Selective Inhibitors of the Mutant B-Raf Pathway: Discovery of A Potent and Orally Bioavailable

 Aminoisoquinoline.Adrian L. Smith,* Frenel F. DeMorin, Nick A. Paras, Qi Huang, Jeffrey K. Petkus, Elizabeth M. Doherty, Thomas Nixey, Joseph L. Kim, Douglas A. Whittington, Linda F. Epstein, Matthew R. Lee, Mark J. Rose, Carol Babij, Manory Fernando, Kristen Hess, Quynh Le, Pedro Beltran and Josette Carnahan

Departments of Medicinal Chemistry, Molecular Structure, Pharmacokinetics and Drug Metabolism, and Oncology Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799 and Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142

Supporting Information

Synthetic Procedures and Compound Characterization Data

LC-MS Methods:

Samples were run on an Agilent model-1100 LC-MSD system with an Agilent Technologies SB-C18 (3.0 $\mu \mathrm{M}$) reverse phase column ($3.0 \times 50 \mathrm{~mm}$) at $40^{\circ} \mathrm{C}$. The flow rate was constant at $1.5 \mathrm{~mL} / \mathrm{min}$. The mobile phase used a mixture of solvent $\mathrm{A}\left(\mathrm{H}_{2} \mathrm{O} / 0.1 \% \mathrm{TFA}\right)$ and solvent $\mathrm{B}(\mathrm{MeCN} / 0.1 \% \mathrm{TFA})$ with a 3.6 min time period for a gradient from 5% to 95% solvent B. The gradient was followed by a 0.5 min period to return to 5% solvent B and a 2.5 min 5% solvent B re-equilibration (flush) of the column. Integrated HPLC purities are reported at 215 nM .

NMR Spectra:

All NMR spectra were run on a Varian (Varian, Palo Alto, CA) series Mercury 300 MHz instrument or a Bruker (Bruker, Bilerica, MA) series 400 MHz instrument. Where so characterized, all observed protons are reported as parts-per-million (ppm) downfield from tetramethylsilane (TMS) or other internal reference in the appropriate solvent indicated.

4-Methyl-3-(3-(pyrimidin-4-yl)pyridin-2-ylamino)-N-(3-(trifluoromethyl)phenyl)benzamide (2)

A mixture of 4-methyl-3-(3-(pyrimidin-4-yl)pyridin-2-ylamino)benzoic acid 1 ($1.000 \mathrm{~g}, 3265 \mu \mathrm{~mol}$), DIPEA (684 $\mu \mathrm{l}, 3917 \mu \mathrm{~mol})$, and 3-(trifluoromethyl)benzenamine ($489 \mu \mathrm{l}, 3917 \mu \mathrm{~mol}$) in DMF (10 mL) was treated with HATU $(1490 \mathrm{mg}, 3917 \mu \mathrm{~mol})$ and heated at $80^{\circ} \mathrm{C}$ for 16 h after which time the reaction had gone to completion. The DMF was removed in vacuo and the resulting oil was diluted with DCM (50 mL). The product crystallized from solution and was collected by filtration, washing with a small amount of DCM. 4-Methyl-3-(3-(pyrimidin-4-yl)pyridin-2-ylamino)-N-(3-(trifluoromethyl)phenyl)benzamide ($800 \mathrm{mg}, 55 \%$ yield) was obtained as a crystalline yellow solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz, d_{6}-DMSO) $\delta 11.78$ ($\mathrm{s}, 1 \mathrm{H}$); 10.49 ($\mathrm{s}, 1 \mathrm{H}$); $9.40(\mathrm{~d}, \mathrm{~J}=1.13 \mathrm{~Hz}, 1 \mathrm{H}) ; 8.96$ (d, J=5.65 Hz, 1 H); 8.81 (d, J=1.51 Hz, 1 H); 8.54 (dd, J=7.91, $1.70 \mathrm{~Hz}, 1 \mathrm{H}$); 8.36 (dd, J=4.71, $1.70 \mathrm{~Hz}, 1 \mathrm{H}$); 8.22 - 8.33 (m, 2 H); 8.01-8.11 (m, 1 H); 7.53-7.68 (m, 2 H); 7.44 (d, J=8.10 Hz, 2 H); 7.02 (dd, J=7.82, 4.80 Hz, 1 H); 2.48 (s, 3 H). HPLC purity $>99 \%$. MS (ESI, +ve ion) $m / z 450.1,(\mathrm{M}+\mathrm{H})^{+}$.

4-Methyl-3-(2-(methylamino)quinazolin-6-yl)-N-(3-(trifluoromethyl)phenyl)benzamide (3)

A mixture of 3-iodo-4-methyl-N-(3-(trifluoromethyl)phenyl)benzamide ($0.750 \mathrm{~g}, 1.85 \mathrm{mmol}$), N-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazolin-2-amine ($0.581 \mathrm{~g}, 2.04 \mathrm{mmol}$), dichlorobis(triphenylphosphine)palladium (II) ($0.130 \mathrm{~g}, 0.185 \mathrm{mmol})$, and sodium carbonate hydrate $(0.459 \mathrm{~g}, 3.70 \mathrm{mmol})$ in $10: 1$ DMF:Water (4.0 mL) was heated at $140^{\circ} \mathrm{C}$ for 25 min in a microwave reactor. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried with magnesium sulfate and concentrated under vacuum. The resulting residue was purified by flash chromatgraphy ($0.5-6 \% \mathrm{MeOH}$ in DCM) to give 4-methyl-3-(2-(methylamino)quinazolin-6-yl)-N-(3(trifluoromethyl)phenyl)benzamide ($0.715 \mathrm{~g}, 89 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 10.52$ (s, 1 H); 9.16 (br. s., 1 H); 8.24 ($\mathrm{s}, 1 \mathrm{H}$); 8.08 (d, J=8.61 Hz, 1 H); 7.90-7.99 (m, 3 H); 7.86 (d, J=1.96 Hz, 1 H); 7.78 (dd, J=8.71, 2.05 Hz, 1 H); 7.55-7.63 (m, 2 H); 7.52 (d, J=8.02 Hz, 1 H$) ; 7.39-7.47$ (m, 2 H); 2.92 (d, J=4.89 Hz, 3 H); 2.37 (s, 3 H). HPLC purity $>99 \%$. MS (ESI, +ve ion) $\mathrm{m} / \mathrm{z} 437.1$, (M+H) ${ }^{+}$.

6-Methylisoquinoline (5)

Aminoacetaldehyde dimethyl acetal ($8.83 \mathrm{~mL}, 81.1 \mathrm{mmol}$) was added over 1 min to a stirred solution of ptolualdehyde ($9.88 \mathrm{~mL}, 81.1 \mathrm{mmol}$) in chloroform $(150 \mathrm{~mL})$ at $22^{\circ} \mathrm{C}$. An exotherm was noted. The reaction was heated to reflux $\left(65^{\circ} \mathrm{C}\right)$ and half the solvent was removed (to remove water). The heat was removed and the yellow solution was cooled to r.t. NMR showed the imine was formed smoothly, however, a trace of aldehyde could be observed. The yellow solution was diluted with chloroform to bring the volume back to $\sim 100 \mathrm{~mL}$, cooled to $-3^{\circ} \mathrm{C}$ and ethyl chloroformate $(7.99 \mathrm{~mL}, 81.1 \mathrm{mmol})$ was added dropwise over 5 min followed by triethyl phosphite ($17.4 \mathrm{~mL}, 97.3 \mathrm{mmol}$) over 10 minutes. The clear yellow solution was then allowed to warm to room temperature. A reflux condenser added to reaction vessel. After 23 h , titanium tetrachloride ($35.6 \mathrm{~mL}, 324 \mathrm{mmol}$) was added very slowly (strong exotherm and white fumes observed) and the reaction began to gently reflux $\left(50^{\circ} \mathrm{C}\right)$. Color changed from yellow to dark red to dark brown. Once addition was complete, the dark brown solution was heated to reflux $\left(52^{\circ} \mathrm{C}\right)$ for 10.5 h . After allowing to cool to room temperature overnight, the dark brown solution was poured onto ice (filled a 2 L beaker with approximately 1 L of ice), the organic layer was separated off, and the aqueous layer was washed with dichloromethane ($2 \times 100 \mathrm{~mL}$). The aqueous layer (now orange in color) was poured into a solution of potassium sodium tartrate tetrahydrate ($183 \mathrm{~g}, 648 \mathrm{mmol}$) in water $(300 \mathrm{~mL})$, basified to
pH 9 with 28-30 \% ammonium hydroxide (a white ppt crashed out) and then extracted with dichloromethane (3x 200 mL). The organic layer was separated, dried over sodium sulfate, filtered and the solvent was evaporated in vacuo to yield 6-methylisoquinoline ($9.02 \mathrm{~g}, 78 \%$ yield) as a light tan amorphous solid. MS (ESI, pos. ion) m/z: $144.1[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.56(\mathrm{~s}, 3 \mathrm{H}) 7.44(\mathrm{dd}, \mathrm{J}=8.31,1.27 \mathrm{~Hz}, 1 \mathrm{H}) 7.57(\mathrm{~d}, \mathrm{~J}=5.87 \mathrm{~Hz}, 1$ H) $7.60(\mathrm{~s}, 1 \mathrm{H}) 7.87(\mathrm{~d}, \mathrm{~J}=8.22 \mathrm{~Hz}, 1 \mathrm{H}) 8.48(\mathrm{~d}, \mathrm{~J}=5.67 \mathrm{~Hz}, 1 \mathrm{H}) 9.19(\mathrm{~s}, 1 \mathrm{H})$.

6-Methyl-5-nitroisoquinoline (6)

6-Methylisoquinoline ($2.00 \mathrm{~g}, 14 \mathrm{mmol}$) was taken up in sulfuric acid $(25.0 \mathrm{~mL})$ and the mixture cooled down to 0 ${ }^{\circ} \mathrm{C}$. The reaction was treated with potassium nitrate $(2.8 \mathrm{~g}, 28 \mathrm{mmol})$ added in portions. After addition was complete, the reaction was stirred for 1.5 h at $0^{\circ} \mathrm{C}$. The reaction was poured onto crushed ice and basified with 5 N NaOH . The solid that precipitated was collected by suction filtration, washed with water and dried to give the product ($2.5 \mathrm{~g}, 95 \%$) as a tan solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.60(\mathrm{~s}, 3 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=8.03 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}$, $\mathrm{J}=6.02 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=8.03 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, \mathrm{~J}=6.02 \mathrm{~Hz}, 1 \mathrm{H}), 9.30(\mathrm{~s}, 1 \mathrm{H})$.

1-Chloro-6-methyl-5-nitroisoquinoline (7)

6-Methyl-5-nitroisoquinoline ($32 \mathrm{~g}, 170 \mathrm{mmol}$) was dissolved in $\mathrm{DCM}(500 \mathrm{~mL})$ and cooled in an ice-acetone bath to $0^{\circ} \mathrm{C}$. 3-Chloroperoxybenzoic acid ($49.9 \mathrm{~g}, 289 \mathrm{mmol}$) (73%) was added in portions with vigorous stirring. After the addition, the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h . Upon being warmed to room temperature, the reaction mixture was partitioned in $\mathrm{DCM} / \mathrm{NaOH}$ (aq., 1 N). After multiple extractions, the organic layers were combined and washed with brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent in vacuo gave 6-methyl-5nitroisoquinoline N -oxide as a yellow solid (23 g).

Phosphorous oxychloride ($2.15 \mathrm{~mL}, 23.0 \mathrm{mmol}$) was added dropwise to a solution of 6-methyl-5-nitroisoquinoline N -oxide ($0.940 \mathrm{~g}, 4.60 \mathrm{mmol}$) in 1,2-dichloroethane (40.0 mL). The mixture was heated to $70^{\circ} \mathrm{C}$ for 3 h to afford an off-white suspension. The mixture was concentrated and the residue was partitioned between dichloromethane and water. The aqueous phase was separated and extracted with dichloromethane. The combined organic phases were washed with saturated aqueous sodium bicarbonate solution, brine, dried over anhydrous sodium sulfate,
filtered, and concentrated to afford 1-chloro-6-methyl-5-nitroisoquinoline ($0.880 \mathrm{~g}, 86 \%$ yield) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d} 6-\mathrm{DMSO}$) $\delta 8.47$ (dd, 2 H), 7.92 (d, 1 H), 7.67 (d, 1 H), 2.56 ($\mathrm{s}, 3 \mathrm{H}$).

6-Methyl-5-nitro-N-(3-(trifluoromethyl)phenyl)isoquinolin-1-amine

1-Chloro-6-methyl-5-nitroisoquinoline ($0.25 \mathrm{~g}, 1.1 \mathrm{mmol}$) and 3-(trifluoromethyl)benzenamine ($0.17 \mathrm{~mL}, 1.3$ mmol) were added to a microwave tube containing 3 mL of isopropanol. The tube was capped and heated at 180 ${ }^{\circ} \mathrm{C}$ for 1500 sec . The volatiles were removed in vacuo. The residue was taken up in DCM and washed with sat'd NaHCO_{3}. The organic layer was dried with sodium sulfate and purified by column chromatography on silica gel using a gradient of 10 to 40% of ethyl acetate in hexanes to give the product ($310 \mathrm{mg}, 79 \%$) as an orange solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, d6-DMSO) $\delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, 1 \mathrm{H}), 7.59(\mathrm{~m}, 1$ H), $7.34(\mathrm{~d}, 1 \mathrm{H}), 6.93(\mathrm{~d}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H})$.

6-Methyl- \mathbf{N}^{1}-(3-(trifluoromethyl)phenyl)isoquinoline-1,5-diamine (9a)

A mixture of 6-methyl-5-nitro-N-(3-(trifluoromethyl)phenyl)isoquinolin-1-amine hydrochloride (7.68 g, 20 mmol), EtOH (150 mL), and $\operatorname{tin}($ II $)$ chloride dihydrate $(23 \mathrm{~g}, 100 \mathrm{mmol})$ in a 500 mL round-bottomed flask was stirred in a $70^{\circ} \mathrm{C}$ oil bath under N_{2} and under a reflux condenser for 18 h . The reaction mixture was allowed to cool to room temperature $\left(22^{\circ} \mathrm{C}\right)$ and concentrated in vacuo to $\sim 50-100 \mathrm{~mL}$ volume as a thick yellow oil. The oil was added to a 1:1 mixture of ice and 5 N NaOH (300 mL total volume) to afford a milky suspension which was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined extracts were washed with water (100 mL), satd $\mathrm{NaCl}(70 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give the product (8.2 g crude) as a dark red viscous oil. The crude product was adsorbed onto a plug of silica gel and chromatographed through a Redi-Sep® ${ }^{\circledR}$ pre-packed silica gel column (120 g) eluting with a gradient of 10% to 30% EtOAc in hexane to provide a red solid. The solid was washed with 20% DCM/hexane and air-dried to afford 6 -methyl- N^{1}-(3-(trifluoromethyl)phenyl)isoquinoline-1,5diamine (9a) ($4.2 \mathrm{~g}, 66 \%$ yield) as a pale pink solid; MS (ESI, pos. ion) m/z: $318[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d} 6-$ DMSO) $\delta 2.27$ ($\mathrm{s}, 3 \mathrm{H}$), 5.51 (s, 2 H), 7.25 (d, J=7.53 Hz, 1 H), 7.28 (d, J=8.53 Hz, 1 H), 7.41 - 7.57 (m, 2 H), 7.65 (d, J=8.53 Hz, 1 H), $7.92(\mathrm{~d}, \mathrm{~J}=6.02 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=8.03 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 9.16(\mathrm{~s}, 1 \mathrm{H})$.

\mathbf{N}-(4-chlorophenyl)-6-methyl-5-nitroisoquinolin-1-amine hydrochloride

A mixture of 4-chlorobenzenamine $(0.630 \mathrm{~g}, 4.94 \mathrm{mmol})$ and 1-chloro-6-methyl-5-nitroisoquinoline ($1.000 \mathrm{~g}, 4.49$ $\mathrm{mmol})$ was suspended in isopropyl alcohol (12 mL) and heated in a microwave at $170^{\circ} \mathrm{C}$ for 16 min . The resulting suspensions was cooled and the product was filtered off, washing with a small volume of IPA. N-(4-chlorophenyl)-6-methyl-5-nitroisoquinolin-1-amine hydrochloride ($1.32 \mathrm{~g}, 84 \%$ yield) was obtained as a yellow crystalline solid. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{d} 6-\mathrm{DMSO}$) $\delta 10.8$ (bs, 1 H), 8.92 (d, 1 H), 7.90 (d, 1 H), 7.82 (d, 1 H), 7.79 (d, 2 H), 7.51 (d, 2 H), $6.91(\mathrm{~d}, 1 \mathrm{H}), 5.7(\mathrm{bs}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$.

\mathbf{N}^{1}-(4-chlorophenyl)-6-methylisoquinoline-1,5-diamine (9b)

A mixture of N -(4-chlorophenyl)-6-methyl-5-nitroisoquinolin-1-amine hydrochloride ($5.28 \mathrm{~g}, 15.1 \mathrm{mmol}$) and tin (II) chloride ($14.3 \mathrm{~g}, 75.4 \mathrm{mmol}$) in ethanol $(100 \mathrm{~mL})$ was heated at $75^{\circ} \mathrm{C}$ for 16 h . The dark solution was concentrated, diluted with EtOAc (200 mL), washed with 5 N aqueous $\mathrm{NaOH}(250 \mathrm{~mL})$ (re-extracted with a further 100 mL of EtOAc - a thick ppt crashed out of the aqueous layer shortly after extraction), and the combined organic layers (dark red) were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was dissolved in DCM (50 mL), scratched with a spatula until product started crytallizing, and then refrigerated. The product was filtered off, washing with a small volume of DCM. The filtrate was concentrated and suspended in $\mathrm{DCM}(10 \mathrm{~mL})$, and a second crop was filtered off washing with a small volume of DCM. The solids were combined to give N^{1}-(4-chlorophenyl)-6-methylisoquinoline-1,5-diamine ($3.07 \mathrm{~g}, 72 \%$ yield) as a brick red solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , d6-DMSO) $\delta 8.95$ (s, $1 \mathrm{H}), 7.95(\mathrm{~d}, 2 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, 1 \mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H}), 7.32(\mathrm{~d}, 2 \mathrm{H}), 7.26(\mathrm{~d}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3$ H).

6-Methyl- N^{5}-(3-(pyrimidin-4-yl)pyridin-2-yl)- N^{1}-(3-(trifluoromethyl)phenyl)isoquinoline-1,5-diamine (12a)

 6-Methyl- ${ }^{1}$-(3-(trifluoromethyl)phenyl)naphthalene-1,5-diamine (9a) ($0.100 \mathrm{~g}, 0.30 \mathrm{mmol}$), 4-(2-chloropyridin-3yl)pyrimidine ($0.057 \mathrm{~g}, 0.30 \mathrm{mmol}$), dicyclohexylphosphino-N,N-dimethylaminobiphenyl ($0.0094 \mathrm{~g}, 0.024 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.010 \mathrm{~g}, 0.012 \mathrm{mmol})$, were all placed in a sealed tube containing 5 ml of anhydrous THF. Lithium bis(trimethylsilyl)amide 1 M THF ($0.90 \mathrm{ml}, 0.90 \mathrm{mmol}$) was then added to the mixture and nitrogen was bubbled into the reaction mixture for 5 min . The tube was capped and the reaction heated to $70^{\circ} \mathrm{C}$ for 16 h . The reaction was allowed to cool down to Rt and quenched with methanol. The volatiles were removed in vacuo. The residuewas taken up in ethyl acetate and washed (2x) with an aqueous saturated solution of sodium bicarbonate, then with water and then brine. The organic layer was then dried with sodium sulfate and the purified by column chromatography on silica gel using a gradient of 20 to 60% EtOAc in hexanes to give the product ($80 \mathrm{mg}, 56 \%$) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 11.13(\mathrm{~s}, 1 \mathrm{H}) ; 9.47(\mathrm{~s}, 1 \mathrm{H}) ; 9.33(\mathrm{~s}, 1 \mathrm{H}) ; 8.95(\mathrm{~d}, \mathrm{~J}=5.67 \mathrm{~Hz}, 1$ H); 8.40-8.49 (m, 2 H); 8.37 (s, 1 H); $8.21-8.31(\mathrm{~m}, 2 \mathrm{H}) ; 8.01-8.08(\mathrm{~m}, 1 \mathrm{H}) ; 7.96(\mathrm{~d}, \mathrm{~J}=6.06 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.63$ (d, $\mathrm{J}=8.61 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.50-7.58(\mathrm{~m}, 1 \mathrm{H}) ; 7.29(\mathrm{~d}, \mathrm{~J}=7.63 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.15(\mathrm{~d}, \mathrm{~J}=5.87 \mathrm{~Hz}, 1 \mathrm{H})$; $6.85(\mathrm{dd}, \mathrm{J}=7.73,4.79 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.35(\mathrm{~s}, 3 \mathrm{H})$. HPLC purity $>99 \%$. MS (ESI, +ve ion) $m / z 473.1$, (M+H) ${ }^{+}$.

\mathbf{N}^{1}-(4-chlorophenyl)-6-methyl- \mathbf{N}^{5}-(3-(pyrimidin-4-yl)pyridin-2-yl)isoquinoline-1,5-diamine (12b)

A 0.02 M stock solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ [$183 \mathrm{mg}, 0.2 \mathrm{mmol}$] and Xantphos [$231 \mathrm{mg}, 0.4 \mathrm{mmol}$] was prepared in an oven-dried flask under Ar in 1,4-dioxane (10 mL). The mixture was vacuumed and purged with Ar three times, then sonicated for 2 min . After stirring at room temperature for 10 min the stock solution was ready for use. A Radley Carousel reactor vessel was charged with 4-(2-chloropyridin-3-yl)pyrimidine ($150 \mathrm{mg}, 0.80 \mathrm{mmol}$) and N^{1}-(4-chlorophenyl)-6-methylisoquinoline-1,5-diamine ($190 \mathrm{mg}, 0.67 \mathrm{mmol}$) and dissolved in anhydrous 1,4dioxane (7 mL). The mixture was purged with Ar, then 0.05 eq of the catalyst stock solution was added via syringe with stirring at room temperature. The reaction mixture was treated with LiHMDS (1.6 mL of 1.0 M solution in THF) added dropwise, and then stirred at $85^{\circ} \mathrm{C}$ under Ar for 14 h . The reaction mixture was quenched by the addition of $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and stirred 10 min at room temperature. Satd $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added and extracted with 3:1 $\mathrm{CHCl}_{3}: \mathrm{IPA}(2 \times 50 \mathrm{~mL})$. The organic extracts were washed with satd $\mathrm{NaCl}(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The product was purifed by silica gel chromatography ($10-50 \% \mathrm{EtOAc} / \mathrm{DCM}$) to give a yellow solid ($85 \mathrm{mg}, 29 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 11.13(\mathrm{~s}, 1 \mathrm{H}) ; 9.33(\mathrm{~s}, 1 \mathrm{H}) ; 9.28(\mathrm{~s}, 1 \mathrm{H})$; 8.94 (d, J=5.52 Hz, 1 H); 8.45 (d, J=7.53 Hz, 1 H); $8.40(\mathrm{~d}, \mathrm{~J}=8.53 \mathrm{~Hz}, 1 \mathrm{H}) ; 8.29(\mathrm{~d}, \mathrm{~J}=5.52 \mathrm{~Hz}, 1 \mathrm{H}) ; 8.04$ (d, $\mathrm{J}=3.51 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.96$ (d, J=8.53 Hz, 2 H); 7.91 (d, J=6.02 Hz, 1 H); $7.60(\mathrm{~d}$, J=8.53 Hz, 1 H$) ; 7.36$ (d, J=8.53 Hz, 2 H); $7.10(\mathrm{~d}, \mathrm{~J}=5.52 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.81-6.88(\mathrm{~m}, 1 \mathrm{H}) ; 2.34(\mathrm{~s}, 3 \mathrm{H})$. HPLC purity $>99 \%$. MS (ESI, +ve ion) $\mathrm{m} / \mathrm{z} 439.5$, $(\mathrm{M}+\mathrm{H})^{+}$.

\mathbf{N}^{1}-(4-chlorophenyl)-6-methyl- \mathbf{N}^{5}-(3-(6-(methylamino)pyrimidin-4-yl)pyridin-2-yl)isoquinoline-1,5-diamine

 (13)A mixture of 6-(2-fluoropyridin-3-yl)-N-methylpyrimidin-4-amine ($52.30 \mathrm{mg}, 256.1 \mu \mathrm{~mol}$) and N^{1}-(4-chlorophenyl)-6-methylisoquinoline-1,5-diamine ($70.69 \mathrm{mg}, 249.1 \mu \mathrm{~mol}$) was suspended in THF (5 mL) and treated with 1.0 M LiHMDS in THF (1.5 mL). The resulting dark solution was stirred at $45^{\circ} \mathrm{C}$ for 1 h , cooled, and added dropwise to $2 \mathrm{M} \mathrm{HCl}(6 \mathrm{~mL})$ in water $(100 \mathrm{~mL})$. The resulting mixture was heated to reflux to aid dissolution and filtered. The cooled stirred filtrate was basified by dropwise addition of saturated sodium bicarbonate solution resulting in a pale yellow precipitate which was collected by filtration, washing with water. The solid was air dried. Recrystallization from a small volume of CHCl_{3} gave N^{1}-(4-chlorophenyl)-6-methyl- N^{5}-(3-(6-(methylamino)pyrimidin-4-yl)pyridin-2-yl)isoquinoline-1,5-diamine ($84 \mathrm{mg}, 72 \%$) as a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, d ${ }_{6}$-DMSO) $\delta 11.09$ (br. s., 1 H); 9.26 (s, 1 H); 8.59 (br. s., 1 H); 8.36 (d, J=8.80 Hz, 1 H); 8.05 (br. s., 0 H); 7.87-7.96(m, 4 H); 7.49-7.63 (m, 2 H); 7.30-7.40 (m, 2 H); 7.14 (d, J=6.06 Hz, 1 H); 6.99 (d, J=0.98 Hz, 1 H); 6.78 (dd, J=7.73, $4.79 \mathrm{~Hz}, 1 \mathrm{H}$); 2.90 (d, J=4.89 Hz, 3 H); 2.33 (s, 3 H). HPLC purity >99\%. MS (ESI, +ve ion) $\mathrm{m} / \mathrm{z} 468.1,(\mathrm{M}+\mathrm{H})^{+}$.

4-(6-Methyl-5-(3-(6-(methylamino)pyrimidin-4-yl)pyridin-2-ylamino)isoquinolin-1-ylamino)benzonitrile (14)

A mixture of 4-(5-amino-6-methylisoquinolin-1-ylamino)benzonitrile ($0.60 \mathrm{~g}, 2.2 \mathrm{mmol}$) and 6-(2-fluoropyridin-3-yl)-N-methylpyrimidin-4-amine ($0.49 \mathrm{~g}, 2.4 \mathrm{mmol}$) in anhydrous 1,4 -dioxane (40 mL) was stirred at room temperature under Ar and treated dropwise with lithium bis(trimethylsilyl)amide (1.0 M solution in tetrahydrofuran; $14 \mathrm{~mL}, 14 \mathrm{mmol}$). The resulting suspension was stirred for 3 h min at $45^{\circ} \mathrm{C}$. The mixture was treated with 5 N aq $\mathrm{HCl}(10 \mathrm{~mL})$ and stirred at room temperature for 10 min . The dark solution was concentrated in vacuo to $\sim 50 \mathrm{~mL}$ then added slowly to satd $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ to afford a tan precipitate. The solid was collected by suction filtration and re-dissolved in EtOAc (400 mL). The solution was washed with water (100 mL), satd $\mathrm{NaCl}(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford 1.3 g crude. The crude product was adsorbed onto a plug of silica gel and chromatographed through a Redi-Sep® pre-packed silica gel column $(120 \mathrm{~g})$, eluting with a gradient of 20% to $80 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over 20 min to provide 4-(6-methyl-5-(3-(6-(methylamino)pyrimidin-4-yl)pyridin-2-ylamino)isoquinolin-1-ylamino)benzonitrile ($0.61 \mathrm{~g}, 61 \%$ yield) as a \tan solid. ${ }^{1}$ H NMR (400 MHz , d6-DMSO) $\delta 11.09$ (br. s., 1 H); 9.63 (s, 1 H); 8.60 (br. s., 1 H); 8.38 (d, J=8.61 Hz, 1
H); 8.12 (d, J=9.00 Hz, 2 H); 8.05 (br. s., 1 H); 8.02 (d, J=6.06 Hz, 1 H); 7.95 (dd, J=4.69, 1.37 Hz, 1 H); 7.74 (d, J=8.80 Hz, 2 H); 7.62 (d, J=8.80 Hz, 1 H); 7.55 (br. s., 1 H); 7.27 (d, J=5.87 Hz, 1 H); 7.00 (s, 1 H); 6.79 (dd, $\mathrm{J}=7.73,4.79 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.91(\mathrm{~d}, \mathrm{~J}=4.69 \mathrm{~Hz}, 3 \mathrm{H}) ; 2.35$ (s, 3 H). HPLC purity >99\%. MS (ESI, +ve ion) m/z 459.6, $(\mathrm{M}+\mathrm{H})^{+}$.

N1-(3-Ethynylphenyl)-6-methyl-N5-(3-(6-(methylamino)pyrimidin-4-yl)pyridin-2-yl)isoquinoline-1,5-diamine

 (15)A 12 L round bottom flask with open flange head, equipped with overhead mechanical stirrer and temperature probe was assembled and purged with nitrogen. The flask was charged with N1-chloro-N1-(3-ethynylphenyl)-6-methylisoquinoline-1,5-diamine ($131.31 \mathrm{~g}, 424 \mathrm{mmol}$), 6-(2-fluoropyridin-3-yl)-N-methylpyrimidin-4-amine (95 g , $466 \mathrm{mmol})$ and THF (600 mL). The pink slurry was cooled in an ice-water bath and lithium bis(trimethylsilyl)amide, 1.0M in THF ($2543 \mathrm{~mL}, 2543 \mathrm{mmol}$) was added via large teflon cannula and the mixture was stirred for 5.5 h . The reaction mixture was quenched by addition of water (600 mL). Two homogeneous layers (aqueous and organic) were observed, but when this was poured into separating funnel a lot of solid crashed out which obscured the interface. The layers were separated as best as possible. An interphase of organic and aqueous containing a lot of solid was filtered. The filter cake was shown to contain the desired product. The filtrate was combined with the organic extracts. The biphasic filtrate was separated and the aqueous fraction was extracted with isopropyl acetate (3x). These organic extracts were combined with the previous organic extracts and filter cake and concentrated under vacuum to a dark brown solid. Purification by SFC gave 130 g of product (67%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, d ${ }_{6}$-DMSO) $\delta 11.05$ (br. s., 1 H); 9.23 (s, 1 H); 8.61 (br. s., 1 H); 8.37 (d, J=8.53 Hz, 1 H); 8.12 (s, 1 H); 8.02 (br. s., 1 H); 7.90-7.98 (m, 3 H); 7.58 (d, J=8.53 Hz, 2 H); 7.33 (t, J=8.03 Hz, 1 H); 7.15 (d, J=6.02 Hz, 1 H); 7.08 (d, J=7.53 Hz, 1 H); 6.99 (s, 1 H); 6.79 (dd, J=7.53, $5.02 \mathrm{~Hz}, 1 \mathrm{H}$); 4.13 (s, 1 H); 2.91 (d, J=5.02 Hz, 3 H); 2.34 (s, 3 H). HPLC purity $>99 \%$. MS (ESI, +ve ion) $m / z 457.8,(\mathrm{M}+\mathrm{H})^{+}$.

6-Methyl-N5-(3-(6-(methylamino)pyrimidin-4-yl)pyridin-2-yl)-N1-(2-methylbenzo[d]thiazol-5-

yl)isoquinoline-1,5-diamine (16)

A mixture of 1-chloro-6-methyl-N-(3-(6-(methylamino)pyrimidin-4-yl)pyridin-2-yl)isoquinolin-5-amine (752 mg, 2.00 mmol), 2-methylbenzo[d]thiazol-5-amine ($360 \mathrm{mg}, 2.20 \mathrm{mmol}$), tris(dibenzylideneacetone)dipalladium (0) (73
$\mathrm{mg}, 0.08 \mathrm{mmol})$ and DavePhos ($63 \mathrm{mg}, 0.16 \mathrm{mmol}$) was suspended in THF $(6 \mathrm{~mL})$ and the mixture was sonicated for 5 min to give a homogeneous suspension. LiHMDS (1.0 M solution in THF; 9.0 mL) was added and the mixture was sonicated again for 5 min , and then stirred for 16 h . The reaction mixture was partitioned between $\mathrm{DCM} / \mathrm{NaHCO} 3$ (aq., sat.). The organic layer was reduced in volume and loaded on silica gel and purified via a flash column ($2 \mathrm{M} \mathrm{NH}_{3}-\mathrm{MeOH} / \mathrm{DCM}=0-6 \%$) on an ISCO system. The desired fractions were combined and concentrated in vacuo. The residue was triturated with EtOAc to give 300 mg (30% yield) of the desired product as a fluffy yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d}_{4}-\mathrm{MeOH}$) $\delta 8.56(\mathrm{~s}, 1 \mathrm{H}) ; 8.31(\mathrm{~d}, \mathrm{~J}=1.70 \mathrm{~Hz}, 1 \mathrm{H}) ; 8.25(\mathrm{~d}, \mathrm{~J}=8.67 \mathrm{~Hz}$, 1 H); 8.11 (br. s., 1 H); 7.89 (dd, J=4.90, $1.51 \mathrm{~Hz}, 1 \mathrm{H}$); 7.83 (d, J=7.54 Hz, 2 H); $7.62-7.69$ (m, 1 H); 7.56 (d, $\mathrm{J}=8.67 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.25$ (d, J=6.22 Hz, 1 H); 6.97 ($\mathrm{s}, 1 \mathrm{H}) ; 6.79$ (dd, J=7.54, $4.90 \mathrm{~Hz}, 1 \mathrm{H}$); 2.99 (s, 3 H); 2.82 ($\mathrm{s}, 3$ H); 2.39 ($\mathrm{s}, 3 \mathrm{H}$). HPLC purity $>99 \%$. MS (ESI, +ve ion) $m / z 505.2$, (M+H) ${ }^{+}$.

6-Methyl-5-nitroisoquinolin-1(2H)-one

1-Chloro-6-methyl-5-nitroisoquinoline ($50 \mathrm{~g}, 225 \mathrm{mmol}$) was suspended in THF ($500 \mathrm{~mL}, 10 \mathrm{~mL} / \mathrm{g}$) and treated with $5 \mathrm{~N} \mathrm{aq} \mathrm{HCl}(500 \mathrm{~mL}, 10 \mathrm{~mL} / \mathrm{g})$. The suspension was stirred vigorously in a 2 L Morton Flask under a reflux condenser and heated with a heating mantle to reflux overnight (14 h). The resulting suspension was allowed to cool to room temperature $\left(22^{\circ} \mathrm{C}\right)$. The solid was removed by suction filtration and the filtrate set aside. The solid was washed with water $(100 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$ and hexane $(100 \mathrm{~mL})$, then air-dried to afford 40 g as a light yellow powder. The reserved filtrate was concentrated in vacuo to a volume of $\sim 500 \mathrm{~mL}$ to afford a second crop of product. The second crop was washed with water $(100 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$ and hexane $(100 \mathrm{~mL})$, then airdried to afford 4 g as an orange powder. A total of 44 g (87% yield) of the title compound were isolated in this fashion. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 11.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ; 8.30(\mathrm{~d}, \mathrm{~J}=8.53 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.55(\mathrm{~d}, \mathrm{~J}=8.53 \mathrm{~Hz}, 1 \mathrm{H})$; 7.29-7.42 (m, 1 H); $6.22(\mathrm{~d}, \mathrm{~J}=7.53 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.42(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI},+\mathrm{ve}\right.$ ion) $\mathrm{m} / \mathrm{z} 205$, (M+H) ${ }^{+}$.

5-Amino-6-methylisoquinolin-1(2H)-one

A solution of 6-methyl-5-nitroisoquinolin-1(2H)-one ($16.4 \mathrm{~g}, 80.3 \mathrm{mmol}$) in EtOH ($150 \mathrm{~mL} / \mathrm{g}$) was treated with palladium, $10 \mathrm{wt} . \%$ on activated carbon $(2.11 \mathrm{~g})$. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ and the starting material dissolved. The reaction was stirred under H_{2} for 16 h . The reaction mixture was then filtered through a pad of celite warm, and washed with excess EtOH and DMF. The filtrate was concentrated and the resulting residue
was dissolved in a mininal amount of DMF. This solution was then poured into ice water. The resulting ppt was collected by filtration and dried in a vacuum oven to give 5 -amino-6-methylisoquinolin-1 $(2 \mathrm{H})$-one ($13.2 \mathrm{~g}, 94 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}$) $\delta 10.95(\mathrm{~s}, 1 \mathrm{H}) ; 7.37(\mathrm{~d}, \mathrm{~J}=8.03 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.09(\mathrm{~d}, \mathrm{~J}=8.03 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.97-$ 7.03 (m, 1 H); 6.75 (d, J=7.53 Hz, 1 H); 5.28 (br s, 2 H); 2.19 (s, 3 H). MS (ESI, +ve ion) m/z 175, (M+H).

5-Iodo-6-methylisoquinolin-1(2H)-one (17)

A suspension of 5-amino-6-methylisoquinolin-1 (2 H)-one ($13.719 \mathrm{~g}, 78.75 \mathrm{mmol}$) in conc. $\mathrm{HCl}(200 \mathrm{~mL})$ was treated drpwise with sodium nitrate $(6.520 \mathrm{~g}, 94.51 \mathrm{mmol})$ in 50 mL water at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min and then potassium iodide ($39.22 \mathrm{~g}, 236.3 \mathrm{mmol}$) in water (50 ml) was added. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was filtered and washed with excess water. The resulting brown solid was then stirred in a saturated solution of sodium sulfite for 30 min . The resulting yellow ppt was collected by filtration and dried in vacuum oven overnight to give 5-iodo-6-methylisoquinolin-1 $(2 \mathrm{H})$-one ($19.80 \mathrm{~g}, 88 \%$ yield) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 11.44(\mathrm{~s}, 1 \mathrm{H}) ; 8.10(\mathrm{~d}, \mathrm{~J}=8.18 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.45(\mathrm{~d}, \mathrm{~J}=8.18 \mathrm{~Hz}, 1$ H); 7.29 (dd, J=7.31, $5.99 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.70(\mathrm{~d}, \mathrm{~J}=7.45 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.57$ (s, 3 H). MS (ESI, +ve ion) $\mathrm{m} / \mathrm{z} 285.9$, (M+H) ${ }^{+}$.

6-Methyl-5-(2-(methylamino)quinazolin-6-yl)isoquinolin-1(2H)-one

A clear 80 mL microwave vessel was charged with N -methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazolin-2-amine ($2.40 \mathrm{~g}, 8.42 \mathrm{mmol}$) , 5-iodo-6-methylisoquinolin-1(2 H)-one ($2.00 \mathrm{~g}, 7.02 \mathrm{mmol}$), tetrakis(triphenylphosphine) palladium(0) $(0.811 \mathrm{~g}, 0.702 \mathrm{mmol}$), 2 M aqueous sodium carbonate ($10.5 \mathrm{~mL}, 21.0$ mmol) and 12.0 mL of dioxane. The mixture was capped and heated in a CEM microwave reactor for 15 min at $160^{\circ} \mathrm{C}$ with the PowerMax set at 150 W . The reaction was then partioned between water and chloroform, adding methanol for solubility. The organic layer was dried with sodium sulfate and purified by column chromatography on silica gel using a gradient of 2 to $10 \% \mathrm{MeOH}$ in DCM to give 6-methyl-5-(2-(methylamino)quinazolin-6-yl)isoquinolin- $1(2 \mathrm{H})$-one ($1.15 \mathrm{~g}, 52 \%$ yield) as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d} 6-\mathrm{DMSO}$) $\delta 11.24$ (d, $\mathrm{J}=5.70 \mathrm{~Hz}, 1 \mathrm{H}) ; 9.12$ (s, 1 H); 8.17 (d, J=8.33 Hz, 1 H); 7.67 (d, J=1.75 Hz, 1 H); 7.61 (d, J=8.49 Hz, 1 H); 7.53 (dd, J=8.50, 1.75 Hz, 3 H); 7.47 (d, J=8.33 Hz, 1 H); 7.40-7.46 (m, 1 H); 7.00-7.08 (m, 1 H); 5.90 (d, J=7.31 Hz, $1 \mathrm{H}) ; 2.93$ (d, J=4.68 Hz, 3 H); 2.18 (s, 3 H). MS (ESI, +ve ion) $\mathrm{m} / \mathrm{z} 317.2$, (M+H) ${ }^{+}$.

6-(1-Chloro-6-methylisoquinolin-5-yl)-N-methylquinazolin-2-amine

6-Methyl-5-(2-(methylamino)quinazolin-6-yl)isoquinolin-1(2H)-one (13.20 g, 41.7 mmol) was treated with phosphorus oxychloride (15.0 mL) and the was mixture heated to $100^{\circ} \mathrm{C}$ resulting in a clear solution. Stirring was continue for 2 h . The reaction was then cooled down to RT and the volatiles removed in vacuo. Residual POCl_{3} was removed by azeotroping (2 x) with toluene. Crushed ice was added to the flask. The mixutre was allowed to stirr for 30 min . The solid that formed was collected by suction filtration and dried in a vacuum oven. The product was purified by flash chromatography on silica gel using 2 to $8 \% \mathrm{MeOH}$ in DCM to give 6-(1-chloro-6-methylisoquinolin-5-yl)-N-methylquinazolin-2-amine ($11.4 \mathrm{~g}, 82 \%$ yield) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , d6-DMSO) $\delta 9.14$ (s, 1 H); 8.28 (d, J=8.77 Hz, 1 H); 8.17 (d, J=5.99 Hz, 1 H); 7.83 (d, J=8.77 Hz, 1 H); 7.74 (d, J=1.46 Hz, 1 H); 7.65 (d, J=8.50 Hz, 1 H); 7.59 (dd, J=8.50, $1.85 \mathrm{~Hz}, 1 \mathrm{H}$); 7.49 (d, J=4.24 Hz, 1 H); 7.23 (d, $\mathrm{J}=5.85 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.95(\mathrm{~d}, \mathrm{~J}=4.68 \mathrm{~Hz}, 3 \mathrm{H}) ; 2.31(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI},+\mathrm{ve}\right.$ ion) $\mathrm{m} / \mathrm{z} 335.1,(\mathrm{M}+\mathrm{H})^{+}$.

6-(1-(4-Chlorophenylamino)-6-methylisoquinolin-5-yl)-N-methylquinazolin-2-amine (18)

A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.0049 \mathrm{~g}, 0.0054 \mathrm{mmol})$, sodium 2-methylpropan-2-olate $(0.017 \mathrm{~g}, 0.18 \mathrm{mmol}), 4$ chlorobenzenamine ($0.023 \mathrm{~g}, 0.18 \mathrm{mmol}$), 6-(1-chloro-6-methylisoquinolin-5-yl)-N-methylquinazolin-2-amine $(0.060 \mathrm{~g}, 0.18 \mathrm{mmol})$, DavePhos ($0.0051 \mathrm{~g}, 0.011 \mathrm{mmol}$) and 1,4-dioxane (2.5 mL) in a 5 mL microwave vessel was stirred at $120^{\circ} \mathrm{C}$ for 1.5 h . The mixture was diluted with EtOAc, washed with 5% brine (2X), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Silica gel chromatography with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 6-(1-(4-chlorophenylamino)-6-methylisoquinolin-5-yl)-N-methylquinazolin-2-amine ($0.045 \mathrm{~g}, 59 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, d d_{6}-DMSO) $\delta 9.31$ (s, 1 H); 9.14 (br. s., 1 H); 8.51 (d, J=8.80 Hz, 1 H); 7.91 - 7.99 (m, 2 H); 7.87 (d, J=6.06 Hz, 1 H); 7.70 (d, J=1.76 Hz, 1 H); 7.59-7.65 (m, 2 H); 7.55 (dd, J=8.61, $1.96 \mathrm{~Hz}, 1 \mathrm{H}$); 7.43 (br. s., 1 H); 7.31 $7.38(\mathrm{~m}, 2 \mathrm{H}) ; 6.58(\mathrm{~d}, \mathrm{~J}=6.06 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.94(\mathrm{~d}, \mathrm{~J}=4.89 \mathrm{~Hz}, 3 \mathrm{H}) ; 2.25(\mathrm{~s}, 3 \mathrm{H})$. HPLC purity $=95.6 \%$. MS (ESI, + ve ion) $m / z 426.0,(\mathrm{M}+\mathrm{H})^{+}$.

6-(1-(3-tert-Butyl-1-methyl-1H-pyrazol-5-ylamino)-6-methylisoquinolin-5-yl)-N-methylquinazolin-2-amine

 (19)A clear 80 mL microwave vessel was charged with 6-(1-chloro-6-methylisoquinolin-5-yl)-N-methylquinazolin-2amine ($3.300 \mathrm{~g}, 9.9 \mathrm{mmol}$), Davephos ($0.16 \mathrm{~g}, 0.39 \mathrm{mmol}$), 5-amino-3-tert-butyl-1-methyl pyrazole ($1.7 \mathrm{~g}, 11$
$\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.18 \mathrm{~g}, 0.20 \mathrm{mmol})$ and 30 ml of dioxane. Nitrogen was bubbled into the reaction for 10 mins and lithium bis(trimethylsilyl)amide, 1.0 M in THF ($20 \mathrm{~mL}, 20 \mathrm{mmol}$) was added. The reaction was heated to 150 ${ }^{\circ} \mathrm{C}$ in a CEM microwave reactor for 10 min with the PowerMax set at 120 W . The volatiles were removed under vacuum and the residue was taken up in DCM, preadsorbed onto silica gel and purified by column chromatography on silica gel using a gradient of 40 to 100% of EtOAc in hexanes and then 0 to $10 \% \mathrm{MeOH}$ in EtOAc. The pure fractions were combined and concentrated under vacuum. The residue was disolved in warm ether. Upon cooling a solid precipitated out. It was filtered off, washed with cold ether and dried to give $2.7 \mathrm{~g}(61 \%)$ of the desired produt as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 9.04-9.21(\mathrm{~m}, 2 \mathrm{H}) ; 8.38(\mathrm{~d}, \mathrm{~J}=8.62 \mathrm{~Hz}, 1 \mathrm{H})$; 7.76 (d, J=5.99 Hz, 1 H); 7.68 (d, J=1.32 Hz, 1 H); $7.50-7.64$ (m, 3 H); 7.43 (br. s., 1 H); 6.51 (d, J=5.99 Hz, 1 H); $6.04(\mathrm{~s}, 1 \mathrm{H}) ; 3.54(\mathrm{~s}, 3 \mathrm{H}) ; 2.94(\mathrm{~d}, \mathrm{~J}=4.82 \mathrm{~Hz}, 3 \mathrm{H}) ; 2.25(\mathrm{~s}, 3 \mathrm{H}) ; 1.26(\mathrm{~s}, 9 \mathrm{H})$. HPLC purity >99\%. MS (ESI, +ve ion) $m / z 451.9,(\mathrm{M}+\mathrm{H})^{+}$.

3,3-Dimethyl-6-(6-methyl-5-(2-(methylamino)quinazolin-6-yl)isoquinolin-1-ylamino)indolin-2-one (20)

6-(1-Chloro-6-methylisoquinolin-5-yl)-N-methylquinazolin-2-amine ($0.150 \mathrm{~g}, 0.45 \mathrm{mmol}$), 6-amino-3,3-dimethylindolin-2-one ($0.087 \mathrm{~g}, 0.49 \mathrm{mmol}$), tris(dibenzylideneacetone)dipalladium (0) ($0.021 \mathrm{~g}, 0.022 \mathrm{mmol}$) and 2-dicyclohexylphosphino-2'-(N,N-dimethylamino)biphenyl ($0.018 \mathrm{~g}, 0.045 \mathrm{mmol}$) were all placed in a clear microwave vial along with 3 mL of dioxane. LiHMDS, 1.0 M in THF ($1.1 \mathrm{~mL}, 1.1 \mathrm{mmol}$) was added and the vial was capped. The reaction was heated in the the PersonalChemistry SmithSynthesizer to $150{ }^{\circ} \mathrm{C}$ for 10 min . The reaction was diluted with water and extracted with ethyl acetate. The organic layer was washed (2x) with an aqueous saturated solution of sodium bicarbonate, then with water and then brine. The organic layer was then dried with sodium sulfate and concentrated under reduced pressure. The residue was purified by preparative HPLC using a gradient of $5 \% \mathrm{MeCN} 0.1 \%$ TFA to $95 \% \mathrm{MeCN} 0.1 \%$ TFA in water 0.1% TFA. The pure fractions were neutralized with ammonium hydroxide and the volatiles were removed under reduced pressure. The solid that crashed out of the aqueous layer was filtered off, washed with with water and dried in a vacuum oven at 45 degrees to give 3,3-dimethyl-6-(6-methyl-5-(2-(methylamino)quinazolin-6-yl)isoquinolin-1-ylamino)indolin-2-one (0.084 $\mathrm{g}, 40 \%$ yield) as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 10.31$ (s, 1 H); 9.23 (br. s., 1 H); 9.14 (s, 1 H); 8.52 (d, J=8.62 Hz, 1 H); 7.83 (d, J=5.99 Hz, 1 H); $7.70(\mathrm{~d}, \mathrm{~J}=1.61 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.52-7.66$ (m, 4 H); 7.41-7.48
(m, 1 H); 7.31-7.40 (m, 1 H); 7.20 (d, J=8.04 Hz, 1 H); 6.54 (d, J=6.14 Hz, 1 H); 2.91-2.99 (m, 3 H); 2.25 (s, 3 H); $1.25(\mathrm{~s}, 6 \mathrm{H})$. HPLC purity $>99 \%$. MS (ESI, +ve ion) $m / z 475.2$, (M+H) ${ }^{+}$.

6-Chloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (22)

A suspension of 6-chloro-9H-purine ($25.36 \mathrm{~g}, 164 \mathrm{mmol}$) (Alfa Aesar) and 4-methylbenzenesulfonic acid (0.565 g , 3.28 mmol) in EtOAc (250 mL) was treated with 3,4-dihydro-2H-pyran ($44.9 \mathrm{~mL}, 492 \mathrm{mmol}$). The mixture was heated at $90^{\circ} \mathrm{C}$ and the solid slowly dissolved over 1 h . The flask was removed from the oil bath and the cloudy yellow solution was filtered and concentrated in vacuo.

The pale yellow residue was dissolved in DCM and purified by flash chromatography ($50 \% \mathrm{EtOAc} /$ hexane) (1 L silica / 4 L solvent) to give 6-chloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine ($38.90 \mathrm{~g}, 99 \%$ yield) as a colorless oil which slowly crystallized. ${ }^{1} \mathrm{H}$ NMR (400 MHz , d6-DMSO) $\delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~d}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1$ H), $3.75(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H})$.

6-(2-Fluoropyridin-3-yl)-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (23)

A solution of 6-chloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine ($33.06 \mathrm{~g}, 139 \mathrm{mmol}$) in ethanol (560 mL) was sequentially treated with water (80 mL), 2-fluoropyridin-3-ylboronic acid ($25.4 \mathrm{~g}, 180 \mathrm{mmol}$), potassium acetate ($29.9 \mathrm{~g}, 305 \mathrm{mmol}$) and bis(di-tert-butyl-(4-dimethylaminophenyl)phosphine)dichloropalladium(II) (APhos) ($1.47 \mathrm{~g}, 2.1 \mathrm{mmol})$. The stirred mixture was degassed (alternating vacuum / nitrogen) and heated under nitrogen at $80^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled and concentrated to give a sticky solid which was extracted into EtOAc (500 mL) from water (400 mL). The aqueous layer was extracted with EtOAc (200 mL) and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through celite, and concentrated. The crude product was dissolved in a minimum volume of DCM and purified by flash chromatography ($50 \%->75 \%->100 \% \mathrm{EtOAc} /$ hexane) to give 6-(2-fluoropyridin-3-yl)-9-(tetrahydro-2H-pyran-2-yl)-9H-purine ($40.0 \mathrm{~g}, 96 \%$ yield) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, d6-DMSO) $\delta 9.11(\mathrm{~s}, 1 \mathrm{H}), 8.91$ ($\mathrm{s}, 1 \mathrm{H}), 8.58(\mathrm{~m}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 1 \mathrm{H}), 5.85(\mathrm{~d}, 1$ H), $4.05(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H})$.

N^{1}-(4-Chlorophenyl)-6-methyl- N^{5}-(3-(9-(tetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)pyridin-2-yl)isoquinoline-

1,5-diamine (24)

6-(2-fluoropyridin-3-yl)-9-(tetrahydro-2H-pyran-2-yl)-9H-purine ($3.273 \mathrm{~g}, 10.94 \mathrm{mmol}$) and N1-(4-chlorophenyl)-6-methylisoquinoline-1,5-diamine ($3.103 \mathrm{~g}, 10.94 \mathrm{mmol}$) were dissolved in anhydrous THF (30 mL) under nitrogen. [Gentle heating was applied with a heat gun to aid dissolution]. The deep red solution was cooled in an ice/water bath and treated dropwise with LiHMDS (55 mL of a 1.0 M solution in THF, 5 equiv.). The resulting deep orange/red solution was stirred for 1 h (ice bath cooling). The deep orange/red reaction mixture was quenched with dropwise addition of water (2 mL - ice bath cooling) resulting in a light orange solution containing a white solid in suspension. The mixture was concentrated to a give yellow solid which was suspended in EtOAc (500 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered through a plug of celite to give a yellow solution. The solution was concentrated, suspended in Et2O and dried to give N^{1}-(4-chlorophenyl)-6-methyl- N^{5}-(3-(9-(tetrahydro-2H-pyran-2-yl)-9H-purin6 -yl)pyridin-2-yl)isoquinoline-1,5-diamine ($6.157 \mathrm{~g}, 100 \%$ yield) as a yellow solid (97% pure by LCMS). ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{d} 6-\mathrm{DMSO}$) $\delta 11.69(\mathrm{~s}, 1 \mathrm{H}), 9.65(\mathrm{~d}, 1 \mathrm{H}), 9.27(\mathrm{~s}, 1 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, 1 \mathrm{H}), 8.06$ (d, 1 H), $7.95(\mathrm{~d}, 2 \mathrm{H}), 7.90(\mathrm{~d}, 1 \mathrm{H}), 7.60(\mathrm{~d}, 1 \mathrm{H}), 7.34(\mathrm{~d}, 2 \mathrm{H}), 7.13(\mathrm{~d}, 1 \mathrm{H}), 6.91(\mathrm{dd}, 1 \mathrm{H}), 5.90(\mathrm{~d}, 1 \mathrm{H}), 4.06$ (m, 1 H$), 3.75(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H})$.

N^{5}-(3-(9H-Purin-6-yl)pyridin-2-yl)- N^{1}-(4-chlorophenyl)-6-methylisoquinoline-1,5-diamine dihydrochloride

 hydrate (1)N^{1}-(4-chlorophenyl)-6-methyl-N5-(3-(9-(tetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)pyridin-2-yl)isoquinoline-1,5diamine ($6.137 \mathrm{~g}, 11 \mathrm{mmol}$) was suspended in 0.5 M aqueous $\mathrm{HCl}(200 \mathrm{~mL}, 100 \mathrm{mmol})$ and heated to reflux. The bulk of the solid dissolved to give a yellow solution. LCMS analysis indicated complete removal of the THP protecting group in a clean conversion. The hot solution was filtered, washing with boiling water ($2 \times 20 \mathrm{~mL}$). The resulting solution was cooled in an ice bath and product crystallised from solution as a yellow solid. N^{5}-(3-(9H-purin-6-yl)pyridin-2-yl)- N^{1}-(4-chlorophenyl)-6-methylisoquinoline-1,5-diamine dihydrochloride hydrate (4.516 g , 73% yield) was collected by filtration and dried under vacuum. HCl determination by ion chromatography indicated a dihydrochloride salt. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 12.13$ (br. s., 1 H); 11.58 (br. s., 1 H); 9.79 (d, J=7.04 Hz, 1 H); 9.08 (s, 1 H); 8.82 (d, J=8.61 Hz, 1 H); 8.78 ($\mathrm{s}, 1 \mathrm{H}$); 8.06 (dd, J=5.09, 1.76 Hz, 1 H); 7.89 (d,

J=8.80 Hz, 1 H); 7.62-7.70 (m, 4 H); 7.51 (d, J=7.24 Hz, 1 H); 7.24 (d, J=7.04 Hz, 1 H); 7.05 (dd, J=7.63, 5.09 $\mathrm{Hz}, 1 \mathrm{H}) ; 2.47$ (s, 3 H). HPLC purity $>99 \%$. MS (ESI, +ve ion) $m / z 479.2$, (M+H) ${ }^{+}$.

Compound 1 Determination of HCl content by IC

TGA:

IC:
Table 1. HCl Contents Determined by IC

Sample ID	$\mathrm{Wt}_{(\mathrm{mg})^{*}}$	$\mathrm{HCl}(\%)$	Molar ratio $\mathrm{HCl}:$ Compound $\mathbf{1}$	Report
$83482-16-2$ prep.1	6.227	13.96	$2.13: 1.0$	$2.1: 1.0$
$83482-16-2$ prep.2	6.741	13.95	$2.13: 1.0$	

*Sample weight after corrected with the \%total volatile by TGA

Co-Crystal Structure Determination of B-Raf with Compound 1. B-Raf(433-726)V600E with an Nterminal His_{6} affinity tag, $\mathrm{His}_{6} \mathrm{~B}-\mathrm{Raf}$, and the co-chaperone p 50 Cdc 37 were cloned into the pFASTBac Dual vector (Invitrogen) and co-expressed by baculovirus-mediated infection of insect cells (Hi-5; Invitrogen), essentially as described. ${ }^{2}$ The protein was purified by immobilized metal affinity chromatography on Ni-NTA Superflow (Qiagen, Inc.), followed by cation exchange chromatography on Source 15S (GE Healthcare Life Sciences). 0.2 M NDSB-256 was included in buffers for the final column to minimize protein aggregation and precipitation. Purified protein was concentrated to $\sim 2 \mathrm{mg} / \mathrm{ml}$ using an Ultrafree- 0.5 concentrator (Millipore) and compound 1 was added to a concentration of 0.4 mM . Crystals were grown at room temperature by vapor diffusion in hanging drops consisting of $0.8 \mu \mathrm{~L}$ of protein solution mixed with an equal volume of well solution (17% (w/v) PEG $8000,75 \mathrm{mM}$ sodium succinate, 0.1 M Tris, pH 8.6). For data collection, crystals were transferred sequentially into mother liquor containing 5-30\% ethylene glycol before flash-cooling in liquid nitrogen. X-ray diffraction data were collected at beamline 5.0.2 of the Advanced Light Source at Lawrence Berkeley National Laboratories using an ADSC Quantum 315 detector and $\lambda=1.000 \AA$. Data were indexed and scaled using the HKL suite of programs. ${ }^{3}$ B-Raf crystals belonged to space group $\mathrm{P} 4_{1} 2_{1} 2$ with two molecules per asymmetric unit. Unit cell dimensions were $\mathrm{a}=\mathrm{b}=93.5 \AA$ and $\mathrm{c}=166.7 \AA$. Data collection statistics appear in Table S1.

The structure was solved by molecular replacement using EPMR ${ }^{4}$ and the coordinates of wild-type B-Raf + sorafenib (PDB code 1UWH) as a search model. ${ }^{2}$ Refinements were performed with REFMAC5 ${ }^{5}$ as implemented in CCP4 ${ }^{6}$ and model building was done with COOT. ${ }^{7}$ The final model contained two protein molecules, two inhibitor molecules, and 79 water molecules and had good geometry with 89.6% and 9.9% of the residues located in the most favored and additionally allowed regions of the Ramachandran plot, respectively. Data refinement statistics appear in Table S1.

Table S1. Data collection and refinement statistics

	B-RAF + Compound $\mathbf{1}$
Data Collection	
Resolution (A)	$30-2.70(2.80-2.70)$
Total reflections	117105
Unique reflections	19744
Completeness (\%)	$93.8(68.7)$
$\mathrm{R}_{\text {merge }}$	$0.133(0.370)$
I/ $\sigma(\mathrm{I})$	$15.3(2.0)$
Refinement	
Reflections used	18168
$\mathrm{R}_{\text {cryst }}$	0.201
$\mathrm{R}_{\text {free }}$	0.264
Average B-value $\left(\AA^{2}\right)$	44.6
Number of protein atoms	4085
Number of ligand atoms	70
Number of solvent atoms	79
r.m.s.d. bonds (\AA)	0.008
r.m.s.d. angles $\left({ }^{\circ}\right)$	1.13

Ambit KinomeScan Kinase Profiling ($1 \mu \mathrm{M}$ test concentration):-

			CAMK2B	100	No
	Percent of	Call a	CAMK2D	79	No
Ambit Gene Symbol	Control	Hit	CAMK2G	98	No
AAK1	92	No	CAMK4	96	No
ABL1	51	No	CAMKK1	96	No
ABL1(E255K)	80	No	CAMKK2	98	No
ABL1(F317I)	86	No	CDC2L1	42	No
ABL1(F317L)	79	No	CDC2L2	33	Yes
ABL1 (H396P)	84	No	CDK11	100	No
ABL1(M351T)	45	No	CDK2	100	No
ABL1 (Q252H)	71	No	CDK3	84	No
ABL1(T315I)	72	No	CDK5	100	No
ABL1 (Y253F)	61	No	CDK7	100	No
ABL2	42	No	CDK8	100	No
ACVR1	100	No	CDK9	97	No
ACVR1B	82	No	CDKL2	100	No
ACVR2A	100	No	CHEK1	100	No
ACVR2B	100	No	CHEK2	100	No
ACVRL1	92	No	CIT	64	No
ADCK3	100	No	CLK1	100	No
ADCK4	77	No	CLK2	100	No
AKT1	100	No	CLK3	94	No
AKT2	88	No	CLK4	100	No
AKT3	96	No	CSF1R	0.25	Yes
ALK	96	No	CSK	100	No
AMPK-alpha1	89	No	CSNK1A1L	95	No
AMPK-alpha2	96	No	CSNK1D	99	No
ANKK1	100	No	CSNK1E	99	No
ARK5	100	No	CSNK1G1	91	No
AURKA	100	No	CSNK1G2	100	No
AURKB	85	No	CSNK1G3	100	No
AURKC	86	No	CSNK2A1	100	No
AXL	95	No	CSNK2A2	100	No
BIKE	70	No	DAPK1	90	No
BLK	75	No	DAPK2	100	No
BMPR1A	100	No	DAPK3	100	No
BMPR1B	96	No	DCAMKL1	80	No
BMPR2	100	No	DCAMKL2	100	No
BMX	91	No	DCAMKL3	100	No
BRAF	2.2	Yes	DDR1 dyscoidin domain recept	0.1	Yes
BRAF(V600E)	2.6	Yes	DDR2	6.6	Yes
BRSK1	91	No	DLK	76	No
BRSK2	87	No	DMPK	100	No
BTK	91	No	DMPK2	99	No
CAMK1	100	No	DRAK1	100	No
CAMK1D	100	No	DRAK2	96	No
CAMK1G	100	No	DYRK1B	100	No
CAMK2A	100	No	EGFR	100	No

EGFR(E746-A750del)	86	No	IKK-alpha	100	No
EGFR(G719C)	92	No	IKK-beta	100	No
EGFR(G719S)	92	No	IKK-epsilon	73	No
EGFR(L747-E749del, A750P)	89	No	INSR	86	No
EGFR(L747-S752del,			INSRR	78	No
P753S)	94	No	IRAK3	81	No
EGFR(L747-T751del,Sins)	98	No	ITK	100	No
EGFR(L858R)	100	No	JAK1(Kin.Dom.1)	98	No
EGFR(L861Q)	86	No	JAK1(Kin.Dom.2)	47	No
EGFR(S752-I759del)	90	No	JAK2(Kin.Dom.2)	3.9	Yes
EPHA1	4.6	Yes	JAK3(Kin.Dom.2)	100	No
EPHA2	2.8	Yes	JNK1	2.7	Yes
EPHA3	74	No	JNK2	86	No
EPHA4	22	Yes	JNK3	86	No
EPHA5	16	Yes	KIT	28	Yes
EPHA6	2.8	Yes	KIT(D816V)	100	No
EPHA7	4.7	Yes	KIT(V559D)	36	No
EPHA8	0.45	Yes	KIT(V559D,T670I)	77	No
EPHB1	2	Yes	KIT(V559D,V654A)	100	No
EPHB2	6.1	Yes	LATS1	76	No
EPHB3	10	Yes	LATS2	85	No
EPHB4	6.5	Yes	LCK	1.6	Yes
ERBB2	97	No	LIMK1	55	No
ERBB4	98	No	LIMK2	98	No
ERK1	100	No	LKB1	100	No
ERK2	100	No	LOK	0	Yes
ERK3	98	No	LTK	20	Yes
ERK4	100	No	LYN	18	Yes
ERK5	95	No	MAP3K3	40	No
ERK8	98	No	MAP3K4	100	No
FER	78	No	MAP3K5	100	No
FES	100	No	MAP4K1	100	No
FGFR1	80	No	MAP4K2	100	No
FGFR2	38	No	MAP4K3	85	No
FGFR3	100	No	MAP4K4	95	No
FGFR3(G697C)	100	No	MAP4K5	100	No
FGFR4	100	No	MAPKAPK2	100	No
FGR	100	No	MAPKAPK5	64	No
FLT1	2.2	Yes	MARK1	97	No
FLT3	62	No	MARK2	100	No
FLT3(D835H)	99	No	MARK3	100	No
FLT3(D835Y)	92	No	MARK4	100	No
FLT3(ITD)	92	No	MEK1	100	No
FLT3(K663Q)	75	No	MEK2	99	No
FLT3(N8411)	100	No	MEK3	100	No
FLT4	96	No	MEK4	93	No
FRK (Fyn related Kinase)	17	Yes	MEK6	96	No
FYN	82	No	MELK	100	No
GAK	92	No	MERTK	99	No
GCN2(Kin.Dom.2,S808G)	100	No	MET	73	No
GSK3A	100	No	MINK	80	No
GSK3B	100	No	MKNK1	100	No
HCK	53	No	MKNK2	100	No
HIPK1	99	No	MLCK	99	No
IGF1R	94	No	MLK1	100	No

MLK2	99	No	PKMYT1	85	No
MLK3	100	No	PKN1	100	No
MRCKA	87	No	PKN2	86	No
MRCKB	82	No	PLK1	100	No
MST1	88	No	PLK3	98	No
MST1R	97	No	PLK4	90	No
MST2	100	No	PRKCD	88	No
MST3	87	No	PRKCE	100	No
MST4	100	No	PRKCH	100	No
MUSK	66	No	PRKCQ	100	No
MYLK	76	No	PRKD1	100	No
MYLK2	100	No	PRKD2	100	No
MYO3A	99	No	PRKD3	100	No
MYO3B	68	No	PRKG1	93	No
NDR2	100	No	PRKG2	100	No
NEK1	100	No	PRKR	97	No
NEK2	90	No	PRKX	65	No
NEK5	98	No	PTK2	93	No
NEK6	100	No	PTK2B	40	No
NEK7	88	No	PTK6	13	Yes
NEK9	89	No	RAF1	0	Yes
NLK	83	No	RET	65	No
p38-alpha	91	No	RET(M918T)	100	No
p38-beta	99	No	RET(V804L)	100	No
p38-delta	100	No	RET(V804M)	96	No
p38-gamma	100	No	RIOK1	92	No
PAK1	76	No	RIOK2	100	No
PAK2	85	No	RIOK3	77	No
PAK3	87	No	RIPK1	92	No
PAK4	92	No	RIPK2	100	No
PAK6	100	No	RIPK4	64	No
PAK7/PAK5	90	No	ROCK2	100	No
PCTK1	98	No	ROS1	72	No
PCTK2	100	No	RPS6KA1(Kin.Dom.1)	94	No
PCTK3	95	No	RPS6KA1(Kin.Dom.2)	96	No
PDGFRA	88	No	RPS6KA2(Kin.Dom.1)	100	No
PDGFRB	78	No	RPS6KA2(Kin.Dom.2)	81	No
PDPK1	100	No	RPS6KA3(Kin.Dom.1)	91	No
PFTAIRE2	80	No	RPS6KA4(Kin.Dom.1)	100	No
PFTK1	100	No	RPS6KA4(Kin.Dom.2)	89	No
PHKG1	99	No	RPS6KA5(Kin.Dom.1)	90	No
PHKG2	100	No	RPS6KA5(Kin.Dom.2)	100	No
PIK3C2B	100	No	RPS6KA6(Kin.Dom.1)	92	No
PIK3CA	100	No	RPS6KA6(Kin.Dom.2)	86	No
PIK3CA(E545K)	100	No	SgK085	100	No
PIK3CB	100	No	SgK110	78	No
PIK3CD	100	No	SLK	40	No
PIK3CG	100	No	SNARK	100	No
PIM1	93	No	SNF1LK	75	No
PIM2	100	No	SNF1LK2	100	No
PIM3	100	No	SRC	73	No
PIP5K1A	95	No	SRMS	100	No
PIP5K2B	57	No	SRPK1	100	No
PKAC-alpha	100	No	SRPK2	100	No
PKAC-beta	94	No	SRPK3	100	No

STK16	100	No	TRKB	9.4	Yes
STK33	100	No	TRKC	2.2	Yes
STK35	92	No	TSSK1	71	No
STK36	92	No	TTK	100	No
SYK	86	No	TXK	100	No
TAK1	84	No	TYK2(Kin.Dom.1)	96	No
TAOK1	88	No	TYK2(Kin.Dom.2)	28	Yes
TAOK3	94	No	TYRO3	84	No
TEC	100	No	ULK1	82	No
TESK1	21	Yes	ULK2	100	No
TGFBR1	89	No	ULK3	100	No
TGFBR2	100	No	VEGFR2	29	Yes
TIE1	4.9	Yes	WEE1	92	No
TIE2	1.6	Yes	WEE2	97	No
TLK1	83	100	No	YANK2	95
TLK2	100	No	YANK3	No	84
TNIK	100	No	YES	52	No
TNK1	91	No	YSK1	No	
TNK2	21	Yes	ZAK	100	No
TNNI3K	15	Yes	ZAP70	87	No
TRKA			100	No	

PD-Efficacy Data for Compounds in Figure 4.

Compound	Dose (mg/kg)	PD Assay pERK \%Inh @ 6 h	A375 Tumor Growth \%Inhibition / Regression	$\begin{gathered} \mathrm{ED}_{50} \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \mathrm{ED}_{50} \mathrm{AUC}_{0-24 \mathrm{~h}} \\ (\mathrm{ng} . \mathrm{h} / \mathrm{mL}) \end{gathered}$
1	1 (QD)	18	22	1.3 (QD)	2,734
	2 (QD)	69	90		
	5 (QD)	77	Reg. 85		
14	10 (BID)	21	50	11.5 (BID)	52,800
	17.5 (BID)	63	80		
	35 (BID)	78	Reg. 17		
15	5 (BID)	5	18	13 (BID)	9,414
	20 (BID)	40	78		
	35 (BID)	81	Reg. 54		
16	10 (BID)	30	42	11 (BID)	12,300
	20 (BID)	52	85		
	35 (BID)	66	Reg. 24		
19	30 (BID)	50	60	27 (BID)	N/A
	60 (BID)	67	90		
	100 (BID)	78	Reg. 45		
20	10 (BID)	60	85	4.7 (BID)	N/A
	20 (BID)	82	Reg. 55		
	35 (BID)	85	Reg. 75		

Efficacy studies using A375 SQ2 xenograft model:

The A375 SQ2 cell line was generated by performing two serial in vivo passages in CD1 nude mice to optimize for tumor take and growth. All Raf inhibitors were formulated in 2% HPMC, 1% Tween 80, pH 2.2. Formulation alone was used to dose animals in vehicle groups. Five million cells suspended in Matrigel (BD Bioscience) were injected subcutaneously in each CD1 nu/nu female mouse (0.2 $\mathrm{mL} /$ mouse). When tumor volume reached approximately $200 \mathrm{~mm}^{3}$, mice were randomized into groups ($\mathrm{n}=10$) and treatment started. Dosing occurred orally (PO), once (QD) or twice daily (BID) every day at the dose indicated in milligram per kilogram ($\mathrm{mg} / \mathrm{kg}$) and lasted for the duration of the experiment (14 days dosing). Tumor volume and body weight were measured in a blinded fashion twice per week using calipers and an animal scale, respectively. ED_{50} values were calculated from the linear regression of the percent tumor inhibition on the last day of the experiment versus the dose of compound used using GraphPad Prism 5.1 software.

Supplementary Acknowledgements

X-ray data collection was conducted at the Advanced Light Source, a national user facility operated by Lawrence Berkeley National Laboratory on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The Berkeley Center for Structural Biology is supported in part by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences.

Supplementary References

1. Hodous, B. L.; Geuns-Meyer, S. D.; Hughes, P. E.; Albrecht, B. K.; Bellon, S.; Bready, J.; Caenepeel, S.; Cee, V. J.; Chaffee, S. C.; Coxon, A.; Emery, M.; Fretland, J.; Gallant, P.; Gu, Y.; Hoffman, D.; Johnson, R. E.; Kendall, R.; Kim, J. L.; Long, A. M.; Morrison, M.; Olivieri, P. R.; Patel, V. F.; Polverino, A.; Rose, P.; Tempest, P.; Wang, L.; Whittington, D. A.; Zhao, H. Evolution of a Highly Selective and Potent 2-(Pyridin-2-yl)-1,3,5-triazine Tie-2 Kinase Inhibitor. J. Med. Chem. 2007, 50, 611626.
2. Wan, P.T.C.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Cancer Genome Project; Jones, C.M.; Marshall, C.J.; Springer, C.J.; Barford, D.; Marais, R. Cell 2004, 116, 855-867.
3. Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 307-326.
4. Kissinger, E.R., Gehlhaar, D.K. \& Fogel, D.B. Rapid automated molecular replacement by evolutionary search. Acta Crystallogr. D 1999, 55, 484-491.
5. Murshudov, G.N.; Vagin, A.A.; Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D, 1997, 53, 240-255.
6. Collaborative Computational Project, No. 4 The CCP4 Suite: Programs for crystallography. Acta Crystallogr. D 1994, 50, 760-763.
7. Emsley, P; Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 2004, 60, 2126-2132.
