Synthesis and Biophysical Characterization of Chlorambucil

Anticancer Ether Lipid Prodrugs

Palle J. Pedersen, Mikkel S. Christensen, Tristan Ruysschaert, Lars Linderoth, Thomas L.

Andresen, Fredrik Melander, Ole G. Mouritsen, Robert Madsen and Mads H. Clausen*

Supporting Information

S2-S5	Experimental details for 5a, 5b, 6a, 6b, 7a, 7b, 9 and 10.
S6-S7	sPLA ₂ experiments: MALDI-TOF MS (Figure S1) and HPLC (Figure S2) data.
S8	Stability data for prodrugs 1b (Figure S3) and 2b (Figure S4).
S9	Experimental details: Mosher ester analysis.
S10	Combustion analysis and HRMS values (Table S1).
S11-S12	Alkylating assay
S13-S25	NMR spectra of 5a, 5b, 6a, 6b, 7a, 7b, 1a, 1b, 9, 10, 11, 12a, 12b, 2a and 2b.

Experimental procedures for the synthesis of 5a, 5b, 6a, 6b, 7a, 7b, 9 and 10.

(R)-1-O-Hexadecyl-3-(p-toluenesulfonyl)-glycerol $(5a)^1$

Epoxide **4** (2.0 g, 8.76 mmol) and hexadecanol (3.0 g, 12.37 mmol) were dissolved in anhydrous CH₂Cl₂ (40 mL) under N₂ and BF₃·OEt₂ (0.5 mL) was added. The solution was stirred for 24 h at 20 °C and concentrated *in vacuo*. A white solid was formed and recrystallized from hexane (35 mL) to give 2.75 g of **5a**. The filtrate, which contain some product, was concentrated *in vacuo* and purified by column chromatography (CH₂Cl₂:Et₂O 10:1) to give 0.98 g of **5a** (89% overall). R_f = 0.58 (CH₂Cl₂:Et₂O 10:1); mp = 53-55 °C (lit.² 53-54 °C). ¹H NMR (300 MHz, CDCl₃): δ 7.81 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 4.12-3.93 (m, 3H), 3.48-3.27 (m, 4H), 2.46 (s, 3H), 2.18 (s, 1H), 1.51 (t, J = 6.4 Hz, 2H), 1.32-1.26 (m, 26H), 0.88 (t, J = 6.7 Hz, 3H).

(R)-1-O-Octadecyl-3-(p-toluenesulfonyl)-glycerol (5b)¹

Performed as for **5a** using **4** (5.25 g, 23.00 mmol) and octadecanol (8.7 g, 32.20 mmol) to afford 11.16 g (97 %) of **5b** as white crystals. $R_f = 0.65$ (CH₂Cl₂:Et₂O 10:1); mp = 66-68 °C (lit.³ 67-68 °C). ¹H NMR (300 MHz, CDCl₃): δ 7.80 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 4.05-3.95 (m, 3H), 3.45-3.35 (m, 4H), 2.43 (s, 3H), 2.10 (s, 1H), 1.51 (m, 2H), 1.35-1.23 (m, 30H), 0.90 (t, J = 6.7 Hz, 3H).

(S)-1-O-Hexadecyl-2-O-(4-methoxybenzyl)-glycerol (6a)

Alcohol **5a** (1.192 g, 2.532 mmol) and 4-methoxybenzyl trichloroacetimidate (1.098 g, 3.885 mmol) were dissolved in anhydrous toluene (21 mL) under N_2 and $La(OTf)_3$ (70 mg, 0.119 mmol) was added. The mixture was stirred at 20 °C for 2.5 h and concentrated *in vacuo* to give ((R)-1-O-hexadecyl-2-O-(p-methoxybenzyl)-3-(p-toluenesulfonyl)-glycerol) as a white solid. The crude product was dissolved in DMSO (20 mL) and DMF (5 mL) under N_2 and CsOAc (1.491 g, 7.379 mmol) was added. The mixture was heated to 60 °C and stirred 14 h, after which the reaction mixture was washed with H_2O (30 mL) and the organic layer was isolated via extraction with Et_2O (3×50 mL). The combined organic phases were dried over MgSO₄ and filtration followed by

_

¹ Andresen, T. L.; Jensen, S. S.; Madsen, R.; Jørgensen, K. Synthesis and Biological Activity of Anticancer Ether Lipids That Are Specifically Released by Phospholipase A₂ in Tumor Tissue. *J. Med. Chem.* **2005**, *48*, 7305-7314.
² Baylis, R. L.; Bevan, T. H.; Malkin, T. The synthesis of cephalin (phosphatidylethanolamine) and batyl, chimyl, glycol and alkyl analogues. *J. Chem. Soc.* **1958**, 2962-2966.

³ Hirth, G.; Barner, R. Synthesis of glyceryl etherphosphatides. 1. Preparation of 1-O-octadecyl-2-O-acetyl-*sn*-glyceryl-3-phosphorylcholine (Platelet Activating Factor), of its enantiomer and of some analogous compounds. *Helv. Chim. Acta* **1982**, *65*, 1059-1084.

concentration *in vacuo* gave ((*R*)-1-*O*-hexadecyl-2-*O*-(*p*-methoxybenzyl)-3-acetyl-glycerol). The crude product was dissolved in MeOH (40 mL) under N₂, NaOMe (140 mg, 2.592 mmol) was added and the mixture was heated to 40 °C and stirred 14 h. The mixture was neutralized by addition of conc. HCl, washed with H₂O (20 mL) and extracted with CH₂Cl₂ (3×20 mL). The combined organic phases were dried over MgSO₄ and after concentration *in vacuo* the residue was purified by column chromatography (1:1 heptane:EtOAc) yielding 772 mg (70% over 3 steps) of the desired product **6a** as a greasy solid. R_f = 0.46 (heptane:EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): δ 7.29 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 4.66 (d, J = 11.4 Hz, 1H), 4.56 (d, J = 11.4 Hz, 1H), 3.81 (s, 3H), 3.78-3.50 (m, 5H), 3.44 (t, J = 6.7 Hz, 2H), 1.61-1.53 (m, 2H), 1.32-1.26 (m, 26H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 159.4, 130.5, 129.6 (2C), 114.0 (2C), 77.5, 72.0, 71.9, 71.3, 63.2, 55.4, 32.1, 29.9, 29.8, 29.8, 29.7, 29.6, 29.5, 26.3, 22.9, 14.3. Anal (C₂₇H₄₈O₄): C, H. IR (KBr) 3374, 2923, 1695 1613, 1513, 1466, 1248, 1110, 824 cm⁻¹.

(S)-1-O-Octadecyl-2-O-(4-methoxybenzyl)-glycerol (6b)

Performed as for **6a** using **5b** (2.211 g, 4.433 mmol) to afford 1.600 g (78%) of **6b** as a greasy solid. ¹H NMR (300 MHz, CDCl₃): δ 7.29 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 4.66 (d, J = 11.4 Hz, 1H), 4.56 (d, J = 11.4 Hz, 1H), 3.81 (s, 3H), 3.78-3.50 (m, 5H), 3.44 (t, J = 6.7 Hz, 2H), 1.62-1.53 (m, 2H), 1.32-1.26 (m, 30H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 159.4, 130.5, 129.6 (2C), 114.0 (2C), 77.5, 72.0, 71.9, 71.3, 63.2, 55.4, 32.1, 29.9, 29.8, 29.8, 29.6, 29.5, 26.3, 22.8, 14.3. Anal (C₂₉H₅₂O₄): C, H. IR (KBr) 3524, 2916, 1709 1612, 1511, 1472, 1253, 1108, 1032, 824 cm⁻¹.

1-O-Hexadecyl-2-lyso-sn-glycero-3-phosphocholine (7a)

To a solution of POCl₃ (240 μ L, 2.58 mmol) in anhydrous CH₂Cl₂ (10 mL) at 0 °C was added a solution of **6a** (900 mg, 2.06 mmol) and anhydrous Et₃N (375 μ L, 2.68 mmol) in anhydrous CH₂Cl₂ (15 mL) dropwise over 20 min. The reaction was stirred 30 min under N₂ at 20 °C, after which anhydrous pyridine (1.30 mL, 16.5 mmol) and choline tosylate (1139 mg, 4.12 mmol) were added. The reaction was stirred for 19 h at 20 °C, then H₂O (1.3 mL) was added and stirring was continued for 40 min. Continuous concentration with ethanol:toluene 1:1 (50 mL) gave the crude product as a white foam. The residue was dissolved in THF:H₂O 9:1, slowly passed through an MB-3 column, and the solvent was removed by continuous concentration with ethanol:toluene 1:1 (50 mL). The crude product was purified by column chromatography (CH₂Cl₂:MeOH; then CH₂Cl₂:MeOH:H₂O

65:25:4) giving 860 mg (69%) of 1-*O*-hexadecyl-2-*O*-(4-methoxybenzyl)-*sn*-glycero-3-phosphocholine as an oil. $R_f = 0.19$ (CH₂Cl₂:MeOH:H₂O 30:15:1). ¹H NMR (300 MHz, CDCl₃:CD₃OD 4:1): δ 7.31 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 4.65 (d, J = 11.5 Hz, 1H), 4.60 (d, J = 11.5 Hz, 1H), 4.17 (s, 2H), 4.02-3.88 (m, 2H), 3.81 (s, 3H), 3.58-3.41 (m, 7H), 3.11 (s, 9H), 1.58-1.54 (m, 2H), 1.32-1.26 (m, 26H), 0.88 (t, J = 6.6 Hz, 3H). 1-*O*-Hexadecyl-2-*O*-(4-methoxybenzyl)-*sn*-glycero-3-phosphocholine (50 mg, 0.083 mmol) was dissolved in CH₂Cl₂:H₂O 18:1 (5 mL) under N₂ and DDQ (38 mg, 0.166 mmol) was added. The mixture was stirred for 2 h after which it was concentrated *in vacuo* and the residue was purified by column chromatography (MeOH until the eluent was colorless, then CH₂Cl₂:MeOH:H₂O 65:25:4) to give 40 mg (99%) of 7a as an oil. $R_f = 0.10$ (CH₂Cl₂:MeOH:H₂O 65:25:4). ¹H NMR (500 MHz, CDCl₃:CD₃OD 4:1): δ 4.26 (s, 2H), 3.99-3.82 (m, 3H), 3.61-3.60 (m, 2H), 3.48-3.44 (m, 4H), 3.21 (s, 9H), 1.59-1.54 (m, 2H), 1.32-1.26 (m, 26H), 0.88 (t, J = 6.9 Hz, 3H). ⁴

1-*O*-Octadecyl-2-lyso-*sn*-glycero-3-phosphocholine (7b)

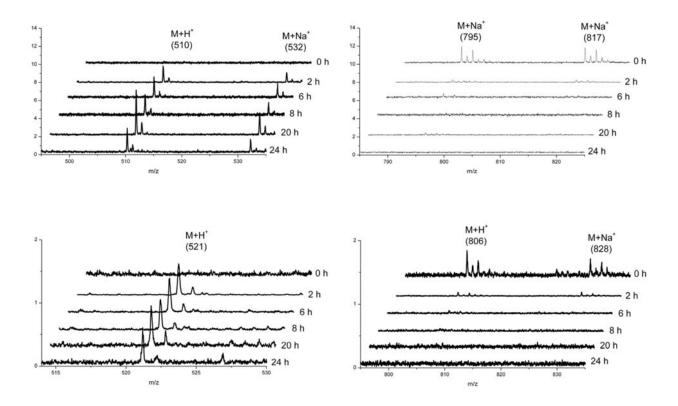
Performed as for **7a** starting from **6b** (199 mg, 0.43 mmol) affording 124 mg (46%) of 1-*O*-octadecyl-2-*O*-(4-methoxybenzyl)-*sn*-glycero-3-phosphocholine as an oil. $R_f = 0.14$ (CH₂Cl₂:MeOH:H₂O 30:20:1). ¹H NMR (300 MHz, CDCl₃:CD₃OD 4:1): δ 7.31 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 4.65 (d, J = 11.2 Hz, 1H), 4.60 (d, J = 11.2 Hz, 1H), 4.19 (s, 2H), 4.02-3.88 (m, 2H), 3.81 (s, 3H), 3.62-3.41 (m, 7H), 3.11 (s, 9H), 1.60-1-51 (m, 2H), 1.32-1.26 (m, 30H), 0.88 (t, J = 6.6 Hz, 3H). 1-*O*-Octadecyl-2-*O*-(4-methoxybenzyl)-*sn*-glycero-3-phosphocholine (79 mg, 0.346 mmol) was converted into 70 mg (79%) of **7b** using DDQ (79 mg, 0.35 mmol) via the same procedure as for **7a**. $R_f = 0.10$ (CH₂Cl₂:MeOH:H₂O 30:10:2). ¹H NMR (300 MHz, CDCl₃:CD₃OD 4:1): δ 4.26 (s, 2H), 3.99-3.82 (m, 3H), 3.61-3.60 (m, 2H), 3.48-3.44 (m, 4H), 3.21 (s, 9H), 1.59-1.54 (m, 2H), 1.32-1.26 (m, 30H), 0.88 (t, J = 6.9 Hz, 3H).

(S)-1-O-(4-Methoxybenzoyl)-glycerol (9)

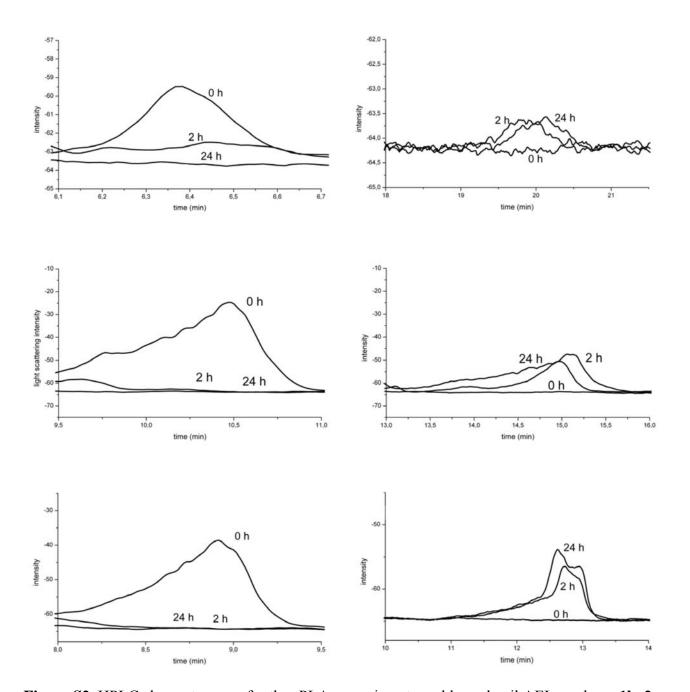
K₂OsO₄·2H₂O (271 mg, 0.74 mmol), (DHQD)₂PHAL (687 mg, 0.88 mmol), K₃Fe(CN)₆ (72.6 g, 220.6 mmol) and K₂CO₃ (30.5 g, 220.6 mmol) were dissolved in a mixture of ^tBuOH (370 mL) and H₂O (370 mL) under an atmosphere of N₂ and stirred for 15 min at 20 °C, after which **8** (14.12 g, 73.5 mmol) was added. After 2 h excess reagent was quenched by addition of Na₂SO₃ (111 g, 0.88 mol) and the organic layer was isolated by extraction with EtOAc (3×500 mL). Toluene (200 mL)

⁴ Andresen, T. L.; Jensen, S. S.; Madsen, R.; Jørgensen, K. Synthesis and Biological Activity of Anticancer Ether Lipids That Are Specifically Released by Phospholipase A₂ in Tumor Tissue. *J. Med. Chem.* **2005**, *48*, 7305-7314.

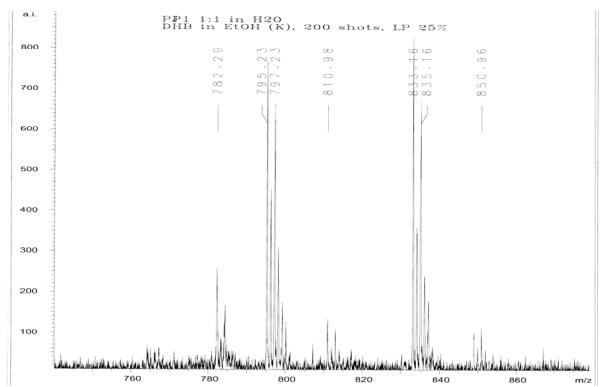
was added to the combined organic phases and concentration *in vacuo* afforded **9** (12.97 g, 57.3 mmol, 78%) as a white solid. The enantiomeric excess (97%) was determined from chiral HPLC. HPLC (chiral) Chiralpak AS-H at 20 °C, λ = 254 nm, hexane:2-propanol 75:25, retention times 17.8 min (*S*), 23.4 min (*R*) at 0.4 mL/min flow rate. R_f = 0.49 (EtOAc). ¹H NMR (300 MHz, d_6 -acetone): δ 8.00 (d, J = 9.0 Hz, 2H), 7.02 (d, J = 9.0 Hz, 2H), 4.36 (dd, J = 11.2, 4.5 Hz, 1H), 4.27 (dd, J = 11.2, 6.2 Hz, 1H), 4.01-3.92 (m, 1H), 3.88 (s, 3H), 3.65-3.63 (m, 2H).


(R)-1,2-Di-*O-tert*-butyldimethylsilyl-glycerol (10)

The diol (9) (7.35g, 32.5 mmol) was dissolved in CH₂Cl₂ (100 mL), cooled to 0 °C and diisopropylethylamine (23 mL, 130 mmol) was added. Then, *tert*-butyldimethylsilyl triflate (20 mL, 87 mmol) was added dropwise and the mixture was stirred for 2 h before another portion *tert*-butyldimethylsilyl triflate was added (6.0 mL, 26 mmol). After stirring for 48 h at 4 °C excess reagent was quenched with MeOH (10 mL), the mixture was stirred for 1 h, washed with water (100 mL) and sat. aq. NaHCO₃ (100 mL), dried over MgSO₄ and concentrated. The residue was filtered through a plug of silica (CH₂Cl₂:heptane 1:1) and concentrated, then taken up in CH₂Cl₂ (125 mL) and cooled to -78 °C before diisobutylaluminum hydride in hexane (65 mL, 1 M, 65 mmol) was added dropwise during 15 min. The mixture was stirred for 75 min before MeOH (4 mL) was added and stirring was continued for 1 h. Sat. aq. Rochelle's salt (50 mL) was added and the mixture was allowed to reach 20 °C, diluted with water (200 mL) and extracted with EtOAc (4×100 mL). The combined organic extracts were dried over Na₂SO₄, concentrated and the residue was purified by column chromatography (CH₂Cl₂) affording the title compound as a clear oil (3.30 g, 63%).


[α]^D: +18.5° (c 0.6, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 3.80-3.73 (m, 1H), 3.69-3.52 (m, 4H), 2.12 (dd, J = 7.6, 5.1 Hz, 1H), 0.89 (s, 18H), 0.09 (s, 3H), 0.08 (s, 3H), 0.06 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 72.5, 64.9, 64.8, 25.9 (3C), 25.8 (3C), 18.3, 18.1, -4.6, -4.9, -5.4, -5.5. IR (neat): 3442, 2929, 1472, 1257, 1095, 1005, 836 cm⁻¹. m/z (M+Na⁺) 343.21.

_


⁵ Corey, E. J.; Guzman-Perez, A.; Noe, M. C. The Application of a Mechanistic Model Leads to the Extension of the Sharpless Asymmetric Dihydroxylation to Allylic 4-Methoxybenzoates and Conformationally Related Amine and Homoallylic Alcohol Derivatives. *J. Am. Chem. Soc.* **1995**, *117*, 10805-10816.

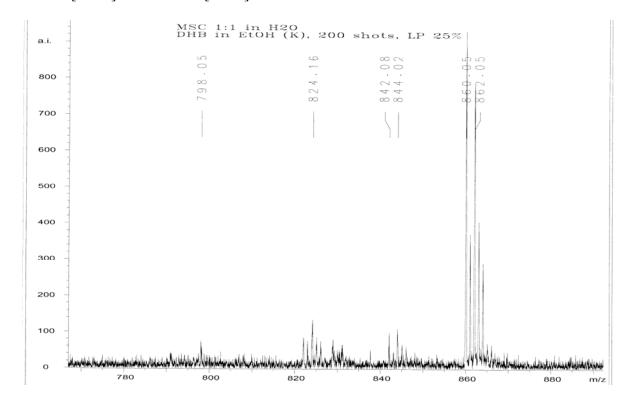

Figure S1. MALDI-TOF MS monitoring of sPLA₂ activity on chlorambucil AEL prodrug **1b** (top) and **2b** (bottom). The spectra demonstrates that the prodrugs (right) are consumed and the AELs (left) are released.

Figure S2. HPLC chromatograms for the sPLA₂ experiment on chlorambucil AEL prodrugs **1b**, **2a** and **2b** showing the amount of prodrug (left) and AEL (right) before the addition of the enzyme and after 2 and 24 h.

Figure S3. MALDI-TOF MS of prodrug **1b** after 42 days at 20 °C showing the major peaks at 795/797 [M+H] and 833/835 [M+K].

Figure S4. MALDI-TOF MS of prodrug **2b** after 42 days at 20 °C showing the major peaks at 822/824 [M+H+K] and 860/862 [M+2K].

(R)-1-[(S)-Methoxytrifluoromethylphenylacetyl]-2,3-bis(tert-butyldimethylsilyl)glycerol (Mosher (S)-ester)

The alcohol (10) (80 mg, 0.25 mmol) was dissolved in pyridine (0.5 mL) and added to the cold commercial ampule with (*R*)-methoxytrifluoromethylphenylacetyl chloride (100 mg, 0.40 mmol) and shaken. After standing for 1 h the mixture was poured into sat. aq. NaHCO₃ (5 mL), which was subsequently extracted with CH₂Cl₂ (3×5 mL) and the organic phase dried over Na₂SO₄. After drying *in vacuo* the crude ester (116 mg, 87%) was subjected to NMR analysis.

IR (neat): 2954, 2930, 2886, 2858, 1753, 1253, 1169, 1103, 1023, 991 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ 7.55-7.37 (m, 5 H), 4.58 (dd, J = 3.8, 11.2 Hz, 1H), 4.17 (dd, J = 4.6, 11.2 Hz, 1H), 3.89-3.82 (m, 1H), 3.54-3.48 (m, 5H), 0.87 (s, 9H), 0.85 (s, 9H), 0.02-0.01 (m, 12H).

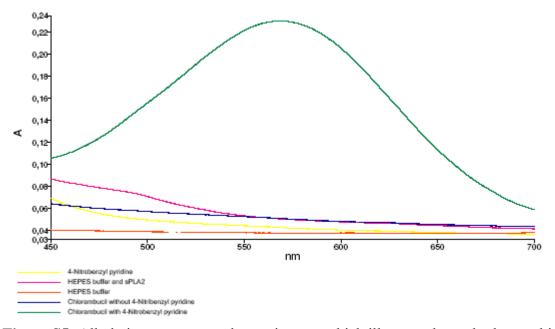
¹⁹F NMR (282 MHz, CDCl₃): δ -72.21 (s).

(R)-1-[(R)-Methoxytrifluoromethylphenylacetyl]-2,3-bis(tert-butyldimethylsilyl)glycerol (Mosher (R)-ester)

The alcohol (10) (80 mg, 0.25 mmol) was dissolved in pyridine (0.5 mL) and added to the cold commercial ampule with (*S*)-methoxytrifluoromethylphenylacetyl chloride (100 mg, 0.40 mmol) and shaken. After standing for 1 h the mixture was poured into sat. aq. NaHCO₃ (5 mL), which was subsequently extracted with CH₂Cl₂ (3×5 mL) and the organic phase dried over Na₂SO₄. After drying *in vacuo* the crude ester (152 mg, quantitative) was subjected to NMR analysis.

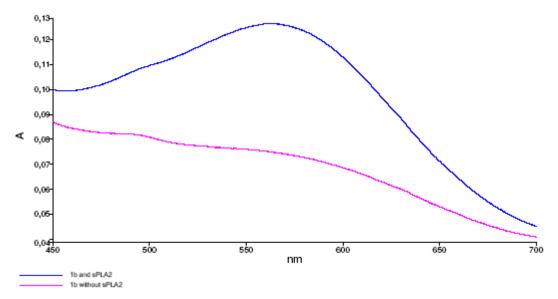
IR (neat): 2954, 2930, 2886, 2858, 1752, 1253, 1168, 1103, 1023, 989 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ 7.43-7.23 (m, 5H), 4.43 (dd, J = 3.8, 11.2 Hz, 1H), 4.03 (dd, J = 3.8, 11.2 Hz, 1H), 3.80-3.73 (m, 1H), 3.49-3.32 (m, 5H), 0.72 (s, 9H), 0.71 (s, 9H), -0.06 (s, 6H), -0.14 (s, 6H).


¹⁹F NMR (282 MHz, CDCl₃): δ -71.99 (s).

 $\textbf{Table S1}. \ Combustion \ analysis \ and \ HRMS \ values.$

Compound	Formula	Anal. Calc'd	Anal. found	HRMS calc'd	HRMS found
6a	$C_{27}H_{48}O_4$	C 74.26, H 11.08	74.26, 11.03		
6b	$C_{29}H_{52}O_4$	C 74.95, H 11.28	75.08, 11.24		
1a	$C_{38}H_{69}Cl_2N_2O_7P$			[M+H ⁺] 767.4298	767.4312
1b	$C_{40}H_{73}Cl_{2}N_{2}O_{7}P \\$			[M+Na ⁺] 817.4425	817.4430
10	$C_{15}H_{36}O_{3}Si_{2}$			[M+Na ⁺] 343.2096	343.2110
11	$C_{24}H_{53}N_{2}O_{4}PSi_{2} \\$			[M+Na ⁺] 543.3174	543.3186
12a	$C_{48}H_{92}Cl_2NO_9PSi_2$			[M+Na ⁺] 1006.5317	1006.5348
12b	$C_{51}H_{96}Cl_2NO_9PSi_2$			[M+Na ⁺] 1034.5631	1034.5665
2a	$C_{36}H_{63}Cl_2NNaO_9P$			[M+H ⁺] 778.3588	778.3612
2b	C ₃₈ H ₆₇ Cl ₂ NNaO ₉ P			[M+Na ⁺] 828.3721	828.3681


Alkylating assay⁶

The chlorambucil AEL prodrugs (2 mM) were hydrated in an aqueous buffer (0.15 M KCl, 30 μM CaCl₂, 10 μM EDTA, 10 mM HEPES, pH = 7.5) for 1 h at 60 °C, and then sonicated for 1 h at 60 °C providing a clear solution. The formulated chlorambucil AEL prodrugs (0.40 mL, 2 mM) were diluted in an aqueous buffer (2.1 mL, 0.15 M KCl, 30 μM CaCl₂, 10 μM EDTA, 10 μM HEPES, pH = 7.5) and 4-nitrobenzyl pyridine (63 mg, 0.29 mmol) was added and the mixture was stirred at 37 °C. When sPLA₂ was used to degrade the liposomes, the catalytic reaction was initiated by addition of snake (*Agkistrodon piscivorus piscivorus*) venom sPLA₂ (20 μL, 42 μM). The purified snake venom sPLA₂ was donated by Dr. R. L. Biltonen (University of Virginia, VA, USA). After 1.5 h incubation 2-amino-1-propanol in *tert*-butyl alcohol (25% v/v, 3.0 mL) was added and the coloration of the reaction mixture was measured using a visible spectrophotometer (PerkinElmer, Lambda 25 UV/VIS Spectrophotometer) at 450-700 nm with a maximum absorption at 560 nm for the colored pigment (Figures S6 and S7). Measurements of pure chlorambucil samples in the aqueous buffer (HEPES buffer) with and without 4-nitrobenzyl pyridine, of HEPES buffer with and without sPLA₂ and of pure 4-nitrobenzyl pyridine in HEPES buffer were obtained as controls (Figure S5).

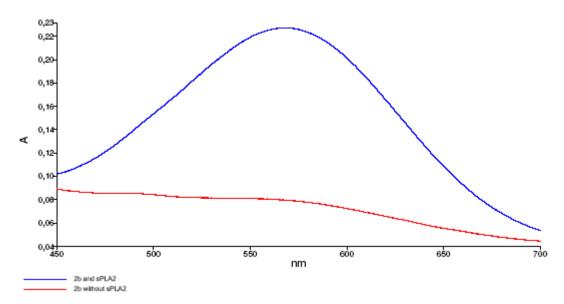
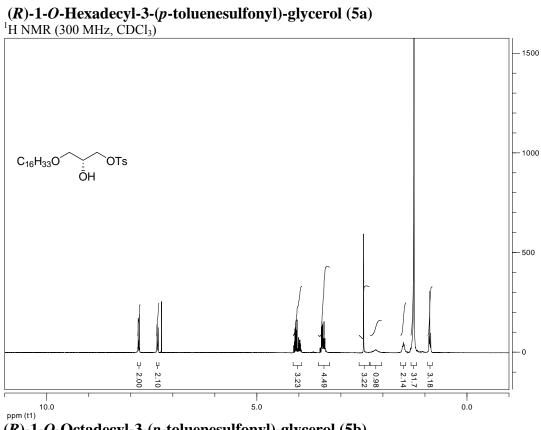
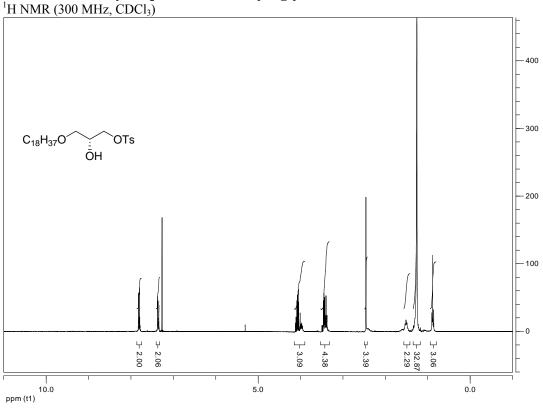
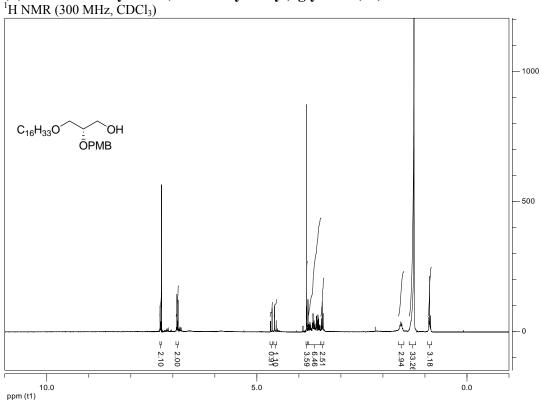
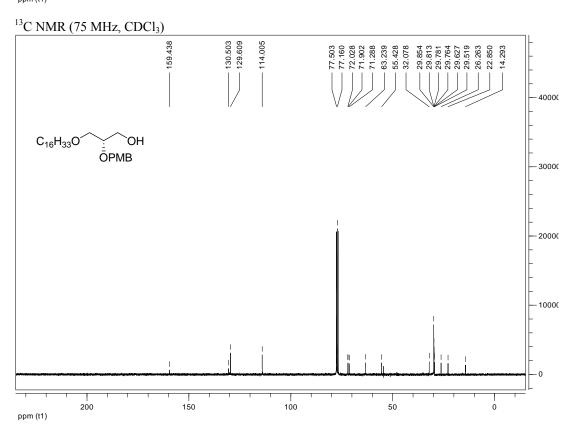


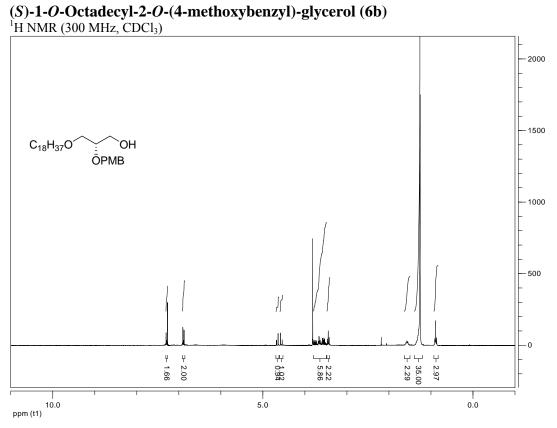
Figure S5: Alkylating assay control experiments, which illustrate that only the combination of chlorambucil and 4-nitrobenzyl pyridine gives absorption at 560 nm.

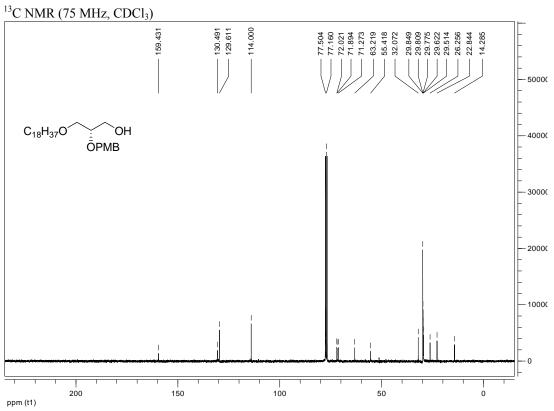

⁶ a) Epstein, J.; Rosenthal, R. W., Ess, R. J. Use of p-(4-nitrobenzyl)pyridine as analytical reagent for ethylenimines and alkylating agents. *Anal. Chem.* **1955**, *27*, 1435-1439. b) Friedman, O. M.; Boger, E.; Chlorimetric estimation of nitrogen mustard in aqueous media. *Anal. Chem.* **1961**, *33*, 906-910. c) Genka, S.; Deutsch, J.; Shetty, U. H.; Stahle, P. L.; John, V.; Lieberburg, I. M.; Ali-Osmant, F.; Rapoport, S. I.; Greig, N. H. Development of lipophilic anticancer agents for the treatment of brain tumors by the esterification of water-soluble chlorambucil. *Clin. Exp. Metastasis*, **1993**, *11*, 131-140.


Figure S6: Alkylating activity of AEL prodrug **1b** with and without sPLA₂. When AEL prodrug **1b** was subjected to sPLA₂ it provided a colored solution, with a strong absorption at 560 nm, illustrating alkylating activity, whereas AEL prodrug **1b** without subjection of sPLA₂ provided a colorless solution, with a weak absorption at 560 nm, illustrating that the liposome formulation shield the chloroethyl moiety of **1b**.

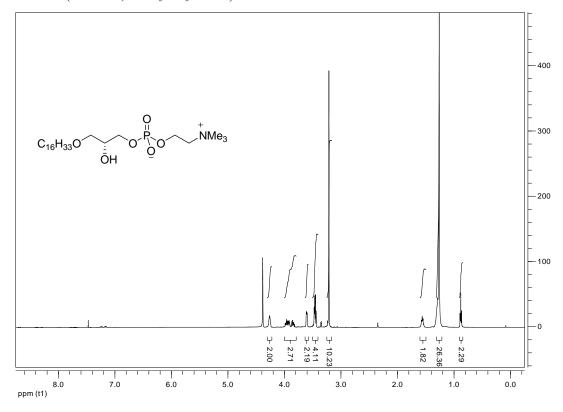

Figure S7: Alkylating activity of AEL prodrug **2b** with and without subjection of sPLA₂. When AEL prodrug **1b** was subjected to sPLA₂ it provided a colored solution, with a strong absorption at 560 nm, illustrating alkylating activity, whereas AEL prodrug **2b** without subjection of sPLA₂ provided a colorless solution, with a weak absorption at 560 nm, illustrating that the liposome formulation shield the chloroethyl moiety of **2b**.

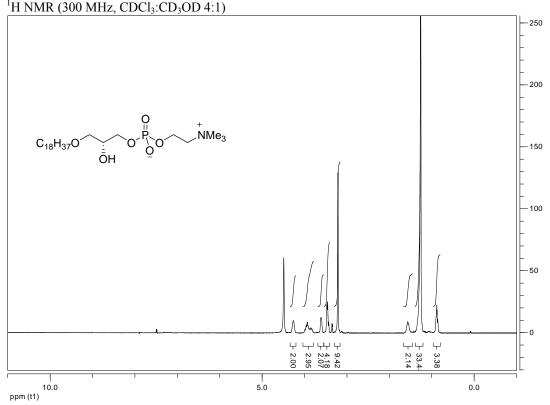


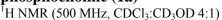

(R)-1-O-Octadecyl-3-(p-toluenesulfonyl)-glycerol (5b)

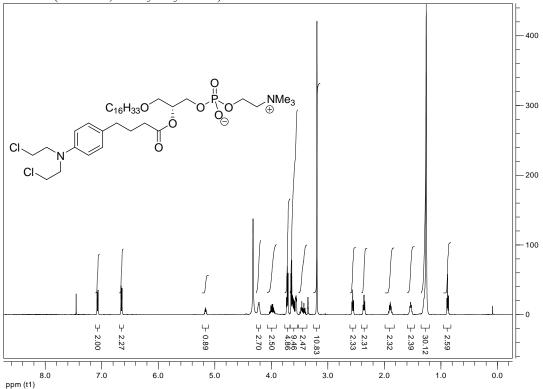


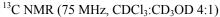
(S)-1-O-Hexadecyl-2-O-(4-methoxybenzyl)-glycerol (6a)

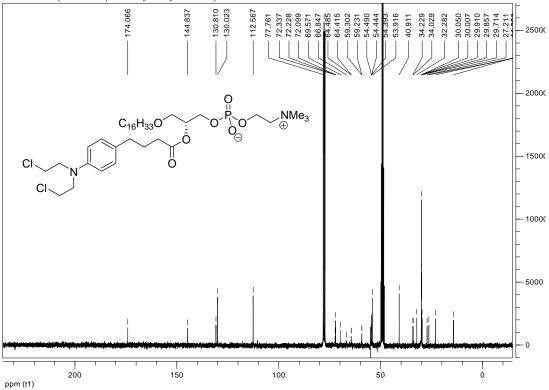




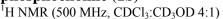

1-*O***-Hexadecyl-2-lyso-**s*n***-glycero-3-phosphocholine (7a)** 1 H NMR (500 MHz, CDCl₃:CD₃OD 4:1)

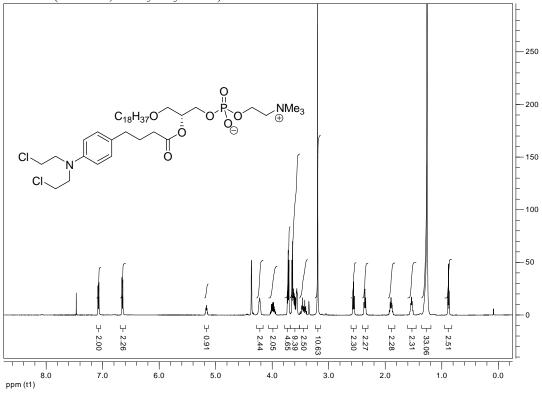


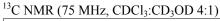

1-*O***-Octadecyl-2-lyso-**sn**-glycero-3-phosphocholine (7b)** 1 H NMR (300 MHz, CDCl₃:CD₃OD 4:1)

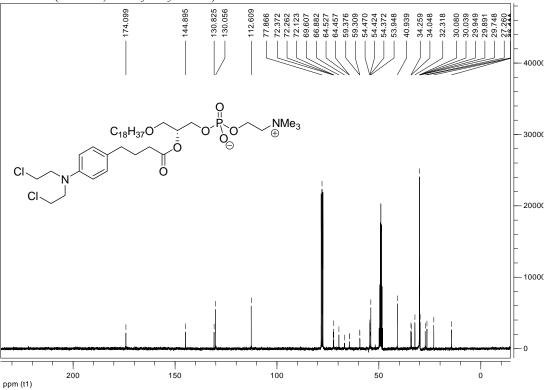


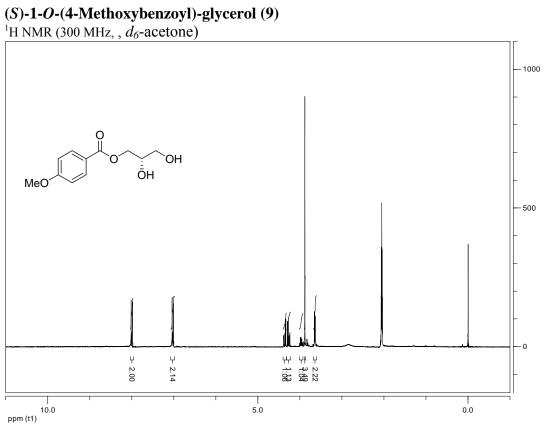
1-O-Hexadecyl-2- (4-(4-(bis-(2-chloroethyl)-amino)-phenyl)-butanoyl)-sn-glycero-3-phosphocholine (1a)

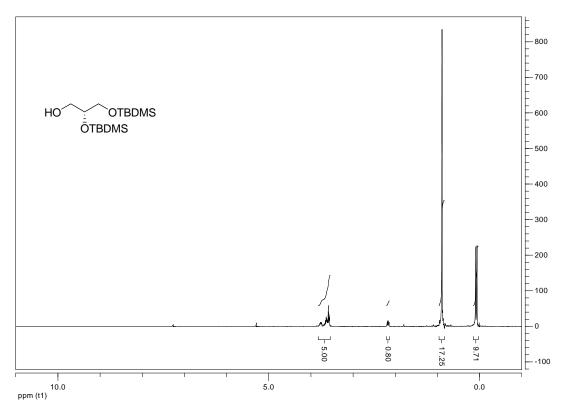


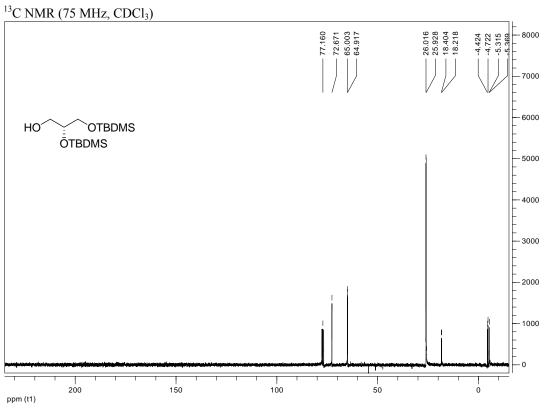


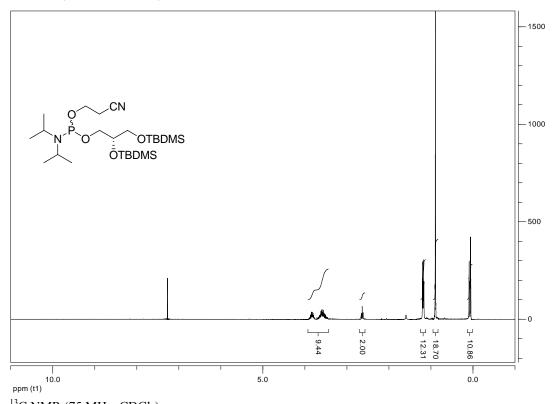


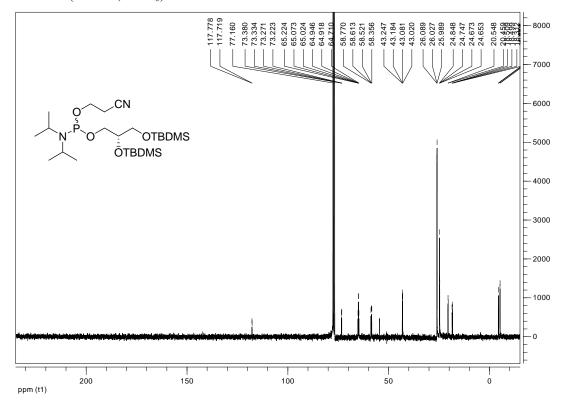



1-O-Octadecyl-2-(4-(4-(bis-(2-chloroethyl)-amino)-phenyl)-butanoyl)-sn-glycero-3-phosphocholine (1b)



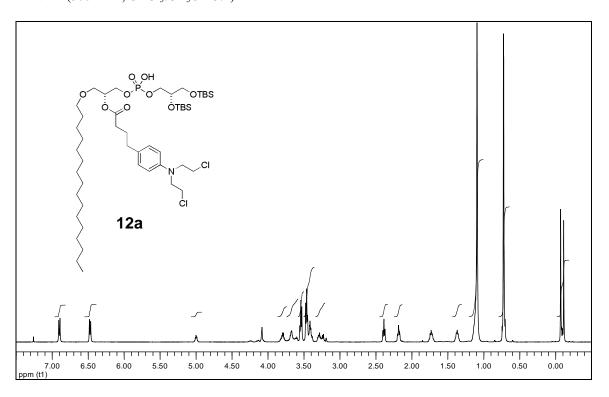



(*R*)-1,2-di-*O-tert*-butyldimethylsilyl-glycerol (10) $^{\rm l}{\rm H}$ NMR (300 MHz, CDCl₃)

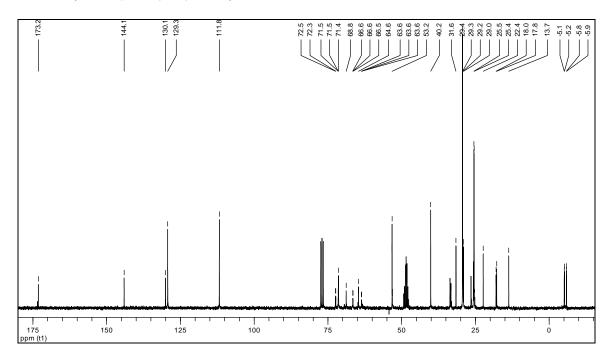


$(S)\hbox{-}(2,\!3\hbox{-di-}O\hbox{-}tert\hbox{-butyldimethylsilyl})\hbox{-glyceryl 2-cyanoethyl-}N,\!N\hbox{-diisopropylphosphoramidite} \end{substitute}$

¹H NMR (300 MHz, CDCl₃)

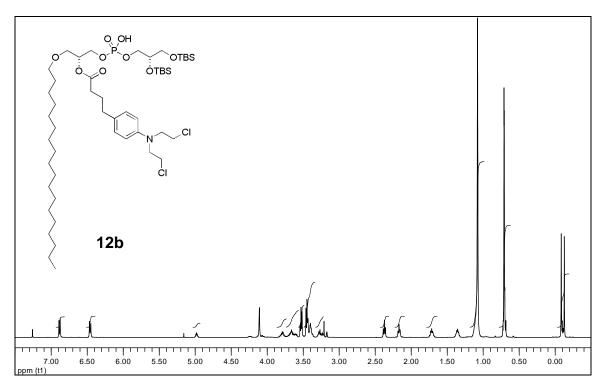


¹³C NMR (75 MHz, CDCl₃)



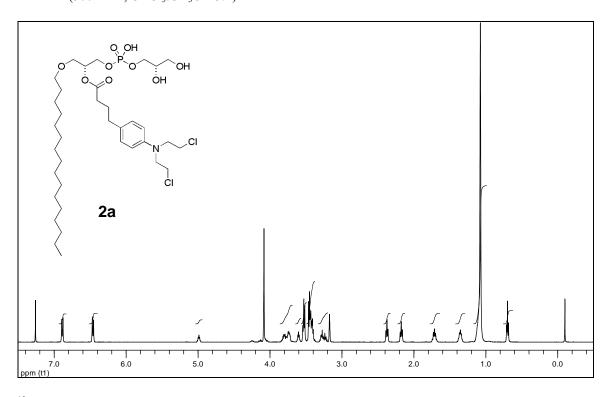
$1-O\text{-Hexadecyl-}2\text{-}(4\text{-}(4\text{-}(bis\text{-}(2\text{-chloroethyl})\text{-amino})\text{-phenyl})\text{-butanoyl})\text{-}sn\text{-}glycero\text{-}3\text{-}(2\text{-}cyanoethyl\text{-phospho})\text{-}}(S)\text{-}2\text{,}3\text{-}di\text{-}O\text{-}tert\text{-}butyldimethylsilyl\text{-}glycerol}\ (12a)$

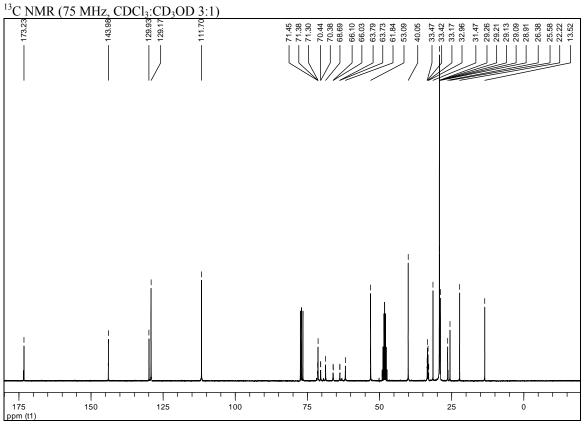
¹H NMR (500 MHz, CDCl₃:CD₃OD 3:1)



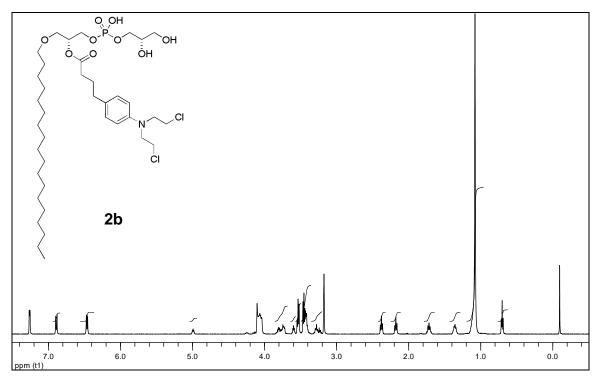
¹³C NMR (75 MHz, CDCl₃:CD₃OD 3:1)

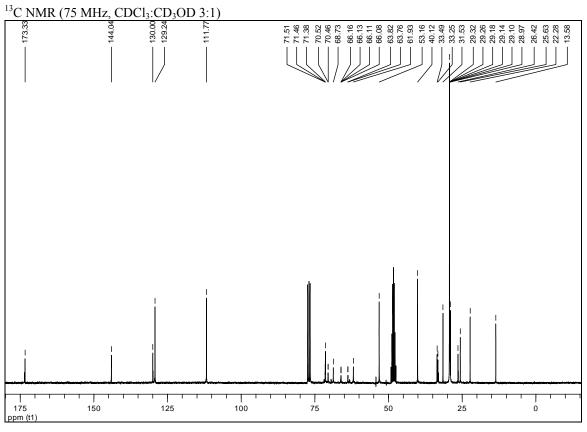
1-O-Octadecyl-2-(4-(4-(bis-(2-chloroethyl)-amino)-phenyl)-butanoyl)-sn-glycero-3-(2-cyanoethyl-phospho)-(S)-2,3-di-O-tert-butyldimethylsilyl-glycerol (12b)


¹H NMR (500 MHz, CDCl₃:CD₃OD 3:1)



${\bf 1-}O\text{-Hexadecyl-2-}(4\text{-}(4\text{-}(bis\text{-}(2\text{-chloroethyl})\text{-amino})\text{-phenyl})\text{-butanoyl})\text{-}sn\text{-}glycero\text{-}3\text{-}phospho}(S)\text{-}glycerol~(2a)$


¹H NMR (500 MHz, CDCl₃:CD₃OD 3:1)



1-O-Octadecyl-2-(4-(4-(bis-(2-chloroethyl)-amino)-phenyl)-butanoyl)-sn-glycero-3-phospho-(S)-glycerol~(2b)

¹H NMR (500 MHz, CDCl₃:CD₃OD 3:1)

