Supporting Information

For

Palladium-Catalyzed Perarylation of 3-Thiophene- and 3-Furancarboxilic Acids Accompanied by C-H Bond Cleavage and Decarboxylation

Masaya Nakano, Hayato Tsurugi, Tetsuya Satoh, and Masahiro Miura*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita,
Osaka 565-0871, Japan

e-mail: miura@chem.eng.osaka-u.ac.jp

List of Contents for Experimental Section

General: S-2

Tetraphenylation of 3-Thiophenecarboxylic acid (2) with Bromobenzene (1a) (Table 1, entry 8): S-2

Triphenylation of N-Phenyl-3-thiophenecarboxamide (5) with Bromobenzene (1a) (Scheme 2): S-2

Diphenylation of Ethyl 3-Thiophenecarboxylate (7) with Bromobenzene (1a) (Scheme 3): S-3

Diarylation of 2,5-Diphenyl-3-thiophenecarboxylic Acid (11) with 4-Bromoanisole (1d): S-3

Characterization Data of Products: S-4 - S-7

References: S-8

¹H and ¹³C NMR of Products: S-9 - S-27

Experimental Section

General: ¹H and ¹³C NMR spectra were recorded at 400 MHz and 100 MHz, respectively, for CDCl₃ solutions. MS data were obtained by EI. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or a CBP-1 capillary column (i. d. 0.5 mm x 25 m). GC-MS analysis was carried out using a CBP-1 capillary column (i. d. 0.25 mm x 25 m).

N-Phenyl-3-thiophenecarboxamide (**5**) was prepared by the reaction of 3-thiophenecarbonyl chloride with aniline in the presence of pyridine in ether. Ethyl 3-thiophenecarboxylate (**7**) was prepared by esterification of 3-thiophenecarboxylic acid (**2**) in the presence of a catalytic amount of sulfuric acid in refluxing ethanol. Other starting materials were commercially available.

The following experimental procedure may be regarded as typical in methodology and scale.

Tetraphenylation of 3-Thiophenecarboxylic acid (2) with Bromobenzene (1a) (Table 1, entry 8): In a 20 cm³ two-necked flask were added the bromide 1a (2.5 mmol, 393 mg), the acid 2 (0.5 mmol, 64 mg), Pd(OAc)₂ (0.05 mmol, 11.2 mg), PCy₃ (0.2 mmol, 56 mg), Cs₂CO₃ (2.5 mmol, 815 mg), MS4A (150 mg), 1-methylnaphthalene (94 mg) as internal standard, and mesitylene (5 mL). The resulting mixture was stirred under N₂ (balloon) at 170 °C (bath temperature) for 8 h. After cooling, analysis of the mixture by GC and GC-MS confirmed formation of 2,3,4,5-tetraphenylthiophene (4a) (163 mg, 83%) together with 2,3,5-triphenylthiophene (3) (25 mg, 16%). The tetraphenylthiophene 4a (161 mg, 82 %) was also isolated by filtration of the mixture with a filter paper with ether, evaporation of the solvents, and chromatography on silca gel using hexane-ethyl acetate (99:1, v/v).

Triphenylation of N-Phenyl-3-thiophenecarboxamide (5) with Bromobenzene (1a) (Scheme 2): In a 20 cm³ two-necked flask were added the bromide

1a (3 mmol, 471 mg), the amide **5** (0.5 mmol, 102 mg), Pd(OAc), (0.05 mmol, 11.2 mg), PPh₃ (0.1 mmol, 26 mg), Cs₂CO₃ (3 mmol, 978 mg), 1-methylnaphthalene (55 mg) as internal standard, and o-xylene (2.5 mL). The resulting mixture was stirred under N_2 (balloon) 170 $^{\circ}C$ 10 After at (bath temperature) for h. cooling, N,2,4,5-tetraphenyl-3-thiophenecarboxamide 6 (182 mg, 84 %) was isolated by filtration of the mixture with a filter paper with ether, evaporation of the solvents, and chromatography on silca gel using hexane-ethyl acetate (94:6, v/v).

Diphenylation of Ethyl 3-Thiophenecarboxylate (7) with Bromobenzene (1a) (Scheme 3): In a 100 cm³ two-necked flask were added the bromide 1a (12 mmol, 1.88 g), the ester 7 (4 mmol, 625 mg), Pd(OAc)₂ (0.4 mmol, 90 mg), P(biphenyl-2-yl)'Bu₂ (0.8 mmol, 239 mg), Cs₂CO₃ (12 mmol, 3.90 g), MS4A (1.2 g), and DMF (40 mL). The resulting mixture was stirred under N₂ (balloon) at 150 °C (bath temperature) for 11 h. After cooling, the mixture was poured into water and extracted with diethyl ether. The solvent was dried over sodium sulfate and evaporated. The residue was chromatographed on silica gel using hexane-ethyl acetate (99.5:0.5, v/v) to afford ethyl 2,5-diphenyl-3-thiophenecarboxylate (8) (1.13 g, 91%). Hydrolysis of 8 (2 mmol) with KOH (10 mmol) in refluxing ethanol (15 mL) for 10 h and acidification with dilute HCl gave 2,5-diphenyl-3-thiophenecarboxylic acid (11) quantitatively.

Diarylation of 2,5-Diphenyl-3-thiophenecarboxylic acid (11) with **4-Bromoanisole** (1d) (Table 3): In a 20 cm³ two-necked flask were added the bromide 1d (1.5 mmol, 281 mg), the acid 11 (0.5 mmol, 140 mg), Pd(OAc)₂ (0.05 mmol, 11.2 mg), PCy₃ (0.2 mmol, 56 mg), Cs₂CO₃ (1.5 mmol, 487 mg), MS4A (150 mg), dibenzyl (56 mg) as internal standard, and mesitylene (5 mL). The resulting mixture was stirred under N₂ (balloon) at 170 °C (bath temperature) for 9 h. After cooling, 3,4-bis(4-methoxyphenyl)-2,5-diphenylthiophene (12) (106 mg, 47%) was isolated by filtration of the mixture with a filter paper with ether, evaporation of the solvents, and chromatography on silca gel using hexane-ethyl acetate (99:1, v/v).

Characterization Data of Products.

- **2,3,4,5-Tetraphenylthiophene** (**4a**): ¹ mp 184-185 °C; ¹H NMR (400 MHz, CDCl₃) [] 6.95-6.98 (m, 4H), 7.08-7.14 (m, 6H), 7.19-7.25 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) [] 126.58, 127.20, 127.82, 128.29, 129.20, 130.86, 134.25, 136.46, 138.55, 139.48; HRMS m/z (M⁺) Calcd for $C_{28}H_{20}S$ 388.1286. Found 388.1283.
- **2,3,4,5-Tetrakis**(**4-methylphenyl**)**thiophene** (**4b**): ² mp 227-228 °C; ¹H NMR (400 MHz, CDCl₃) \square 2.26 (s, 6H), 2.29 (s, 6H), 6.84 (d, J = 8.1 Hz, 4H), 6.91 (d, J = 8.1 Hz, 4H), 7.01 (d, J = 8.1 Hz, 4H), 7.12 (d, J = 8.1 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) \square 21.15, 21.22, 128.52, 128.96, 129.00, 130.67, 131.62, 133.66, 135.86, 136.74, 137.96, 139.09; HRMS m/z (M⁺) Calcd for C₃₂H₂₈S 444.1912. Found 444.1913.
- **2,3,4,5-Tetrakis**(**4**-*tert*-butylphenyl)thiophene (**4c**): mp 193-194 °C; ¹H NMR (400 MHz, CDCl₃) \Box 1.24 (s, 18H), 1.28 (s, 18H), 6.87 (d, J = 8.4 Hz, 4H), 7.09 (d, J = 8.4 Hz, 4H), 7.17-7.23 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) \Box 31.26, 31.30, 34.36, 34.49, 124.40, 125.11, 128.49, 130.41, 131.61, 133.87, 137.55, 139.63, 149.10, 149.80; HRMS m/z (M⁺) Calcd for C₄₄H₅₂S 612.3790. Found 612.3792.
- **2,3,4,5-Tetrakis**(**4-methoxyphenyl**)**thiophene** (**4d**):³ mp 217-218 °C; ¹H NMR (400 MHz, CDCl₃) []3.74 (s, 6H), 3.77 (s, 6H), 6.67 (d, J = 8.8 Hz, 4H), 6.76 (d, J = 9.2 Hz, 4H), 6.87 (d, J = 8.8 Hz, 4H), 7.15 (d, J = 9.2 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) []55.03, 55.18, 113.30, 113.72, 127.08, 129.12, 130.30, 131.95, 137.18, 138.35, 158.06, 158.64; HRMS m/z (M⁺) Calcd for $C_{32}H_{28}O_4S$ 508.1708. Found 508.1712.
- **2,3,4,5-Tetrakis**(**4-trifluoromethylphenyl**)**thiophene** (**4e**): mp 166-167 °C; ¹H NMR (400 MHz, CDCl₃) [7.06 (d, J = 8.1 Hz, 4H), 7.30 (d, J = 8.1 Hz, 4H), 7.44 (d, J = 8.1 Hz, 4H), 7.53 (d, J = 8.1 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) [123.88 (q, J = 272.3 Hz), 123.91 (q, J = 272.4 Hz), 125.68 (q, J = 4 Hz), 125.37 (q, J = 4 Hz), 129.17, 129.66 (q, J = 32.1 Hz), 129.98 (q, J = 32.8 Hz), 130.92, 133.66, 138.76, 138.89, 139.18; HRMS m/z (M⁺) Calcd for $C_{32}H_{16}F_{12}S$ 660.0781. Found 660.0780.

2,3,4,5-Tetrakis(**4-ethoxycarbonylphenyl**)**thiophene** (**4f**):⁴ mp 81-82 °C; ¹H NMR (400 MHz, CDCl₃) []1.371 (t, J = 7.0 Hz, 6H), 1.374 (t, J = 7.0 Hz, 6H), 4.34 (q, J = 7.0 Hz, 4H), 4.36 (q, J = 7.0 Hz, 4H), 7.01 (d, J = 8.1 Hz, 4H), 7.26 (d, J = 8.4 Hz, 4H), 7.82 (d, J = 8.1 Hz, 4H), 7.91 (d, J = 8.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) [] 14.28, 14.30, 61.05, 61.06, 128.97, 129.28, 129.47, 129.61, 129.78, 130.63, 137.73, 139.34, 139.36, 140.25, 166.08, 166.26; HRMS m/z (M⁺) Calcd for C₄₀H₃₆O₈S 676.2131. Found 676.2170.

2,3,4,5-Tetrakis(**biphenyl-4-yl)thiophene** (**4g**): mp 180-181 °C; ¹H NMR (400 MHz, CDCl₃) \square 7.12 (d, J = 8.4 Hz, 4H), 7.27-7.34 (m, 4H), 7.35-7.44 (m,16H), 7.49 (d, J = 8.4 Hz, 4H), 7.58 (d, J = 8.1 Hz, 8H); ¹³C NMR (100 MHz, CDCl₃) \square 126.54, 126.84, 126.90, 127.01, 127.21, 127.36, 128.70, 128.77, 129.52, 131.32, 133.22, 135.47, 138.48, 139.11, 139.23, 139.88, 140.40, 140.51; HRMS m/z (M⁺) Calcd for C₅₂H₃₆S 692.2538. Found 692.2545.

N,2,4,5-Tetraphenyl-3-thiophenecarboxamide (6): mp 214-215 °C; ¹H NMR (400 MHz, CDCl₃) $\boxed{7}$.00-7.11 (m, 3H), 7.18-7.23 (m, 7H), 7.27-7.43 (m, 8H), 7.66 (d, J = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) $\boxed{7}$ 120.18, 124.56, 127.69, 127.71, 128.46, 128.49, 128.56, 128.58, 128.81, 128.91, 129.18, 129.90, 132.74, 133.30, 135.03, 135.48, 137.36, 137.65, 139.73, 142.25, 163.78; HRMS m/z (M⁺) Calcd for C₂₉H₂₁NOS 431.1344. Found 431.1349.

Ethyl 2,5-Diphenyl-3-thiophenecarboxylate (8):⁵ mp 45-46 °C; ¹H NMR (400 MHz, CDCl₃) []1.20 (t, J = 7.1 Hz, 3H), 4.22 (q, J = 7.1 Hz, 2H), 7.32 (t, J = 7.3 Hz, 1H), 7.38-7.43 (m, 5H), 7.52-7.55 (m, 2H), 7.62 (d, J = 7.33 Hz, 2H), 7.71 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) []14.02, 60.57, 125.42, 125.72, 127.92, 128.01, 128.58, 128.96, 129.01, 129.78, 133.34, 133.38, 142.46, 149.71, 163.27; HRMS m/z (M⁺) Calcd for $C_{19}H_{16}O_2S$ 308.0871. Found 308.0878.

Ethyl 2,5-Bis(4-methoxyphenyl)-3-thiophenecarboxylate (9): mp 92-93 °C; 1 H NMR (400 MHz, CDCl₃) \Box 1.24 (t, J = 7.1 Hz, 3H), 3.84 (s, 3H), 3.85 (s, 3H), 4.23

(q, J = 7.1 Hz, 2H), 6.93 (d, J = 9.2 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 9.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) [] 14.14, 55.32, 55.36, 60.45, 113.37, 114.38, 124.35, 125.72, 126.29, 126.97, 128.21, 131.07, 141.73, 149.09, 159.51, 159.92, 163.41; HRMS m/z (M⁺) Calcd for $C_{21}H_{20}O_4S$ 368.1082. Found 368.1086.

2,5-Diphenyl-3-thiophenecarboxylic Acid (**10**): ⁶ mp 196-197 °C; ¹H NMR (400 MHz, DMSO-d₆) \Box 7.36 (t, J = 7.3 1H), 7.41-7.47 (m, 5H), 7.53-7.56 (m, 2H), 7.7 (d, J = 7.3 Hz, 2H), 7.79 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) \Box 125.29, 125.84, 128.06, 128.16, 128.53, 129.17, 129.32, 129.98, 132.53, 132.77, 141.56, 147.76, 163.92; HRMS m/z (M⁺) Calcd for $C_{17}H_{12}O_2S$ 280.0558. Found 280.0551.

2,5-Bis(**4-methoxyphenyl**)-**3-thiophenecarboxylic Acid** (**11**): mp 223-224 °C; ¹H NMR (400 MHz, DMSO-d₆) \square 3.79 (s, 3H), 3.80 (s, 3H), 6.96-7.01 (m, 4H), 7.47 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 9.2 Hz, 2H), 7.62 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) \square 55.17, 55.19, 113.52, 114.56, 124.61, 125.10, 125.32, 126.62, 129.15, 130.65, 140.81, 147.05, 159.22, 159.5, 164.08; HRMS m/z (M⁺) Calcd for C₁₉H₁₆O₄S 340.0769. Found 340.0778.

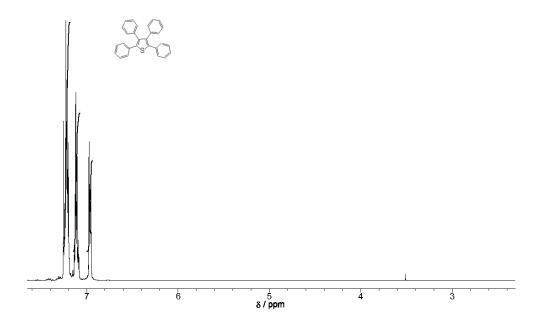
3,4-Bis(**4-methoxyphenyl**)-**2,5-diphenylthiophene** (**12**): mp 210-211 °C; ¹H NMR (400 MHz, CDCl₃) \square 3.74 (s, 6H), 6.67 (d, J = 9.0 Hz, 4H), 8.79 (d, J = 9.0 Hz, 4H), 7.17-7.26 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) \square 55.04, 113.33, 127.05, 128.27, 128.86, 129.17, 131.93, 134.50, 138.05, 139.14, 158.18; HRMS m/z (M⁺) Calcd for $C_{30}H_{24}O_2S$ 448.1497. Found 448.1494.

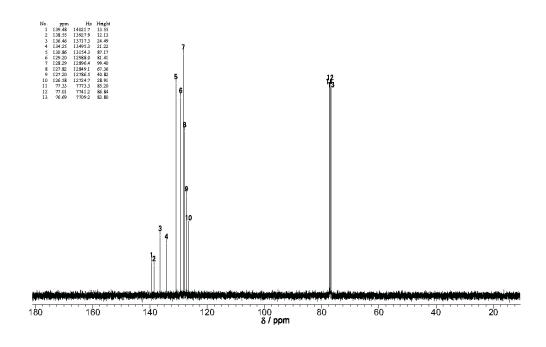
2,5-Diphenyl-3,4-bis(**4-trifluoromethyl-phenyl)thiophene** (**13**): mp 141-142 °C; ¹H NMR (400 MHz, CDCl₃) [] 7.05 (d, J = 8.1 Hz, 4H), 7.18-7.21 (m, 4H), 7.24-7.27 (m, 6H), 7.39 (d, J = 8.1 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) [] 124.09 (q, J = 272 Hz), 125.02 (q, J = 4 Hz), 127.81, 128.58, 129.00 (q, J = 32 Hz), 129.31, 131.10, 133.37, 137.37, 139.77, 140.16; HRMS m/z (M⁺) Calcd for C₃₀H₁₈F₆S 524.1033. Found 524.1029.

2,5-Bis(**4-methoxyphenyl**)-**3,4-diphenylthiophene** (**14**):⁷ mp 196-197 °C; ¹H NMR (400 MHz, CDCl₃) \square 3.76 (s, 6H), 6.75 (d, J = 8.8 Hz, 4H), 6.94-6.98 (m, 4H), 7.08-7.13 (m, 6H), 7.15 (d, J = 8.8 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) \square 55.17, 113.73, 126.42, 126.81, 127.78, 130.32, 130.88, 136.71, 137.68, 138.70, 158.75; HRMS m/z (M⁺) Calcd for C₃₀H₂₄O₂S 448.1497. Found 448.1490.

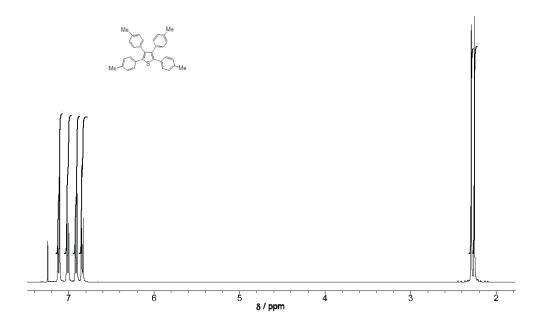
2,5-Bis(**4-methoxyphenyl**)-**3,4-bis**(**4-trifluoromethylphenyl**)**thiophene** (**15**): mp 172-173 °C; ¹H NMR (400 MHz, CDCl₃) [] 3.78 (s, 6H), 6.78 (d, J = 8.8 Hz, 4H), 7.04 (d, J = 7.9 Hz, 4H), 7.10 (d, J = 8.8 Hz, 4H), 7.39 (d, J = 7.9 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) [] 55.22, 114.0, 124.13 (q, J = 272 Hz), 124.98 (q, J = 4 Hz), 125.83, 128.81 (q, J = 32 Hz), 130.48, 131.13, 136.62, 139.37, 140.05, 159.20; HRMS m/z (M⁺) Calcd for $C_{32}H_{22}F_6O_2S$ 584.1245. Found 584.1247.

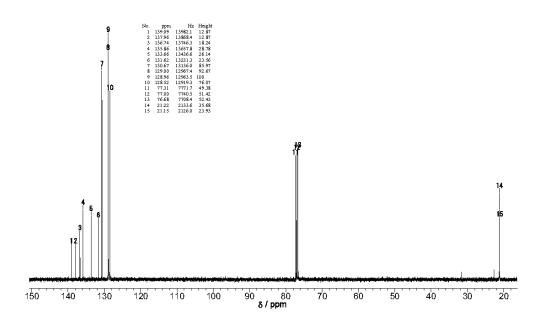
2,3,4,5-Tetraphenylfuran (**17a**):⁸ mp 172-173 °C; ¹H NMR (400 MHz, CDCl₃) [7.14-7.28 (m, 16H), 7.50-7.51 (m, 2H), 7.52-7.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) [125.13, 125.86, 127.14, 127.29, 128.34, 128.36, 130.41, 130.91, 133.19, 147.72; HRMS *m/z* (M⁺) Calcd for C₂₈H₂₀O 372.1514. Found 372.1517.

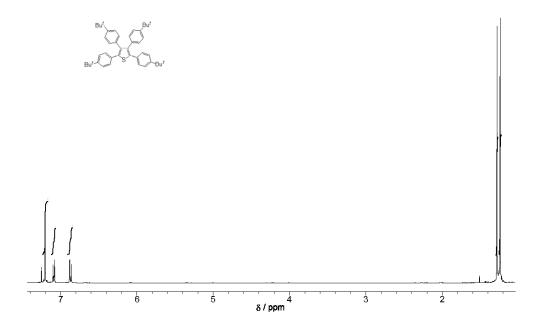

2,3,4,5-Tetrakis(**4-methoxyphenyl)furan** (**17d**): ⁹ mp 208-209 °C; ¹H NMR (400 MHz, CDCl₃) [[3.79 (s, 6H), 3.79 (s, 6H), 6.79 (d, J = 8.8 Hz, 4H), 6.80 (d, J = 9.2 Hz, 4H), 7.06 (d, J = 8.8 Hz, 4H), 7.44 (d, J = 9.2 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) [[55.10, 55.22, 113.82, 113.83, 123.24, 124.15, 125.80, 127.14, 131.53, 147.10, 158.53, 158.72; HRMS m/z (M⁺) Calcd for $C_{32}H_{28}O_5$ 492.1937. Found 492.1934.

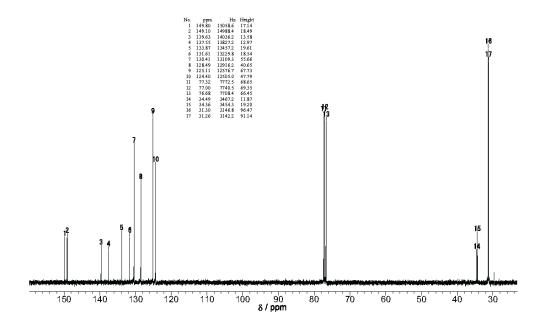

2,3,4,5-Tetrakis(**4-trifluoromethyl-phenyl**)**furan** (**17e**): mp 196-197 °C; ¹H NMR (400 MHz, CDCl₃) [7.27 (d, J = 8.1 Hz, 4H), 7.57-7.59 (m, 12H); ¹³C NMR (100 MHz, CDCl₃:DMSO-d₆ = 4:1) [123.57 (q, J = 272 Hz), 123.58 (q, J = 272 Hz), 124.89, 125.22 (q, J = 4 Hz), 125.38 (q, J = 4 Hz), 125.80, 128.95 (q, J = 32 Hz), 129.33 (q, J = 32 Hz), 130.26, 132.66, 135.30, 147.35; HRMS m/z (M⁺) Calcd for $C_{32}H_{16}F_{12}O$ 644.1010. Found 644.1004.

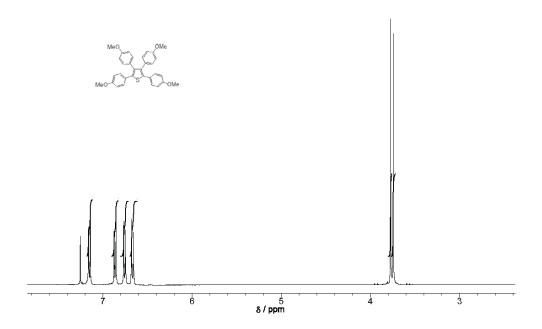
References in Supporting Information

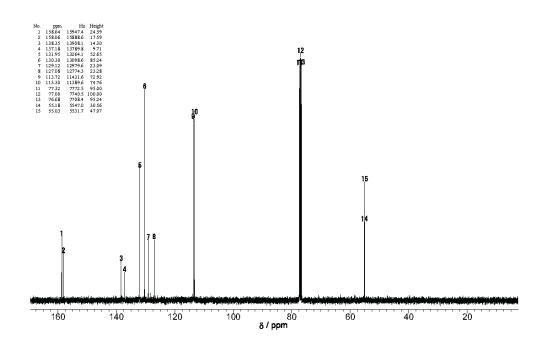

- (1) Braye, E. H.; Hübel, W.; Caplier, I. J. Am. Chem. Soc. 1961, 83, 4406.
- (2) Xing, Y.; Xu, X.; Wang, F.; Lu, P. Opt. Mat. 2006, 29, 407.
- (3) Arumugam, K.; Bollinger, J. E.; Fink, M.; Donahue, J. P. *Inorg. Chem.* **2007**, *46*, 3283.
- (4) Hopff, H.; von der Crone, J. Chimia 1959, 13, 107.
- (5) Potts, K. T.; Datta, S. K.; Marshall, J. L. J. Org. Chem. 1979, 44. 622.
- (6) Gotthart, H.; Weisshuhn, M. C.; Christl, B. Chem. Ber. 1976, 109, 753.
- (7) Dang, Y.; Chen, Y. J. Org. Chem. 2007, 72, 6901.
- (8) Tseng, J.-C.; Chen, J.-H.; Luh, T.-Y. Synlett 2006, 1209.
- (9) Mortensen, D. S.; Rodriguez, A. L.; Carlson, K. E.; Sun, J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 2001, 44, 3838.

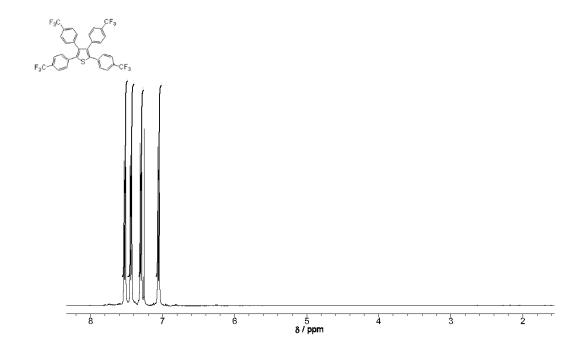

¹H and ¹³C NMR of Compound **4a**

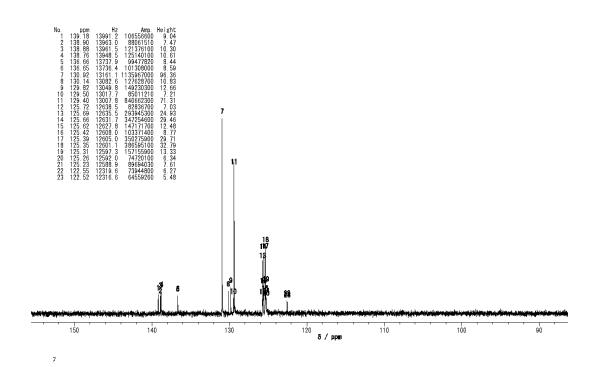


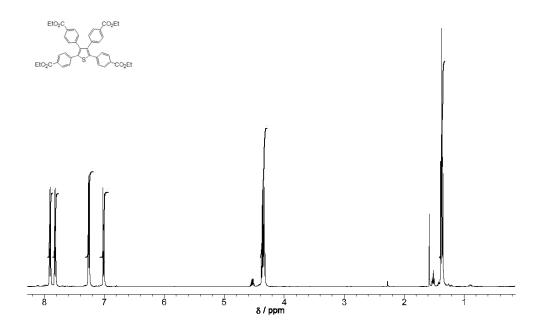

¹H and ¹³C NMR of Compound **4b**

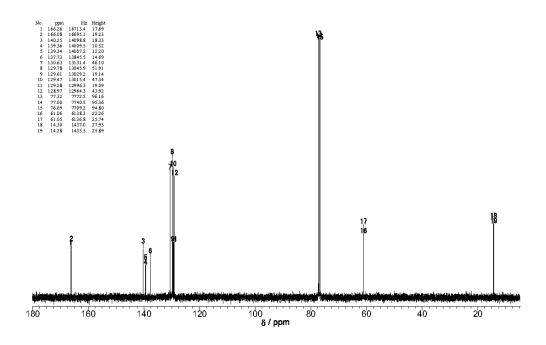


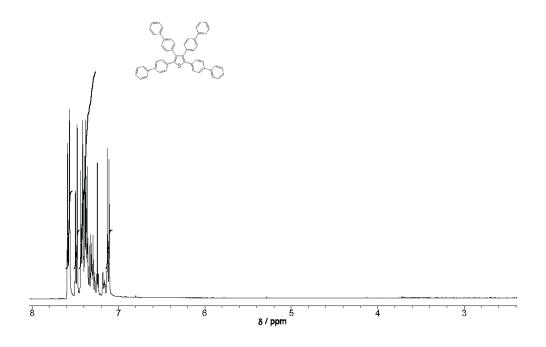

¹H and ¹³C NMR of Compound **4c**

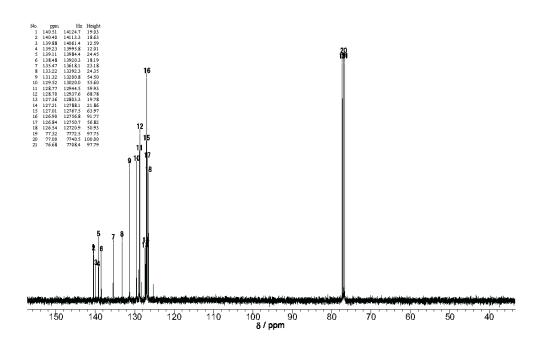


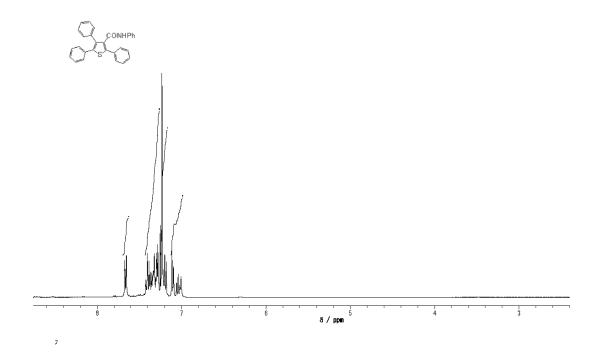

¹H and ¹³C NMR of Compound **4d**

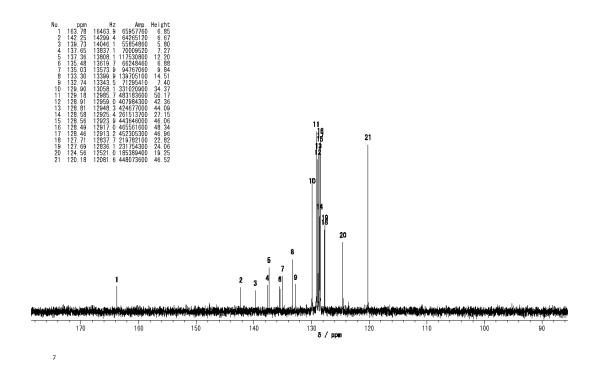


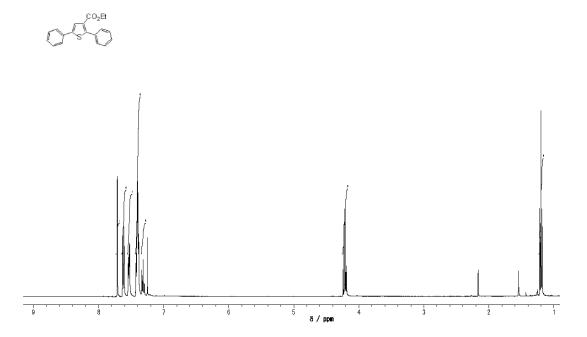

¹H and ¹³C NMR of Compound **4e**

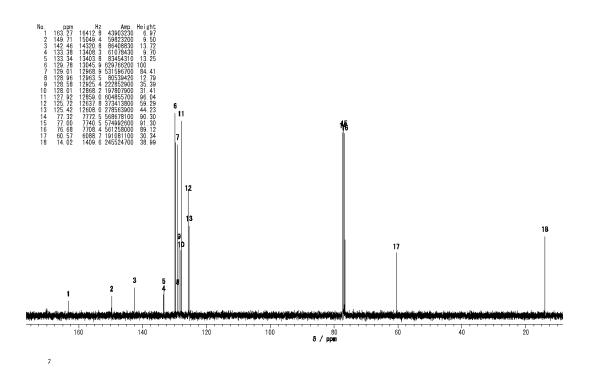


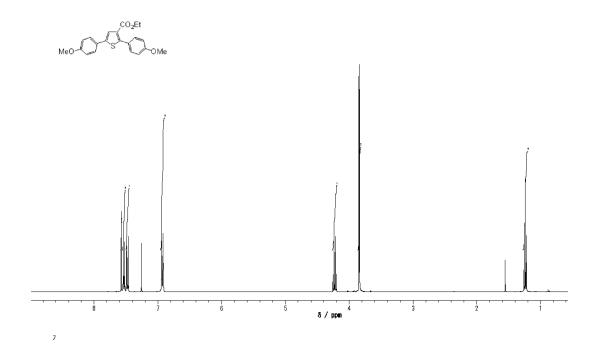

¹H and ¹³C NMR of Compound **4f**

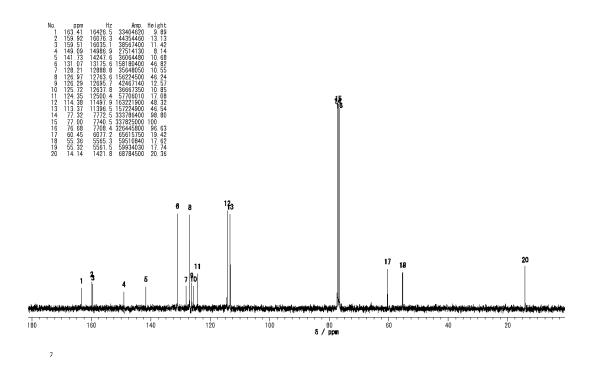


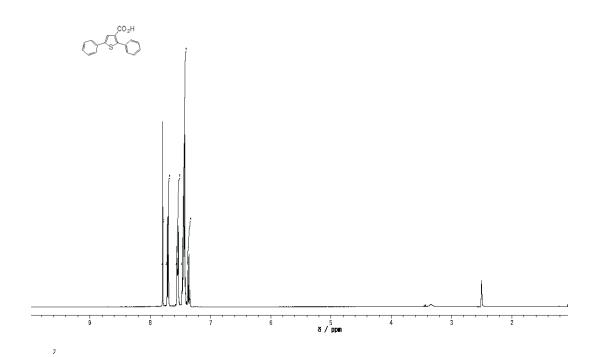

¹H and ¹³C NMR of Compound **4g**

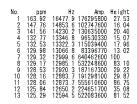


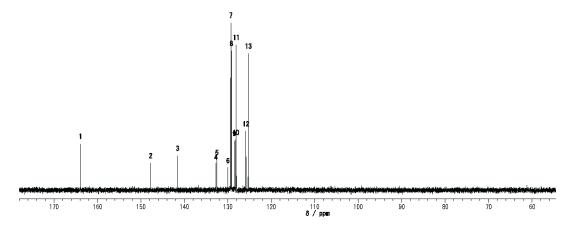

¹H and ¹³C NMR of Compound **6**

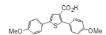


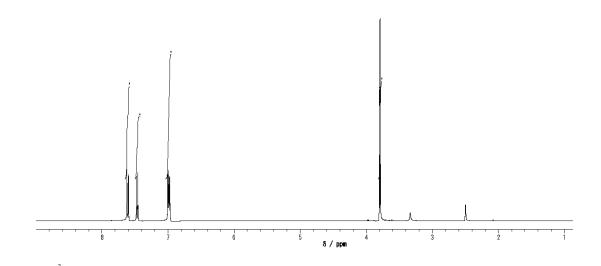

¹H and ¹³C NMR of Compound **8**

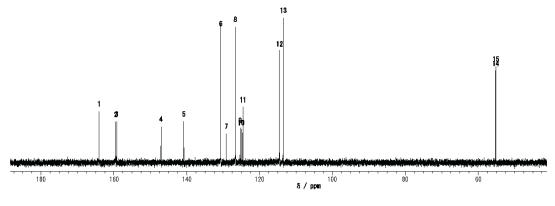


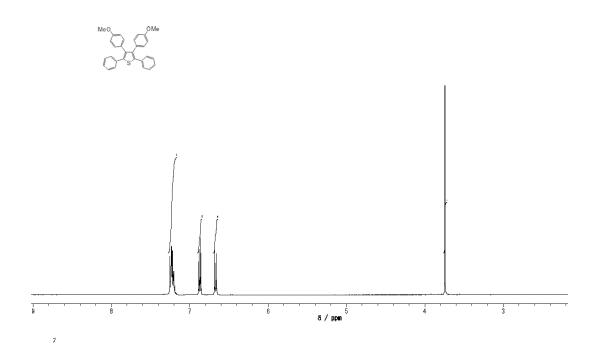

¹H and ¹³C NMR of Compound **9**



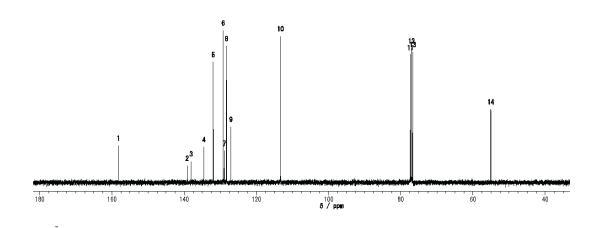

¹H and ¹³C NMR of Compound **10**



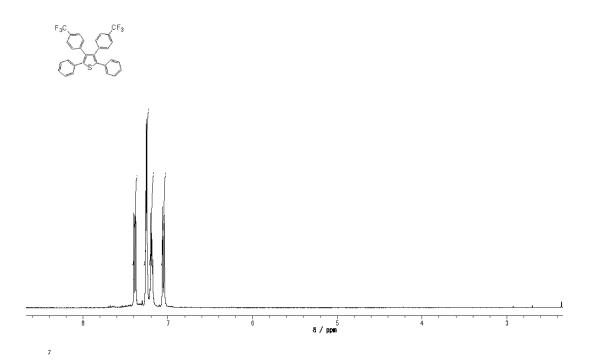

¹H and ¹³C NMR of Compound **11**

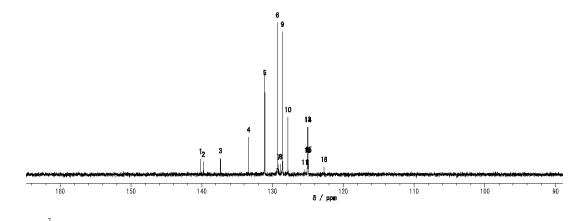

ppm Hz Ame Heigr 164 08 16494 7 193930200 22 5 2 159 50 16033 8 152897500 18 1 159 22 16005 155534400 18 4 147 05 14781 9 135701100 16 0 140 81 14154 7 155127100 18 3 130 65 1333 9 49188400 58 3 129 15 12982 8 154216000 66 8

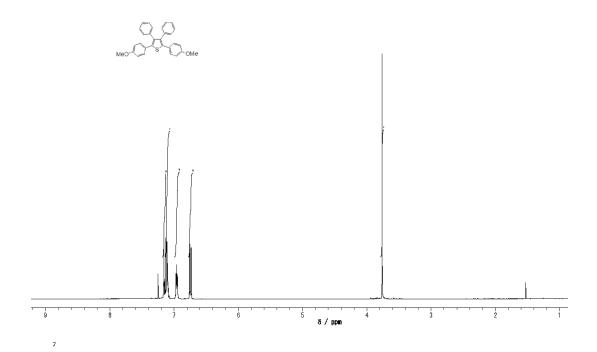
6 130 65 13133 9 488198400 59 03 7 129 15 12982 8 108524100 12 88 8 126 62 12728 8 514216000 60 33 9 125 32 12598 3 131727400 15 55 10 125 10 12576 2 121618100 14 41 11 124 61 12526 6 209420000 24 81 12 114 56 11516 5 421195500 49 91 13 113 52 11411 9 548336500 64 91 14 55 19 5548 0 347541100 41 18 15 55 17 5545 7 363433000 43.0

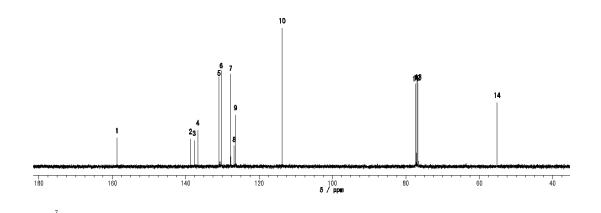


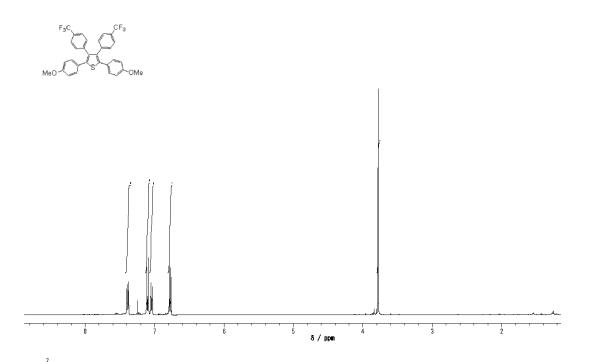
7

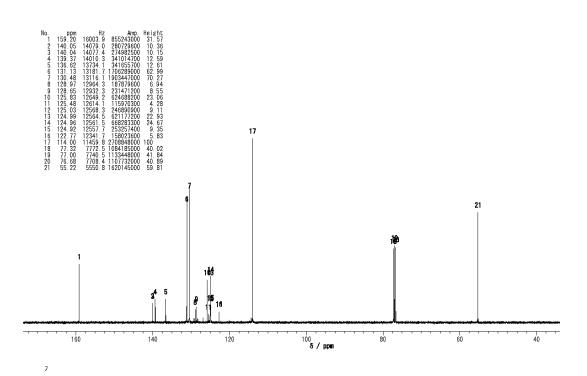

¹H and ¹³C NMR of Compound **12**


No.	ppm	Hz	Amp.	Height
1	158.18	15900.9	164051600	24, 21
2	139 14	13987 4	74038950	10.93
- 3	3 138 05	13877.5	93331520	13.78
4		13520.5	157241600	23. 21
	131.93	13261. 8	535652200	79.06
ě	129 17	12984 9	677525100	100
- 7		12953.6	140834200	20. 79
		12894.9	606844700	89.57
ğ	127 05	12771 3	247581900	36.54
10		11392 6	651386900	96 14
11		7772 5	566697500	83 64
12		7740.5	597056100	88 12
13		7708.4	581161700	85. 78
12		5532 5	325888300	48 10

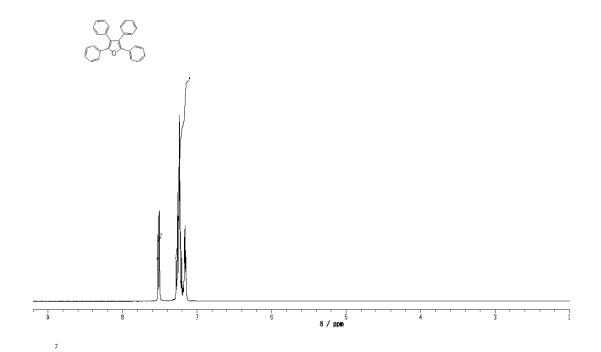

¹H and ¹³C NMR of Compound **13**

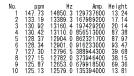

No.	maa	Hz	Amp.	Height
1	140 16	14089 6	123325400	10.16
		14050.0	100465300	8. 28
2	137. 37	13808 9	129088100	10 64
3	101.01			
4		13406.8	298559000	24. 60
5	131.10	13178.7	752327500	61. 98
6	129.31	12998.6	1213729000	100
7	129.16	12983.4	77410300	6. 38
8	128 84	12951 3	82471960	6.79
9	128.58	12925. 4	1138976000	93.84
10	127. 81	12848.3	456565900	37. 62
11	125. 44	12610.3	36812180	3. 03
12		12572.9	132743800	10.94
13		12569.1	379228800	31. 24
14	125.00	12565.3	376618700	31. 03
15	124, 96	12561.5	138720100	11, 43
16	122 74	12338 7	58886070	4 85

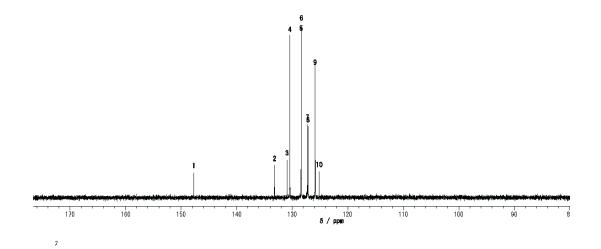

¹H and ¹³C NMR of Compound **14**



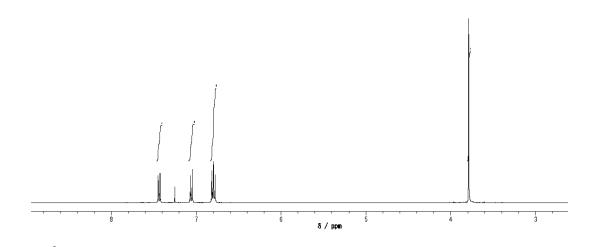
No.	mag	Hz	Amp.	Height
1	158 75	15958 8	191382800	20 53
2	138.70	13943.2	184724700	19.81
3	137.69	13840.9	172437600	18.50
4	136. 71	13743.3	243296600	26.10
- 5	130.89	13157.3	578735000	62.08
6	130.33	13101.6	627850900	67. 35
7	127, 79	12846. 0	610195000	65, 45
8	126.82	12748.4	131541900	14. 11
9	126.43	12709.5	344658500	36.97
10	113.73	11433.1	932267600	100
11	77. 32	7772.5	540829100	58. 01
12	77. 01	7741.2	547688300	58. 75
13	76.69	7709.2	553399400	59.36
14	55. 18	5547. 0	429077300	46.03

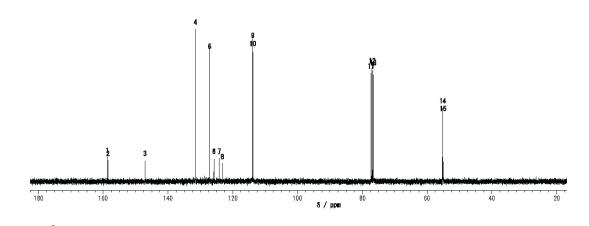


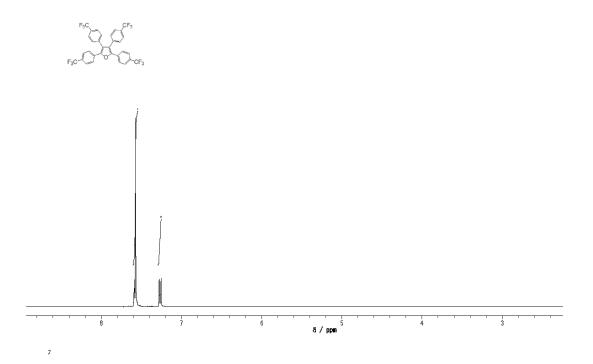

¹H and ¹³C NMR of Compound **15**

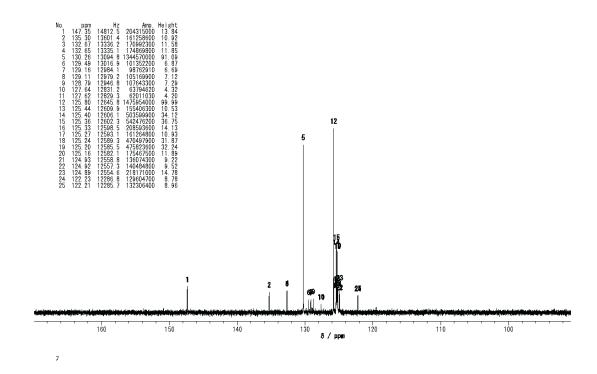


¹H and ¹³C NMR of Compound **17a**






¹H and ¹³C NMR of Compound **17d**



¹H and ¹³C NMR of Compound **17e**

