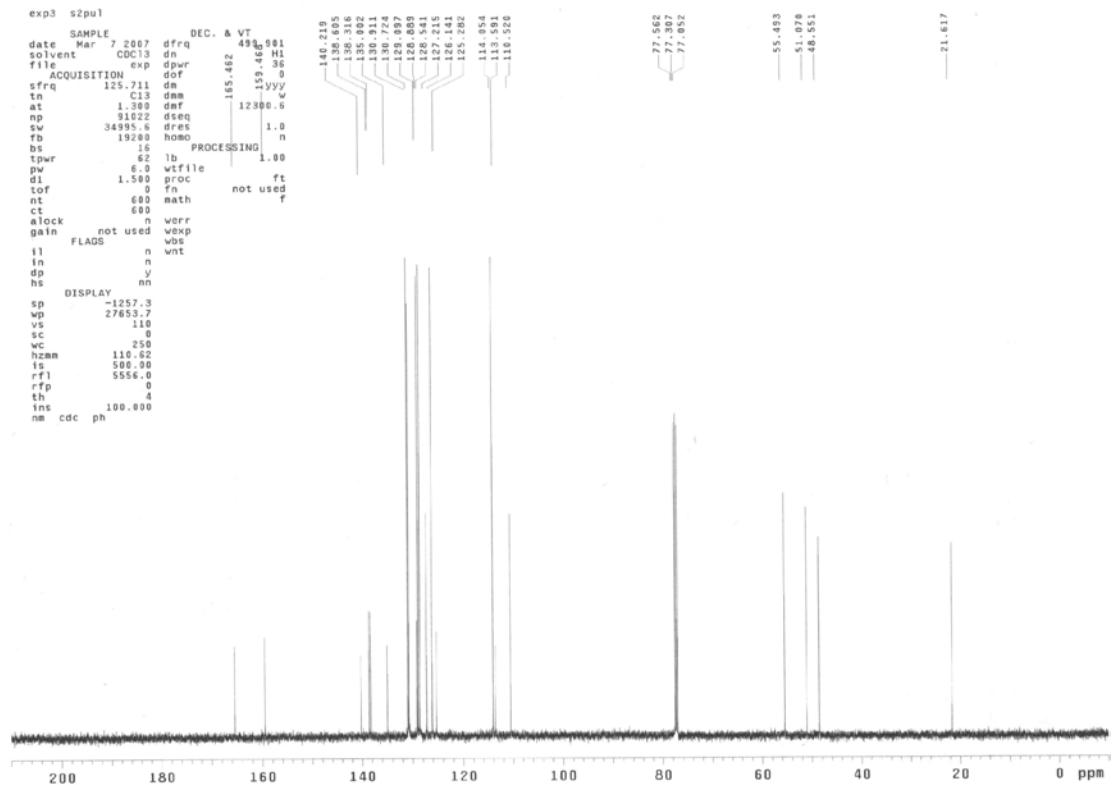


STANDARD 1H OBSERVE

exp1 PROTON

```

SAMPLE          SPECIAL
date Mar 7 2007 temp 23.0
solvent   CDCl3  gain  not used
file      exp  not used
ACQUISITION hst  not used
      pw90  6.800
      600.0  pw90  6.800
      1.000  aifc  0
      23968  flags
      not used 11  n
      1      in   n
      1.000  dp   y
      0      hs   nn
      0      th   mn
      0      PROCESSING
      TRANSMITTER fn  not used
      HI      DISPLAY
      sfrq  400.124  sp  -120.2
      tof   -196.3   sp  4491.1
      tppr   57   rfp  1186.4
      pw   1.000  rfp  0
      DECOUPLER C13  lp   35.6
      dn   C13  lp   -22.2
      dof   0      PLOT
      mm   wc   250
      dm   c   sc   0
      dppr   52   vs   54
      dmf  18500  th   10
      nm  cdc  ph

```



STANDARD CARBON PARAMETERS

exp3 s2pul

```

SAMPLE          DEC. & VT
date Mar 7 2007 dfrq  498.981
solvent   CDCl3  dn   HI
file      exp  dppr  1.00
      dof   0
ACQUISITION dof   0
      t1   140.710
      C13  dm   36
      1.300  dmf  12300.5
      91022  dseq  1.0
      3495.0  dres  1.0
      19200  homa  n
      16      PROCESSING
      62   lb   1.00
      pw   60  w1file
      1.500  proc  ft
      tof   0  fn   not used
      nt   600  math  f
      ct   600
      alock   n  verr
      gain  not used  wexp
      wbs
      11  n  wnt
      in   n
      dp   y
      hs   nn
      DISPLAY
      sp   -1257.3
      27653.7
      vs   110
      sc   0
      wc   250
      hzmb 110.62
      50.0
      rfp  5556.0
      rfp   0
      th   4
      int  100.000
      nm  cdc  ph

```


STANDARD PROTON PARAMETERS

exp4 s2pul

SAMPLE DEC. & VT

date Apr 25 2007 dfrq 499.902268

solvent CDCl₃ dn 14

file exp dprw 30

ACQUISITION dof 0

sfrq 499.901 da nnn

tn 1.392 dpr 200

at 1.892 def 200

np 26484 dseq

sw 6599.1 dres 1.0

rb 3800 homo n

bs 1 PROCESSING

tpwr 62 lb 1.00

pw 5.5 wfile

dt 1.000 proc ft

tof 504.4 fm not used

nt 8 math f

ct

alock not used werr

gain wexp

FLAGS wbs

i1 n wht

in n

dp y

hs n

DISPLAY

sp -256.2

vp 5498.7

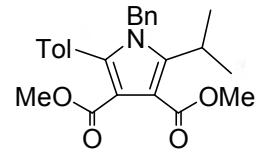
vs 85

sc 0

wc 250

hzmm 22.00

is 915.13


rf1 509.2

rfp 0

th 11

ins 2.900

nm cdc ph

STANDARD CARBON PARAMETERS

exp4 s2pul

SAMPLE DEC. & VT

date Apr 25 2007 dfrq 499.901

solvent CDCl₃ dn H1

file exp dprw 167.398

ACQUISITION dof 42

sfrq 125.712 dm yyy

tn Cl3 dms w

at 1.300 dft 13263

np 718.400

sw 27682.5 dres 1.0

fb 15200 homo n

bs 64 PROCESSING

tpwr 6 lb 1.00

pw 6.0 wfile

dt 1.500 proc ft

tof 628.1 fm not used

nt 16466 math f

ct

alock n werr

gain not used wexp

FLAGS wbs

i1 n wnt

in n

dp y

hs n

DISPLAY

tp -1261.4

vp 27682.5

vs 100

sc 0

wc 250

hzmm 100.00

is 500.00

rf1 1261.4

rfp 0

th 6

ins 100.000

nm cdc ph

SAMPLE DEC. & VT

date Apr 25 2007 dfrq 499.901

solvent CDCl₃ dn H1

file exp dprw 167.398

ACQUISITION dof 42

sfrq 125.712 dm yyy

tn Cl3 dms w

at 1.300 dft 13263

np 718.400

sw 27682.5 dres 1.0

fb 15200 homo n

bs 64 PROCESSING

tpwr 6 lb 1.00

pw 6.0 wfile

dt 1.500 proc ft

tof 628.1 fm not used

nt 16466 math f

ct

alock n werr

gain not used wexp

FLAGS wbs

i1 n wnt

in n

dp y

hs n

DISPLAY

sp -1261.4

vp 27682.5

vs 100

sc 0

wc 250

hzmm 100.00

is 500.00

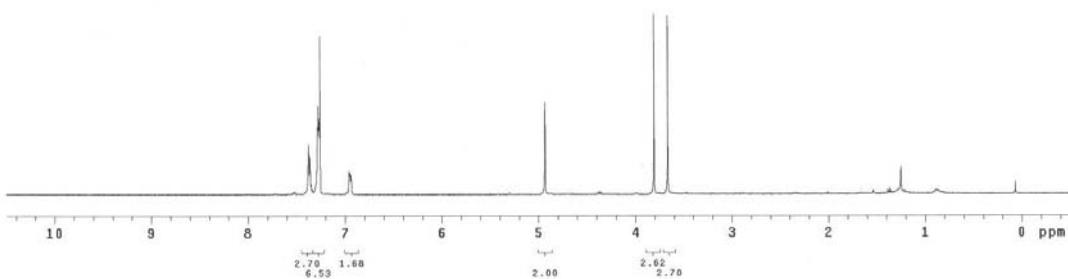
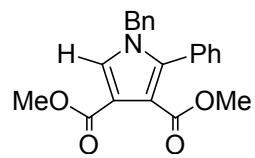
rf1 1261.4

rfp 0

th 6

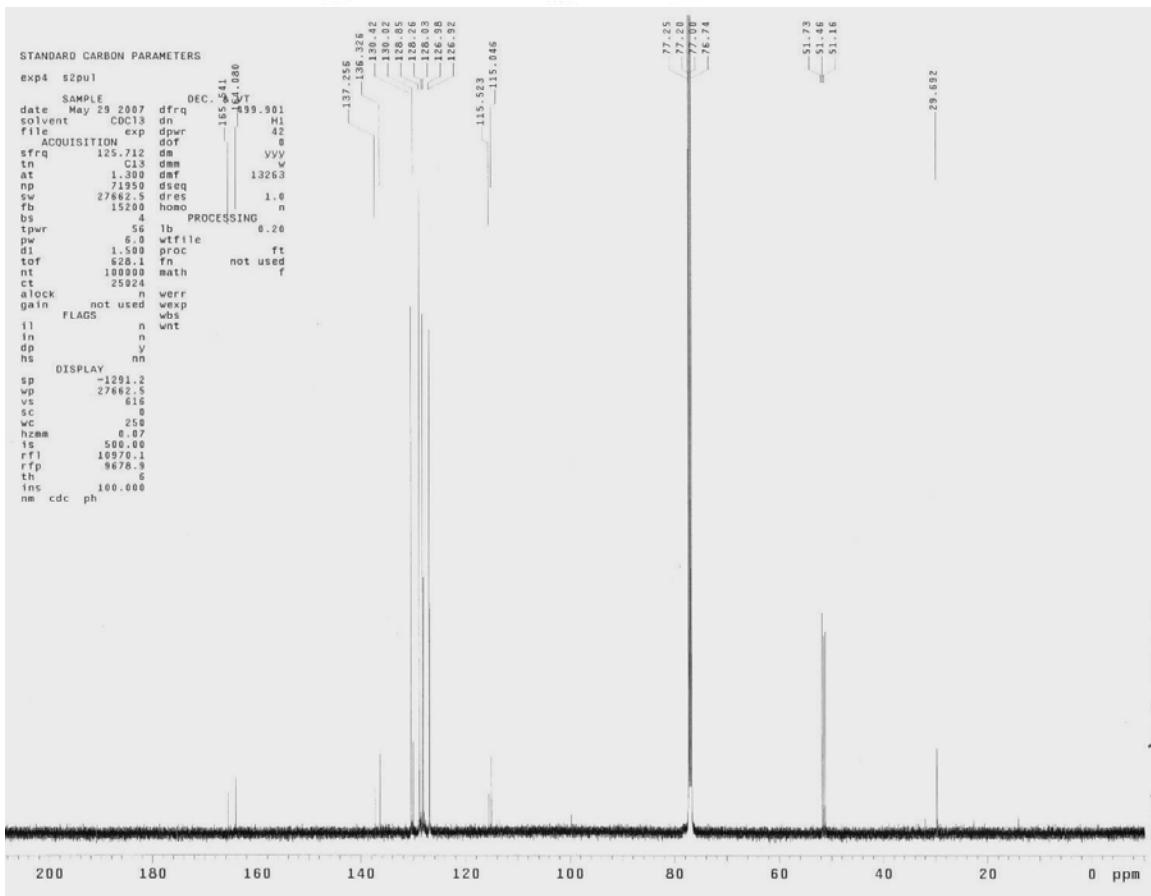
ins 100.000

nm cdc ph



Kd_3_6_f59-61

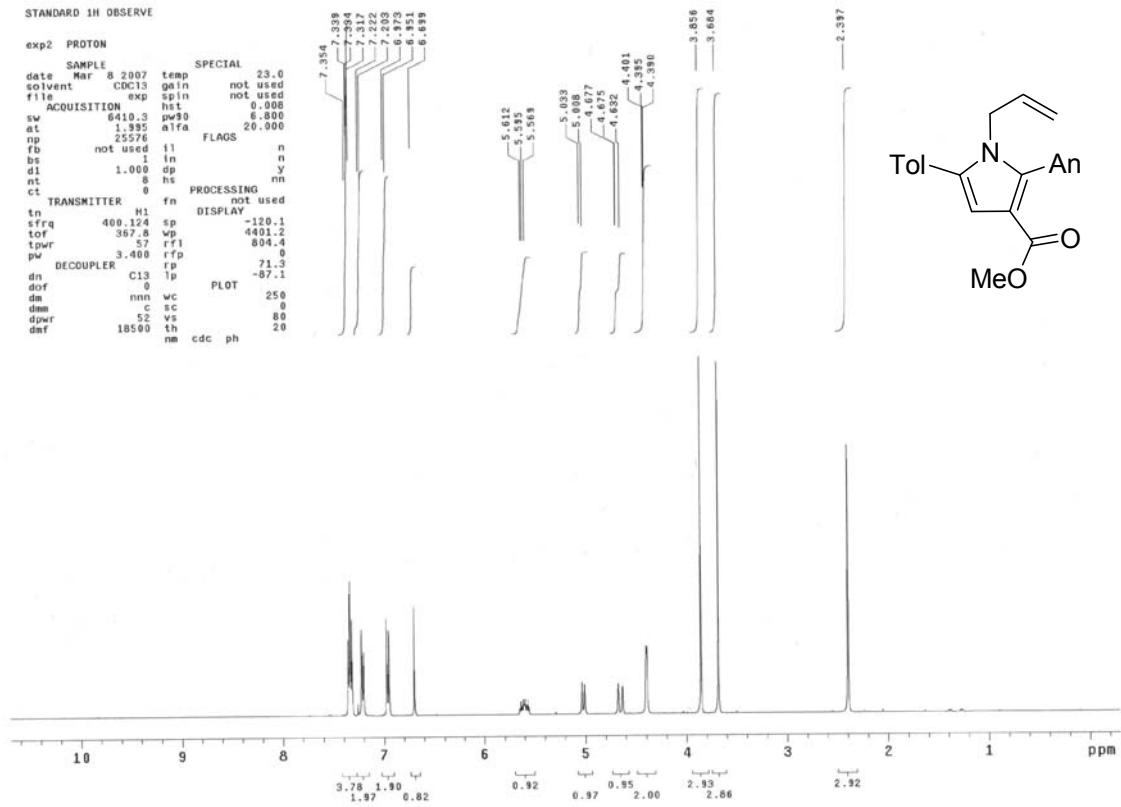
exp1 PROTON

```


exp1 proton
      SAMPLE          SPECIAL
      date       June 2007 temp 23
      Solvent      CDCl3 gain not used
      file          spin 1
      ps            hz 0.00
      ACQUISITION
      s           200.3 90
      at            1.93 aifc 20.00
      np           20780
      flags
      not used 11
      bs
      d1           1.800 dp
      t1           10000
      ct           266
      nc           268  PROCESSING r
      TRANSMITTER   lb -0.3
      rf1          400.0 fm
      frq          400.0 fm
      tof          167.7 sp
      tdpw         3.400 sp
      decpwr       3.400 rfp
      decoupler    C13 rfp
      dn
      dorf         mm Tp
      dmm          mm
      dmw         c W PLOT
      dmpr        52 E
      dmf        18500 V
      th

```


STANDARD CARBON PARAMETERS


exp4 s2pvl

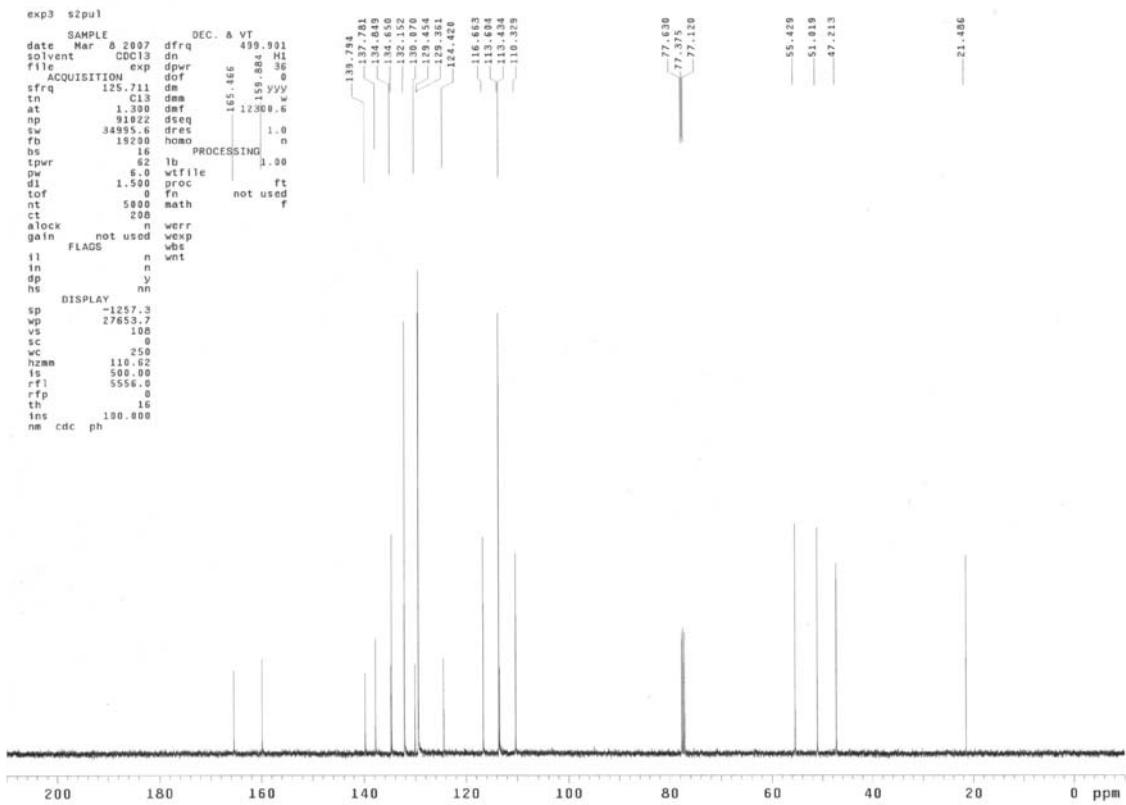
STANDARD 1H OBSERVE

exp2 PROTON

SAMPLE		SPECIAL	
date	Mar 8 2007	temp	
solvent	CDCl ₃	gain	not
file	exp	spin	not
ACQUISITION	wst		
sw	6410.3	pw0	
	1.38		
np	25576		FLAGS 2
fb	not used	11	
bs	1	in	
dt	1.008	dp	
nt	0		
ct	0		
TRANSMITTER	fm	PROCESSING	not
tn	H1		DISPLAY
tr	400.14	sp	
tof	367.8	sp	4
tpwr	57	rf1	
pw	3,400	rfp	
DECOPPLER	rp		
dn	C13		
dm	0		PLOT
dmm	mmn	wc	
dpmr	sc	vc	
dmf	52	vs	
	1850	th	
		pm	cdc ph

CC=CC1=C(C=C1C(=O)OC)N(c2ccccc2)C1=CC=C1

STANDARD CARBON PARAMETERS

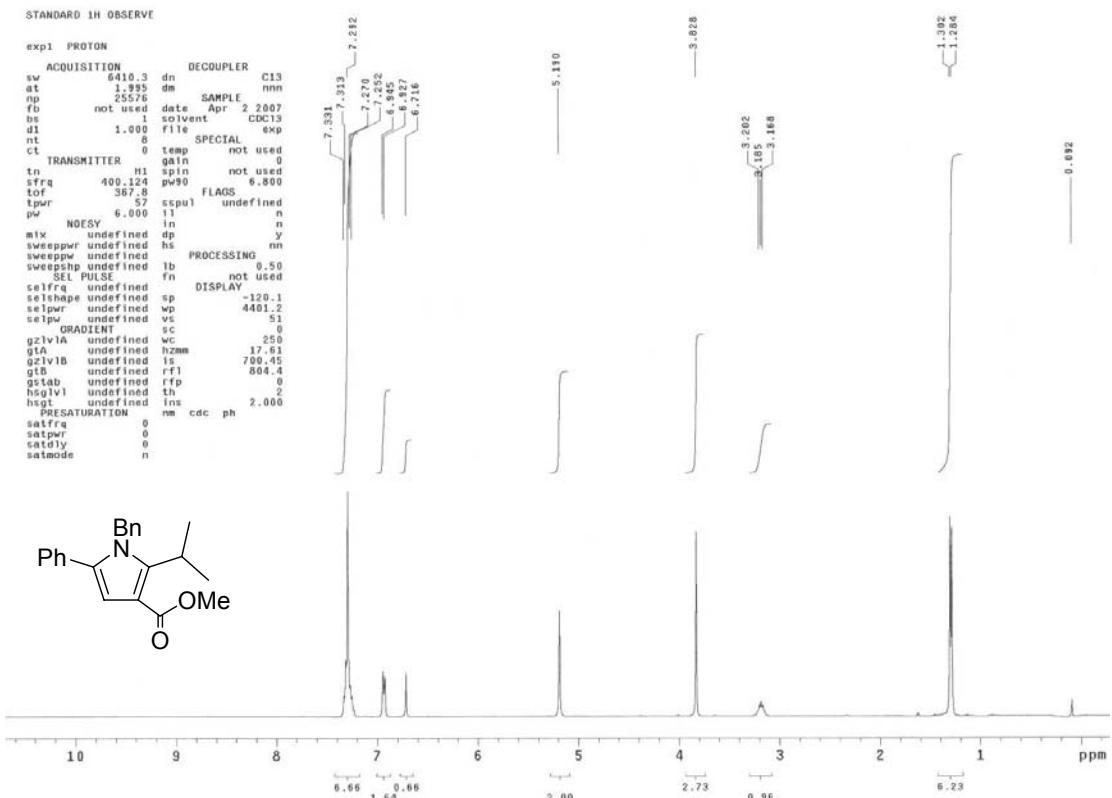

exp3 s2pu1

```

SAMPLE          DEC. & VT
date Mar  8 2007 dfrq 4991
solvent CDC13 dn 156.884
file          exp dpwr
ACQUISITION dfrf
sfrq        125.711 165.466
at          1.300
rm          91822 dseq
sw          34000.000
fb          15200 homo
bs          16      PROCESSING
tpwr        62  lb
pw          64 4file
di          1.5000 proc
tof          0      fn  not
nt          5000  math
ct          200
clock        n  werr
gain        not used wexp
FLAGS        n  wbs
il          n  wnt
in          n
dp          y
hs          nn

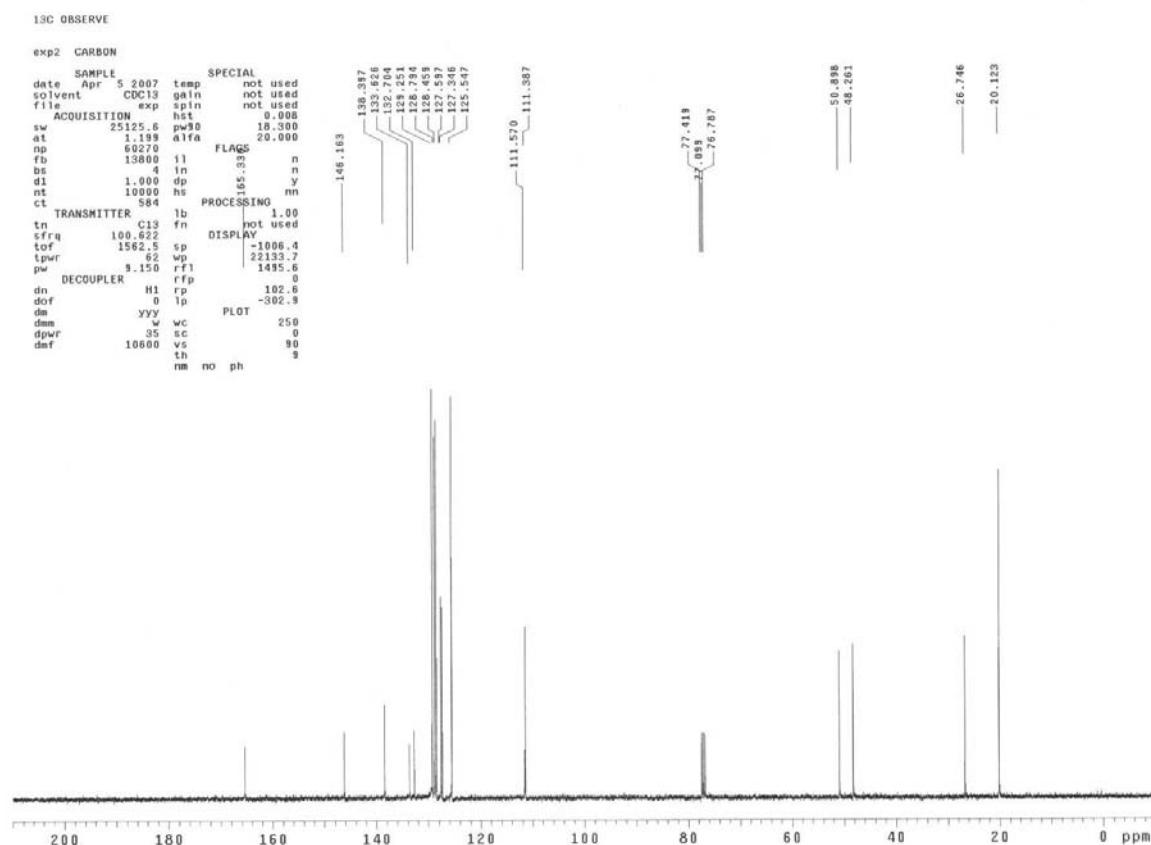
DISPLAY
sp          -1257.3
wp          27653.7
vs          108
sc          0
rc          250
hzma        110.62
is          500.00
rf1          5556.0
rfp          0
th          16
ins          100.000
nm  cdc  ph

```



STANDARD 1H OBSERVE

expt. position

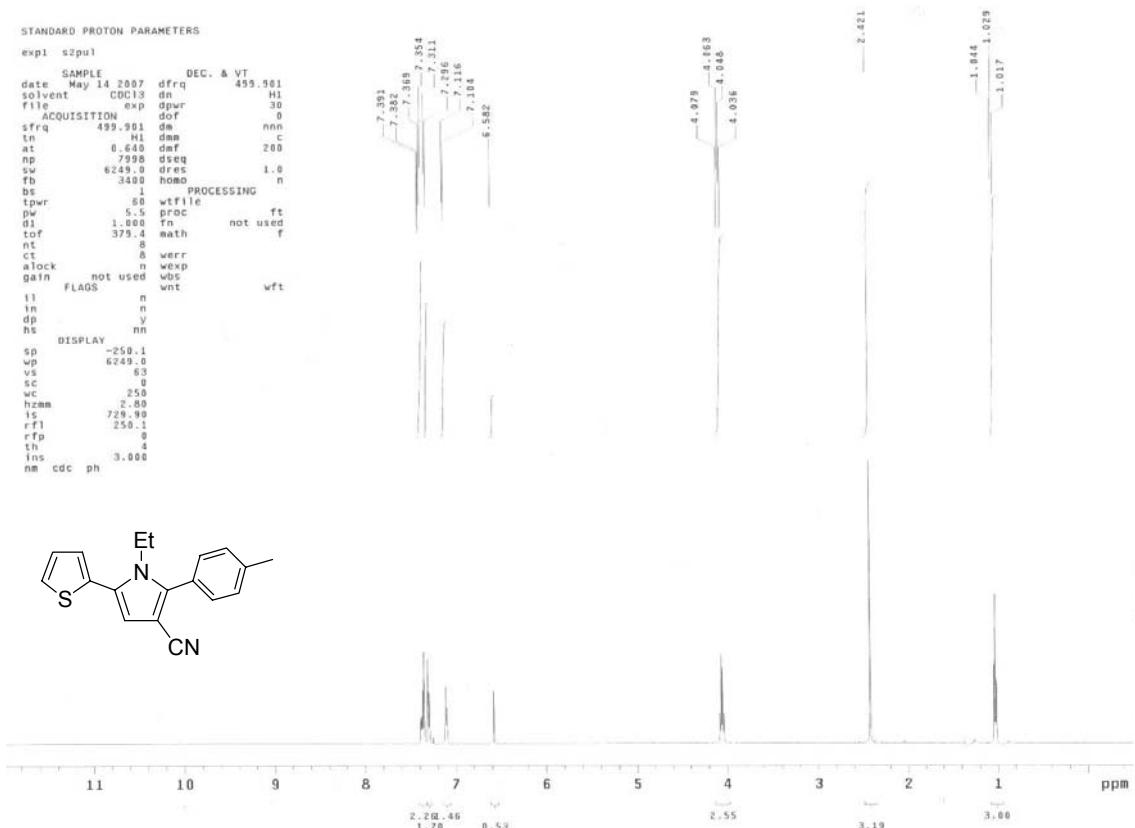
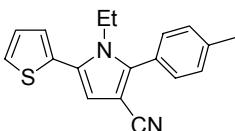
```


ACQUISITION          6410.3   dn   C13
at                 1.955   dm   nnn
rf                 not used   sample
fb                 not used   date  Apr 2 2007
bs                 1   solvent   CD13
dl                 1.000   file   exp
nt                 8   temp   SPECIAL
tr                 0   gain   not used
TRANSMITTER        GAIN   0
tr                 0   spin   not used
in                 H1   pw90   6.800
tr                 400   pw90
tr                 367.8   pw90
tr                 57   pw90
pw                 6.000   pw90
NOESY             undefined   n
mix               undefined   n
sweeppr            undefined   n
sweeppr            undefined   n
sweeppr            undefined   n
SEL_PULSE          undefined   n
selfrq             undefined   n
selfshape          undefined   n
selfshape          undefined   n
selfpw             undefined   n
GRADIENT           undefined   n
gzv1a              undefined   n
gzv1b              undefined   hzmm
gzv1b              undefined   ls
gtb               undefined   rrf1
gtb               undefined   rrf2
gtb               undefined   th
gtb               undefined   ins
hsgt              undefined   2.000
PRESATURATION      nm   cdc   ph
satr              0
satr              0
satr              0
satr              0

```


13C: OBSERVE

exp2 CARBON

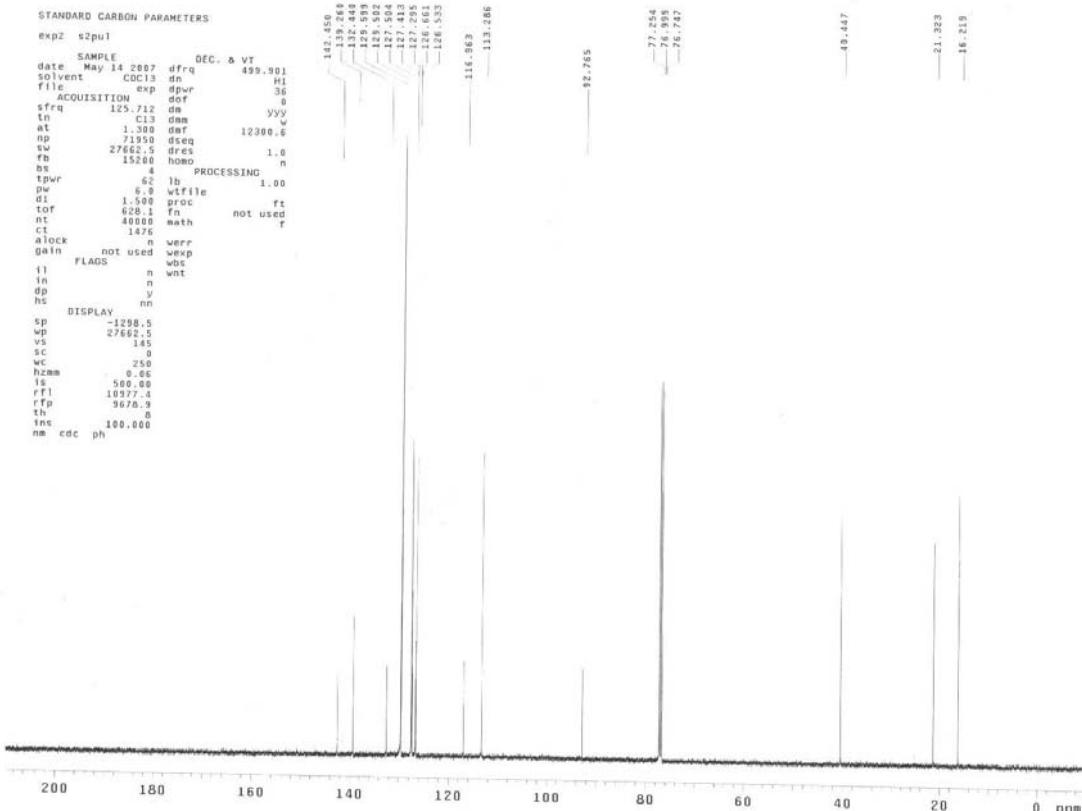



STANDARD PROTON PARAMETERS

```

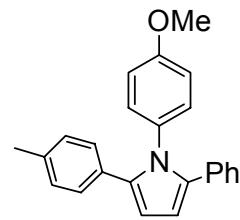
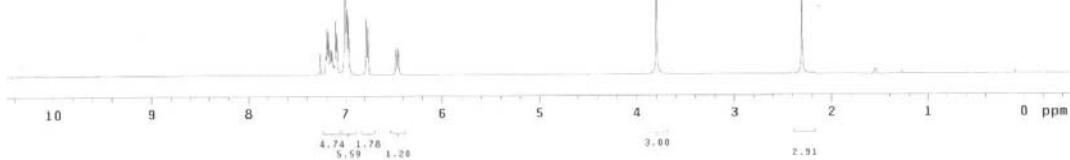
exp1 s2pul
SAMPLE          DEC. & VT
date  May 14 2007 dfrq  453.901
solvent   CDCl3  dn   H1
file      exp  dpwpr  30
ACQUISITION   dof   0
sfrq     453.901  dm   nnn
tn       1.000   dm   c
at       0.640   dm   c
np      7998    dseq
sw      6249.0   dres  1.0
fb      3400    homo
ns      1        PROCESSING
tpwr     60      wfile
pw      5.5      proc
dl      1.000   fn   not used
t0ff    379.45   math
nt      8
ct      8      werr
alock   n      wexp
gain   not used wbs
FLAGS   wnt
t1      n
in      n
dp      y
hs      nn
DISPLAY
sp      -250.1
wp      6249.0
vs      63
sc      0
wc      250
hzmw  2.80
is      725.99
rf1    250.1
rfp     0
th     4
tms    3.000
nm  cdc  ph

```

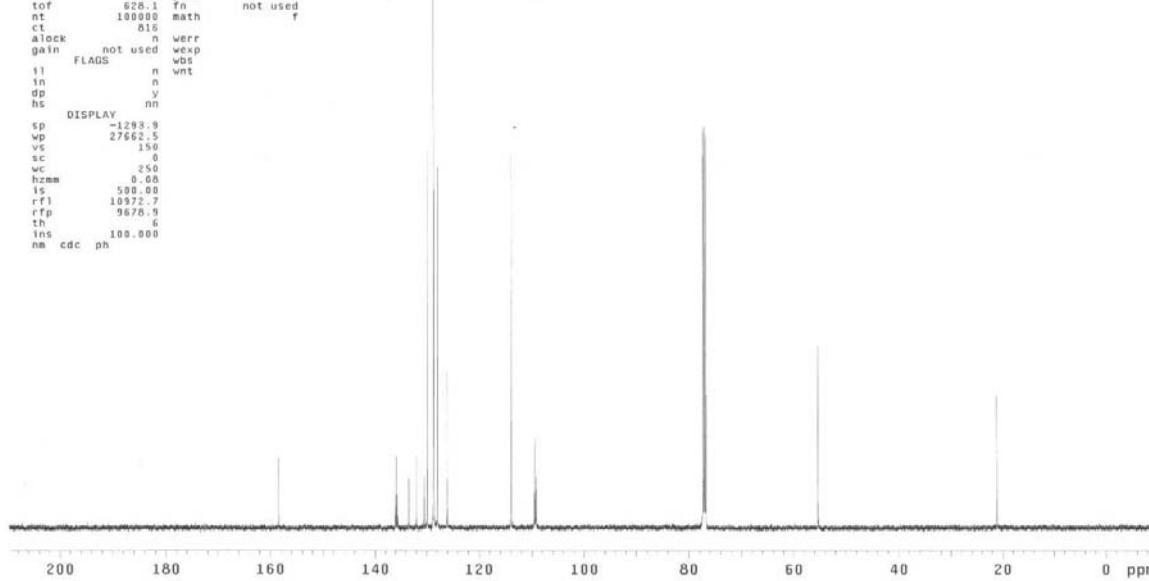


STANDARD CARBON PARAMETERS

```



exp2 s2pul
SAMPLE          DEC. & VT
date  May 14 2007 dfrq  453.901
solvent   CDCl3  dn   H1
file      exp  dpwpr  36
ACQUISITION   dof   0
sfrq     125.712  dm   yyy
tn       1.300   dm   w
at       1.300   dm   12300.6
np      27662.5   dseq
sw      27662.5   dres  1.0
fb      15200    homo
ns      4        PROCESSING
tpwr     60      lb   1.00
pw      6.0      wfile
dl      1.500   proc
t0ff    6000   fn   not used
nt      40000   math
ct      1476   werr
alock   n      wexp
gain   not used wbs
FLAGS   wnt
t1      n
in      n
dp      y
hs      nn
DISPLAY
sp      -1288.5
wp      27662.5
vs      145
sc      0
wc      250
hzmw  0.66
is      500.00
rf1    18377.4
rfp     9670.9
th     8
tms    100.000
nm  cdc  ph

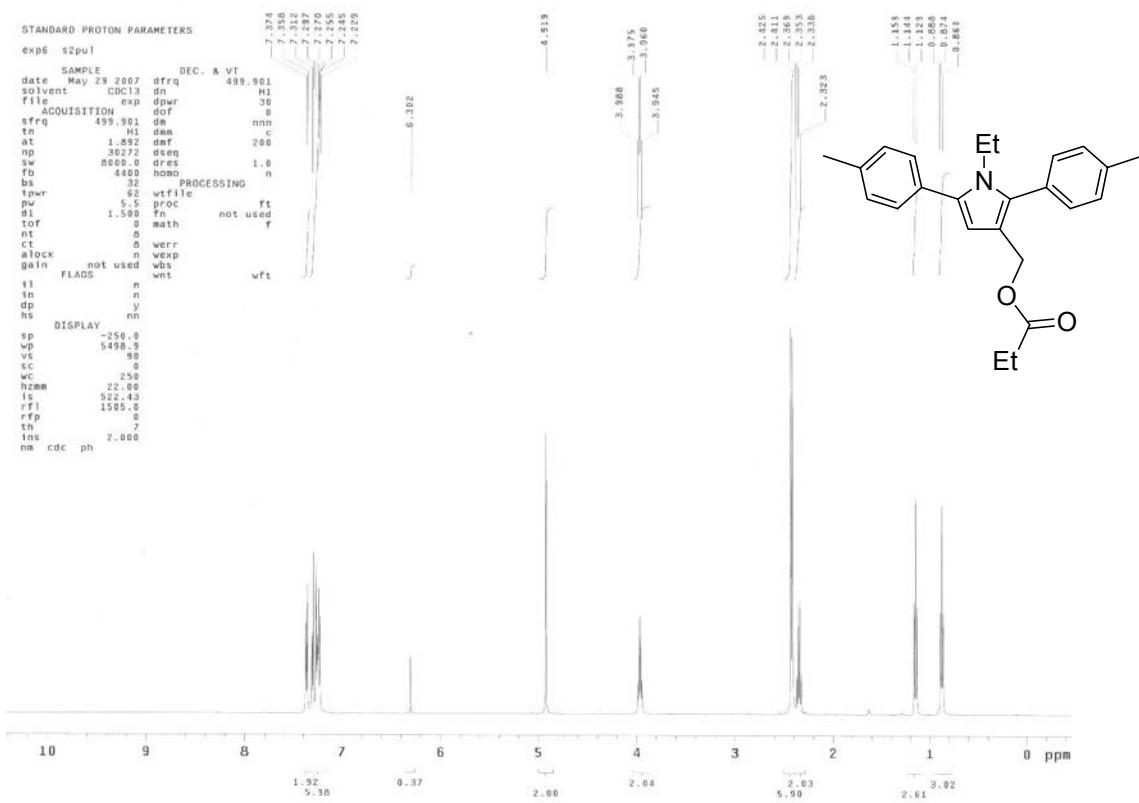
```



STANDARD PROTON PARAMETERS

```
exp9 s2pul
SAMPLE           DEC. & VT
date  May 29 2007 dfreq  499.901
solvent   CDCl3  dn      1H
file      exp  dpwv  38
ACQUISITION 301  dof
sfrq      499.901  dn      nnn
tn        1.892  dm      200
at        1.892  dm      200
np        72438  dppg
sw        7240.0  dres  1.0
fb        4000  homo  n
bs        1      PROCESSING
tpwv      4.5    lb      1.00
pw        5.5    wtpwle
di        1.500  proc  ft
tot        379.4  fn      not used
nt        8      math  f
rt        8      wexp
ct        8
alock      n      werr
gain      not used  wexp
FLAGS      n      wbs
il        n      wnt
in        n
dp        y
hs        nn
DISPLAY
sp      -256.1
wp      5498.6
vs      47
sc      0
nc      250
hzmw      22.00
is      683.13
rf1      750.0
rf2      9
th      6
ins      3.000
nm  cdc  ph
```


STANDARD CARBON PARAMETERS

```
exp9 s2pul
SAMPLE           DEC. & VT
date  May 29 2007 dfreq  499.901
solvent   CDCl3  dn      1H
file      exp  dpwv  38
ACQUISITION 301  dof
sfrq      125.712  dm      VVY
tn        1.309  dm      42
at        1.309  dm      42
np        71000  dseq
sw        27662.5  dres  1.0
fb        15200  homo  n
bs        16    PROCESSING
tpwv      5.0    lb      1.00
pw        5.0    wtpwle
di        1.500  proc  ft
tot        628.1  fn      not used
nt        100000  math  f
rt        812
alock      n      werr
gain      not used  wexp
FLAGS      n      wbs
il        n      wnt
in        n
dp        y
hs        nn
DISPLAY
sp      -1293.9
wp      27662.5
vs      150
sc      0
nc      250
hzmw      0.08
is      500.00
rf1      10972.7
rf2      9676.9
th      6
ins      100.000
nm  cdc  ph
```



STANDARD PROTON PARAMETERS

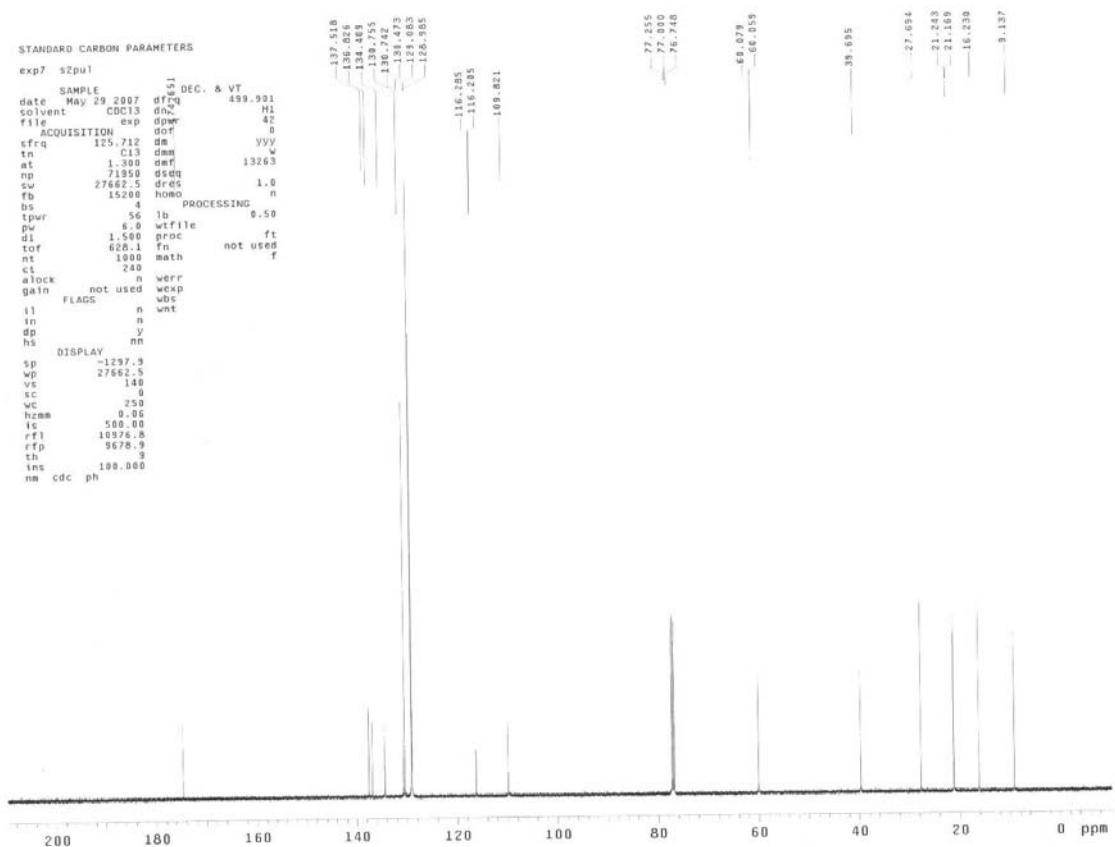
expr6 s2pu1

```

SAMPLE      DEC. & V.T
May 29 2007 499.501
solvent      CD1C3
            dn      M1
            exp     30
            dpwtr   0
ACQUISITION
sfrq      499.301
            dn      nnn
            t1      H1
            t2      dn
            t3      1.200
            t4      2.000
            t5      280
            t6      30272
            dseqq
            sw      5000.0
            dres   1.0
            tb      4400
            homo
            ts      n
            tpwv   65
            pw      5.5
            proc
            t0      1.300
            tof    not used
            s      math
            nt      a
            t      werr
            alock
            wexp
            gain   not used
            wbs
            FLADS
            n      wnt
            in     n
            dp     y
            hs     nn
DISPLAY
            -250.0
wp      5498.5
            99
            0
            0
            250
            22.00
            522.13
            1505.0
            0
            7
            7.000
            ncc ph

```


STANDARD CARBON PARAMETERS


exp7_s2pu1

```

SAMPLE      151 DEC. & VT
May 29 2007  dtrg 459.92
Solvent      C0013 dng  H
file        exp dsw  4
ACQUISITION  dsof
srfq      125.712  yy
at          1.300  C13
at          1.300  dswf  1326
t1          71950  dswq
t2          274600  dswq  1.
fb          15220  homo
bs          4      PROCESSING
tpwr      56  bprofile 0.5
tr          1.500  proc  f
td          628.1  fn  not use
tof         1800  math
nt          1800
ct          240
lock        n  werr
gain        not used  wbs
FLAGS      n  wnt
i1          n
in          n
dp          y
hs          nn

DISPLAY
sp          -1297.3
wp          27622.5
vs          140
sc          0
wc          250
hzm        0.05
ts          500.00
rfl         10976.8
rfp         9678.9
t1          3
ins         180.000
nm cde ph

```

