Direct Synthesis of 1,3-Diketones by Rh-catalyzed Reductive α-Acylation of Enones

Kazuyuki Sato, Satoshi Yamazoe, Rie Yamamoto, Shizuka Ohata, Atsushi Tarui, Masaaki Omote, Itsumaro Kumadaki and Akira Ando*

Faculty of Pharmaceutical Sciences, Setsunan University 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan

Supporting Information

General Information	S2
Experimental Section	S2
Materials	S2
Typical procedure for reductive α -acylation reaction	S2
Spectroscopic Data	S3-S6
Typical procedure for one-pot synthesis of a 1,3-diketone .	S7
Typical procedure for one-pot synthesis of a pyrazole	S7
Spectroscopic Data	S7
References	S8
¹ H NMR Charts	S9-S21

General Information:

¹H NMR and ¹³C NMR spectra were recorded on JNM-GX400 and JEOL-ECA-600SN spectrometers. ¹⁹F NMR spectrum was recorded on Hitachi FT-NMR R-90H spectrometer. Chemical shifts of ¹H NMR and ¹³C NMR are reported in ppm from tetramethylsilane (TMS) as an internal standard. Chemical shifts of ¹⁹F NMR are reported in ppm from benzotrifluoride (BTF) as an internal standard. All data are reported as follows: chemical shifts, relative integration value, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz). Mass spectra were obtained on JEOL JMS-700T spectrometer. IR spectra were recorded on Hitachi 270-30 Infrared spectrophotometer. Melting points were measured on Yanagimoto micro melting point apparatus MP-S3. Analytical gas-liquid chromatography (GLC) was carried out on Hitachi 263-50 gas chromatograph (column; 5% SE-30 3 mm x 2 m, carrier; N₂ at 30 ml/min). Peak areas were calculated on Hitachi D-2500 Chromato-Integrator.

Experimental Section:

Materials

Tetrahydrofuran (THF) was distilled over benzophenone ketyl sodium just before use. All commercially available acid chlorides were distilled just before use. Other commercially available reagents were used without further purification. All experiments were carried out under argon atmosphere in flame-dried glassware using standard inert techniques for introducing reagents and solvents unless otherwise noted.

Typical procedure for reductive α -acylation reaction.

$$R^{1} \xrightarrow{\mathbf{2}} R^{2} \xrightarrow{\mathbf{2}} R^{3} \xrightarrow{\mathbf{2}} CI \xrightarrow{\mathbf{Et}_{2}Zn} CI \xrightarrow{\mathbf{Et}_{2}Zn} R^{1} \xrightarrow{\mathbf{0}} R^{1} \xrightarrow{\mathbf{1}} R^{3}$$

 α , β -Unsaturated ketone (2; 4 mmol) and acid chloride (4; 2 mmol) were added to a solution of RhCl(PPh₃)₃ (2 mol%) in THF (5 mL) at 0 °C. Then 1.0 M Et₂Zn in hexane (3 mmol) was gradually added to the mixture at 0 °C, and was stirred at same temperature for the reaction time shown in Table 2. The mixture was quenched with 10% HCl, and extracted with AcOEt. The AcOEt layer was washed with sat. NaCl and dried over MgSO₄. The solvent was removed *in vacuo* and the residue was purified by column chromatography to give the corresponding 1,3-diketone (**5**).

Spectroscopic Data: 2-Methyl-1-phenylbutane-1,3-dione (5a)¹

The title product (**5a**) was purified by column chromatography (AcOEt : hexane = 1:9) and was obtained in 62% yield (216.8 mg).

A colorless oil; ¹H NMR (CDCl₃) δ : 1.46 (3H, d, J = 7.0 Hz), 2.17 (3H, s), 4.50 (1H, q, J = 7.0 Hz), 7.50 (2H, m), 7.61 (1H, m), 7.98 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 13.62, 27.90, 56.77, 128.61, 128.80, 133.62, 135.83, 197.20, 204.94; MS *m*/*z*: 176 (M⁺); HRMS Calcd. for C₁₁H₁₂O₂: 176.084 (M⁺), Found: 176.084; IR (neat) cm⁻¹: 3072, 2992, 2944, 1726, 1678.

2-Ethyl-1-phenylpentane-1,3-dione (5c)

The title product (**5c**) was purified by column chromatography (AcOEt : hexane = 1:9) and was obtained in 79% yield (321.4 mg).

A colorless oil; ¹H NMR (CDCl₃) δ : 0.94 (3H, t, J = 7.3 Hz), 1.00 (3H, t, J = 7.4 Hz), 2.04 (2H, m), 2.47 (2H, m), 4.39 (1H, t, J = 7.1 Hz), 7.48 (2H, m), 7.60 (1H, m), 7.99 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 7.65, 12.30, 22.52, 34.01, 64.17, 128.55, 128.77, 133.52, 136.57, 196.52, 206.72; MS *m/z*: 204 (M⁺); HRMS Calcd. for C₁₃H₁₆O₂: 204.115 (M⁺), Found: 204.114; IR (neat) cm⁻¹: 2980, 2944, 1726, 1682.

2-Benzyl-1-phenylbutane-1,3-dione (5d)²

The title product (5d) was purified by column chromatography (AcOEt : hexane = 1:9) and was obtained in 64% yield (321.0 mg).

A colorless oil; ¹H NMR (CDCl₃) δ : 2.13 (3H, s), 3.32 (2H, m), 4.80 (1H, t, J = 7.2 Hz), 7.16-7.27 (5H, m), 7.45 (2H, m), 7.57 (1H, m), 7.92 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 28.58, 34.75, 64.78, 126.58, 128.55, 128.61, 128.69, 128.74, 133.63, 136.30, 138.27, 195.62, 203.14; MS *m*/*z*: 252 (M⁺); HRMS Calcd. for C₁₇H₁₆O₂: 252.115 (M⁺), Found: 252.115; IR (neat) cm⁻¹: 3068, 3036, 2928, 1722, 1684.

2-Benzyl-1,3-diphenylpropane-1,3-dione (5e)²

The title product (**5e**) was purified by column chromatography (AcOEt : hexane = 1:9) and was obtained in 74% yield (468.2 mg).

Colorless crystals; M.p. 105.0-106.0 °C; ¹H NMR (CDCl₃) δ : 3.45 (2H, d, J = 6.7 Hz), 5.52 (1H, t, J = 6.7 Hz), 7.14-7.26 (5H, m), 7.40 (4H, m), 7.53 (2H, m), 7.89 (4H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 35.16, 58.91, 126.52, 128.50, 128.73, 128.88, 133.41, 135.82, 138.94, 195.25; MS m/z : 314 (M⁺); HRMS Calcd. for C₂₂H₁₈O₂: 314.131 (M⁺), Found: 314.132; IR (KBr) cm⁻¹: 1698, 1668.

2-Benzoylcyclohexanone (5g) and its tautomer³

The title product (**5g**) was purified by column chromatography (AcOEt : hexane = 1:9) and was obtained in 81% yield (327.2 mg) as a mixture of the tatotmers.

A colorless oil; ¹H NMR (CDCl₃) δ : 1.58-1.64 (1H, m), 1.71-1.81 (1.5H m), 1.87-2.05 (1.5H, m), 2.07-2.15 (0.5H, m), 2.28-2.36 (0.5H, m), 2.39-2.42 (1H, m), 2.47-2.61 (2H, m), 4.38 (0.6H, m), 7.40-7.48 (2.5H, m), 7.52-7.58 (1.5H, m), 7.89-7.91 (1H, m), 16.76 (0.4H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 21.84, 23.06, 23.42, 26.44, 27.27, 29.97, 32.66, 42.24, 58.75, 107.00, 127.47, 127.98, 128.39, 128.55, 130.30, 133.17, 136.40, 137.34, 189.38, 191.26, 197.40, 208.49; MS *m/z* : 202 (M⁺); HRMS Calcd. for C₁₃H₁₄O₂: 202.099 (M⁺), Found: 202.100; IR (neat) cm⁻¹: 2936, 2864, 1712, 1676, 1602, 1584.

2-Methyl-1-p-tolylbutane-1,3-dione (5h)

The title product (**5h**) was purified by column chromatography (AcOEt : hexane = 1:9) and was obtained in 57% yield (215.0 mg).

A colorless oil; ¹H NMR (CDCl₃) δ : 1.44 (3H, d, J = 7.0 Hz), 2.15 (3H, s), 2.42 (3H, s), 4.47 (1H, q, J = 7.0 Hz), 7.29 (2H, m), 7.88 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 13.62, 21.65, 27.83, 56.69, 128.74, 129.48, 133.36, 144.60, 196.80, 205.10; MS *m*/*z*: 190 (M⁺); HRMS Calcd. for C₁₂H₁₄O₂: 190.099 (M⁺), Found: 190.100; IR (neat) cm⁻¹: 2988, 2940, 1724, 1676.

1-(4-Methoxyphenyl)-2-methylbutane-1,3-dione (5i)⁴

The title product (5i) was purified by column chromatography (AcOEt : hexane = 1:9) and was obtained in 51% yield (210.4 mg).

A colorless oil; ¹H NMR (CDCl₃) δ : 1.44 (3H, d, J = 7.0 Hz), 2.14 (3H, s), 3.88 (3H, s), 4.43 (1H, q, J = 7.0 Hz), 6.96 (2H, m), 7.97 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 13.68, 27.64, 55.52, 56.70, 113.98, 128.89, 131.03, 163.88, 195.54, 205.31; MS *m*/*z*: 206 (M⁺); HRMS Calcd. for C₁₂H₁₄O₃: 206.094 (M⁺), Found: 206.094; IR (neat) cm⁻¹: 2980, 2940, 1724, 1670, 1600, 1264.

1-[4-(Trifluoromethyl)phenyl]-2-methylbutane-1,3-dione (5j) and its tautomer

The title product (5a) was purified by column chromatography (AcOEt : hexane = 1:9) and was obtained in 74% yield (361.0 mg) as a mixture of the tautomers.

Colorless crystals; M.p. 48.0-50.0 °C; ¹H NMR (CDCl₃) δ : 1.49 (2.55H, d, J = 7.0 Hz), 1.92 (0.45H, s), 2.19 (2.55H, s), 2.29 (0.45H, s), 4.49 (0.85H, q, J = 7.0 Hz), 7.62 (0.3H, m), 7.70 (0.3H, m), 7.76 (1.7H, m), 8.08 (1.7H, m), 16.5 (0.15H, s); ¹³C NMR (150 MHz, CDCl₃) δ : 13.48, 14.34, 25.87, 27.85, 57.25, 105.23, 123.49 (q, J = 272.3 Hz), 123.80 (q, J = 272.3 Hz), 125.25 (q, J = 4.2 Hz), 125.98 (q, J = 4.2 Hz), 128.56, 129.04, 131.87 (q, J = 32.8 Hz), 134.93 (q, J = 32.8 Hz), 138.68, 139.62, 179.34, 196.32, 199.67, 204.60; ¹⁹F NMR (90 MHz, CDCl₃) δ : -0.51 (3F, s); MS *m/z*: 244 (M⁺); HRMS Calcd. for C₁₂H₁₁F₃O₂: 244.071 (M⁺), Found: 244.071; IR (KBr) cm⁻¹: 1716, 1692, 1336, 1170, 1112.

1-(4-Chlorophenyl)-2-methylbutane-1,3-dione (5k)

The title product (**5k**) was purified by column chromatography (AcOEt : hexane = 1:9) and was obtained in 70% yield (295.3 mg).

A colorless oil; ¹H NMR (CDCl₃) δ : 1.46 (3H, d, J = 7.0 Hz), 2.16 (3H, s), 4.44 (1H, q, J = 7.0 Hz), 7.46 (2H, m), 7.92 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 13.54, 27.75, 56.91, 129.13, 130.01, 134.16, 140.18, 195.86, 204.70; MS *m/z*: 210 (M⁺); HRMS Calcd. for C₁₁H₁₁O₂Cl: 210.05 (M⁺), Found: 210.04; IR (neat) cm⁻¹: 2992, 2940, 1728, 1686, 1592.

1-(2-Chlorophenyl)-2-methylbutane-1,3-dione (5l) and its tautomer

The title product (**5**I) was purified by column chromatography (AcOEt : hexane = 1:9) and was obtained in 57% yield (242.2 mg) as a mixture of the tautomers.

A colorless oil; ¹H NMR (CDCl₃) δ : 1.42 (0.75H, d, J = 7.2 Hz), 1.69 (2.25H, s), 2.23 (0.75H, s), 2.26 (2.25H, s), 4.48 (0.25H, q, J = 7.2 Hz), 7.28-7.46 (5H, m), 16.20 (0.75H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 13.15, 13.42, 25.41, 28.92, 59.94, 106.41, 126.78, 127.03, 128.70, 129.36, 129.62, 130.38, 130.43, 131.24, 132.02, 135.51, 138.47, 180.19, 197.84, 200.33, 204.28; MS *m*/*z*: 210 (M⁺); HRMS Calcd. for C₁₁H₁₁O₂Cl: 210.05 (M⁺), Found: 210.04; IR (neat) cm⁻¹: 2932, 1728, 1696.

1-(Furan-2-yl)-2-methylbutane-1,3-dione (5m)

The title product (**5m**) was purified by column chromatography (AcOEt : hexane = 2:3) and was obtained in 66% yield (217.9 mg).

A colorless oil; ¹H NMR (CDCl₃) δ : 1.43 (3H, d, J = 7.0 Hz), 2.21 (3H, s), 4.28 (1H, q, J = 7.0 Hz), 6.58 (1H, m), 7.29 (1H, m), 7.62 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 12.85, 28.26, 56.87, 112.66, 118.46, 146.91, 151.81, 185.61, 204.26; MS *m*/*z*: 166 (M⁺); HRMS Calcd. for C₉H₁₀O₃: 166.06 (M⁺), Found: 166.06; IR (neat) cm⁻¹: 3144, 2992, 2944, 1728, 1670.

2-Methyl-1-(thiophen-2-yl)butane-1,3-dione (5n)

The title product (**5n**) was purified by column chromatography (AcOEt : hexane = 2:3) and was obtained in 55% yield (200.6 mg).

A colorless oil; ¹H NMR (CDCl₃) δ : 1.48 (3H, d, J = 7.1 Hz), 2.19 (3H, s), 4.32 (1H, q, J = 7.1 Hz), 7.17 (1H, m), 7.72 (1H, m), 7.79 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 13.67, 27.62, 58.26, 128.41, 133.17, 134.93, 143.19, 189.58, 204.27; MS *m*/*z*: 182 (M⁺); HRMS Calcd. for C₉H₁₀O₂S: 182.04 (M⁺), Found: 182.03; IR (neat) cm⁻¹: 3108, 2992, 2940, 1726, 1664.

Typical procedure for one-pot synthesis of a 1,3-diketone.

To a solution of benzoic acid (2 mmol) of CH_2Cl_2 (5 mL) was added $SOCl_2$ (2.6 mmol) and DMF (2 drops) at room temperature, and was stirred for 20h. The solvent was removed *in vacuo*, then RhCl(PPh₃)₃ (2 mol%) and THF (5 mL) were added to the residue. Methyl vinyl ketone (4 mmol) was added to the THF solution at 0 °C, then 1.0 M Et₂Zn in hexane (3 mmol) was gradually added to the mixture. The mixture was stirred at the same temperature for 1h, then it was quenched with 10% HCl, and extracted with AcOEt. The AcOEt layer was washed with sat. NaCl and dried over MgSO₄. The solvent was removed *in vacuo* and the residue was purified by column chromatography to give **5a** (197.1 mg, 56%).

Typical procedure for one-pot synthesis of a pyrazole.

Methyl vinyl ketone (**2a**, 4 mmol) and benzoyl chloride (**4a**, 2 mmol) were added to a solution of RhCl(PPh₃)₃ (2 mol%) in THF (5 mL) at 0 °C. Then 1.0 M Et₂Zn in hexane (3 mmol) was gradually added to the mixture at 0 °C, and was stirred at the same temperature for 1h. AcOH (2mL), EtOH (10mL) and hydrazine monohydrate (20 mmol) were added to the mixture, and it was stirred at room temperature for 1h. The mixture was quenched with 10% NaOH, and extracted with AcOEt. The AcOEt layer was washed with sat. NaCl and dried over MgSO₄. The solvent was removed *in vacuo* and the residue was purified by column chromatography (AcOEt : hexane = 2:3) to give the pyrazole (**11a**; 224.4 mg, 65%).

Spectroscopic Data: 3,4-Dimethyl-5-phenyl-1H-pyrazole (11a)

The title product (11a) was purified by column chromatography (AcOEt : hexane = 2:3) and was obtained in 65% yield (224.4 mg).

A colorless oil; ¹H NMR (CDCl₃) δ : 2.12 (3H, s), 2.18 (3H, s), 7.32 (1H, m), 7.39 (2H, m), 7.55 (2H, m), 10.57 (1H, brs); ¹³C NMR (100 MHz, CDCl₃) δ : 8.80, 10.57, 110.61, 127.43, 127.58, 128.51, 132.37, 142.68, 145.80; MS *m*/*z*: 172 (M⁺); HRMS Calcd. for C₁₁H₁₂N₂: 172.100 (M⁺), Found: 172.100; IR (neat) cm⁻¹: 2952, 1596, 1496, 1448, 770, 700.

References.

- 1. Dalgaard, L.; Jensen, L.; Lawesson, S. -O. Tetrahedron 1974, 30, 93-104.
- 2. Rueping, M.; Nachtsheim, B. J.; Kuenkel, A. Org. Lett. 2007, 9, 825-828.
- 3. Nishimura, Y., Miyake, Y., Amemiya, R., Yamaguchi, M. Org. Lett. 2006, *8*, 5077-5080.
- 4. Davis, B. R.; Hinds, M. G.; Ting, P. P. C. Aust. J. Chem. 1992, 45, 865-875.

