Supporting Information
(April 20, 2009)
Biomimetic Synthesis of Pd Nanocatalysts for the Stille Coupling Reaction.
Dennis B. Pacardo, Manish Sethi, Sharon E. Jones, Rajesh R. Naik and Marc R. Knech
(17 pages)

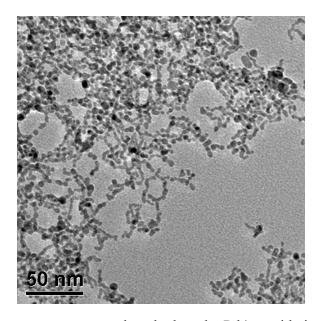


Figure S1. Irregular Pd nanostructures produced when the Pd4 peptide is substituted with the R5 peptide.

4-iodobenzoic acid

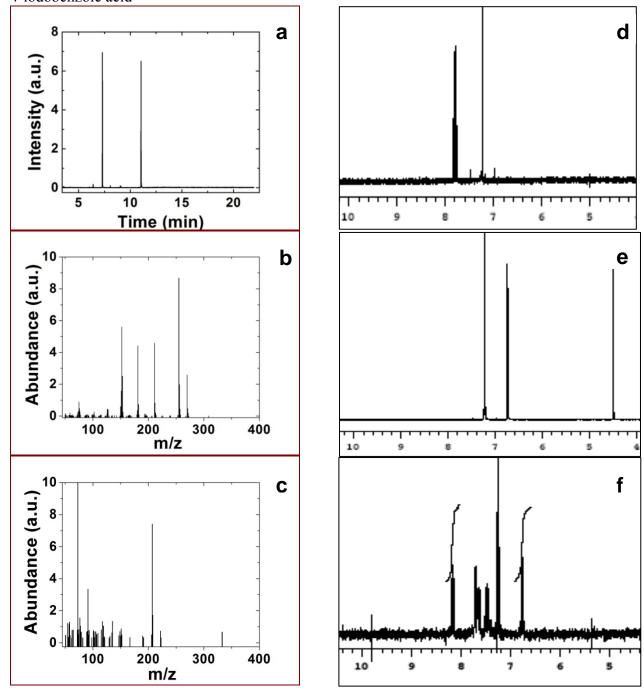


Figure S2. (a) GC chromatogram and (b) mass spectrum of the crude product of the Stille reaction using 4-iodobenzoic acid and PhSnCl₃ (0.005 mol% Pd, 24 h), after derivatization with MSTFA. The mass spectrum (b) of the peak at 11.04 min, corresponds to the biphenyl-4-carboxylic acid trimethylsilyl ester (m/z = 270). The mass spectrum (c) of the peak at 7.29 min corresponds to the internal standard 4-tertbutylphenol (TBP) trimethylsilyl derivative (m/z = 222). ¹H NMR spectrum of 4-iodobenzoic acid (d), TBP (e) and the crude product of the Stille reaction added with 0.5 mmols of TBP (f). The integration of the peak at δ 8.15 ppm (product) was compared with the integration of the peak at δ 6.74 ppm (TBP) to obtain the percent yield of the reaction.

3-iodobenzoic acid

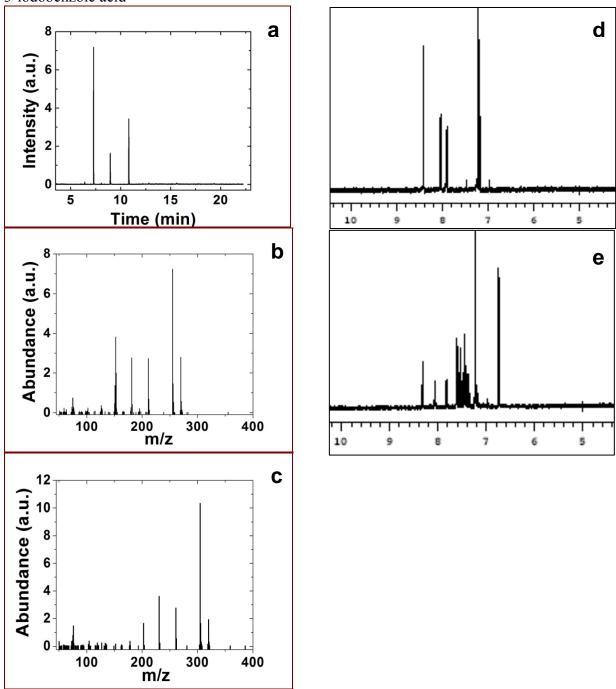


Figure S3. (a) GC chromatogram and (b) mass spectrum of the crude product of the Stille reaction using 3-iodobenzoic acid and PhSnCl₃ (0.05 mol% Pd, 24 h), after derivatization with MSTFA. The mass spectrum (b) of the peak at 10.81 min, corresponds to the biphenyl-3-carboxylic acid trimethylsilyl ester (m/z = 270). The mass spectrum (c) of the peak at 8.95 min corresponds to the starting material, 3-iodobenzoic acid (m/z = 320). ¹H NMR spectrum of 3-iodobenzoic acid (d) and the crude product of the Stille reaction added with 0.5 mmols of TBP (e). The integration of the peak at δ 8.15 ppm (product) was compared with the integration of the peak at δ 6.74 ppm (TBP) to obtain the percent yield of the reaction. 2-iodobenzoic acid

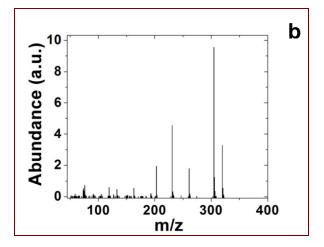


Figure S4. (a) GC chromatogram and (b) mass spectrum of the crude product of the Stille reaction using 2-iodobenzoic acid and $PhSnCl_3$ (0.05 mol% Pd, 24 h), after derivatization with MSTFA. The mass spectrum (b) of the peak at 8.93 min, corresponds to the 2-iodobenzoic acid trimethylsilyl ester (m/z = 320). No product is formed in this reaction.

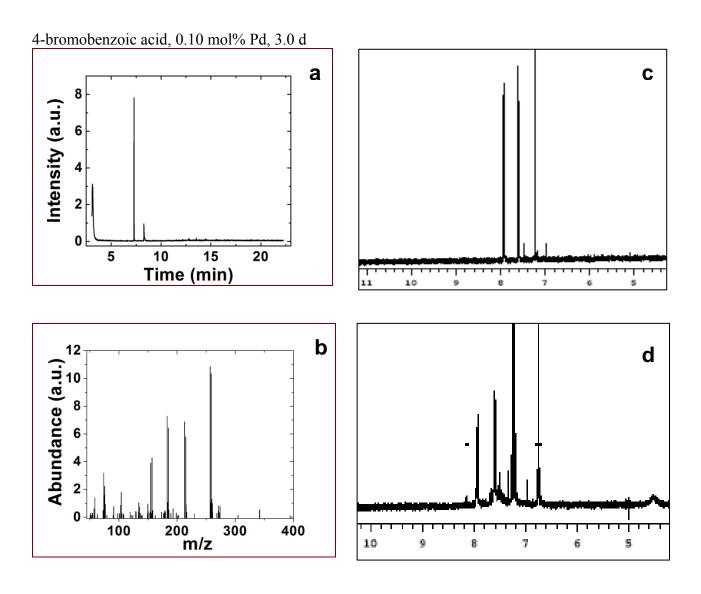
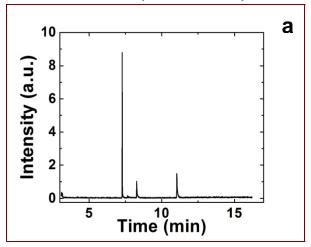
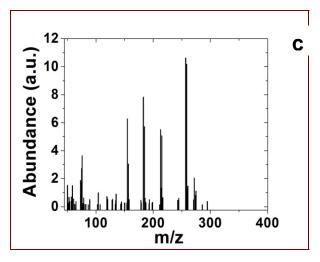
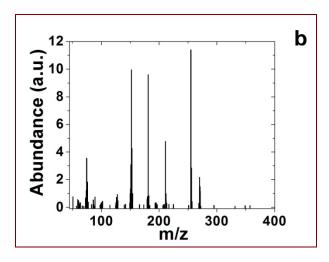





Figure S5. (a) GC chromatogram and (b) mass spectrum of the crude product of the Stille reaction using 4-bromobenzoic acid and PhSnCl₃ (0.10 mol% Pd, 3.0 d), after derivatization with MSTFA. The mass spectrum (b) of the peak at 8.28 min, corresponds to the 4-bromobenzoic acid trimethylsilyl ester (m/z = 272). 1 H NMR spectrum of 4-bromobenzoic acid (c) and the crude product of the Stille reaction added with 0.5 mmols of TBP (d). The integration of the peak at δ 8.15 ppm (product) was compared with the integration of the peak at δ 6.74 ppm (TBP) to obtain the percent yield of the reaction.

4-bromobenzoic acid, 0.10 mol% Pd, 7.0 d

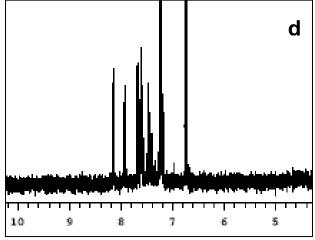
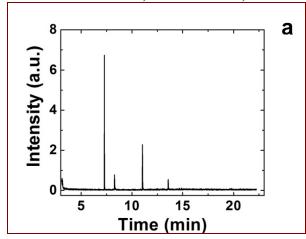
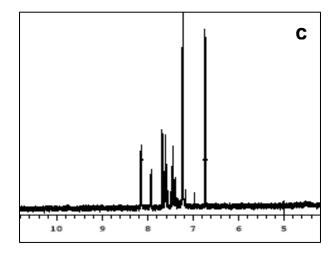




Figure S6. (a) GC chromatogram and (b) mass spectrum of the crude product of the Stille reaction using 4-bromobenzoic acid and PhSnCl₃ (0.10 mol% Pd, 7.0 d), after derivatization with MSTFA. The mass spectrum (b) of the peak at 11.03 min, corresponds to the biphenylcarboxylic acid trimethylsilyl ester (m/z = 270). The mass spectrum (c) of the peak at 8.28 min corresponds to the 4-bromobenzoic acid trimethylsilyl ester (m/z = 272). (d) 1 H NMR spectrum of the crude product of the Stille reaction added with 0.5 mmol of TBP. The integration of the peak at δ 8.15 ppm (product) was compared with the integration of the peak at δ 6.74 ppm (TBP) to obtain the percent yield of the reaction.

4-bromobenzoic acid, 0.50 mol% Pd, 3.0 d

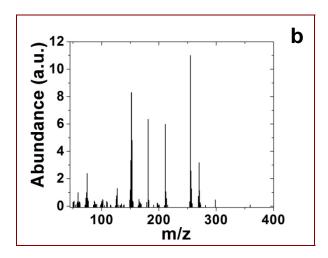
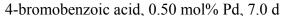
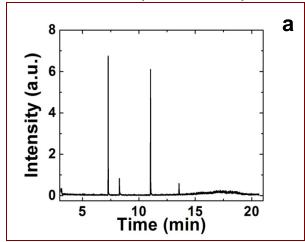
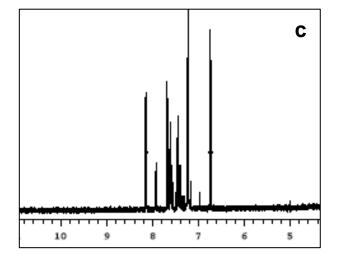





Figure S7. (a) GC chromatogram and (b) mass spectrum of the crude product of the Stille reaction using 4-bromobenzoic acid and PhSnCl₃ (0.50 mol% Pd, 3.0 d), after derivatization with MSTFA. The mass spectrum (b) of the peak at 11.03 min, corresponds to the biphenyl-4-carboxylic acid trimethylsilyl ester (m/z = 270). (c) 1 H NMR spectrum of the crude product of the Stille reaction added with 0.5 mmols of TBP. The integration of the peak at δ 8.15 ppm (product) was compared with the integration of the peak at δ 6.74 ppm (TBP) to obtain the percent yield of the reaction.

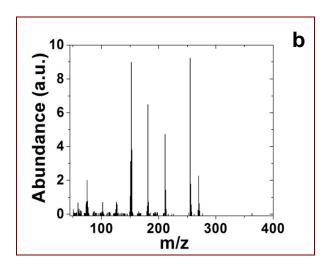
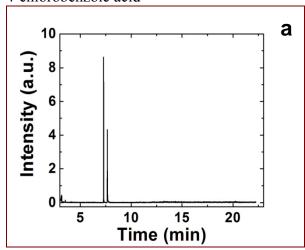



Figure S8. (a) GC chromatogram and (b) mass spectrum of the crude product of the Stille reaction using 4-bromobenzoic acid and PhSnCl₃ (0.50 mol% Pd, 7.0 d) after derivatization with MSTFA. The mass spectrum (b) of the peak at 11.03 min, corresponds to the biphenyl-4-carboxylic acid trimethylsilyl ester (m/z = 270). (c) 1 H NMR spectrum of the crude product of the Stille reaction added with 0.5 mmols of TBP. The integration of the peak at δ 8.15 ppm (product) was compared with the integration of the peak at δ 6.74 ppm (TBP) to obtain the percent yield of the reaction.

4-chlorobenzoic acid

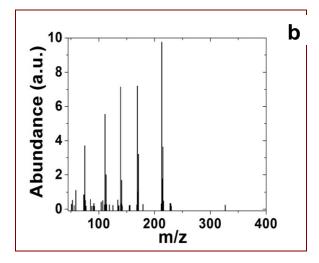


Figure S9. (a) GC chromatogram and (b) mass spectrum of the crude product of the Stille reaction using 4-chlorobenzoic acid and PhSnCl₃ (0.05 mol% Pd, 24 h), after derivatization with MSTFA. The mass spectrum (b) of the peak at 7.66 min corresponds to the 4-chlorobenzoic acid trimethylsilyl ester (m/z = 242). No product is formed in this reaction.

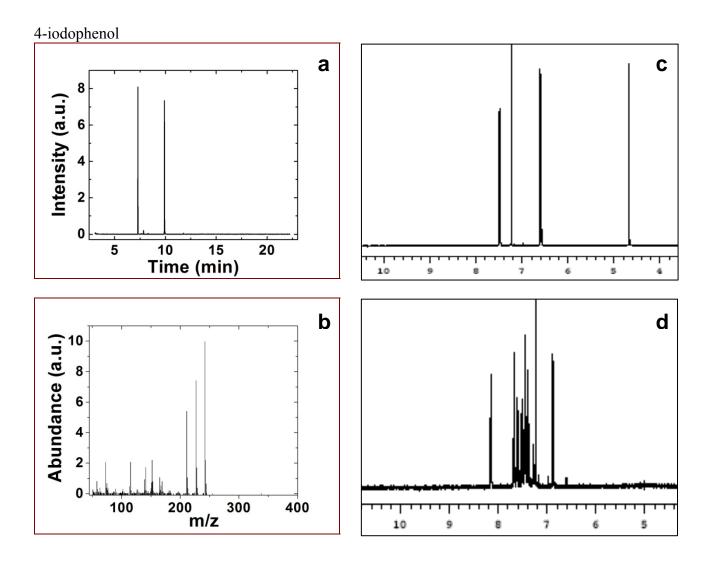


Figure S10. (a) GC chromatogram and (b) mass spectrum of the crude product of the Stille reaction using 4-iodophenol and PhSnCl₃ (0.05 mol% Pd, 24 h) after derivatization with MSTFA. The mass spectrum (b) of the peak at 9.90 min corresponds to the 4-phenylphenol trimethylsilyl ester derivative (m/z = 242). 1 H NMR spectrum of 4-iodophenol (c) and the crude product of the Stille reaction added with 0.5 mmols of biphenylcarboxylic acid (BPCA) (d). The integration of the peak at δ 6.88 ppm (product) was compared with the integration of the peak at δ 8.15 ppm (BPCA) to obtain the percent yield of the reaction.

4-bromophenol, 0.10 mol% Pd, 3.0 d

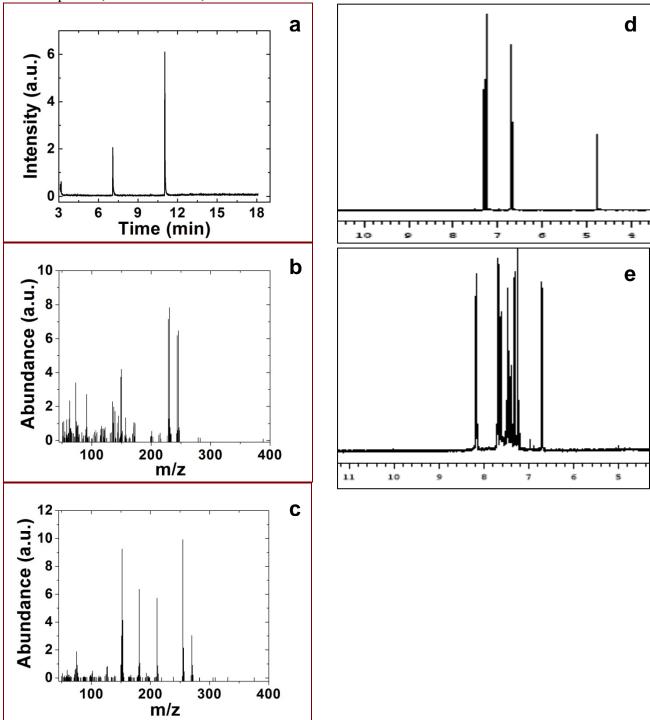


Figure S11. (a) GC chromatogram of the crude product of the Stille reaction using 4-bromophenol and PhSnCl₃ (0.10nmol% Pd, 3.0 d) after derivatization with MSTFA. The mass spectrum (b) of the peak at 7.09 min corresponds to the 4-bromophenol trimethylsilyl ester derivative (m/z = 246). The mass spectrum (c) of the peak at 11.03 min, corresponds to the internal standard biphenylcarboxylic acid (BPCA). ¹H NMR spectrum of 4-bromophenol (d) and the crude product of the Stille reaction added with 0.5 mmols of BPCA (e). The integration of the peak at δ 6.88 ppm (product) was compared with the integration of the peak at δ 8.15 ppm (BPCA) to obtain the percent yield of the reaction.

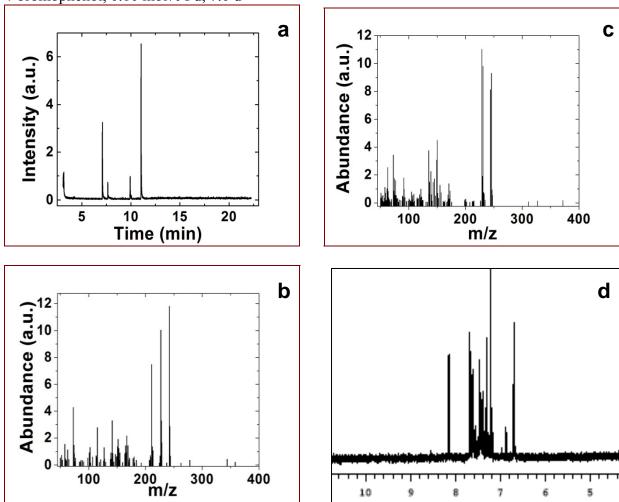
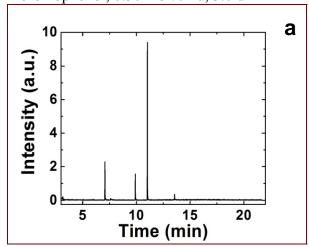
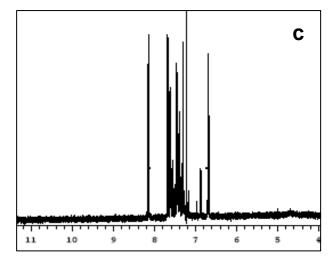




Figure S12. (a) GC chromatogram and (b) mass spectrum of the crude product of the Stille reaction using 4-bromophenol and PhSnCl₃ (0.10 mol% Pd, 7.0 d) after derivatization with MSTFA. The mass spectrum (b) of the peak at 9.90 min, corresponds to the 4-phenylphenol trimethylsilyl derivative (m/z = 242). The mass spectrum (c) of the peak at 7.09 min, corresponds to the 4-bromophenol trimethylsilyl derivative (m/z = 246). (d) ¹H NMR spectrum of the crude product of the Stille reaction added with 0.5 mmols of BPCA. The integration of the peak at δ 6.88 ppm (product) was compared with the integration of the peak at δ 8.15 ppm (BPCA) to obtain the percent yield of the reaction.

4-bromophenol, 0.50 mol% Pd, 3.0 d

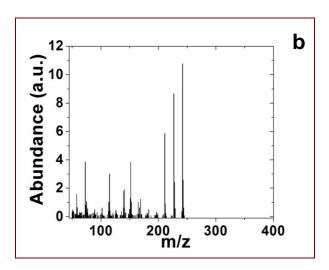
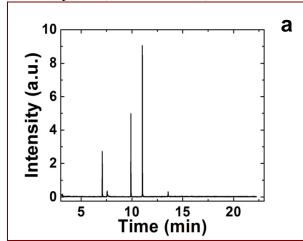
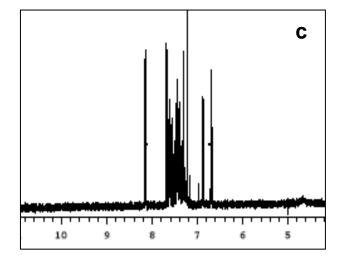




Figure S13. (a) GC chromatogram and (b) mass spectrum of the crude product of the Stille reaction using 4-bromophenol and PhSnCl₃ (0.50 mol% Pd, 3.0 d) after derivatization with MSTFA. The mass spectrum (b) of the peak at 9.90 min, corresponds to the 4-phenylphenol trimethylsilyl derivative (m/z = 242). (c) 1 H NMR spectrum of the crude product of the Stille reaction added with 0.5 mmols of BPCA. The integration of the peak at δ 6.88 ppm (product) was compared with the integration of the peak at δ 8.15 ppm (BPCA) to obtain the percent yield of the reaction.

4-bromophenol, 0.50 mol% Pd, 7.0 d

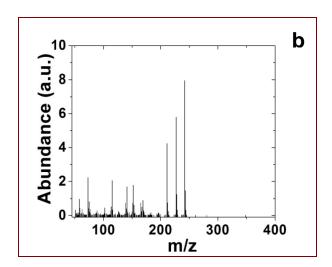
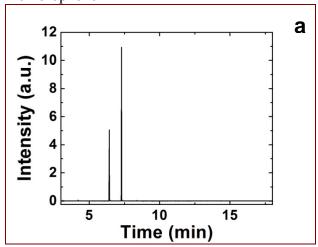



Figure S14. (a) GC chromatogram and (b) mass spectrum of the crude product of the Stille reaction using 4-bromophenol and PhSnCl₃ (0.50 mol% Pd, 7.0 d) after derivatization with MSTFA. The mass spectrum (b) of the peak at 9.90 min, corresponds to the 4-phenylphenol trimethylsilyl derivative (m/z = 242). (c) 1 H NMR spectrum of the crude product of the Stille reaction added with 0.50 mmols of BPCA. The integration of the peak at δ 6.88 ppm (product) was compared with the integration of the peak at δ 8.15 ppm (BPCA) to obtain the percent yield of the reaction.

4-chlorophenol

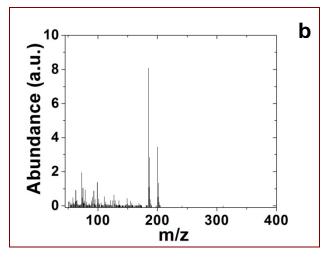


Figure S15. (a) GC chromatogram and (b) mass spectrum of the crude product of the Stille reaction using 4-chlorophenol and PhSnCl₃ (0.05 mol% Pd, 24 h), after derivatization with MSTFA. The mass spectrum (b) of the peak at 6.42 min corresponds to the 4-chlorophenol trimethylsilyl derivative (m/z = 200). No product is formed in this reaction.

Stille Coupling Reaction in Ethanol/water

4-iodobenzoic acid, 0.05mol% Pd, 24 h

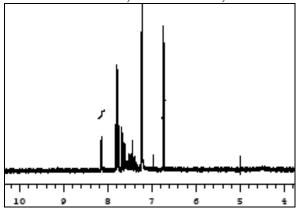


Figure S16. 1 H NMR spectrum of the extracted product of the Stille reaction in ethanol/water solvent added with 0.50 mmols of TBP. The integration of the peak at δ 8.15 ppm (BPCA) was compared with the integration of the peak at δ 6.74 ppm (TBP) to obtain the percent yield of the reaction.