Supporting Information for

Ir-Catalyzed Regio- and Enantio-selective Friedel-Crafts Type Allylic Alkylation of Indoles

Wen-Bo Liu, Hu He, Li-Xin Dai, and Shu-Li You*

State Key Laboratory of Organometallic Chemistry

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences

354 Fenglin Lu, Shanghai 200032 (P. R. China)

Fax: (+86) 21-54925087

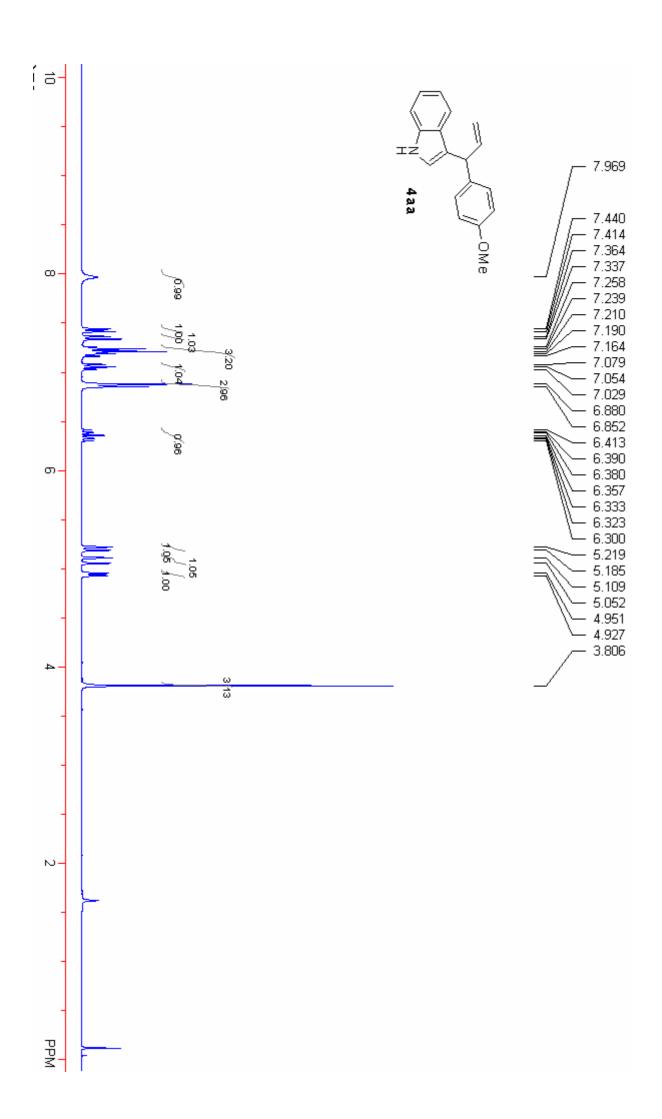
E-mail: slyou@mail.sioc.ac.cn

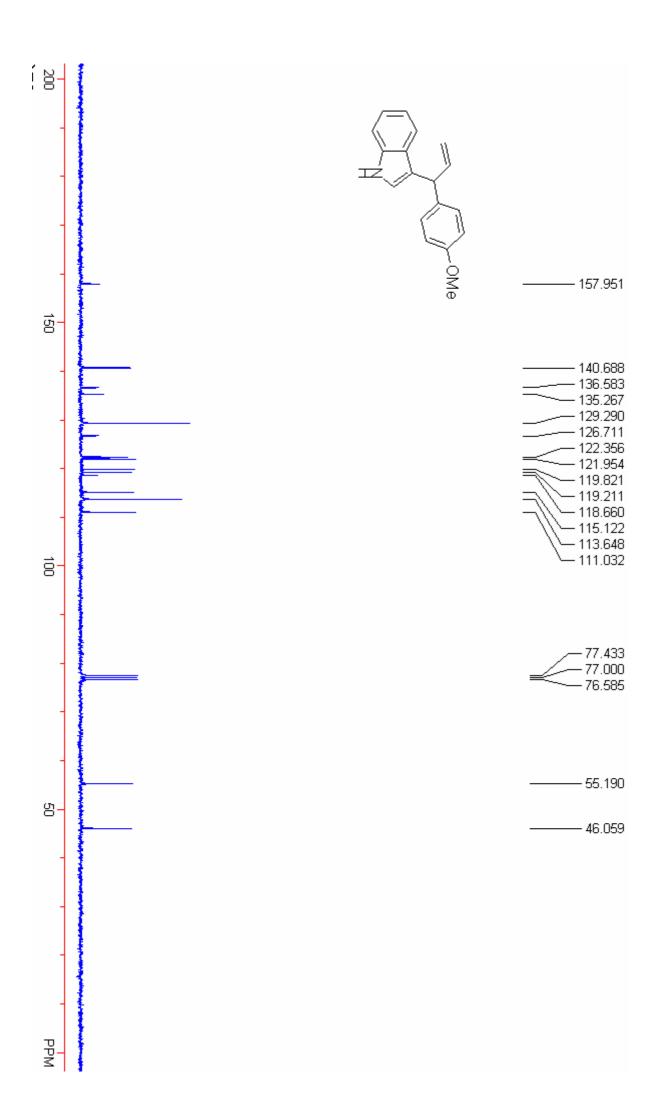
General: All manipulations were carried out under the argon atmosphere using standard Schlenk techniques. All glassware was oven or flame dried immediately prior to use. All solvents were purified and dried according to standard methods prior to use, unless stated otherwise.

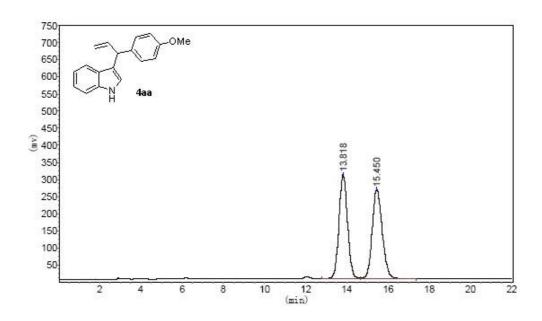
All reagents were obtained from commercial sources and used without further purification except indole (chemical pure) was purified by vacuum distillation. ¹H NMR spectra were obtained at 300 MHz and recorded relative to tetramethylsilane signal (0 ppm) or residual protio-solvent. ¹³C NMR spectra were obtained at 75 MHz, and chemical shifts were recorded relative to the solvent resonance (CDCl₃, 77.0 ppm). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm).

The phosphoramidite ligands¹ and the substituted allylic carbonates² were prepared according to known procedures.

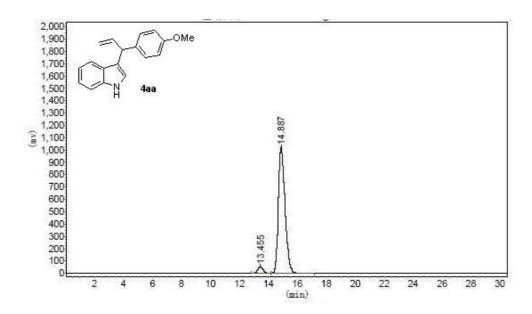
Reference:

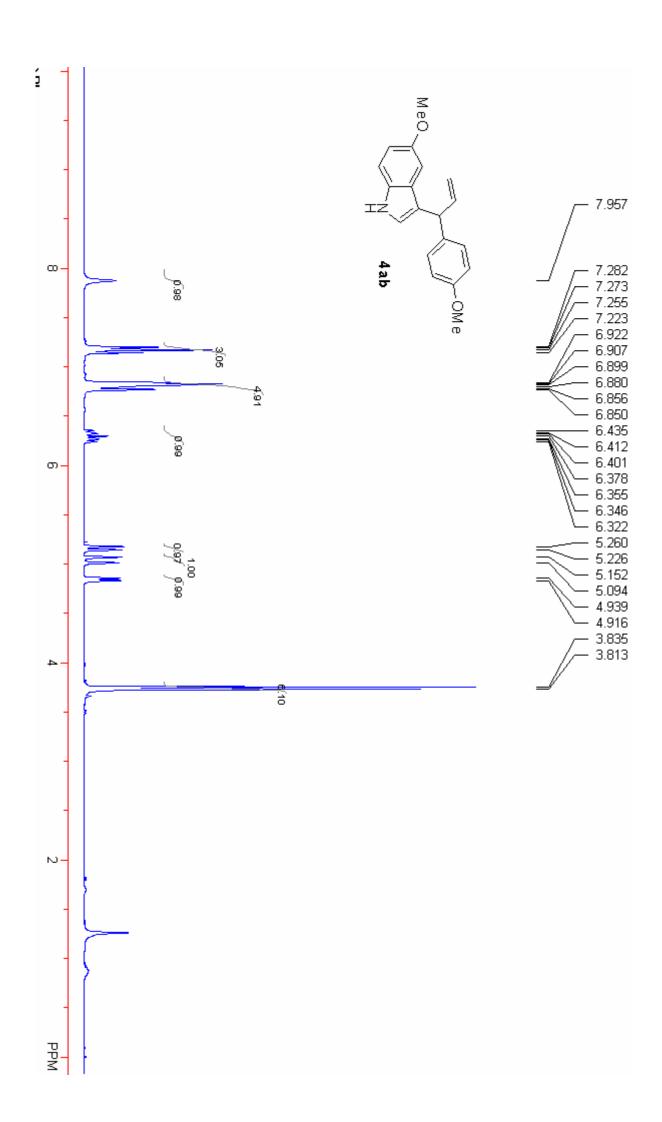

(a) Alexakis, A.; Rosset, S.; Allamand, J.; March, S.; Guillen, F.; Benhaim, C. Synlett
 2001, 9, 1375-1378. (b) Naasz, R.; Arnold, L. A.; Minnaard, A. J.; Feringa, B. L. Angew.
 Chem. Int. Ed. 2001, 40, 927-930. (c) Polet, D.; Alexakis, A. Synthesis 2004, 15, 2586-2590.

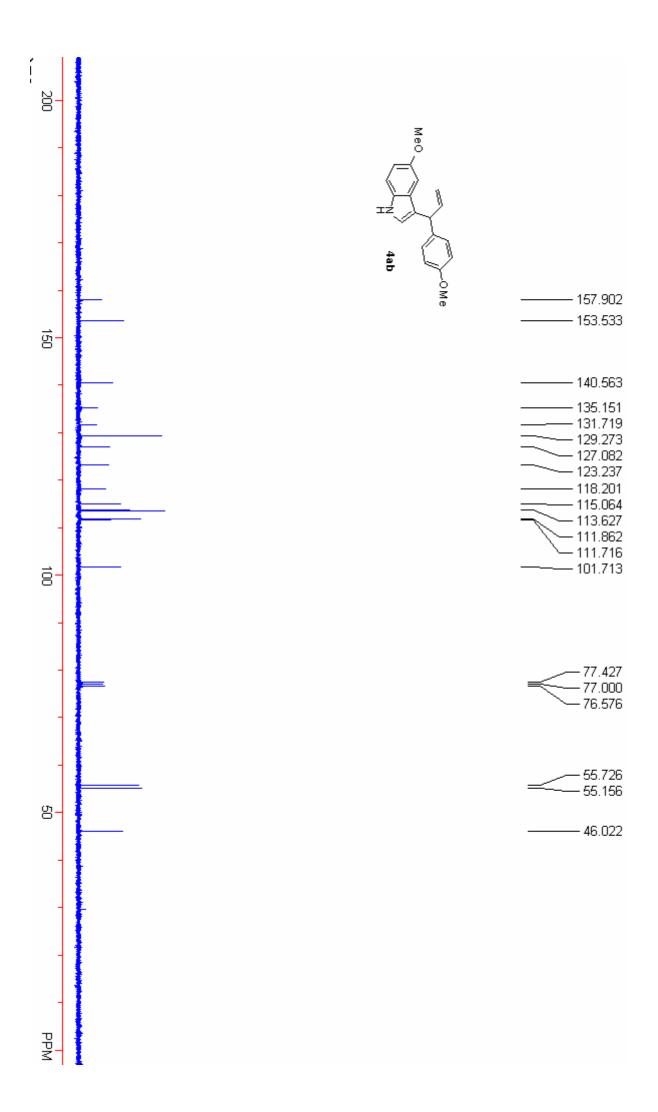

2. Wuts, P. G. M.; Ashford, S. W.; Anderson, A. M.; Atkins, J. R. *Org. Lett.* **2003**, *5*, 1483-1485.

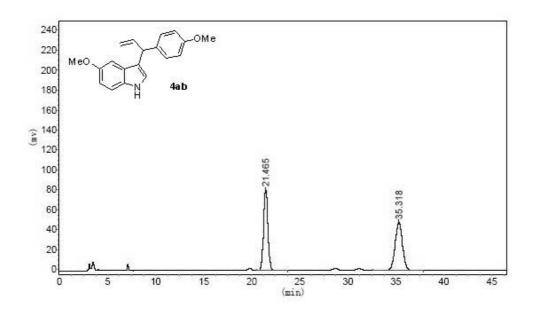

General Procedure for the Iridium(I)-Catalyzed Enantioselective Allylic Alkylation of Indoles:

[Ir(COD)Cl]₂ (0.004 mmol, 2 mol%), phosphoramidite ligand **1** [O,O'-(S) -(1,1'-Dinaphthyl-2,2'-diyl)-N,N'-di-(S,S)-[Phenylethylphosphoramidite] (0.008 mmol, 4 mol%) were dissolved in THF (0.5 mL) and propylamine (0.3 mL) in a dry Schlenk tube filled with argon. The reaction mixture was heated at 50°C for 30 min and then the volatile solvents were removed under vacuum to give a yellow solid. After that, allylic carbonate **2** (0.20 mmol), indole **3** (0.40 mmol, 200 mol%), cesium carbonate (0.20 mmol, 100 mol%), and 1,4-dioxane (1.0 mL) were added. The reaction was refluxed until the carbonate was filtrated with celite and the solvent was removed under reduced pressure. The ratio of regioisomers (branched to linear b/l) was determined by ¹H NMR of the crude reaction mixture. The crude residue was purified by flash column chromatography (petroleum ether/ethyl acetate) to give the desired products.

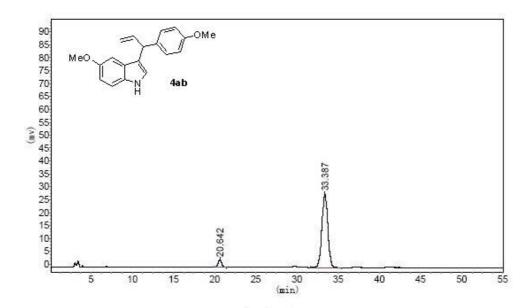

The general procedure was followed with the methyl carbonate 2a (44.5 mg, 0.20 mmol) derived from (E)-3-(4-methoxyphenyl)prop-2-en-1-ol, indole 3a (46.9 mg, 0.40 mmol) and cesium carbonate (65.2 mg, 0.20 mmol) in 1,4-dioxane (1.0 mL). The reaction was conducted at reflux for 4 h. ¹H NMR analysis of the crude reaction mixture indicated that the ratio of regioisomers (b/l) was >99/1. The crude reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate: 30/1) to give the product 4aa (43.1 mg, 82% yield) as a yellow oil. HPLC analysis indicated that the enantiomeric excess of the product was 92% [Diacel CHIRALCEL OD-H (0.46 cm x 25 cm); hexanes/2-propanol = 90/10; flow rate = 1.0 mL/min; detection wavelength = 230 nm; t_R = 13.46 (minor), 13.89 (major) min]. $[\alpha]_D^{20} = -2.8^{\circ}(c \ 1.0, CHCl_3)$. ¹H NMR (300 MHz, CDCl₃) $\delta = 7.97$ (br s, 1H), 7.43 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.26-7.16 (m, 3H), 7.05 (t, J = 7.5Hz, 1H), 6.88-6.85(m, 3H), 6.36 (ddd, J = 6.9, 9.9, 17.1 Hz, 1H), 5.20(d, J = 10.2 Hz, 1H), 5.08(d, J = 17.1 Hz, 1H), 4.94(d, J = 7.2 Hz, 1H), 3.81(s, 3H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 140.7, 136.6, 135.3, 129.3, 126.7, 122.4, 121.9, 119.8, 119.2, 118.7, 115.1, 113.6, 111.0,$ 55.2, 46.1. IR (liquid film): v_{max} (cm⁻¹) = 3420, 3058, 2957, 2836, 1664, 1637, 1608, 1510, 1457, 1247, 1178, 1034, 823, 743. MS (EI, m/z, rel. intensity) 263 (M⁺, 100); HRMS (EI) calcd for C₁₈H₁₇NO (M⁺): 263.1310, Found: 263.1322.

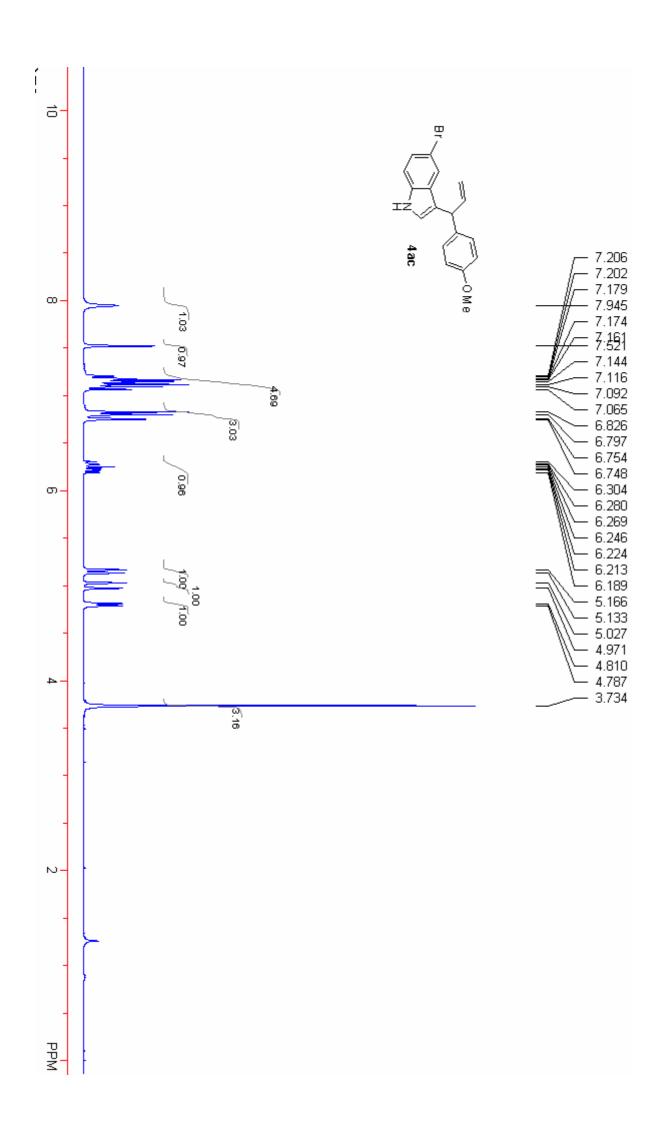


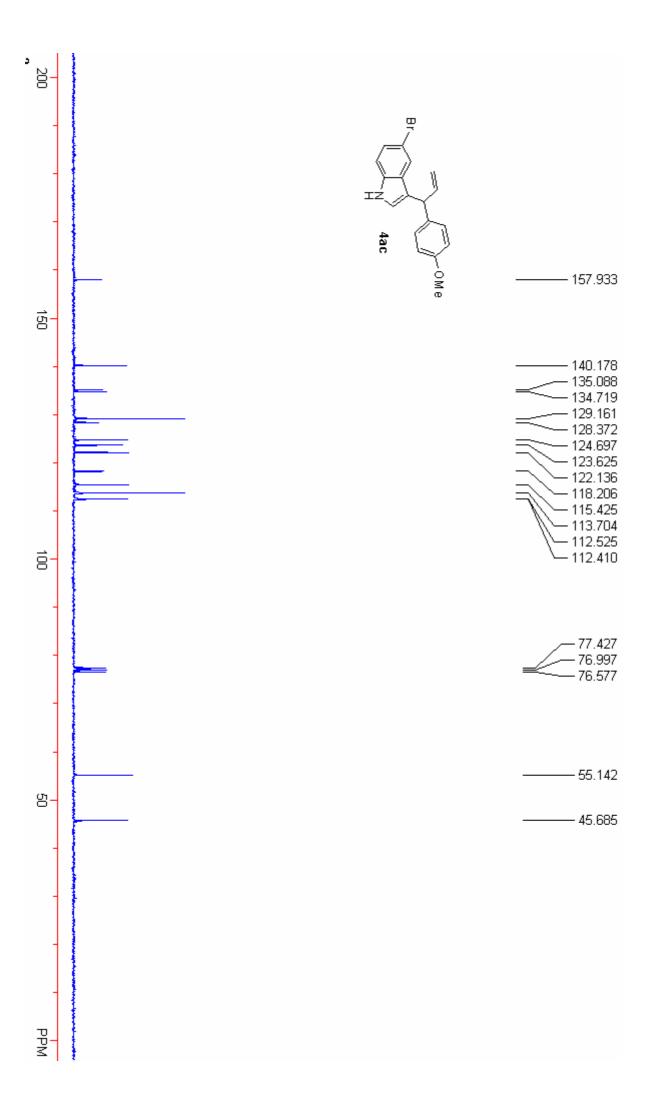

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	13.818	304521, 594	8792842.000	49. 8834
2	15. 450	261393. 625	8833949.000	50, 1166
Total		565915, 219	17626791,000	100,0000

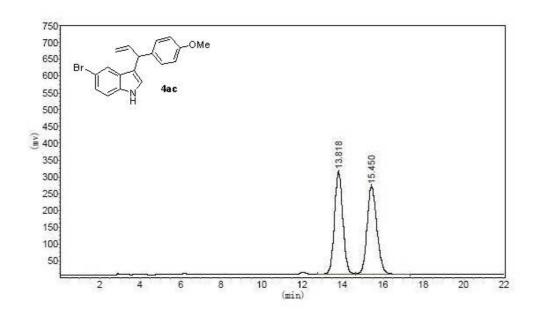


PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	13, 455	52755. 090	1361733, 000	3. 9849
2	14.887	1018109.500	32810478.000	96. 0151
Total		1070864, 590	34172211.000	100,0000

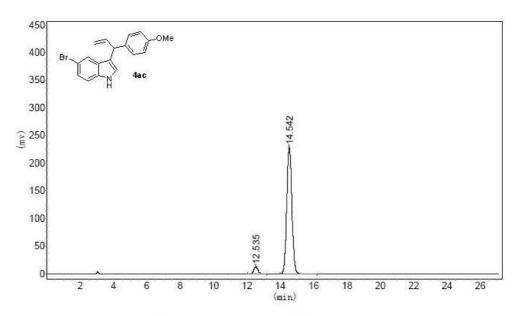

The general procedure was followed with the methyl carbonate 2a (45.1 mg, 0.20 mmol), 5-methoxyindole **3b** (58.9 mg, 0.40 mmol) and cesium carbonate (65.0 mg, 0.20 mmol) in 1,4-dioxane (1.0 mL). The reaction was conducted at reflux for 8 h. ¹H NMR analysis of the crude reaction mixture indicated that the ratio of regioisomers (b/l) was >99/1. The crude reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate: 30/1) to give the product 4ab (49.8mg, 85%) as a yellow oil. HPLC analysis indicated that the enantiomeric excess of the product was 89% [Diacel CHIRALCEL AD-H (0.46 cm x 25 cm); hexanes/2-propanol = 90/10; flow rate = 1.0 mL/min; detection wavelength = 230 nm; $t_R = 20.64$ (minor), 33.39 (major) min]. $[\alpha]_D^{20} =$ -20.8° (c 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) $\delta = 7.90$ (br s, 1H), 7.25-7.17 (m, 3H), 6.86-6.80 (m, 5H), 6.31 (ddd, J = 6.9, 10.2, 17.1 Hz, 1H), 5.17(d, J = 10.2 Hz, 1H), 5.05(d, J = 17.1 Hz, 1H), 4.86 (d, J = 7.2 Hz, 1H), 3.79(s, 3H), 3.75 (s, 3H). ¹³C NMR (75 MHz, $CDCl_3$) $\delta = 157.9$, 153.5, 140.6, 135.2, 131.7, 129.3, 127.1, 123.2, 118.2, 115.1, 113.6, 111.9, 111.7, 101.7, 55.7, 55.2, 46.0. IR(liquid film): v_{max} (cm⁻¹) = 3419, 3075, 3001, 2954, 2934, 2835, 1625, 1610, 1583, 1510, 1484, 1455, 1440, 1300, 1247, 1211, 1176, 1034, 923, 829, 800. MS (EI, m/z, rel. intensity) 293 (M⁺, 100); HRMS (EI) calcd for C₁₈H₁₇NO (M⁺): 293.1416, Found: 293.1417.

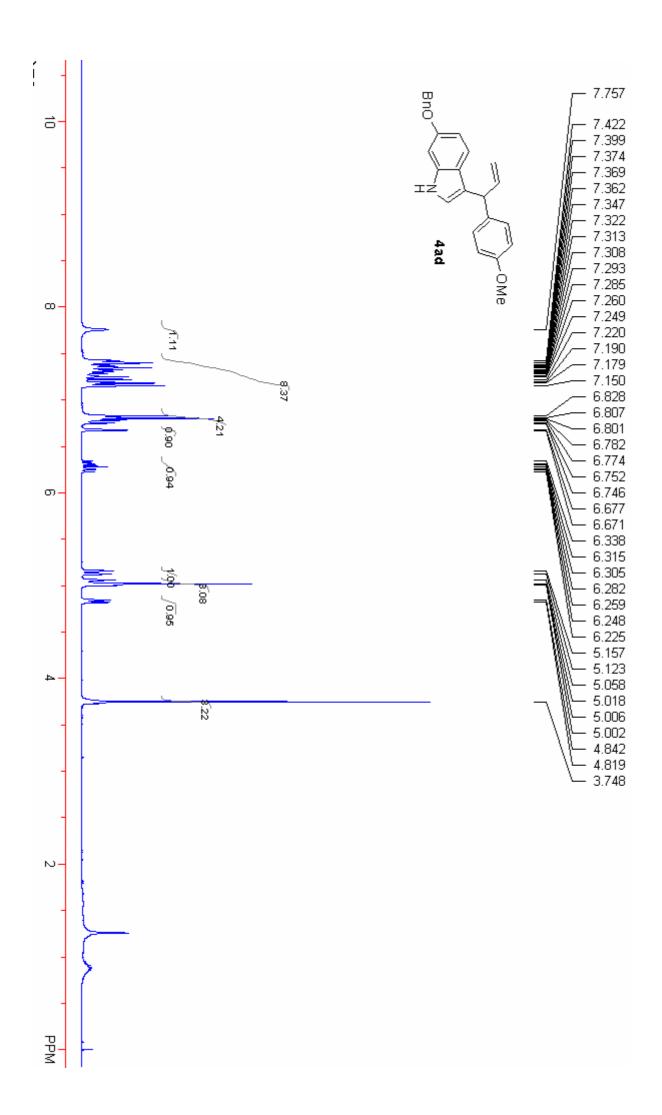


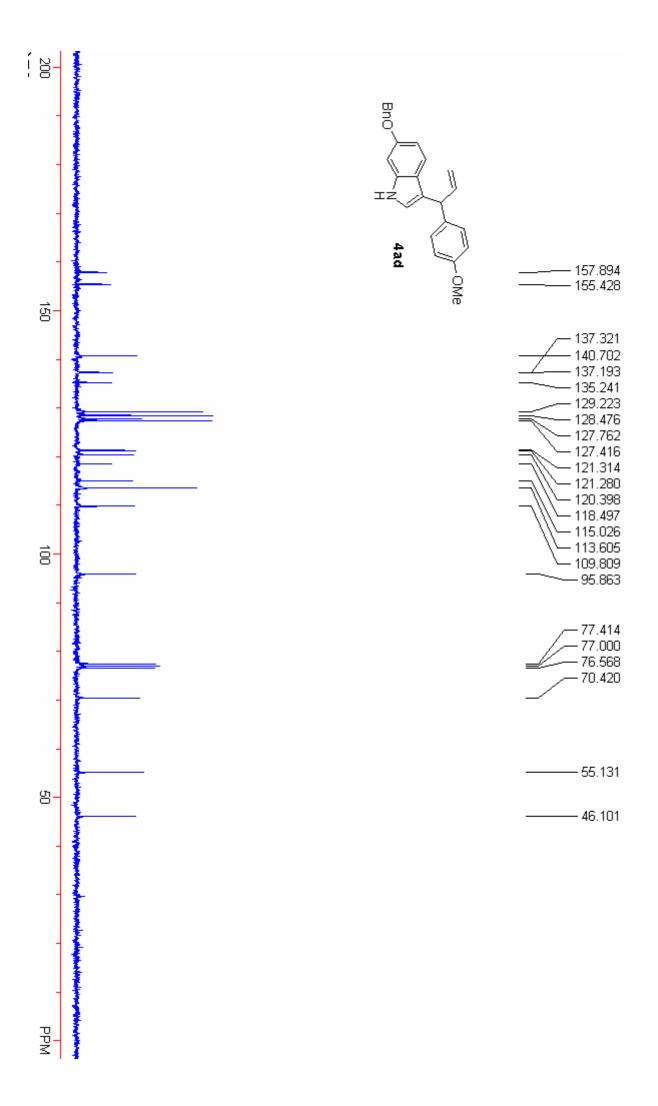

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	21. 465	81141.859	2561523.250	50.0047
2	35, 318	48210, 430	2561038.000	49. 9953
Total		129352, 289	5122561.250	100.0000

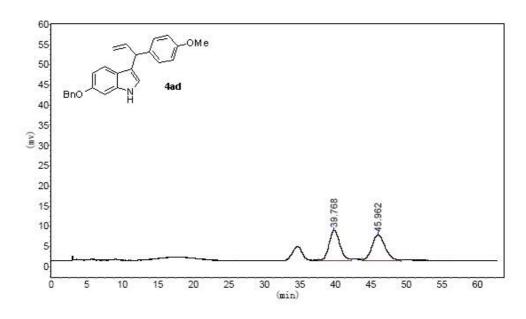


PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	20.642	2906, 357	86545, 406	5, 6832
2	33. 387	28505.648	1436270.000	94.3167
Total		31412, 005	1522815, 406	100.0000

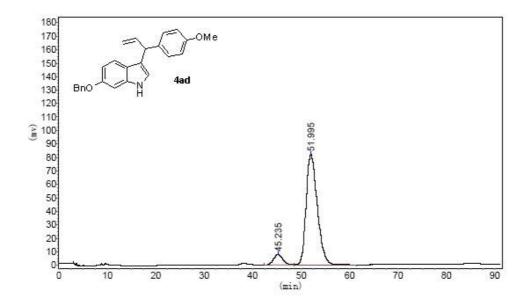

The general procedure was followed with the methyl carbonate 2a (90.1 mg, 0.40 mmol), 5-bromoindole 3c (156.2 mg, 0.80 mmol) and cesium carbonate (130.4 mg, 0.40 mmol) in 1,4-dioxane (2.0 mL). The reaction was conducted at reflux for 2 h. ¹H NMR analysis of the crude reaction mixture indicated that the ratio of regioisomers (b/l) was >99/1. The crude reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate: 30/1) to give the product 4ac (99.1 mg, 73%) as a yellow oil. HPLC analysis indicated that the enantiomeric excess of the product was 91% [Diacel CHIRALCEL AD-H (0.46 cm x 25 cm); hexanes/2-propanol = 90/10; flow rate = 1.0 mL/min; detection wavelength = 230 nm; t_R = 12.54 (minor), 14.54 (major) min]. $[\alpha]_D^{20}$ = -46.7 (c 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ = 7.95 (br s, 1H), 7.52 (s, 1H), 7.21-7.06 (m, 4H), 6.83-6.75 (m, 3H), 6.25 (ddd, J = 7.2, 10.5, 17.1 Hz, 1H), 5.15 (d, J = 9.6 Hz, 1H), 5.00 (d, J = 17.1Hz, 1H), 4.80 (d, J = 6.9 Hz, 1H), 3.73 (s, 3H). 13 C NMR (75 MHz, CDCl₃) δ = 157.9, 140.2, 135.1, 134.7, 129.2, 128.4, 124.7, 123.6, 122.1, 118.2, 115.4, 113.7, 112.5, 112.4, 55.1, 45.7. IR (liquid film): v_{max} (cm⁻¹) = 3426, 3078, 3003, 2955, 2930, 2858, 2837, 1637, 1610, 1510, 1459, 1443, 1247, 1177, 1097, 1035, 796. MS (EI, m/z, rel. intensity) 341 (M⁺, 100); HRMS (EI) calcd for C₁₈H₁₆NOBr (M⁺): 341.0415, Found: 341.0422.

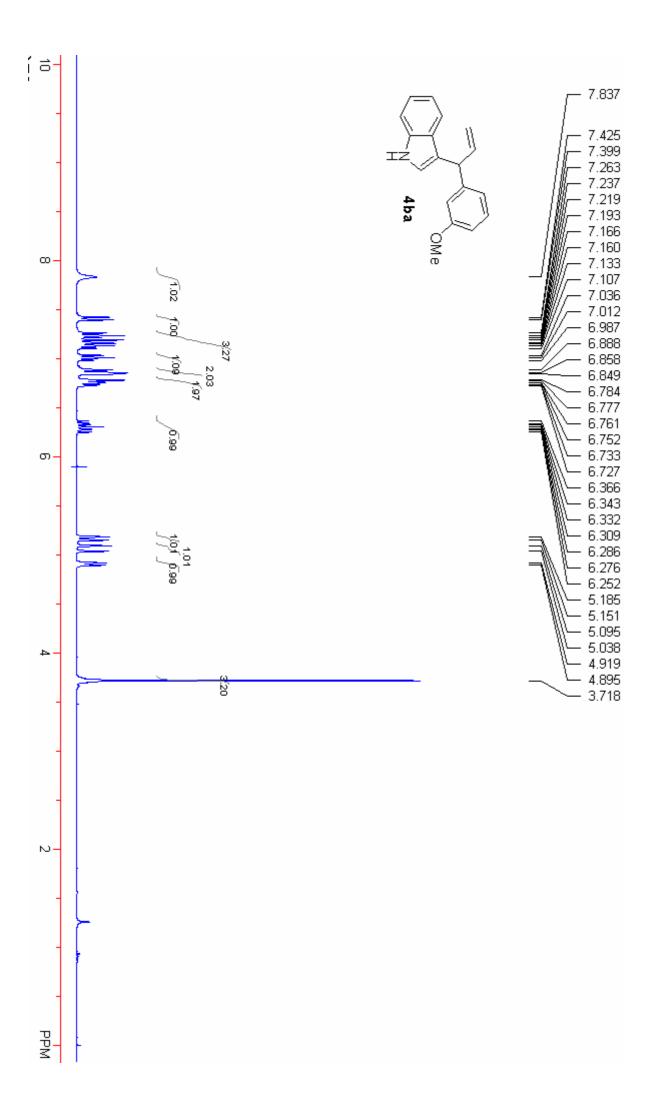


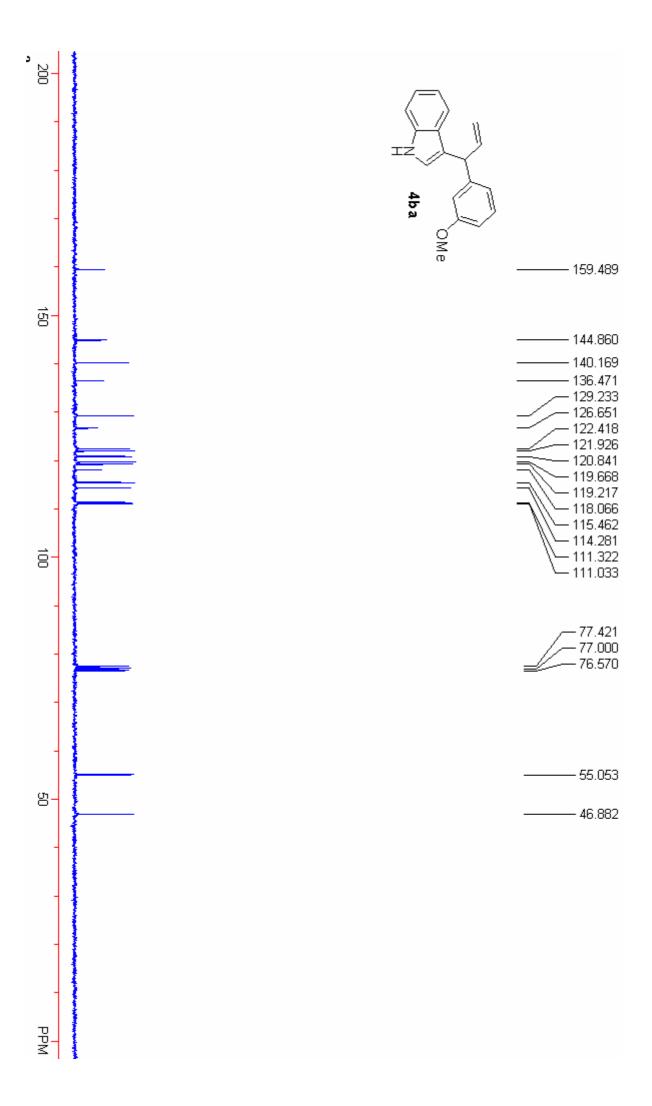

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	13.818	304521, 594	8792842.000	49.8834
2	15.450	261393. 625	8833949,000	50.1166
Total		565915. 219	17626791.000	100.0000

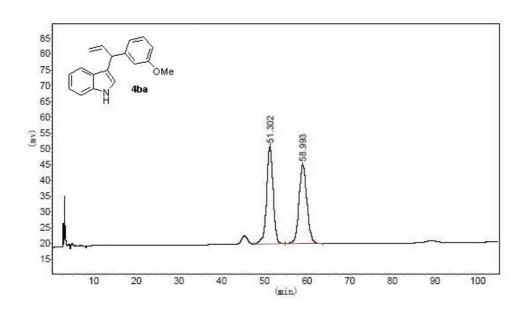


PeakNo	R. Time	PeakHeight	PeakArea	Peakcent
1	12. 535	13398. 115	247744. 781	4.7750
2	14. 542	229506.906	4940601.000	95. 2250
Total		242905, 021	5188345, 781	100,0000

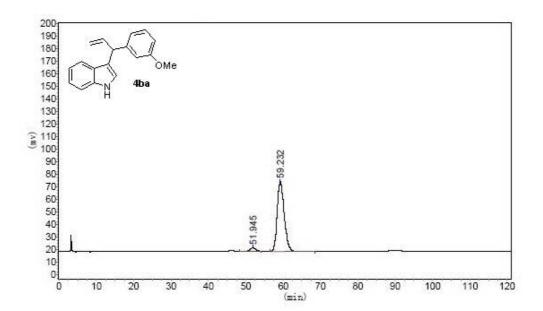

The general procedure was followed with the methyl carbonate 2a (44.9 mg, 0.20 mmol), 6-benzyloxyindole **3d** (89.3 mg, 0.40 mmol) and cesium carbonate (65.4 mg, 0.20 mmol) in 1,4-dioxane (1.0 mL). The reaction was conducted at reflux for 6 h. ¹H NMR analysis of the crude reaction mixture indicated that the ratio of regioisomers (b/l) was >99/1. The crude reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate: 30/1) to give the product 4ad (61.3 mg, 83%) as a yellow oil. HPLC analysis indicated that the enantiomeric excess of the product was 85% [Diacel CHIRALCEL OD-H (0.46 cm x 25 cm); hexanes/2-propanol = 90/10; flow rate = 1.0 mL/min; detection wavelength = 230 nm; $t_R = 45.24$ (minor), 51.99 (major) min]. $[\alpha]_D^{20} = +0.8$ (c 2.0, CHCl₃). ¹H NMR (300 MHz, CDCl3) $\delta = 7.75$ (br s, 1H), 7.42-7.15 (m, 8H), 6.83-6.66 (m, 5H), 6.28 (ddd, J = 7.2, 10.2, 16.8 Hz, 1H), 5.14 (d, J = 9.9, 1H), 5.03 (d, J = 14.7 Hz, 1H), 5.01(s, 2H), 4.83 (d, J = 6.9 Hz, 1H), 3.74 (s, 3H). 13 C NMR (75 MHz, CDCl₃) δ = 157.9, 155.4, 140.7, 137.3, 137.2, 135.2, 129.2, 128.5, 127.8, 127.4, 121.31, 121.28, 120.4, 118.5, 115.0, 113.6, 109.8, 95.9, 70.4, 55.1, 46.1. IR (liquid film): v_{max} (cm⁻¹) = 3423, 3065, 3033, 3004, 2955, 2929, 2858, 2836, 1628, 1610, 1583, 1549, 1510, 1455, 1400, 1380, 1340, 1301, 1249, 1166, 1034, 917, 807, 740, 698. MS (EI, m/z, rel. intensity) 369 (M⁺, 32), 278 (100); HRMS (EI) calcd for $C_{25}H_{23}NO_2$ (M⁺): 369.1729, Found: 369.1733.

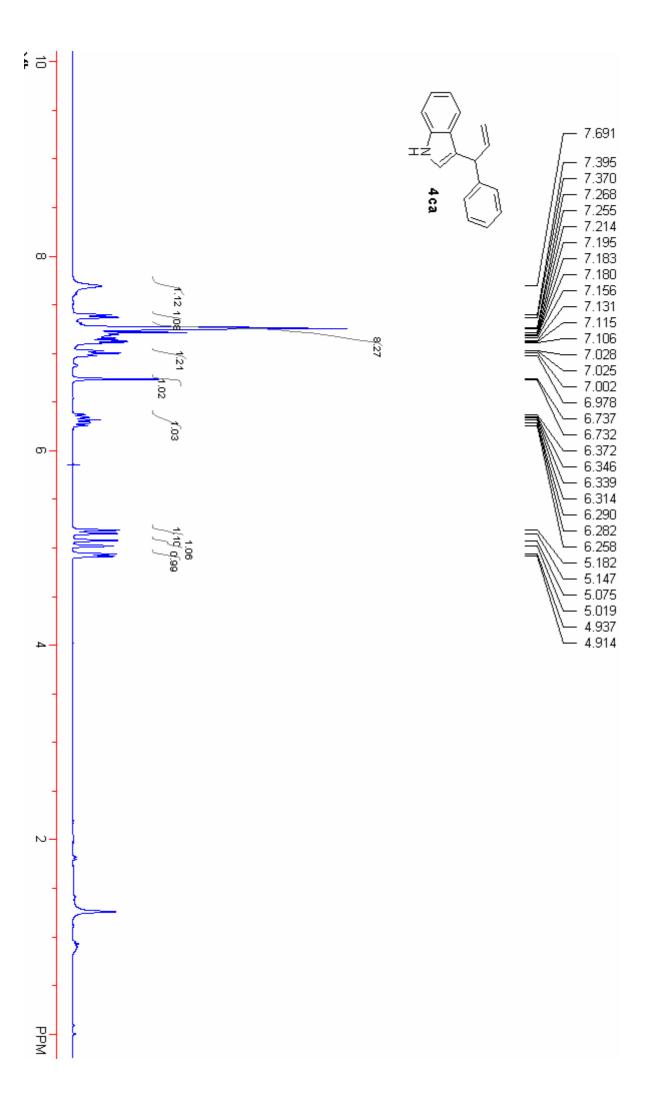


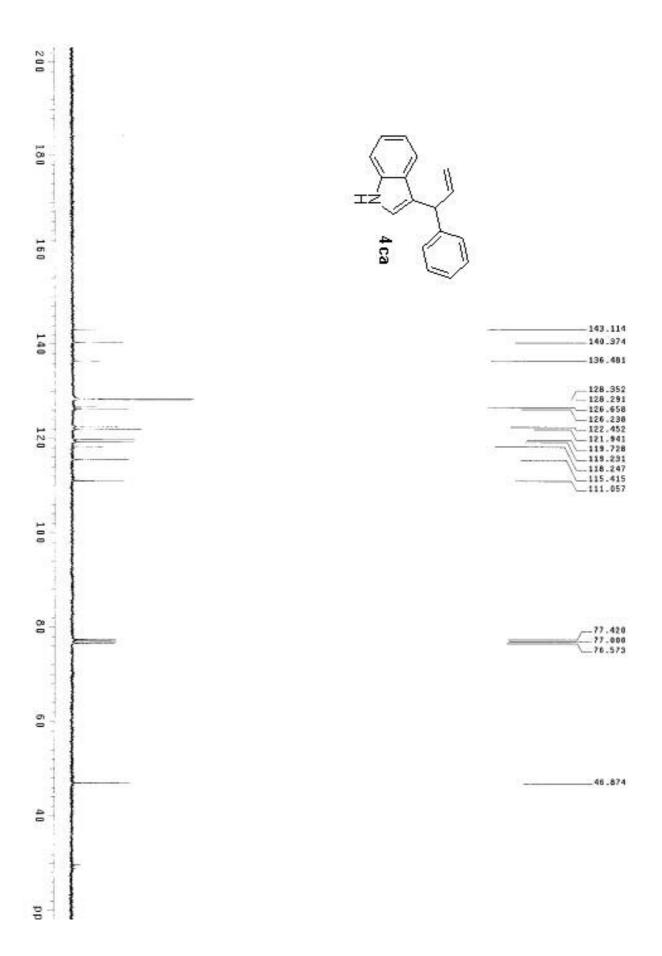

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	39. 768	7459. 936	783117. 688	49. 3855
2	45. 962	6396.058	802606.063	50.6145
Total		13855, 994	1585723.750	100.0000

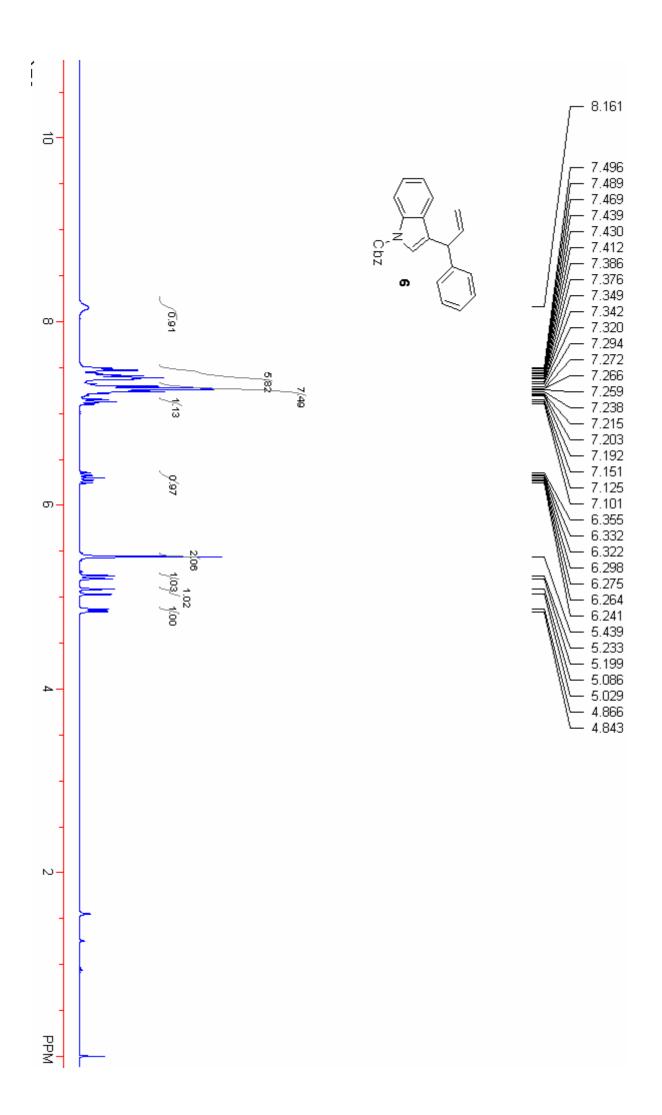


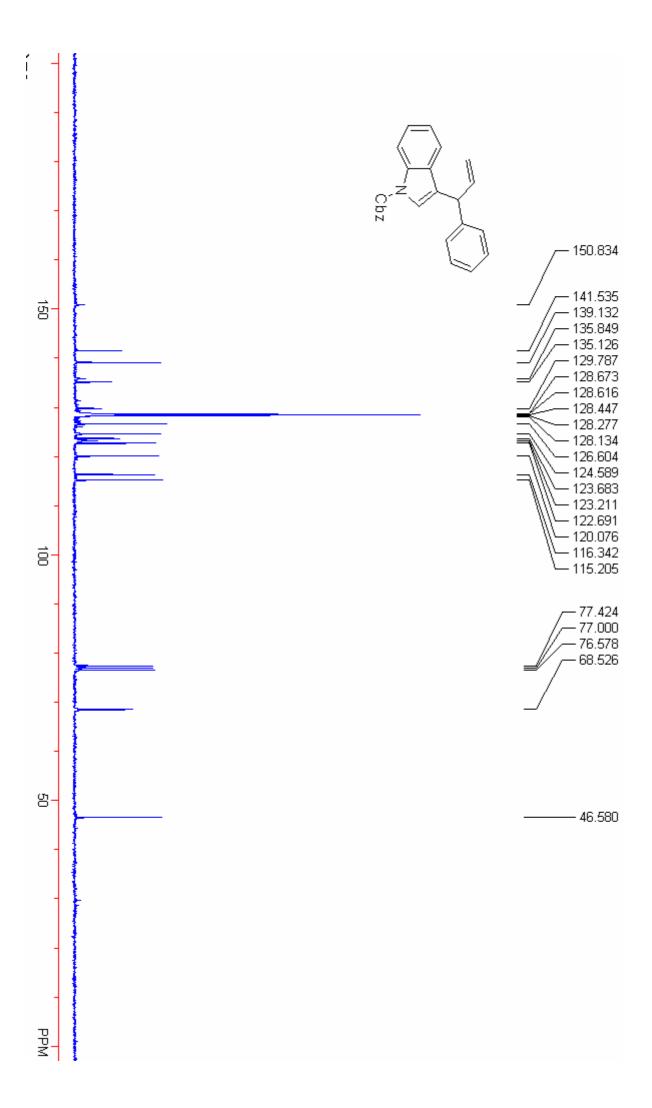
PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	45. 235	7973.070	1057370.250	7. 4603
2	51. 995	82282.109	13115969.000	92. 5397
Total		90255, 180	14173339, 250	100.0000

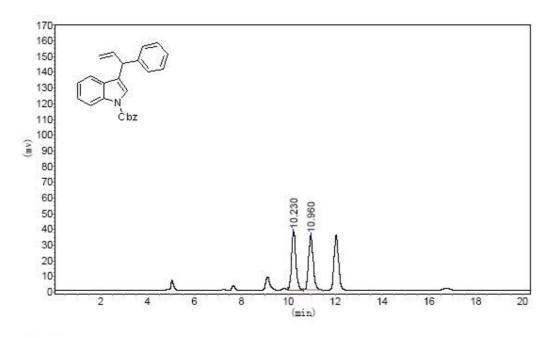

The general procedure was followed with the methyl carbonate **2b** (89.3 mg, 0.40 mmol) derived from (E)-3-(3-methoxyphenyl)prop-2-en-1-ol, indole 3a (93.4 mg, 0.80 mmol) and cesium carbonate (130.4 mg, 0.40 mmol) in 1,4-dioxane (2.0 mL). The reaction was conducted at reflux for 3 h. ¹H NMR analysis of the crude reaction mixture indicated that the ratio of regioisomers (b/l) was >99/1. The crude reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate: 30/1) to give the product 4ba (76.6 mg, 73%) as a yellow oil. HPLC analysis indicated that the enantiomeric excess of the product was 91% [Diacel CHIRALCEL OD-H (0.46 cm x 25 cm); hexanes/2-propanol = 98/2; flow rate = 1.0 mL/min; detection wavelength = 230 nm; t_R = 51.94 (minor), 59.23 (major) min]. $[\alpha]_D^{20} = -2.2$ (c 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) $\delta = 7.84$ (br s, 1H), 7.43-6.73 (m, 9H), 6.31 (ddd, J = 7.2, 10.2, 17.1 Hz, 1H), 5.17 (d, J = 10.2, 1H), 5.07 (d, J = 10.2), 10.2= 17.1 Hz, 1H), 4.91 (d, J = 7.5 Hz, 1H), 3.72 (s, 3H). 13 C NMR (75 MHz, CDCl₃) δ = 159.5, 144.9, 140.2, 136.5, 129.2, 126.7, 122.4, 121.9, 120.8, 119.7, 119.2, 118.0, 115.5, 114.3, 111.3, 111.0, 55.1, 46.9. IR (liquid film): v_{max} (cm⁻¹) = 3420, 3079, 3057, 3003, 2957, 2935, 2836, 1637, 1606, 1599, 1585, 1488, 1457, 1436, 1419, 1263, 1151, 1047, 773, 759, 743, 700. MS (EI, m/z, rel. intensity) 263 (M⁺, 100); HRMS (EI) calcd for C₁₈H₁₇NO (M⁺): 263.1310, Found: 263.1320.

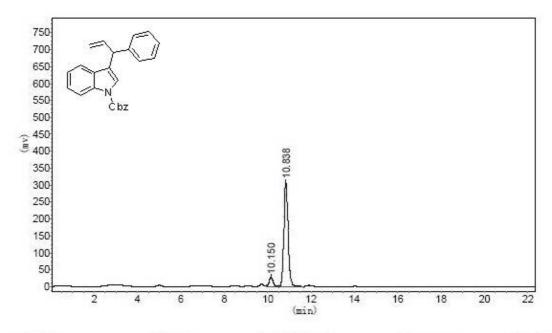


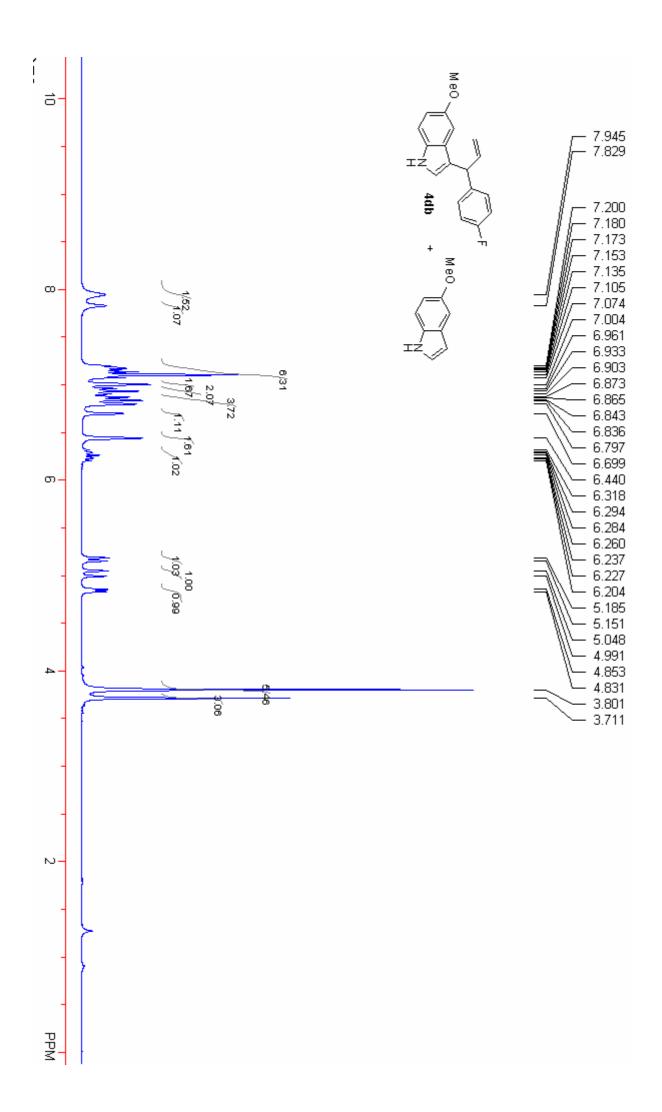

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	51, 302	30941, 063	3291627.500	50.6766
2	58. 993	24973. 420	3203730.250	49. 3234
Total		55914, 482	6495357, 750	100.0000

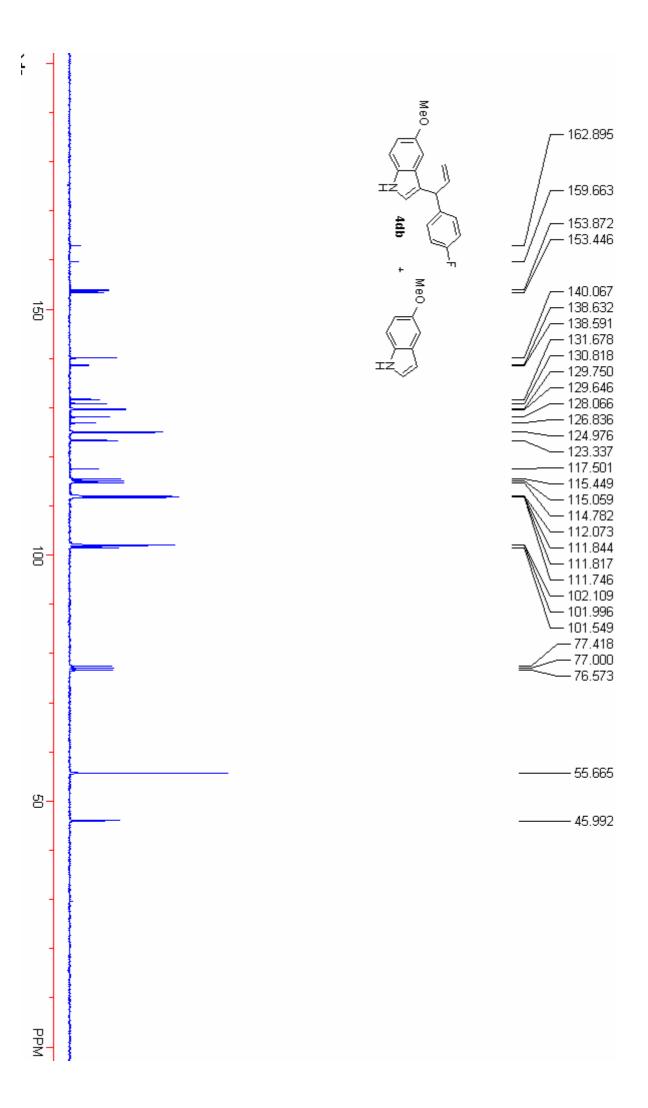

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	51.945	3011. 588	347181, 563	4. 5609
2	59. 232	55701.371	7264926.500	95, 4391
Total		58712, 959	7612108, 063	100,0000

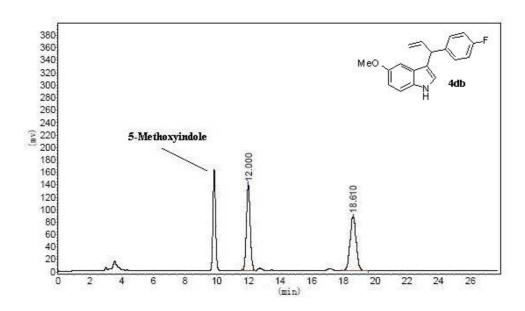

The general procedure was followed with the methyl carbonate **2c** (76.9 mg, 0.40 mmol) derived from cinnamyl alcohol, indole **3a** (94.0 mg, 0.80 mmol) and cesium carbonate (131.6 mg, 0.40 mmol) in 1,4-dioxane (2.0 mL). The reaction was conducted at reflux for 3 h. 1 H NMR analysis of the crude reaction mixture indicated that the ratio of regioisomers (b/l) was 99/1. The crude reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate: 50/1) to give the mixture of **3a** and product **4ca** (114.0 mg), then indole was removed by vacuum distillation to give the product (45.8 mg, 49%) as a yellow oil. [α]_D²⁰ = -0.7 (c 2.0, CHCl₃). 1 H NMR (300 MHz, CDCl₃) δ = 7.94 (br s, 1H), 7.42-6.86 (m, 10H), 6.35 (ddd, J = 7.2, 9.9, 16.8 Hz, 1H), 5.17 (d, J = 10.5, 1H), 5.05 (d, J = 16.8 Hz, 1H), 4.93 (d, J = 6.9 Hz, 1H). 13 C NMR (75 MHz, CDCl₃) δ = 143.1, 140.4, 136.5, 128.4, 128.3, 126.7, 126.2, 122.5, 121.9, 119.7, 119.2, 118.2, 115.4, 111.1, 46.9. IR (liquid film): v_{max} (cm⁻¹) = 3420, 3081, 3059, 3004, 2926, 1637,1600, 1491, 1456, 1419, 1338, 1220, 1095, 919, 742, 701. MS (EI, m/z, rel. intensity) 233 (M⁺, 100); HRMS (EI) calcd for C₁₇H₁₅N (M⁺): 233.1204, Found: 233.1208.



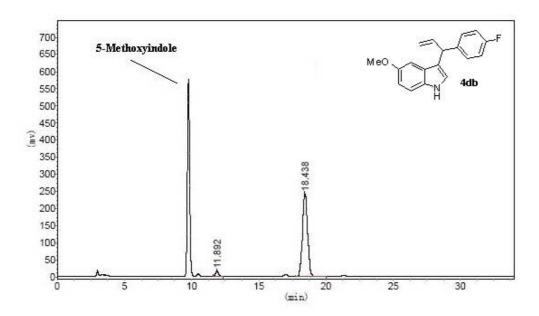

The substrate 4ca (65.4 mg, 0.28 mmol), NaH (10.1 mg, 0.42 mmol) were added into a flask containing DMF (3 mL). After stirring for 10 min at room temperature, benzyl carbonochloridate (0.08 mL, 0.42 mmol) was added. The reaction was stirred for 1 h and quenched with water, extracted with Et₂O, dried over Na₂SO₄ and filtered. The solvent was removed under reduced pressure and the residue was purified by column chromatography (petroleum ether/ethyl acetate: 200/1) to afford the product 6 (77.3 mg, 75%) as a colorless oil. HPLC analysis indicated that the enantiomeric excess of the product was 85% [Diacel CHIRALCEL AD-H (0.46 cm x 25 cm); hexanes/2-propanol = 95/5; flow rate = 0.6 mL/min; detection wavelength = 230 nm; t_R = 10.15 (minor), 10.84 (major) min]. $[\alpha]_D^{20}$ = +21.8 (c 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) $\delta = 8.16$ (br s, 1H), 7.50-7.10 (m, 15H), 6.30 (ddd, J = 6.9, 10.2, 17.1 Hz, 1H), 5.44 (s, 2H), 5.21 (d, J = 10.2, 1H), 5.06 (d, J = 17.1)Hz, 1H), 4.85 (d, J = 6.9 Hz, 1H). 13 C NMR (75 MHz, CDCl₃) δ = 150.8, 141.5, 139.1, 135.8, 135.1, 129.8, 128.7, 128.6, 128.4, 128.3, 126.6, 124.6, 123.7, 123.2, 122.7, 120.1, 116.3, 115.2, 68.5, 46.6. IR (liquid film): v_{max} (cm⁻¹) = 3063, 3032, 1734, 1638, 1602, 1455, 1397, 1356, 1307, 1241, 1216, 1067, 1027, 1010, 917, 746, 699. MS (EI, *m/z*, rel. intensity) 367 (M⁺, 7.7), 91 (100); HRMS (EI) calcd for C₂₅H₂₁NO₂ (M⁺): 367.1572, Found: 367.1575.

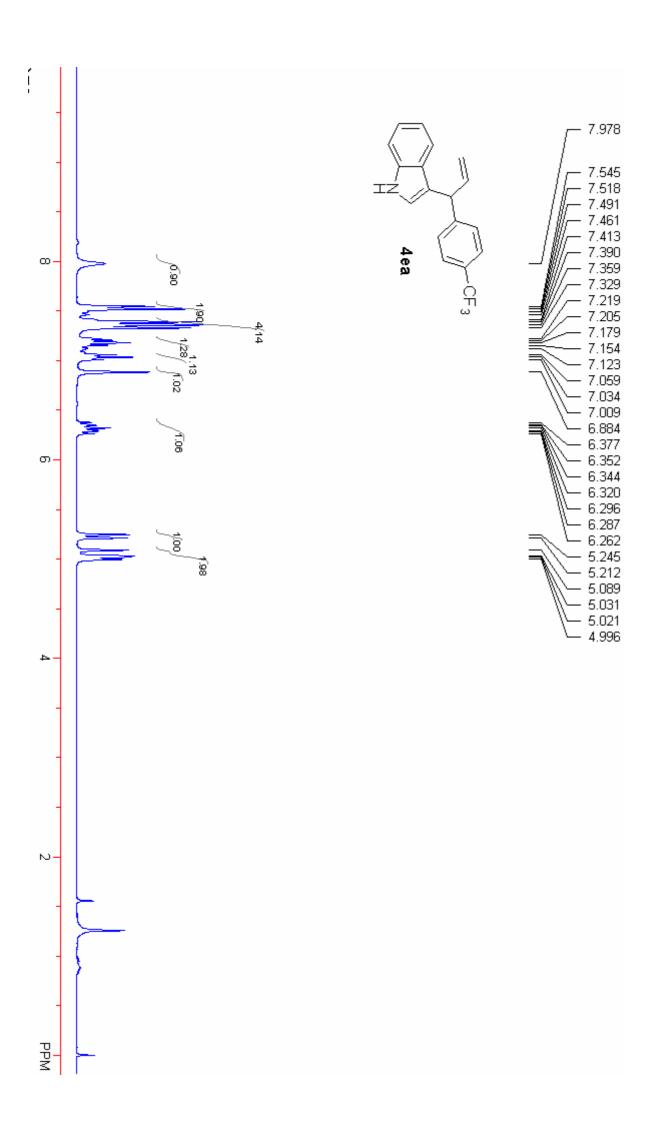


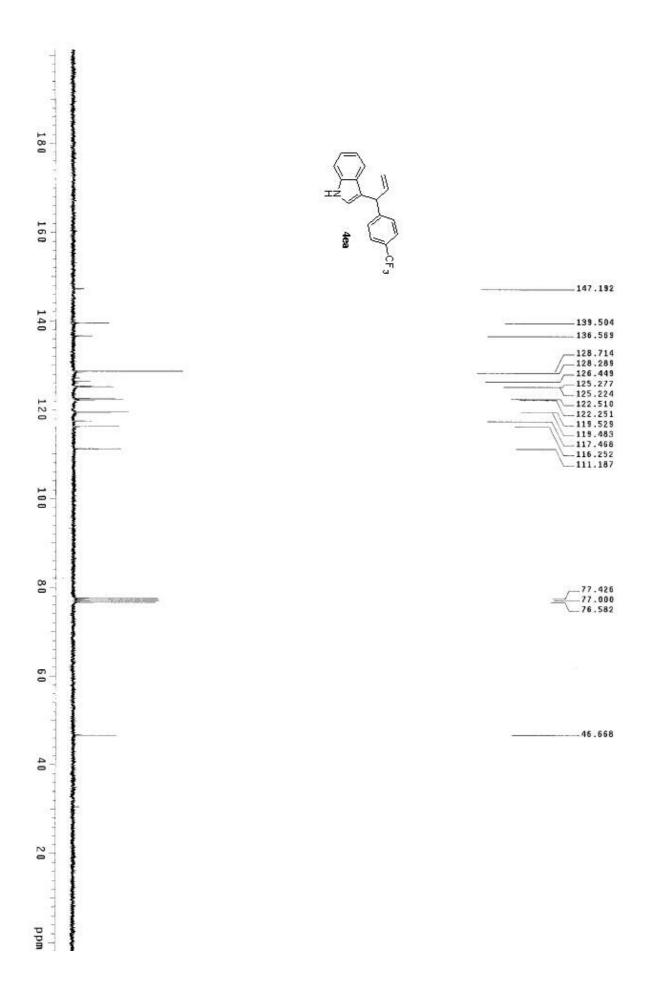

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	10. 230	37415. 336	485734, 656	50. 8077
2	10.960	34644. 926	470291.531	49. 1923
Total		72060, 262	956026, 188	100.0000

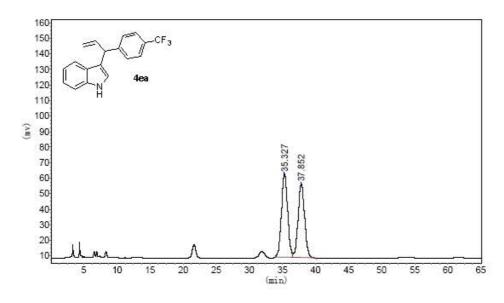


PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	10. 150	27046.043	343480. 375	7.6213
2	10.838	308666.000	4163375.000	92.3787
Total		335712, 043	4506855, 375	100,0000

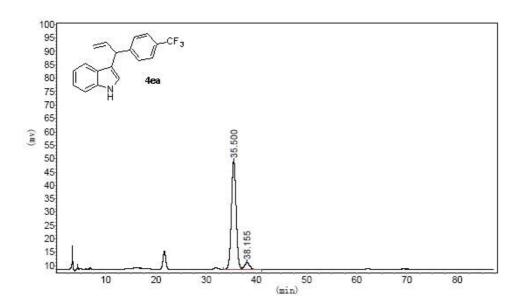

The general procedure was followed with the methyl carbonate 2d (83.1 mg, 0.40 mmol) derived from (E)-3-(4-fluorophenyl)prop-2-en-1-ol, 5-methoxyindole **3b** (117.9 mg, 0.80 mmol) and cesium carbonate (130.7 mg, 0.40 mmol) in 1,4-dioxane (2.0 mL). The reaction was conducted at reflux for 4 h. ¹H NMR analysis of the crude reaction mixture indicated that the ratio of regioisomers (b/l) was >99/1. The reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate: 50/1) to give the mixture (148.7 mg) of **3b** and **4db** (52.5 mg, 47%). Because **4db** was inseparable from **3b**, the yield was determined by ¹H NMR of the isolated mixture. HPLC analysis indicated that the enantiomeric excess of the product was 92% [Diacel CHIRALCEL AD-H (0.46 cm x 25 cm); hexanes/2-propanol = 90/10; flow rate = 1.0 mL/min; detection wavelength = 230 nm; $t_R = 11.89 \text{ (minor)}, 18.44 \text{ (major) min]}. [\alpha]_D^{20} = -21.5 \text{ (c } 0.37, \text{CHCl}_3). ^1 \text{H NMR (300 MHz)},$ CDCl3) $\delta = 7.83$ (br s, 1H), 7.18-6.80 (m, 7H), 6.70 (s, 1H), 6.26 (ddd, J = 6.9, 10.2, 17.4 Hz, 1H), 5.17 (d, J = 10.2, 1H), 5.02 (d, J = 17.1 Hz, 1H), 4.84 (d, J = 6.6 Hz, 1H), 3.71 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 162.9, 159.7, 153.5, 140.1, 138.6, 138.6, 131.7, 129.8, 129.6, 126.4, 123.3, 117.5, 115.5, 115.1, 114.8, 111.9, 111.8, 101.6, 55.7, 46.0. IR (liquid film): v_{max} (cm⁻¹) = 3417, 3070, 2997, 2938, 2833, 1625,1602, 1583, 1507, 1483, 1455, 1440, 1287, 1224, 1153, 1029, 799, 757, 725. MS (EI, m/z, rel. intensity) 281 (M⁺, 100); HRMS (EI) calcd for C₁₈H₁₆NOF (M⁺): 281.1216, Found: 281.1223.

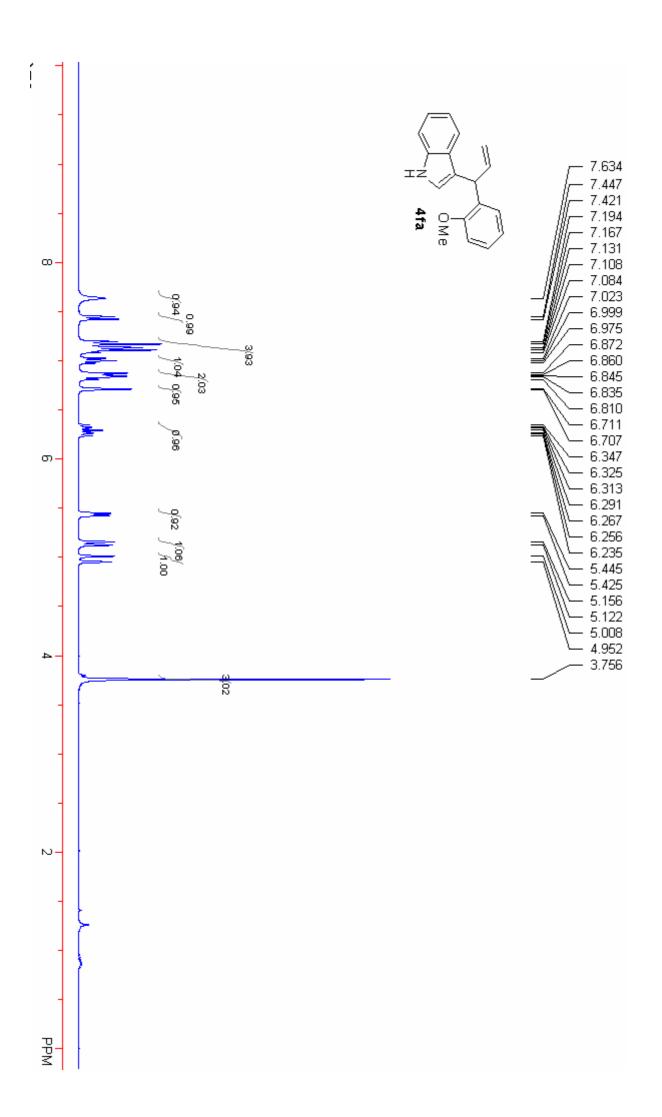


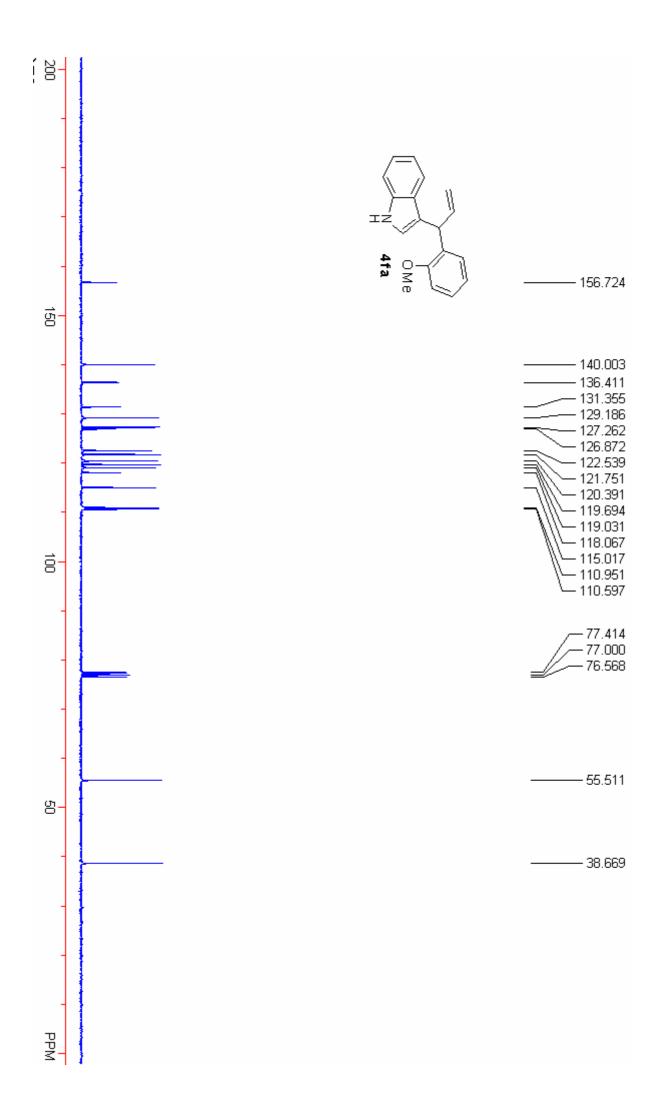

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	12.000	138522, 547	2308029.750	49, 8194
2	18.610	87412.570	2324767.750	50. 1806
Total		225935, 117	4632797.500	100.0000

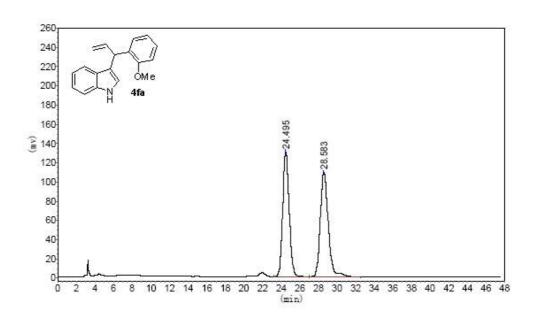


PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	11.892	15963.833	269976, 969	4. 0296
2	18. 438	241939. 125	6429940.500	95. 9704
Total		257902 958	6699917 469	100,0000

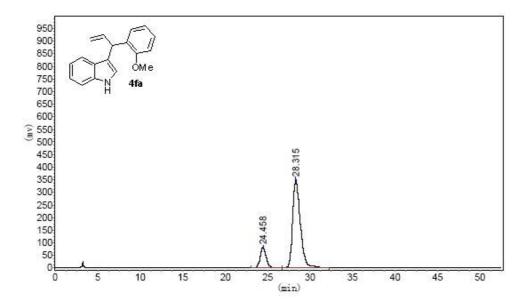

The general procedure was followed with the methyl carbonate 2e (108.3 mg, 0.41 mmol) derived from (E)-3-(4-trifluoromethylphenyl)prop-2-en-1-ol, indole 3a (95.9 mg, 0.82 mmol) and cesium carbonate (133.1 mg, 0.41 mmol) in 1,4-dioxane (2.0 mL). The reaction was conducted at reflux for 3 h. ¹H NMR analysis of the crude reaction mixture indicated that the ratio of regioisomers (b/l) was >99/1. The crude reaction mixture was purified by column chromatography (petroleum ether/ethyl ether: 30/1) to give the product 4ea (76.0, 63%) as a yellow oil. HPLC analysis indicated that the enantiomeric excess of the product was 87% [Diacel CHIRALCEL OD-H (0.46 cm x 25 cm); hexanes/2-propanol = 98/2; flow rate = 1.0 mL/min; detection wavelength = 230 nm; $t_R = 35.50 \text{ (major)}$, 38.16 (minor) min]. $[\alpha]_D^{20} = -21.5$ (c 0.37, CHCl₃). ¹H NMR (300 MHz, CDCl₃) $\delta = 7.98$ (br s, 1H), 7.55-7.01 (m, 8H), 6.89 (s, 1H), 6.32 (ddd, J = 7.2, 9.6, 17.1 Hz, 1H), 5.23 (d, J = 9.6, 1H), 5.06 (d, J)= 17.1 Hz, 1H), 5.01 (d, J = 7.2 Hz, 1H). 13 C NMR (75 MHz, CDCl₃) δ = 147.2, 139.5, 136.6, 128.7, 128.3, 126.4, 125.3, 125.2, 122.5, 122.3, 119.5, 119.5, 117.5, 116.3, 111.2, 46.7. IR (liquid film): v_{max} (cm⁻¹) = 3415, 3061, 2903, 2933, 2874, 1714, 1639, 1618, 1488, 1457, 1419, 1327, 1162, 1110, 1068, 1018, 923, 856, 826, 797, 744. MS (EI, m/z, rel. intensity) 301 (M⁺, 100), 156 (88); HRMS (EI) calcd for C₁₈H₁₄F₃N (M⁺): 301.1078, Found: 301.1085.

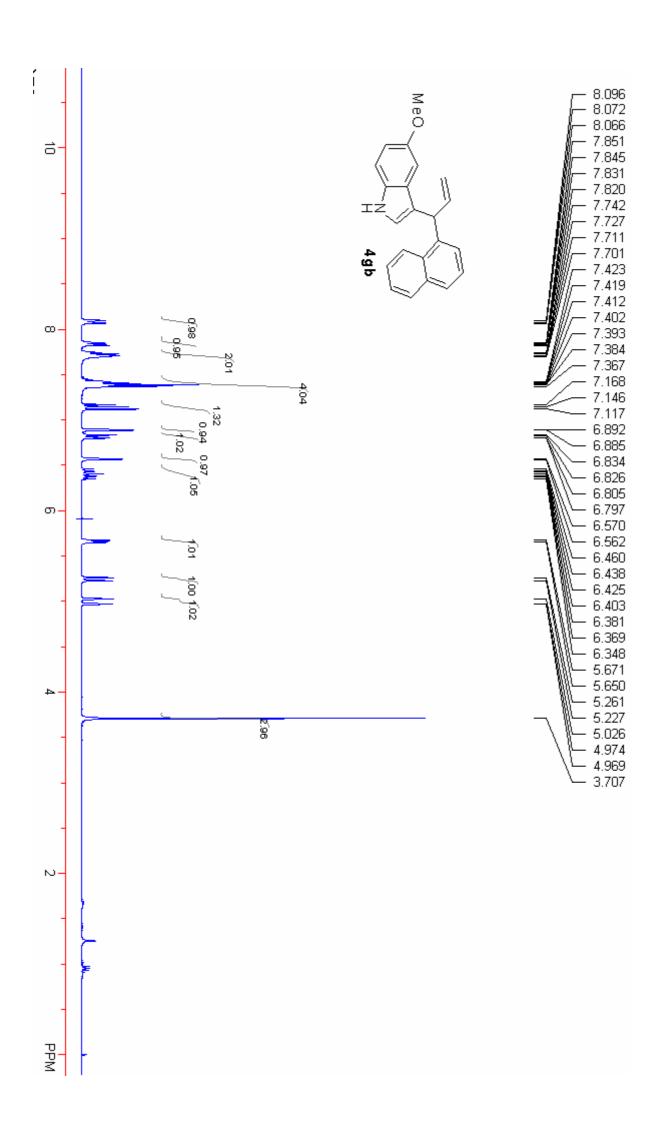


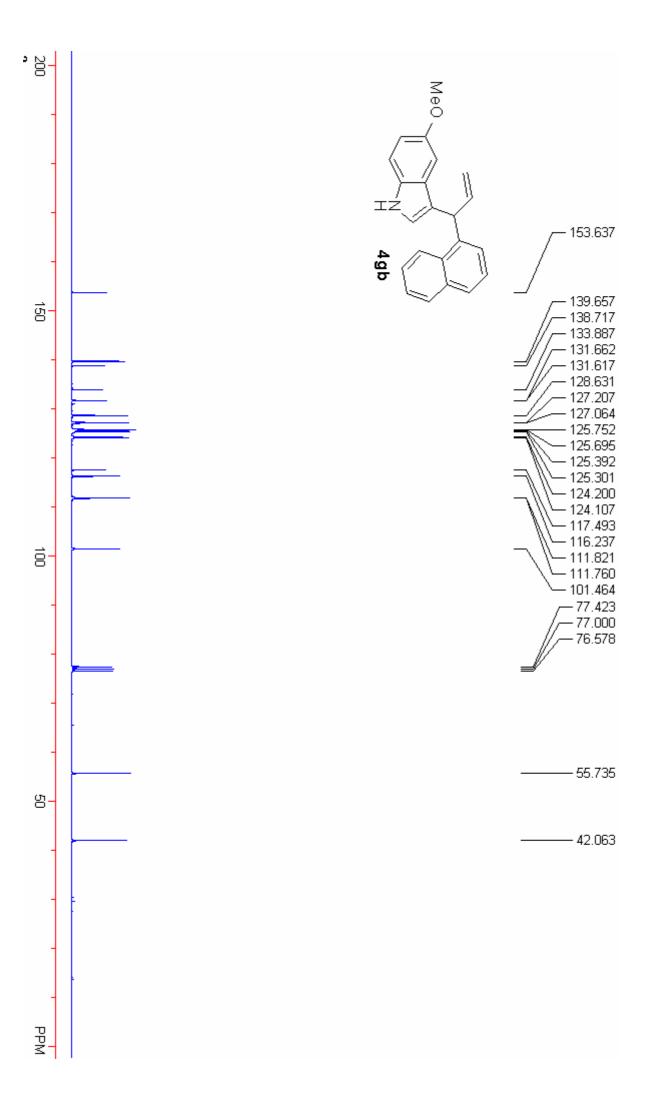

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	35. 327	53305. 805	3438461.000	51. 4739
2	37.852	47109. 434	3241545.000	48. 5261
Total		100415 238	6680006 000	100 0000

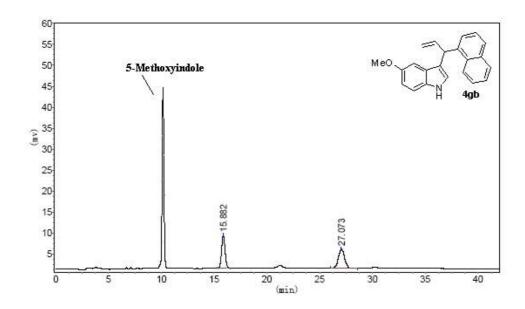


PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	35, 500	40641.656	2675309.000	93. 5162
2	38. 155	2573.029	185487. 500	6. 4838
Total		43214, 686	2860796, 500	100,0000

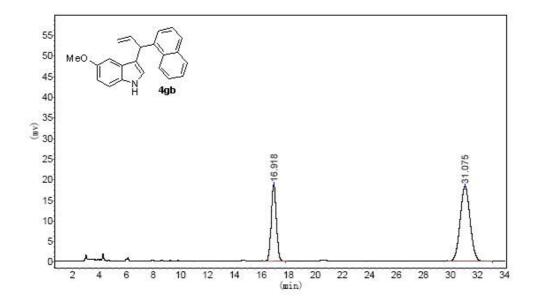

The general procedure was followed with the methyl carbonate 2f (91.8 mg, 0.40 mmol) derived from (E)-3-(2-methoxyphenyl)prop-2-en-1-ol, indole 3a (93.6 mg, 0.80 mmol) and cesium carbonate (130.5 mg, 0.40 mmol) in 1,4-dioxane (2.0 mL). The reaction was conducted at reflux for 3 h. ¹H NMR analysis of the crude reaction mixture indicated that the ratio of regioisomers (b/l) was >99/1. The crude reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate: 30/1) to give the product 4fa (88.2 mg, 84%) as a yellow oil. HPLC analysis indicated that the enantiomeric excess of the product was 70% [Diacel CHIRALCEL OD-H (0.46 cm x 25 cm); hexanes/2-propanol = 98/2; flow rate = 1.0 mL/min; detection wavelength = 254 nm; t_R = 24.46 (minor), 28.32 (major) min]. $[\alpha]_D^{20} = +6.2$ (c 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) $\delta = 7.63$ (br s, 1H), 7.43 (d, J = 7.8 Hz, 1H), 7.19-7.08 (m, 4H), 7.00 (t, J = 7.2 Hz, 1H), 6.87-6.81 (m, 2H), 6.71 (d, J = 1.2 Hz, 1H), 6.29 (ddd, J = 6.3, 10.2, 16.8 Hz, 1H), 5.43 (d, J = 6.0 Hz, 1 H), 5.14 (d, J = 10.2 Hz, 1 H), 4.98 (d, J = 16.8 Hz, 1 H), 3.76 (s, 3H). ¹³C NMR (75 MHz, $CDCl_3$) $\delta = 156.7$, 140.0, 136.4, 131.4, 129.2, 127.3, 126.9, 122.5, 121.7, 120.4, 119.7, 119.0, 118.0, 115.0, 110.9, 110.6, 55.5, 38.7. IR (liquid film): v_{max} (cm⁻¹) = 3418, 3078, 3059, 3003, 2955, 2934, 2837, 1637, 1619, 1599, 1587, 1548, 1490, 1457, 1438, 1419, 1244, 1105, 1029, 917, 743. MS (EI, m/z, rel. intensity) 263 (M⁺, 89), 130 (100); HRMS (EI) calcd for $C_{18}H_{17}NO$ (M⁺): 263.1310, Found: 263.1319.

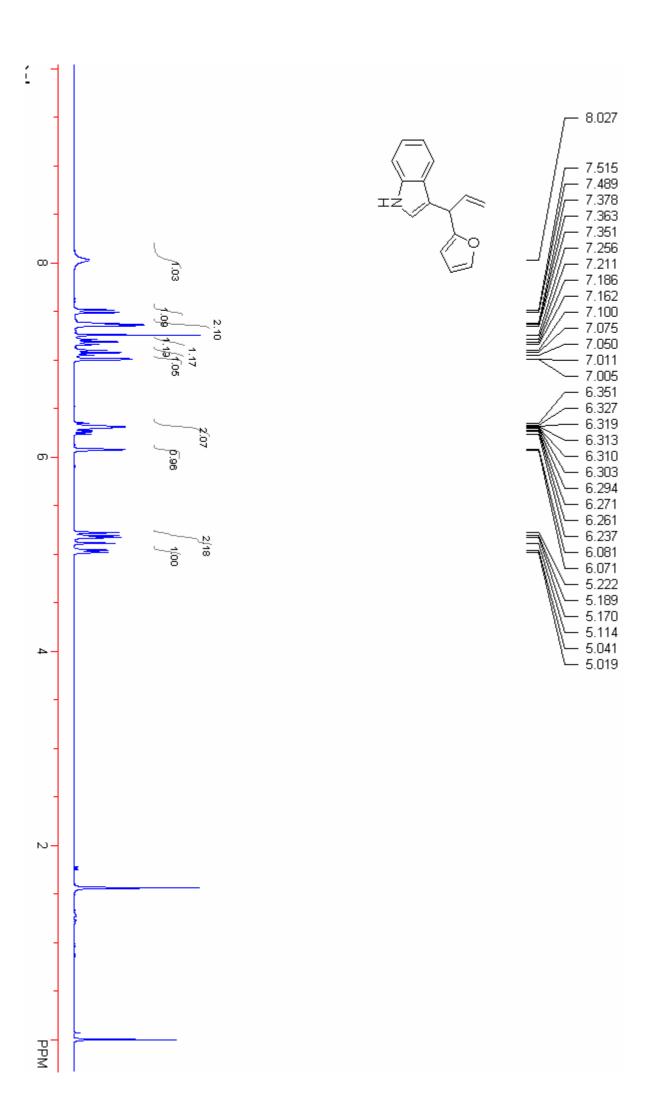


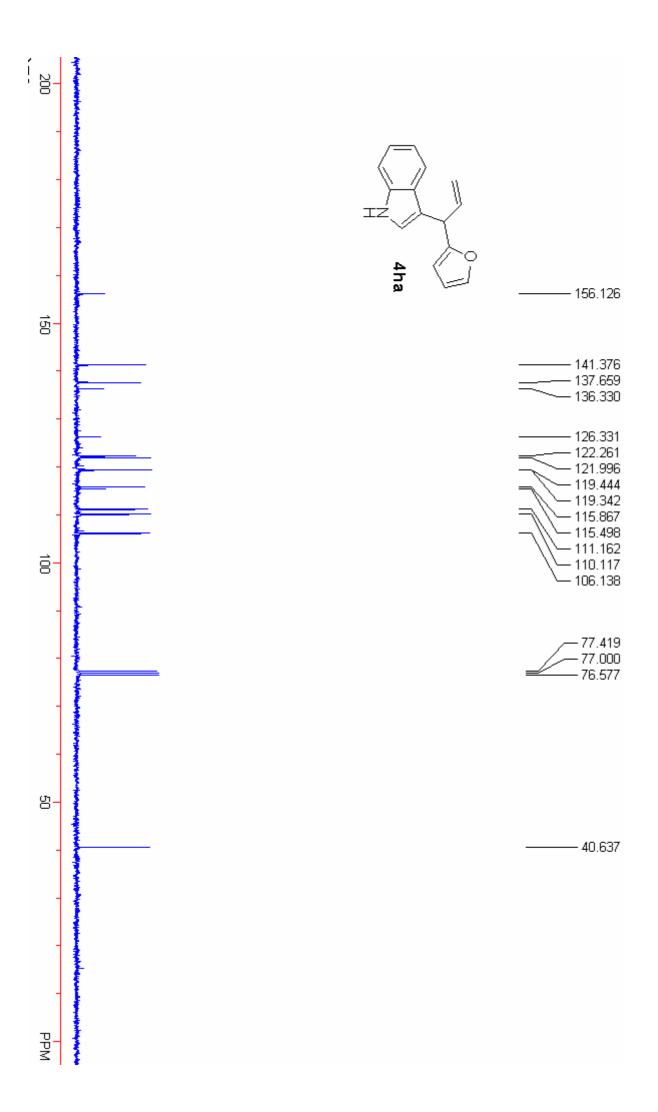

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	24. 495	130014, 422	6252501.000	49. 1631
2	28. 583	108201.742	6465363.500	50.8369
Total		238216. 164	12717864, 500	100.0000

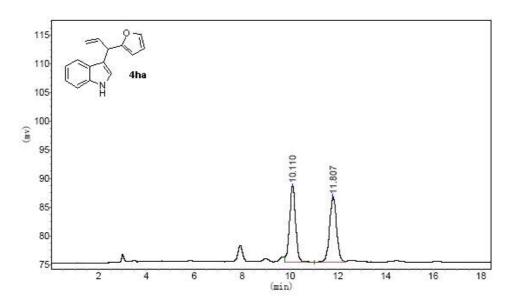


PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	24. 458	80136, 281	3842759.000	15.0800
2	28, 315	348232, 375	21639716,000	84. 9200
Total	***************************************	428368 656	25482475 000	100 0000

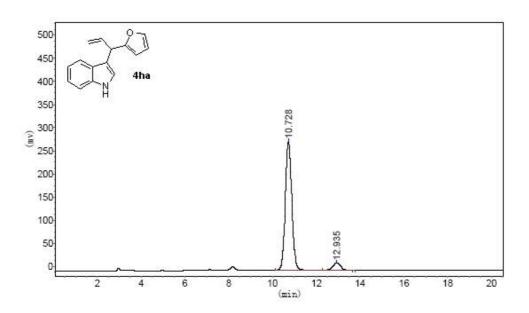

The general procedure was followed with the methyl carbonate 2g (97.3 mg, 0.40 mmol) derived from (E)-3-(naphthalen-1-yl)prop-2-en-1-ol, 5-methoxyindole **3b** (117.6 mg, 0.80 mmol) and cesium carbonate (130.5 mg, 0.40 mmol) in 1,4-dioxane (2.0 mL). The reaction was conducted at reflux for 5 h. ¹H NMR analysis of the crude reaction mixture indicated that the ratio of regioisomers (b/l) was >99/1. The crude reaction mixture was purified by column chromatography (petroleum ether/ethyl ether: 30/1) to give the product 4gb (48.3 mg, 39%) as a yellow oil. HPLC analysis indicated that the enantiomeric excess of the product was 31% [Diacel CHIRALCEL AD-H (0.46 cm x 25 cm); hexanes/2-propanol = 90/10; flow rate = 1.0 mL/min; detection wavelength = 254 nm; t_R = 15.60 (minor), 26.46 (major) min]. $[\alpha]_D^{20} = -24.2$ (c 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) $\delta = 8.08$ (d, J = 7.5 Hz, 1H), 7.85-7.70 (m, 3H), 7.44-7.37 (m, 4H), 7.17-7.12 (m, 1H), 6.89 (d, J = 2.4 Hz, 1H), 6.82 (dd, J = 2.7, 8.7 Hz, 1H), 6.57 (d, J = 2.1 Hz, 1H), 6.40 (ddd, J = 6.0, 9.9, 16.8), 5.66 (d, J = 6.3 Hz, 1H), 5.24 (d, J = 10.2 Hz, 1H), 5.00 (d, J = 16.8 Hz, 1 H), 3.71 (s, 3H), ¹³C NMR (75 MHz, CDCl₃) δ = 153.6, 139.7, 138.7, 133.9, 131.7, 131.6, 128.6, 127.2, 127.0, 125.8, 125.7, 125.4, 125.3, 124.2, 124.1, 117.5, 116.2, 111.8, 111.7, 101.5, 55.7, 42.1. IR (liquid film): v_{max} (cm⁻¹) = 3424, 3051, 3001, 2934, 2830, 1718, 1636, 1625, 1596, 1583, 1508, 1484, 1456, 1438, 1209, 1172, 1045, 1027, 921, 800, 781. MS (EI, m/z, rel. intensity) 313 (M⁺, 100); HRMS (EI) calcd for $C_{22}H_{19}NO$ (M⁺): 313.1467, Found: 313.1472.

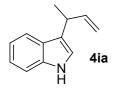


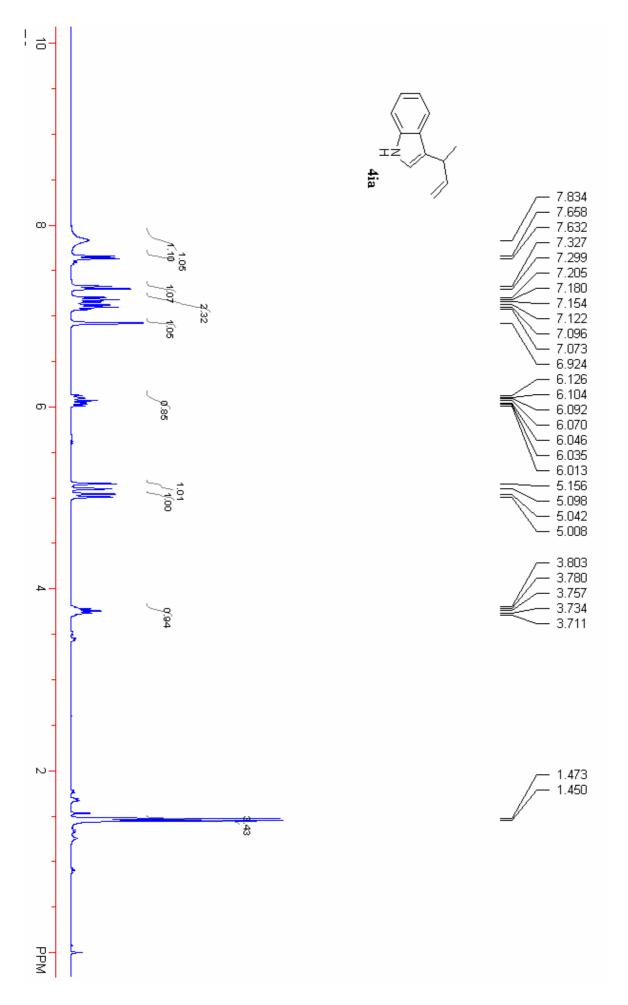

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	15, 882	7818.714	176668, 453	49.5400
2	27.073	4507.892	179949.672	50.4600
Total		12326, 606	356618, 125	100.0000

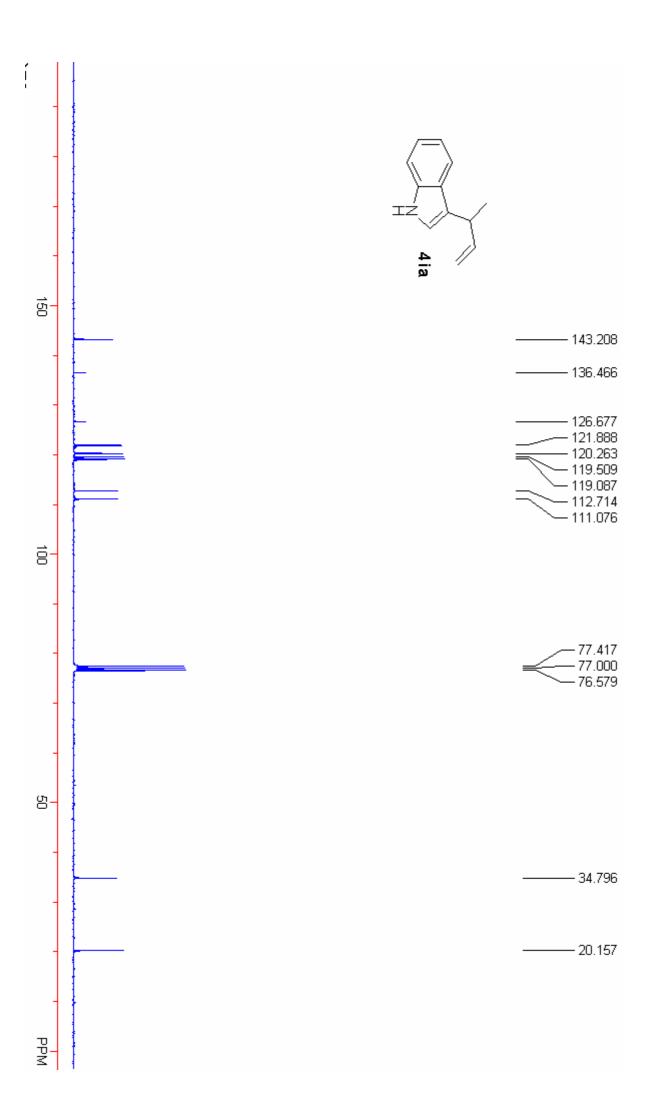


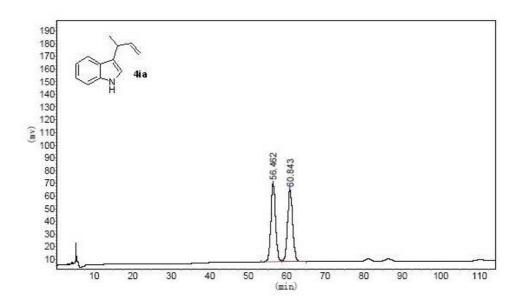
PeakNo				
1	16, 918	18404, 182	489667, 094	34. 5083
2	31.075	18120, 854	929318.000	65. 4917
Total		36525, 035	1418985, 094	100,0000

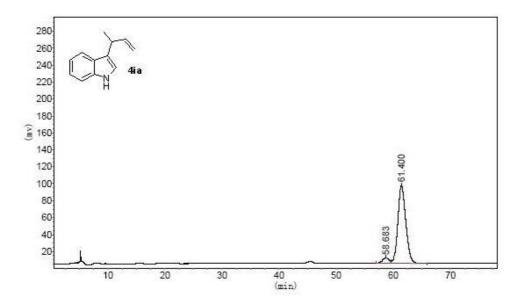

The general procedure was followed with the methyl carbonate **2h** (77.1 mg, 0.42 mmol) derived from (E)-3-(furan-2-yl)prop-2-en-1-ol, indole 3a (95.2 mg, 0.81 mmol) and cesium carbonate (133.7 mg, 0.41 mmol) in 1,4-dioxane (2.0 mL). The reaction was conducted at reflux for 3 h. ¹H NMR analysis of the crude reaction mixture indicated that the ratio of regioisomers (b/l) was >99/1. The crude reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate: 50/1) to give the product **4ha** (75.3, 80%) as a red oil. HPLC analysis indicated that the enantiomeric excess of the product was 89% [Diacel CHIRALCEL OD-H (0.46 cm x 25 cm); hexanes/2-propanol = 90/10; flow rate = 1.0 mL/min; detection wavelength = 254 nm; $t_R = 10.73$ (major), 12.94 (minor) min]. $\lceil \alpha \rceil_D^{20}$ = -3.0 (c 0.25, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ = 8.03 (br s, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.38-7.35 (m, 2H), 7.19 (t, J = 7.2 Hz, 1H), 7.08 (t, J = 7.2 Hz, 1H), 7.01 (d, J = 2.7Hz, 1H), 6.35-6.24 (m, 2H), 6.08 (d, J = 3.0 Hz, 1H), 5.21 (d, J = 10.2 Hz, 1H), 5.14 (d, J = 10.2 Hz, 1H), J = 10.2 Hz, 16.8 Hz, 1 H), 5.03 (d, J = 6.9 Hz, 1H). 13 C NMR (75 MHz, CDCl₃) δ = 156.1, 141.4, 137.7, 136.3, 126.3, 122.3, 119.4, 119.3, 115.9, 115.5, 111.2, 110.1, 106.1, 40.6. IR (liquid film): v_{max} (cm⁻¹) = 3415, 2955, 2925, 2855, 1504, 1457, 1419, 1378, 1338, 1148, 1095, 1010, 918, 799, 738. MS (EI, m/z, rel. intensity) 223 (M⁺, 9.9), 43 (100); HRMS (EI) calcd for C₁₅H₁₃NO (M⁺): 223.0997, Found: 223.1003.

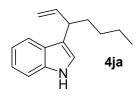


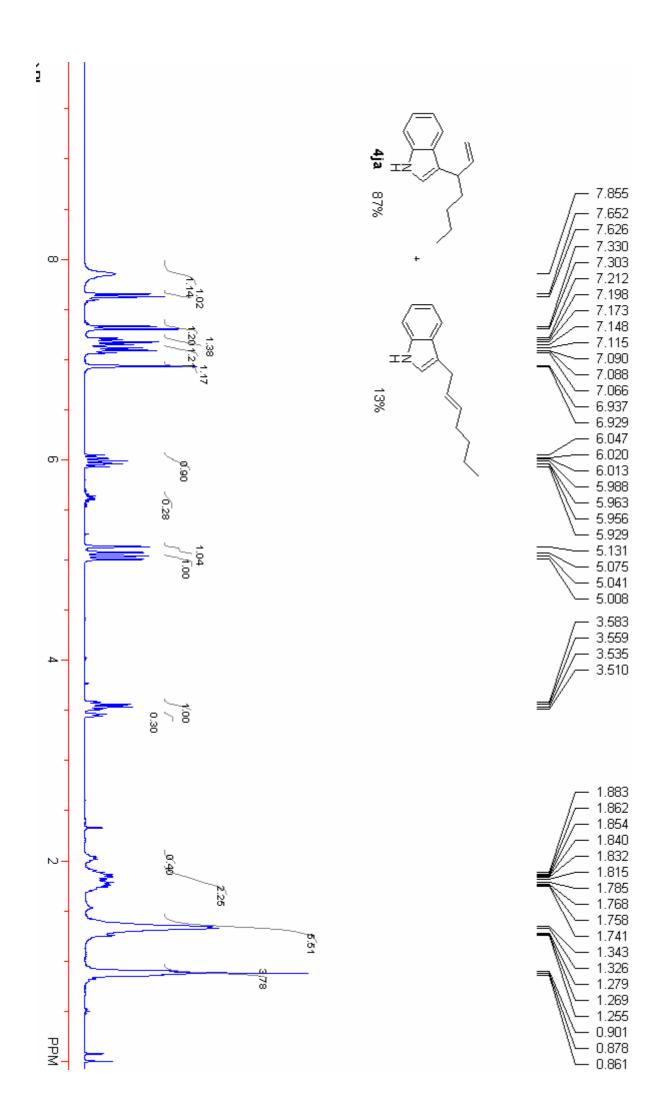

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	10. 110	13303. 327	231974. 406	49, 9889
2	11.807	11419. 335	232077. 734	50.0111
Total		24722, 662	464052, 141	100,0000

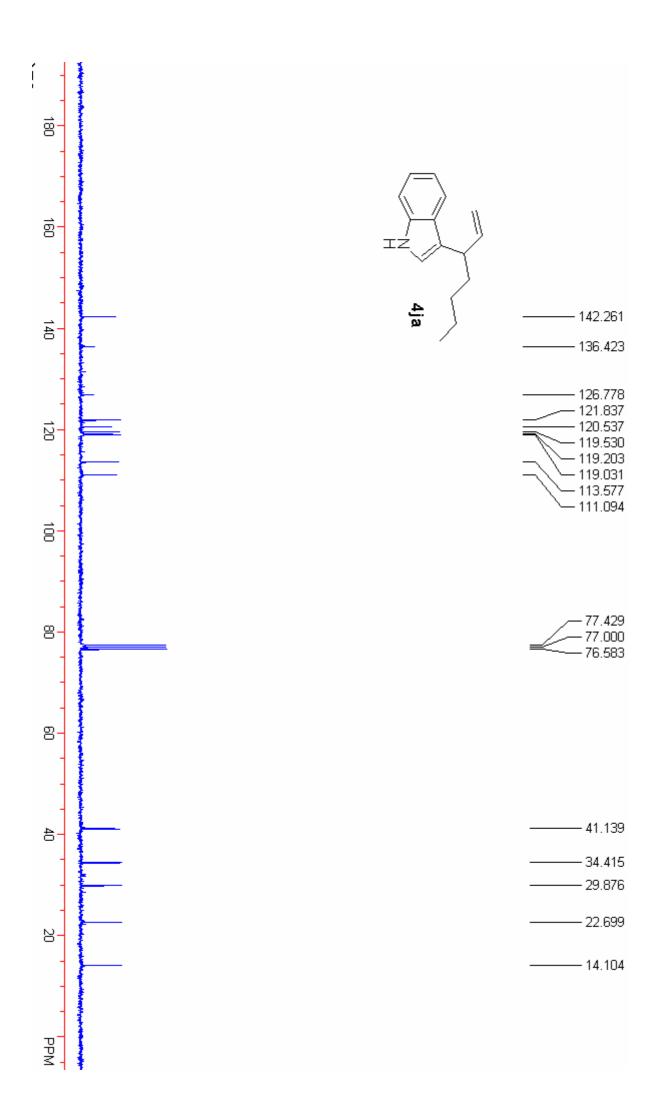


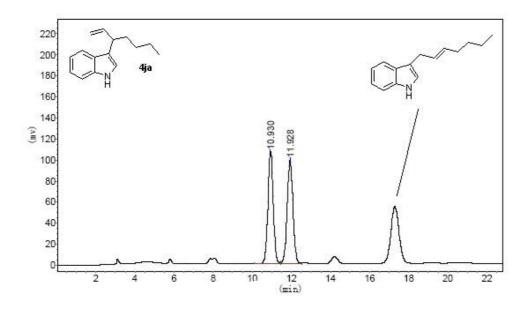

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	10. 728	280059. 719	6191818.500	94. 2005
2	12.935	15695. 875	381205. 250	5. 7995
Total		295755, 594	6573023, 750	100,0000

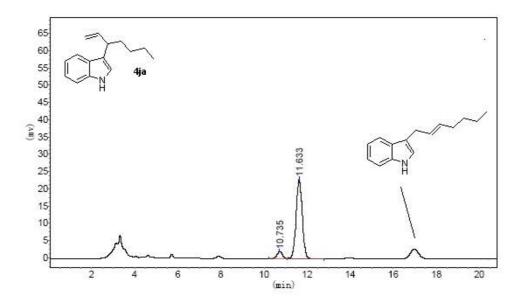

The general procedure was followed with the methyl carbonate 2i (53.2 mg, 0.40 mmol) derived from (E)-but-2-en-1-ol, indole 3a (95.3 mg, 0.80 mmol) and cesium carbonate (130.5 mg, 0.40 mmol) in 1,4-dioxane (2.0 mL). The reaction was conducted at reflux for 4 h. ¹H NMR analysis of the crude reaction mixture indicated that the ratio of regioisomers (b/l) was 93/7. The crude reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate: 100/1) to give the product 4ia (29.6 mg, 43%) as a colorless oil [Known compound: Patterson, J. M.; Wu, A.; Kook, C. S.; Smith, Jr. W. T. J. Org. Chem., 1974, 39, 486-488]. HPLC analysis indicated that the enantiomeric excess of the product was 88% [Diacel CHIRALCEL OD-H (0.46 cm x 25 cm); hexanes/2-propanol = 99.5/0.5; flow rate = 1.0 mL/min; detection wavelength = 230 nm; t_R = 58.68 (minor), 61.40 (major) min]. $[\alpha]_D^{20} = -10.2$ (c 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) $\delta = 7.83$ (br s, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.18 (t, J = 7.8 Hz, 1H), 7.10 (t, J = 7.8 Hz, 1H), J = 7.8 Hz, J = 7.8 Hz, J = 7.8 Hz, J = 7.8 Hz, $= 7.8 \text{ Hz}, 1\text{H}), 6.92 \text{ (s, 1 H)}, 6.07 \text{ (ddd, J} = 6.6, 9.9, 17.1 Hz, 1H)}, 5.13 \text{ (d, J} = 17.4 Hz, 1H)}$ 1H), 5.03 (d, J = 9.9 Hz, 1H), 3.76 (quint, J = 6.9 Hz, 1H), 1.46 (d, J = 6.9 Hz, 1H). 13 C NMR (75 MHz, CDCl₃) δ = 143.2, 136.5, 126.7, 121.9, 120.3, 119.5, 119.1, 112.7, 111.1, 34.8, 20.2.




PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	56. 462	61858, 539	5236570.000	50. 0378
2	60.843	56814.387	5228649.500	49.9622
Total		118672, 926	10465219, 500	100.0000




PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	58. 683	6435. 732	522853. 344	5. 5680
2	61.400	92115. 250	8867509.000	94.4320
Total		98550, 982	9390362.344	100.0000


The general procedure was followed with the methyl carbonate 2j (67.2 mg, 0.39 mmol) derived from (E)-hept-2-en-1-ol, indole 3a (95.0 mg, 0.80 mmol) and cesium carbonate (129.3 mg, 0.40 mmol) in 1,4-dioxane (2.0 mL). The reaction was conducted at reflux for 4 h. ¹H NMR analysis of the crude reaction mixture indicated that the ratio of regioisomers (b/l) was 87/13. The crude reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate; 100/1) to give the product 4ja (45.7 mg, 55%) as a colorless oil. HPLC analysis indicated that the enantiomeric excess of the product was 85 % [Diacel CHIRALCEL OD-H (0.46 cm x 25 cm); hexanes/2-propanol = 95/5; flow rate = 1.0 mL/min; detection wavelength = 230 nm; $t_R = 10.74$ (minor), 11.63 (major) min]. $[\alpha]_D^{20} =$ -22.8 (c 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) $\delta = 7.85$ (br s, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 7.21-7.07 (m, 2H), 6.93 (d, J = 2.1 Hz, 1H), 5.99 (ddd, J =7.8, 9.9, 16.8 Hz, 1H), 5.10 (d, J = 16.8 Hz, 1H), 5.02 (d, J = 9.9 Hz, 1 H), 3.55 (q, J = 7.5Hz, 1H), 1.88-1.74 (m, 2 H), 1.34-1.25 (m, 4H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (75) MHz, CDCl₃) $\delta = 142.3$, 136.4, 126.8, 121.8, 120.5, 119.5, 119.2, 119.0, 113.6, 111.1, 41.1, 34.4, 29.9, 22.7, 14.1. IR (liquid film): v_{max} (cm⁻¹) = 3420, 3059, 2958, 2930, 2872, 2859, 1735, 1637, 1619, 1457, 1419, 1353, 1338, 1271, 1224, 1095, 1011, 994, 912, 765, 741. MS (EI, m/z, rel. intensity) 213 (M⁺, 20.2), 156 (100); HRMS (EI) calcd for C₁₅H₁₉N (M⁺): 213.1517, Found: 213.1510.

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	10. 930	106413. 313	2022493.000	49. 7358
2	11.928	98220.836	2043978.375	50. 2642
Total		204634.148	4066471.375	100.0000

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	10. 735	2026.879	36035, 637	7. 3170
2	11. 633	23043. 195	456453.719	92.6830
Total		25070, 074	492489, 355	100,0000