

Modular Approach to 9-Monosubstituted Fluorene Derivatives Using Mo^V Reagents

Peter Franzmann, Simon Trosien, Moritz Schubert, Siegfried R. Waldvogel*

*Johannes Gutenberg University Mainz, Institute of Organic Chemistry, Duesbergweg 10-14,
55128 Mainz, Germany*

E-Mail: waldvogel@uni-mainz.de

Supporting Information

Table of contents

General remarks	S2
Synthesis and characterization of the products	S3
NMR spectra	S15
References	S32

General remarks

All reagents were used of analytical grades. Solvents were desiccated if necessary by standard methods.¹ Flash chromatography was performed on silica gel (40–60 µm, Merck, Darmstadt, Germany) by using mixtures of cyclohexane with ethyl acetate or dichloromethane with methanol as eluents. For thin-layer chromatography, silica gel 60 sheets (F₂₅₄, Merck, Darmstadt, Germany) were applied. Novel compounds were characterized by ¹H NMR and ¹³C NMR, in addition to high resolution mass spectrometry. Copies of the ¹H and ¹³C NMR are attached. ¹H and ¹³C NMR spectra were recorded at 25 °C using a Bruker Avance III HD 300, Avance II 400 or Avance III 600 instrument (Analytische Messtechnik, Karlsruhe, Germany). All ¹H NMR experiments are reported in δ units, parts per million (ppm) downfield from tetramethylsilane (internal standard) and were referenced to the signal for residual d₆-N,N-dimethylformamide (8.03 ppm) or d₂-acetonitrile (1.94 ppm) in the deuterated solvent. All ¹³C NMR spectra are reported in ppm relative to deuterated N,N-dimethylformamide (163.15 ppm) or deuterated acetonitrile (1.32 ppm) and were obtained by ¹H decoupling. FD mass spectra were performed on a MAT 95 (Thermo Finnigan, Bremen, Germany) apparatus and ESI high resolution mass spectra were obtained by using a QTof Ultima 3 (Waters, Milford, Massachusetts) instrument.

Synthesis and characterization of the products

Reaction route A:

General protocol of the Knoevenagel-Doebner reaction (A I)

A solution of the benzaldehyde **3** (1.0 eq.), malonic acid (3.0 eq.) and piperidine (0.5 eq.) in pyridine was stirred at 115 °C until the evolution of CO₂ has stopped. Subsequently, the solvent was evaporated and the crude product was suspended in an aqueous 1% HCl solution (100 mL). The suspension was stored at 4 °C overnight and the product was filtered off and washed with cyclohexane to yield the product without further purification.

General protocol of the acid catalyzed 1,4-addition of veratrole (A II)

A solution of the cinnamic acid **4** (1.0 eq.) and veratrole (1.5–2.1 eq.) in trifluoroacetic acid was heated at 72 °C for the given time (3–96 h). Subsequently, the trifluoroacetic acid was distilled off and an aqueous saturated solution of sodium bicarbonate was added to the residue. The aqueous layer was washed with diethylether and acidified with conc. HCl. The mixture was then extracted with dichloromethane, dried over MgSO₄ and the solvent was evaporated. The crude product was purified as described below.

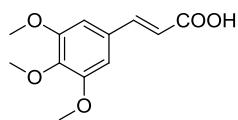
General protocol of the esterification of the diphenyl propionic acids (A III)

A solution of the diphenyl propionic acid **12** (1.0 eq.) in anhydrous methanol was treated by thionyl chloride (6.0 eq.) at 0 °C, stirred at room temperature for 16 h and then heated to 65 °C for 6 h under argon atmosphere. Subsequently, a saturated aqueous solution of sodium bicarbonate was added and the mixture was extracted by dichloromethane, dried over MgSO₄ and the solvent was evaporated. The crude product was purified as described below.

Reaction route B:

General protocol of the Horner-Wadsworth-Emmons reaction (B I)

A solution of the benzaldehyde **3** (1.0 eq.) in anhydrous tetrahydrofuran (THF, 50 mL) was treated with diethylcyanomethylphosphonate (1.1 eq.) and KO'Bu (1.1 eq.) at 0 °C and stirred for one hour at this temperature and then over night at room temperature under argon atmosphere. Subsequently, water (100 mL) was added and the mixture was extracted by dichloromethane (3×50 mL), dried over MgSO₄ and the solvent was evaporated. The crude product was purified as described below.

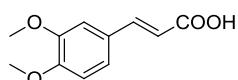

General protocol of the acid catalyzed 1,4-addition of veratrole (B II)

A solution of the cinnamic nitrile **5** (1.0 eq.) and veratrole (1.5–5 eq.) in trifluoroacetic acid was heated to 72 °C for the given time (3–100 h). Subsequently, the trifluoroacetic acid was distilled off and an aqueous saturated solution of sodium bicarbonate was added to the residue. The aqueous layer was then extracted by dichloromethane, dried over MgSO₄ and the solvent was evaporated. The crude product was purified as described below.

General protocol of the oxidative coupling reaction using Mo^V reagents (C)

A solution of the precursor **6**, **7**, or **8** (1.0 eq.) in anhydrous dichloromethane was treated with MoCl₅ (3.0 eq.) or MoCl₃HFIP₂ (3.0 eq.)² and stirred for the given time (15 min – 6 h) at room temperature under argon atmosphere. Subsequently, an aqueous saturated solution of sodium bicarbonate was added and it was stirred for another 5 minutes. The mixture was extracted with dichloromethane, dried over MgSO₄ and the solvent was evaporated. The crude product was purified as described below.

3,4,5-Trimethoxycinnamic acid 4a

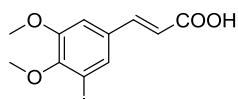


According to the protocol for the Knoevenagel-Doebner reaction (A I), 3,4,5-trimethoxybenzaldehyde (4.00 g, 20.4 mmol) was treated with malonic acid (6.36 g, 61.2 mmol) and piperidine (0.87 g, 10.2 mmol) in pyridine (40 mL) to yield compound **4a** as a colorless solid (4.81 g, 99%).

¹H NMR (400 MHz, CDCl₃): δ = 7.70 (d, J = 15.9 Hz, 1H), 6.78 (s, 2H), 6.36 (d, J = 15.9 Hz, 1H), 3.89 (s, 6H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.4, 153.6, 147.1, 140.6, 129.6, 116.6, 105.6, 61.1, 56.3.

All analytic data match to the reported data.³

3,4-Dimethoxycinnamic acid 4b

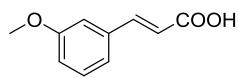


According to the protocol for the Knoevenagel-Doebner reaction (A I), 3,4-dimethoxybenzaldehyde (11.30 g, 68.0 mmol) was treated with malonic acid (20.90 g, 200.8 mmol) and piperidine (2.84 g, 33.3 mmol) in pyridine (120 mL) to yield compound **4b** as a colorless solid (13.97 g, 99%).

¹H NMR (400 MHz, CDCl₃): δ = 10.71 (bs, 1H), 7.70 (d, J = 15.9 Hz, 1H), 7.12 (dd, J = 8.3, 1.9 Hz, 1H), 7.07 (d, J = 1.9 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 6.33 (d, J = 15.9 Hz, 1H), 3.91 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.7, 151.5, 149.3, 146.5, 127.3, 123.1, 115.7, 111.1, 109.8, 56.1, 56.0.

All analytic data match to the reported data.⁴

4,5-Dimethoxy-3-iodocinnamic acid 4c

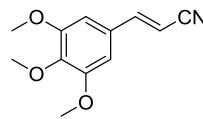


According to the protocol for the Knoevenagel-Doebner reaction (A I), 4,5-dimethoxy-3-iodobenzaldehyde (1.00 g, 3.4 mmol) was treated with malonic acid (1.07 g, 10.3 mmol) and piperidine (0.15 g, 1.7 mmol) in pyridine (10 mL) to yield compound **4c** as a colorless solid (1.04 g, 91%).

¹H NMR (400 MHz, CDCl₃): δ = 7.66 (d, J = 15.8 Hz, 1H), 7.58 (d, J = 1.9 Hz, 1H), 7.06 (d, J = 1.9 Hz, 1H), 6.37 (d, J = 15.8 Hz, 1H), 3.92 (s, 3H), 3.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.0, 152.8, 151.2, 145.3, 132.1, 131.4, 117.6, 111.9, 92.9, 60.8, 56.2.

All analytic data match to the reported data.⁵

3-Methoxycinnamic acid 4d

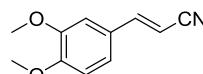


According to the protocol for the Knoevenagel-Doebner reaction (A I), 3-methoxybenzaldehyde (4.00 g, 29.4 mmol) was treated with malonic acid (9.12 g, 87.6 mmol) and piperidine (1.25 g, 14.7 mmol) in pyridine (40 mL) to yield compound **4d** as a colorless solid (5.01 g, 97%).

¹H NMR (400 MHz, CDCl₃): δ = 9.80 (bs, 1H), 7.77 (d, J = 15.9 Hz, 1H), 7.32 (m, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.07 (m, 1H), 6.97 (ddd, J = 8.3, 2.6, 0.8 Hz, 1H), 6.45 (d, J = 15.9 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.4, 159.9, 147.1, 135.4, 130.0, 121.1, 117.6, 116.7, 113.1, 55.3.

All analytic data match to the reported data.⁶

3,4,5-Trimethoxycinnamic nitrile 5a

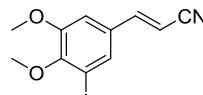


According to the protocol for the Horner-Wadsworth-Emmons reaction (B I), 3,4,5-trimethoxybenzaldehyde (2.00 g, 10.2 mmol) was treated with diethylcyanomethylphosphonate (1.99 g, 11.2 mmol) and KO'Bu (1.08 g, 11.2 mmol). The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 9:1) to yield compound **5a** as a colorless solid (2.00 g, 89%).

¹H NMR (400 MHz, CDCl₃): δ = 7.31 (d, *J* = 16.6 Hz, 1H), 6.65 (s, 2H), 5.78 (d, *J* = 16.6 Hz, 1H), 3.88 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ = 153.7, 150.6, 141.0, 129.1, 118.3, 104.7, 95.5, 61.2, 56.4.

All analytic data match to the reported data.⁷

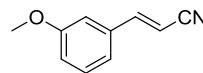
3,4-Dimethoxycinnamic nitrile 5b



According to the protocol for the Horner-Wadsworth-Emmons reaction (B I), 3,4,5-trimethoxybenzaldehyde (2.00 g, 12.0 mmol) was treated with diethylcyanomethylphosphonate (2.35 g, 13.2 mmol) and KO'Bu (1.27 g, 13.2 mmol). The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 3:1) to yield compound **5b** as a colorless solid (2.09 g, 92%).

¹H NMR (400 MHz, CDCl₃): δ = 7.30 (d, *J* = 16.6 Hz, 1H), 7.02 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.92 (d, *J* = 2.0 Hz, 1H), 6.85 (d, *J* = 8.4 Hz, 1H), 5.71 (d, *J* = 16.6 Hz, 1H), 3.90 (s, 3H), 3.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 151.9, 150.3, 149.4, 126.6, 122.1, 118.7, 111.1, 108.9, 93.7, 56.1, 56.0.

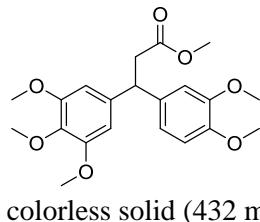
All analytic data match to the reported data.⁸


4,5-Dimethoxy-3-iodocinnamic nitrile 5c

According to the protocol for the Horner-Wadsworth-Emmons reaction (B I), 4,5-dimethoxy-3-iodobenzaldehyde (2.00 g, 5.1 mmol) was treated with diethylcyanomethylphosphonate (1.00 g, 5.7 mmol) and KO'Bu (0.54 g, 5.7 mmol). The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 9:1) to yield compound **5c** as a colorless solid (1.49 g, 92%).

¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, *J* = 1.9 Hz, 1H), 7.25 (d, *J* = 16.6 Hz, 1H), 6.91 (d, *J* = 1.9 Hz, 1H), 5.78 (d, *J* = 16.6 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 152.9, 151.6, 148.7, 131.5, 130.3, 118.0, 111.2, 96.7, 93.1, 60.8, 56.3. HRMS (ESI+) *m/z* calcd for C₁₁H₁₀NO₂INa [M+Na]⁺ 337.9654, found 337.9659.

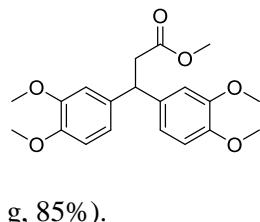
3-Methoxycinnamic nitrile 5d



According to the protocol for the Horner-Wadsworth-Emmons reaction (B I), 3-methoxybenzaldehyde (2.00 g, 14.7 mmol) was treated with diethylcyanomethylphosphonate (2.87 g, 16.2 mmol) and KO'Bu (1.57 g, 16.2 mmol). The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 3:1) to yield compound **5d** as a colorless solid (2.12 g, 91%).

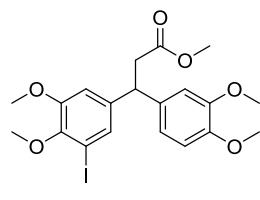
¹H NMR (400 MHz, CDCl₃): δ = 7.37 (d, J = 16.6 Hz, 1H), 7.04 (d, J = 7.6 Hz, 1H), 7.00–6.94 (m, 2H), 5.87 (d, J = 16.6 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 160.2, 150.7, 135.0, 134.9, 130.3, 120.1, 117.0, 112.6, 96.8, 55.5.

All analytic data match to the reported data.⁹


Methyl 3-(3,4-dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)propionate 6a

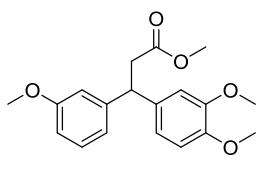
According to the protocol for the esterification of the diphenyl propionic acids (A III), 3-(3,4-dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)propionic acid **12a** (500 mg, 1.34 mmol) was treated with thionyl chloride (953 mg, 8.01 mmol) in anhydrous methanol (30 mL). The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 3:1) to yield compound **6a** as a colorless solid (432 mg, 83%).

¹H NMR (400 MHz, CDCl₃): δ = 6.82–6.74 (m, 3H), 6.43 (s, 2H), 4.44 (t, J = 8.0 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.81 (s, 9H), 3.61 (s, 3H), 3.00 (d, J = 8.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.4, 153.3, 153.3, 149.0, 147.9, 139.5, 136.7, 135.9, 119.4, 111.3, 111.2, 104.8, 104.8, 61.0, 56.2, 56.0, 56.0, 51.9, 46.9, 41.2. HRMS (ESI+) m/z calcd for C₂₁H₂₆O₇Na [M+Na]⁺ 413.1576, found 413.1558.


Methyl 3,3-bis(3,4-dimethoxyphenyl)propionate 6b

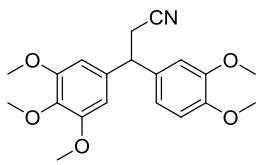
According to the protocol for the esterification of the diphenyl propionic acids (A III), 3,3-bis(3,4-dimethoxyphenyl)propionic acid **12a** (1.56 g, 4.5 mmol) was treated with thionyl chloride (3.21 g, 27.0 mmol) in dry methanol (70 mL). The crude product was purified by flash column chromatography (eluent: dichloromethane/methanol, 19:1) to yield compound **6a** as a light yellow solid (1.38 g, 85%).

¹H NMR (400 MHz, CDCl₃): δ = 6.80–6.75 (m, 4H), 6.71 (d, J = 1.6 Hz, 2H), 4.45 (t, J = 8.0 Hz, 1H), 3.83 (s, 6H), 3.81 (s, 6H), 3.58 (s, 3H), 2.99 (d, J = 8.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.4, 148.9, 147.7, 136.3, 119.3, 111.3, 111.2, 55.9, 51.8, 46.2, 41.2. HRMS (ESI+) m/z calcd for C₂₀H₂₄O₆Na [M+Na]⁺ 383.1471, found 383.1466.


Methyl 3-(4,5-dimethoxy-3-iodophenyl)-3-(3,4-dimethoxyphenyl)propionate 6c

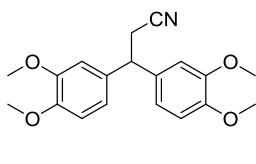
According to the protocol for the esterification of the diphenyl propionic acids (A III), 3-(4,5-dimethoxy-3-iodophenyl)-3-(3,4-dimethoxyphenyl)propionic acid **12c** (400 mg, 0.82 mmol) was treated with thionyl chloride (670 mg, 5.63 mmol) in dry methanol (25 mL). The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 3:1) to yield compound **6c** as a colorless solid (371 mg, 90%).

¹H NMR (400 MHz, CDCl₃): δ = 7.19 (d, J = 1.9 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 6.76 (dd, J = 8.3, 1.9 Hz, 1H), 6.70 (d, J = 1.6 Hz, 2H), 4.40 (dd, J = 7.9, 7.9 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.79 (s, 6H), 3.61 (s, 3H), 3.02–2.92 (each dd, J = 15.5, 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.2, 152.6, 149.1, 148.0, 147.7, 141.9, 135.4, 129.2, 119.4, 112.7, 111.3, 111.3, 92.7, 60.5, 56.1, 56.1, 56.0, 52.0, 46.0, 41.0. HRMS (ESI+) m/z calcd for C₂₀H₂₃O₆INa [M+Na]⁺ 509.0437, found 509.0436.


Methyl 3-(3,4-dimethoxyphenyl)-3-(3-methoxyphenyl)propionate **6d**

According to the protocol for the esterification of the diphenyl propionic acids (A III), 3-(3,4-dimethoxyphenyl)-3-(3-methoxyphenyl)propionic acid **12d** (250 mg, 0.80 mmol) was treated with thionyl chloride (570 mg, 4.77 mmol) in dry methanol (20 mL). The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 3:1) to yield compound **6d** as a light yellow oil (228 mg, 86%).

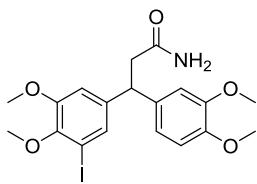
¹H NMR (400 MHz, CDCl₃): δ = 7.20 (t, *J* = 7.9 Hz, 1H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.80–6.71 (m, 5H), 4.47 (t, *J* = 8.0 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.76 (s, 3H), 3.59 (s, 3H) 3.02 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.4, 159.8, 149.0, 147.8, 145.5, 136.0, 129.7, 120.0, 119.4, 113.9, 111.6, 111.3, 111.3, 56.0, 56.0, 55.3, 51.9, 46.7, 40.9. HRMS (ESI+) *m/z* calcd for C₁₉H₂₂O₅Na [M+Na]⁺ 353.1365, found 353.1369.


3-(3,4-Dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)propionitrile **7a**

According to the protocol for the acid catalyzed 1,4-addition of veratrole (B II), 3,4,5-trimethoxycinnamic nitrile **5a** (500 mg, 2.28 mmol) was treated with veratrole (1.55 g, 11.4 mmol) in trifluoroacetic acid (10 mL) for 3 h. The crude product was purified by flash column chromatography (eluent: dichloromethane/methanol, 99:1) to yield compound **7a** as a colorless solid (348 mg, 43%).

¹H NMR (400 MHz, CDCl₃): δ = 6.84–6.78 (m, 2H), 6.71 (d, *J* = 2.0 Hz, 1H), 6.42 (s, 2H), 4.24 (t, *J* = 7.5 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.81 (s, 3H), 3.80 (s, 6H), 2.98 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 153.4, 153.4, 149.2, 148.4, 137.2, 133.5, 119.3, 119.3, 118.6, 111.3, 111.2, 104.8, 104.8, 60.9, 56.2, 56.2, 56.0, 55.9, 46.9, 24.7. HRMS (ESI+) *m/z* calcd for C₂₀H₂₃NO₅Na [M+Na]⁺ 380.1474, found 380.1466.

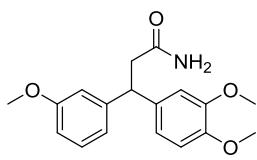
3,3-Bis(3,4-dimethoxyphenyl)propionitrile **7b**



According to the protocol for the acid catalyzed 1,4-addition of veratrole (B II), 3,4,5-trimethoxycinnamic nitrile **5b** (1.00 g, 4.80 mmol) was treated with veratrole (0.98 g, 7.20 mmol) in trifluoroacetic acid (10 mL) for 3 h. The crude product was purified by flash column chromatography (eluent: dichloromethane/methanol, 99:1) to yield compound **7b** as a colorless solid (1.08 g, 67%).

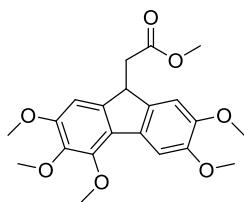
¹H NMR (400 MHz, CDCl₃): δ = 6.85–6.78 (m, 4H), 6.70 (d, *J* = 1.9 Hz, 2H), 4.28 (t, *J* = 7.5 Hz, 1H), 3.86 (s, 6H), 3.82 (s, 6H), 2.99 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 149.3, 148.4, 134.1, 119.4, 118.7, 111.3, 111.2, 56.1, 56.0, 46.4, 24.9.

All analytic data match to the reported data.¹⁰


3-(4,5-Dimethoxy-3-iodophenyl)-3-(3,4-dimethoxyphenyl)propionic amide **8a**

According to the protocol for the acid catalyzed 1,4-addition of veratrole (B II), 4,5-dimethoxy-3-iodocinnamic nitrile **5c** (600 mg, 1.90 mmol) was treated with veratrole (1.30 g, 9.52 mmol) in trifluoroacetic acid (6 mL) for 20 h. The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 3:1) to yield compound **8a** as a colorless solid (500 mg, 58%).

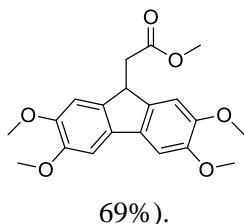
¹H NMR (400 MHz, (CD₃)₂SO): δ = 7.31 (bs, 1H), 7.16 (d, J = 1.7 Hz, 1H), 7.00 (d, J = 1.7 Hz, 1H), 6.90 (d, J = 1.8 Hz, 1H), 6.85 (d, J = 8.3 Hz, 1H), 6.79–6.74 (m, 2H), 4.33 (t, J = 8.0 Hz, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 3.70 (s, 3H), 3.64 (s, 3H), 2.76 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.2, 152.0, 148.5, 147.3, 146.4, 143.2, 136.5, 128.4, 119.2, 112.8, 111.9, 111.7, 92.5, 59.7, 55.9, 55.6, 55.5, 45.5, 40.9. HRMS (ESI+) *m/z* calcd for C₁₉H₂₃NO₅ [M+H]⁺ 472.0621, found 472.0618.


3-(3,4-Dimethoxyphenyl)-3-(3-methoxyphenyl)propionic amide **8b**

According to the protocol for the acid catalyzed 1,4-addition of veratrole (B II), 3-methoxycinnamic nitrile **5d** (730 mg, 4.59 mmol) was treated with veratrole (934 mg, 6.86 mmol) in trifluoroacetic acid (10 mL) for 100 h. The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 3:1) to yield compound **8b** as a light yellow solid (341 mg, 25%).

¹H NMR (400 MHz, (CD₃)₂SO): δ = 7.34 (bs, 1H), 7.18 (t, J = 8.1 Hz, 1H), 6.88–6.71 (m, 7H), 4.40 (t, J = 8.0 Hz, 1H), 3.72 (s, 3H), 3.71 (s, 3H), 3.69 (s, 3H), 2.80 (d, J = 8.0 Hz, 2H). ¹³C NMR (101 MHz, (CD₃)₂SO): δ = 172.4, 159.2, 148.5, 147.2, 146.5, 136.9, 129.3, 119.8, 119.4, 113.6, 111.8, 111.8, 111.0, 55.5, 55.5, 54.9, 46.2, 41.1. HRMS (ESI+) *m/z* calcd for C₁₈H₂₁NO₄Na [M+Na]⁺ 338.1368, found 338.1379.

9*H*-9-(Methoxycarbonylmethyl)-2,3,4,6,7-pentamethoxyfluorene **9a**

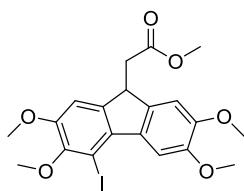


a) MoCl₅: According to the protocol for the oxidative coupling reaction using Mo^V reagents (C), 3-(3,4-dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)methylpropionate **6a** (44 mg, 0.11 mmol) was treated with MoCl₅ (93 mg, 0.34 mmol) in dichloromethane (20 mL) for 15 min. The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 1:1) to yield compound **9a** as a light yellow solid (25 mg, 57%).

b) MoCl₃HFIP₂: According to the protocol for the oxidative coupling reaction using Mo^V reagents (C), 3-(3,4-dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)methylpropionate **6a** (50 mg, 0.13 mmol) was treated with MoCl₃HFIP₂ (206 mg, 0.38 mmol) in dichloromethane (20 mL) for 15 min. The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 1:1) to yield compound **9a** as a light yellow solid (31 mg, 62%).

¹H NMR (400 MHz, CD₃CN): δ = 7.49 (s, 1H), 7.06 (s, 1H), 6.91 (s, 1H), 4.14 (t, J = 7.3 Hz, 1H), 3.98 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.82 (s, 3H), 3.80 (s, 3H), 3.71 (s, 3H), 2.72 (d, J = 7.3 Hz, 2H). ¹³C NMR (101 MHz, CD₃CN): δ = 173.7, 153.7, 150.0, 149.1, 148.0, 143.6, 142.6, 139.3, 133.2, 127.2, 109.1, 106.7, 105.4, 61.3, 61.3, 56.9, 56.5, 56.5, 52.3, 44.7, 39.2. HRMS (ESI+) *m/z* calcd for C₂₁H₂₅O₇ [M+H]⁺ 389.1600, found 389.1594.

9H-9-(Methoxycarbonylmethyl)-2,3,6,7-tetramethoxyfluorene 9b

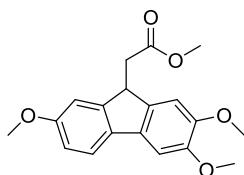


a) MoCl_5 : According to the protocol for the oxidative coupling reaction using Mo^{V} reagents (C), 3,3-bis(3,4-dimethoxyphenyl)methylpropionate **6b** (100 mg, 0.28 mmol) was treated with MoCl_5 (227 mg, 0.83 mmol) in dichloromethane (25 mL) for 1 h. The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 1:1) to yield compound **9b** as a colorless solid (69 mg, 69%).

b) $\text{MoCl}_3\text{HFIP}_2$: According to the protocol for the oxidative coupling reaction using Mo^{V} reagents (C), 3,3-bis(3,4-dimethoxyphenyl)methylpropionate **6b** (100 mg, 0.28 mmol) was treated with $\text{MoCl}_3\text{HFIP}_2$ (446 mg, 0.83 mmol) in dichloromethane (25 mL) for 1 h. The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 1:1) to yield compound **9b** as a colorless solid (72 mg, 72%).

^1H NMR (400 MHz, CD_3CN): δ = 7.33 (s, 2H), 7.09 (s, 2H), 4.14 (t, J = 7.3 Hz, 1H), 3.89 (s, 6H), 3.81 (s, 6H), 3.72 (s, 3H), 2.73 (d, J = 7.3 Hz, 2H). ^{13}C NMR (151 MHz, CD_3CN): δ = 173.8, 150.3, 149.1, 139.7, 134.7, 109.2, 104.0, 56.6, 56.5, 52.3, 44.2, 39.1. HRMS (ESI+) m/z calcd for $\text{C}_{20}\text{H}_{23}\text{O}_6$ $[\text{M}+\text{H}]^+$ 359.1495, found 359.1504.

9H-4-Iodo-9-(methoxycarbonylmethyl)-2,3,6,7-tetramethoxyfluorene 9c

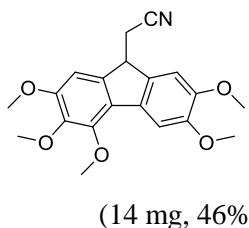

a) MoCl_5 : According to the protocol for the oxidative coupling reaction using Mo^{V} reagents (C), 3-(4,5-dimethoxy-3-iodophenyl)-3-(3,4-dimethoxyphenyl)methylpropionate **6c** (50 mg, 0.10 mmol) was treated with MoCl_5 (84 mg, 0.31 mmol) in dichloromethane (25 mL) for 1 h. The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 1:1; subsequently toluene/acetonitrile, 9:1) to yield compound **9c** as a colorless solid (40 mg, 80%).

b) $\text{MoCl}_3\text{HFIP}_2$: According to the protocol for the oxidative coupling reaction using Mo^{V} reagents (C), 3-(4,5-dimethoxy-3-iodophenyl)-3-(3,4-dimethoxyphenyl)methylpropionate **6c** (50 mg, 0.10 mmol) was treated with $\text{MoCl}_3\text{HFIP}_2$ (165 mg, 0.31 mmol) in dichloromethane (25 mL) for 1 h. The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 1:1; subsequently toluene/acetonitrile, 9:1) to yield compound **9c** as a colorless solid (39 mg, 78%).

^1H NMR (400 MHz, CD_3CN): δ = 8.32 (s, 1H), 7.12 (s, 1H), 7.03 (s, 1H), 4.06 (dd, J = 6.9, 6.9 Hz, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.81 (s, 3H), 3.77 (s, 3H), 3.69 (s, 3H), 2.79–2.67 (each dd, J = 16.2, 6.9 Hz, 1H).

^{13}C NMR (101 MHz, CD_3CN): δ = 173.5, 151.7, 149.6, 148.6, 148.5, 146.1, 140.9, 135.8, 134.4, 110.2, 108.6, 106.1, 86.7, 60.6, 56.8, 56.4, 56.4, 52.3, 43.9, 39.0. HRMS (ESI+) m/z calcd for $\text{C}_{20}\text{H}_{21}\text{IO}_6\text{Na}$ $[\text{M}+\text{Na}]^+$ 507.0281, found 507.0272.

9H-9-(Methoxycarbonylmethyl)-2,3,7-trimethoxyfluorene 9d

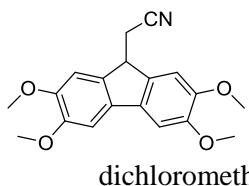

a) MoCl_5 : According to the protocol for the oxidative coupling reaction using Mo^{V} reagents (C), 3-(3,4-dimethoxyphenyl)-3-(3-methoxyphenyl)methylpropionate **6d** (40 mg, 0.12 mmol) was treated with MoCl_5 (99 mg, 0.36 mmol) in dichloromethane (20 mL) for 1 h. The crude product was purified by flash column chromatography

(eluent: cyclohexane/ethyl acetate, 1:1) to yield compound **9d** as a colorless solid (19 mg, 48%).

b) $\text{MoCl}_3\text{HFIP}_2$: According to the protocol for the oxidative coupling reaction using Mo^{V} reagents (C), 3-(3,4-dimethoxyphenyl)-3-(3-methoxyphenyl)methylpropionate **6d** (35 mg, 0.11 mmol) was treated with $\text{MoCl}_3\text{HFIP}_2$ (171 mg, 0.32 mmol) in dichloromethane (20 mL) for 1 h. The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 1:1) to yield compound **9d** as a colorless solid (17 mg, 49%).

^1H NMR (400 MHz, CD_3CN): δ = 7.58 (d, J = 8.3 Hz, 1H), 7.28 (s, 1H), 7.07 (s, 1H), 7.06 (d, 1H, J = 2.4 Hz), 6.91 (dd, J = 8.3, 2.4 Hz, 1H), 4.18 (dd, J = 7.2, 7.2 Hz, 1H), 3.87 (s, 3H), 3.81 (s, 3H), 3.80 (s, 3H), 3.71 (s, 3H), 2.80–2.70 (each dd, J = 16.2, 7.2 Hz, 1H). ^{13}C NMR (101 MHz, CD_3CN): δ = 173.7, 159.7, 150.4, 149.4, 149.3, 139.1, 135.0, 134.2, 120.6, 113.9, 111.2, 109.3, 104.1, 56.6, 56.6, 56.1, 52.3, 44.3, 39.0. HRMS (ESI+) m/z calcd for $\text{C}_{19}\text{H}_{21}\text{O}_5$ $[\text{M}+\text{H}]^+$ 329.1389, found 329.1399.

9H-9-(Cyanomethyl)-2,3,4,6,7-pentamethoxyfluorene **10a**

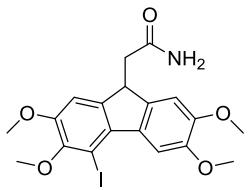


a) MoCl_5 : According to the protocol for the oxidative coupling reaction using Mo^{V} reagents (C), 3-(3,4-dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)propionitrile **7a** (30 mg, 0.08 mmol) was treated with MoCl_5 (69 mg, 0.25 mmol) in dichloromethane (10 mL) for 2 h. The crude product was purified by flash column chromatography (eluent: dichloromethane/methanol, 49:1) to yield compound **10a** as a colorless solid (14 mg, 46%).

b) $\text{MoCl}_3\text{HFIP}_2$: According to the protocol for the oxidative coupling reaction using Mo^{V} reagents (C), 3-(3,4-dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)propionitrile **7a** (45 mg, 0.13 mmol) was treated with $\text{MoCl}_3\text{HFIP}_2$ (205 mg, 0.38 mmol) in dichloromethane (15 mL) for 2 h. The crude product was purified by flash column chromatography (eluent: dichloromethane/methanol, 49:1) to yield compound **10a** as a colorless solid (23 mg, 51%).

^1H NMR (600 MHz, CD_3CN): δ = 7.52 (s, 1H), 7.21 (s, 1H), 7.07 (s, 1H), 4.03 (dd, J = 5.6, 5.6 Hz, 1H), 4.01 (s, 3H), 3.89 (s, 3H), 3.88 (s, 3H), 3.86 (s, 3H), 3.85 (s, 3H), 3.14–3.07 (each dd, J = 17.1, 5.6 Hz, 1H). ^{13}C NMR (151 MHz, CD_3CN): δ = 154.0, 150.4, 149.2, 149.1, 143.0, 141.6, 137.2, 133.6, 127.6, 119.2, 108.9, 106.7, 105.4, 61.4, 61.3, 56.9, 56.6, 56.4, 44.1, 22.2. HRMS (ESI+) m/z calcd for $\text{C}_{20}\text{H}_{22}\text{NO}_5$ $[\text{M}+\text{H}]^+$ 356.1498, found 356.1506.

9H-9-(Cyanomethyl)-2,3,6,7-tetramethoxyfluorene **10b**

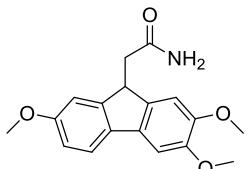


a) MoCl_5 : According to the protocol for the oxidative coupling reaction using Mo^{V} reagents (C), 3,3-bis(3,4-dimethoxyphenyl)propionitrile **7b** (35 mg, 0.11 mmol) was treated with MoCl_5 (88 mg, 0.32 mmol) in dichloromethane (15 mL) for 2 h. The crude product was purified by flash column chromatography (eluent: dichloromethane/methanol, 49:1) to yield compound **10b** as a colorless solid (21 mg, 60%).

b) $\text{MoCl}_3\text{HFIP}_2$: According to the protocol for the oxidative coupling reaction using Mo^{V} reagents (V), 3,3-bis(3,4-dimethoxyphenyl)propionitrile **7b** (80 mg, 0.24 mmol) was treated with $\text{MoCl}_3\text{HFIP}_2$ (385 mg, 0.72 mmol) in dichloromethane (25 mL) for 2 h. The crude product was purified by flash column chromatography (eluent: dichloromethane/methanol, 49:1) to yield compound **10b** as a colorless solid (46 mg, 58%).

¹H NMR (400 MHz, CD₃CN): δ = 7.37 (s, 2H), 7.22 (s, 3H), 4.00 (t, J = 5.5 Hz, 1H), 3.91 (s, 6H), 3.86 (s, 6H), 3.10 (d, 2H, J = 5.5 Hz). ¹³C NMR (101 MHz, CD₃CN): δ = 150.8, 149.4, 137.7, 135.2, 119.3, 109.2, 104.1, 56.7, 56.6, 43.6, 22.1. HRMS (ESI+) m/z calcd for C₁₉H₁₉NO₄Na [M+Na]⁺ 348.1212, found 348.1219.

9H-9-(Aminocarbonylmethyl)-4-iodo-2,3,6,7-tetramethoxyfluorene 11a

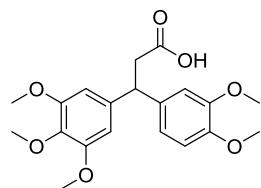


a) MoCl₅: According to the protocol for the oxidative coupling reaction using Mo^V reagents (C), 3-(4,5-dimethoxy-3-iodophenyl)-3-(3,4-dimethoxyphenyl)propionic amide **8a** (40 mg, 0.09 mmol) was treated with MoCl₅ (70 mg, 0.26 mmol) in dichloromethane (15 mL) for 6 h. The crude product was purified by flash column chromatography (eluent: dichloromethane/methanol, 19:1; subsequently ethyl acetate) to yield compound **11a** as a colorless solid (22 mg, 55%).

b) MoCl₃HFIP₂: According to the protocol for the oxidative coupling reaction using Mo^V reagents (C), 3-(4,5-dimethoxy-3-iodophenyl)-3-(3,4-dimethoxyphenyl)propionic amide **8a** (40 mg, 0.09 mmol) was treated with MoCl₃HFIP₂ (137 mg, 0.26 mmol) in dichloromethane (15 mL) for 6 h. The crude product was purified by flash column chromatography (eluent: dichloromethane/methanol, 19:1; subsequently ethyl acetate) to yield compound **11a** as a colorless solid (21 mg, 53%).

¹H NMR (600 MHz, (CD₃)₂CDO): δ = 8.46 (s, 1H), 7.58 (bs, 1H), 7.45 (s, 1H), 7.34 (s, 1H), 7.15 (bs, 1H), 4.31 (dd, J = 7.5, 7.5 Hz, 1H), 3.94 (s, 3H), 3.93 (s, 3H), 3.87 (s, 3H), 3.82 (s, 3H), 2.71–2.60 (each dd, J = 14.9, 7.5 Hz, 1H). ¹³C NMR (151 MHz, (CD₃)₂CDO): δ = 174.4, 151.9, 149.9, 148.8, 148.6, 147.2, 142.1, 135.8, 134.5, 110.8, 109.5, 106.4, 87.1, 60.7, 56.9, 56.7, 56.6, 44.6, 41.1. HRMS (ESI+) m/z calcd for C₁₉H₂₀NIO₅Na [M+Na]⁺ 492.0284, found 492.0282.

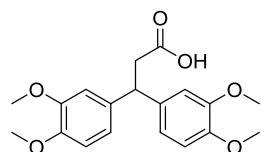
9H-9-(Aminocarbonylmethyl)-2,3,7-trimethoxyfluorene 11b



a) MoCl₅: According to the protocol for the oxidative coupling reaction using Mo^V reagents (C), 3-(3,4-dimethoxyphenyl)-3-(3-methoxyphenyl)propionic amide **8b** (30 mg, 0.10 mmol) was treated with MoCl₅ (84 mg, 0.30 mmol) in dichloromethane (10 mL) for 6 h. The crude product was purified by flash column chromatography (eluent: dichloromethane/methanol, 19:1) to yield a complex product mixture, which was not further purified.

b) MoCl₃HFIP₂: According to the protocol for the oxidative coupling reaction using Mo^V reagents (C), 3-(3,4-dimethoxyphenyl)-3-(3-methoxyphenyl)propionic amide **8b** (40 mg, 0.13 mmol) was treated with MoCl₃HFIP₂ (220 mg, 0.41 mmol) in dichloromethane (15 mL) for 6 h. The crude product was purified by flash column chromatography (eluent: dichloromethane/methanol, 19:1) to yield compound **11b** as a colorless solid (22 mg, 55%).

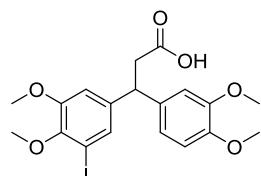
¹H NMR (400 MHz, CD₃CN): δ = 7.30 (d, J = 8.3 Hz, 1H), 6.96 (s, 1H), 6.80 (dd, J = 8.3, 2.3 Hz, 1H), 6.77 (s, 1H), 6.72 (d, 1H, J = 2.3 Hz), 6.28 (bs, 1H), 5.70 (bs, 1H), 5.15 (t, J = 7.6 Hz, 1H), 3.78 (s, 3H), 3.73 (s, 3H), 3.72 (s, 3H), 2.80 (d, 2H, J = 7.6 Hz). ¹³C NMR (101 MHz, CD₃CN): δ = 173.0, 159.6, 149.5, 149.1, 142.4, 132.3, 131.3, 125.9, 125.6, 116.0, 114.1, 113.8, 112.9, 56.7, 56.7, 56.2, 41.1, 40.0. HRMS (ESI+) m/z calcd for C₁₈H₁₉NO₄Na [M+Na]⁺ 336.1212, found 336.1200.


3-(3,4-Dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)propionic acid 12a

According to the protocol for the acid catalyzed 1,4-addition of veratrole (B II), 3,4,5-trimethoxycinnamic acid **4a** (1.00 g, 4.20 mmol) was treated with veratrole (860 mg, 6.30 mmol) in trifluoroacetic acid (10 mL) for 3 h to yield compound **12a** as a colorless solid (1.49 g, 95%).

¹H NMR (400 MHz, CDCl₃): δ = 6.83–6.76 (m, 2H), 6.73 (d, J = 1.6 Hz, 1H), 6.43 (s, 2H), 4.41 (t, J = 7.9 Hz, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 3.79 (s, 6H), 3.05 (d, J = 7.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 178.0, 153.2, 153.2, 149.0, 147.9, 139.4, 136.4, 135.5, 119.4, 111.4, 111.3, 104.8, 104.8, 61.0, 56.2, 56.0, 56.0, 46.6, 41.0, 26.8. HRMS (ESI+) *m/z* calcd for C₂₀H₂₄O₇Na [M+Na]⁺ 399.1420, found 399.1432.

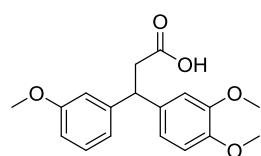
3,3-Bis(3,4-dimethoxyphenyl)propionic acid 12b



According to the protocol for the acid catalyzed 1,4-addition of veratrole (B II), 3,4-dimethoxycinnamic acid **4b** (1.00 g, 4.80 mmol) was treated with veratrole (0.98 g, 7.20 mmol) in trifluoroacetic acid (6 mL) for 3 h to yield compound **12b** as a colorless solid (1.24 g, 75%).

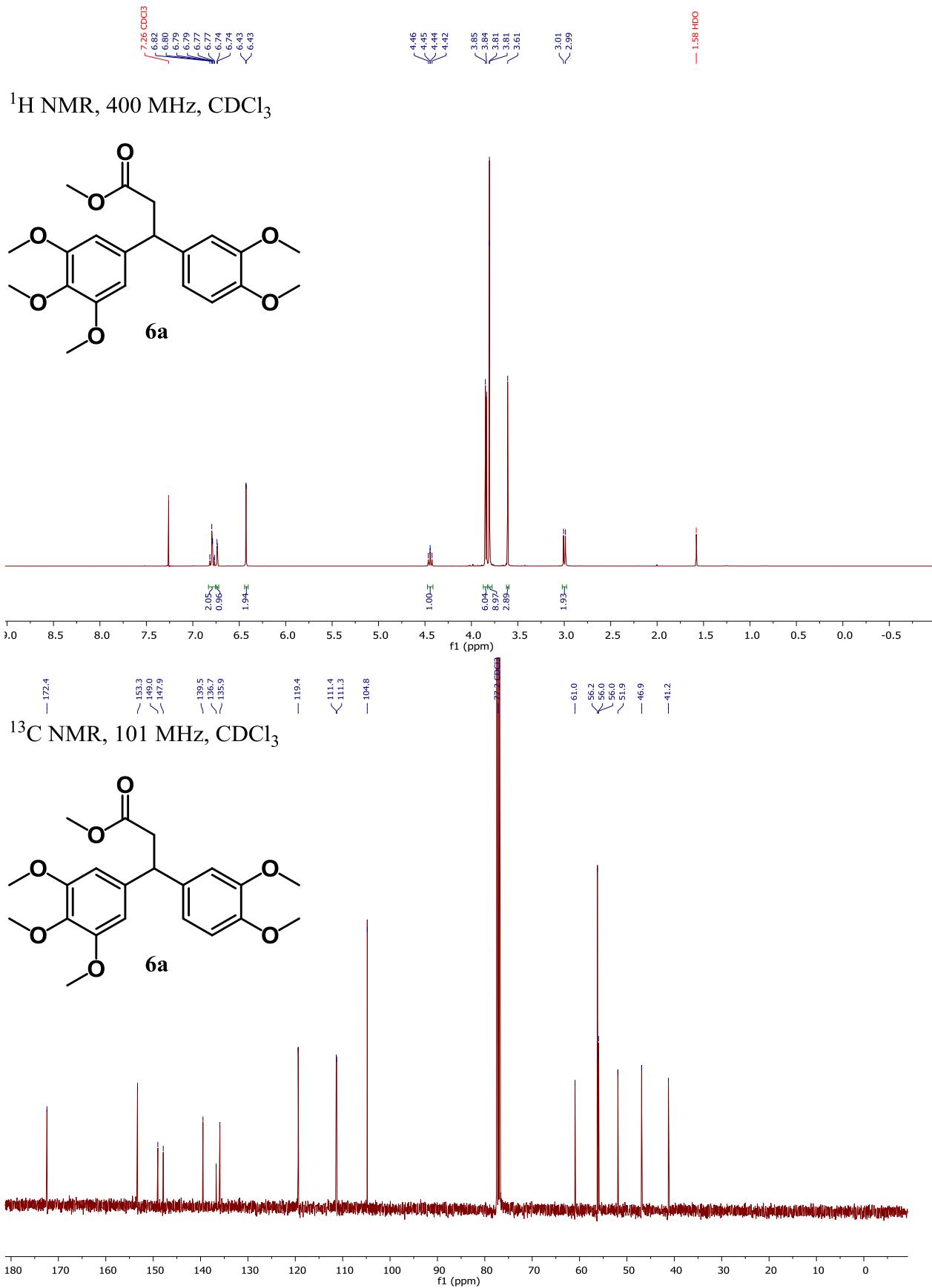
¹H NMR (400 MHz, CDCl₃): δ = 8.92 (s, 1H), 6.80–6.71 (m, 6H), 4.42 (t, J = 7.9 Hz, 1H), 3.83 (s, 6H), 3.80 (s, 6H), 3.02 (d, J = 7.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 177.8, 149.0, 147.8, 136.1, 119.3, 111.2, 111.2, 55.9, 55.9, 45.9, 41.1.

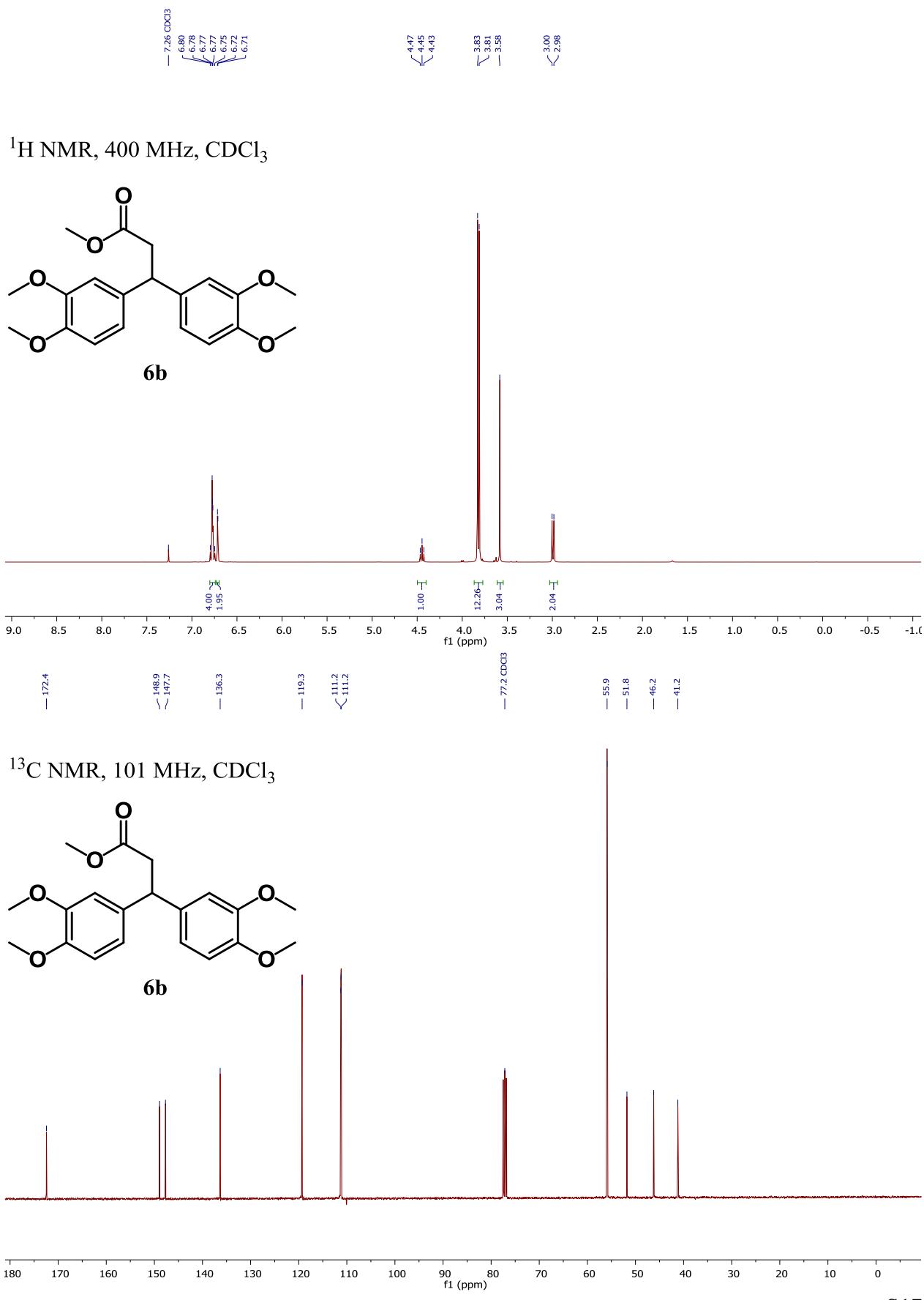
All analytic data match to the reported data.¹¹

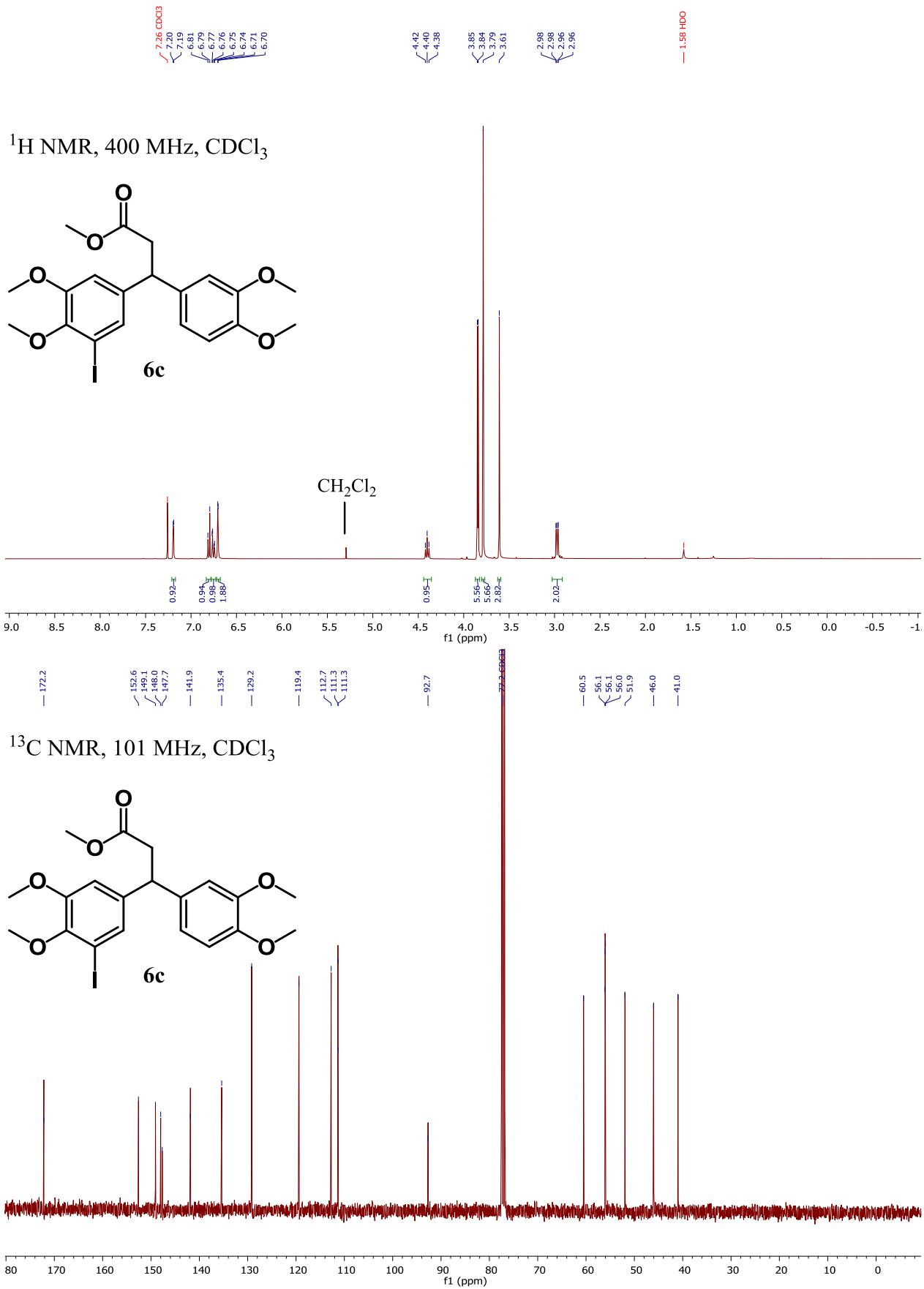

3-(4,5-Dimethoxy-3-iodophenyl)-3-(3,4-dimethoxyphenyl)propionic acid 12c

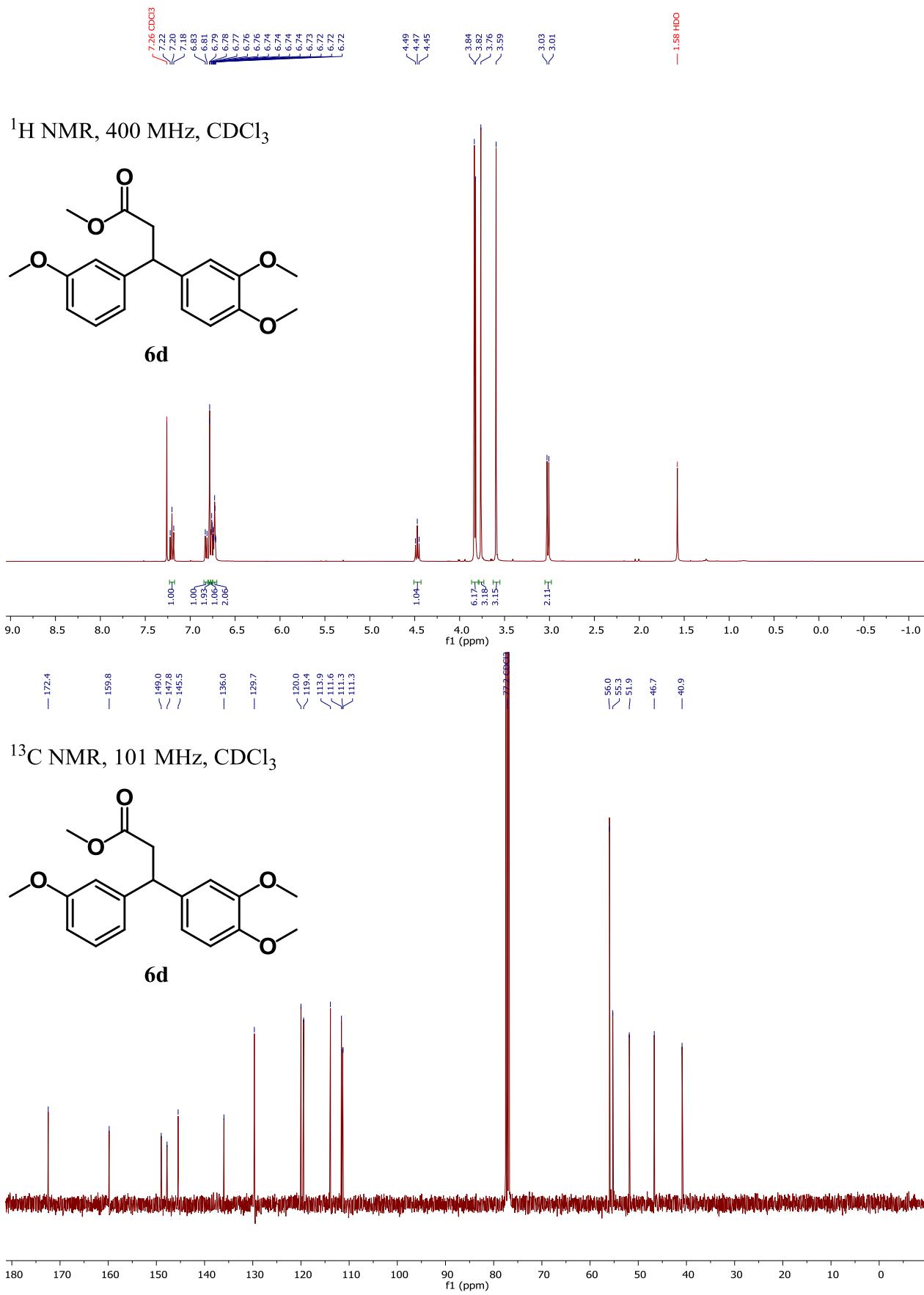
According to the protocol for the acid catalyzed 1,4-addition of veratrole (B II), 4,5-dimethoxy-3-iodocinnamic acid **4c** (400 mg, 1.20 mmol) was treated with veratrole (350 mg, 2.57 mmol) in trifluoroacetic acid (6 mL) for 18 h. The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 1:4) to yield compound **12c** as a colorless solid (286 mg, 51%).

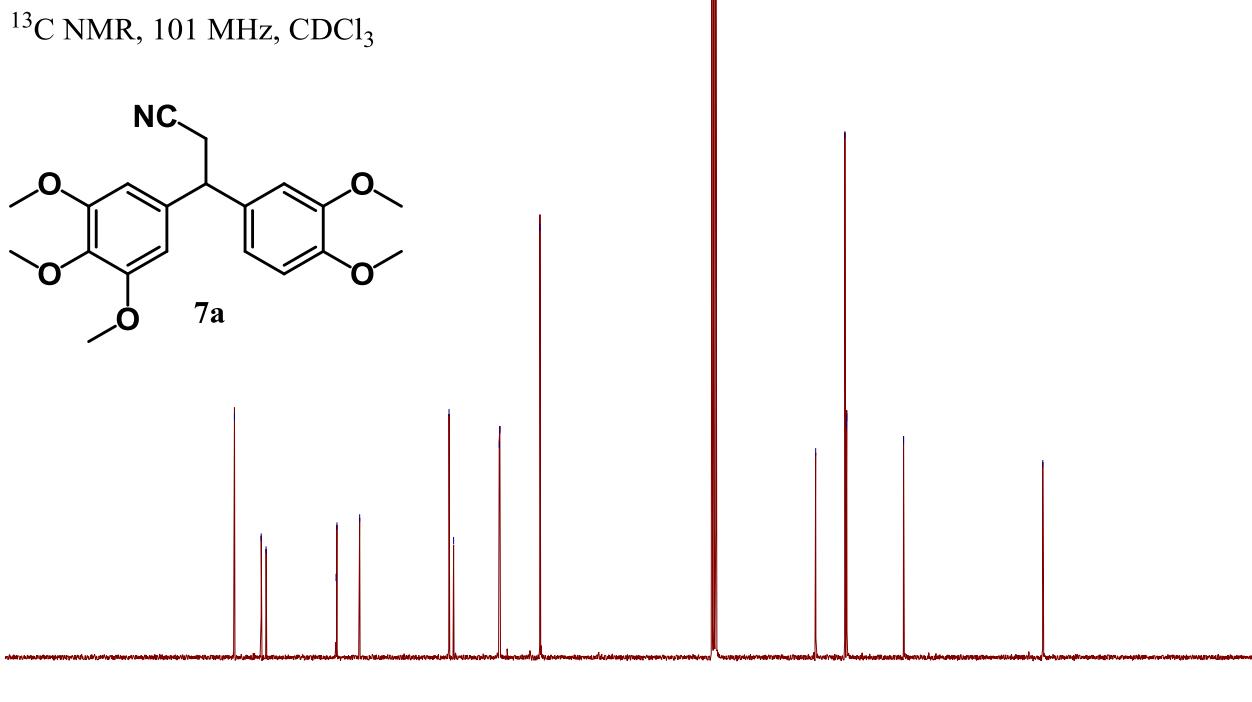
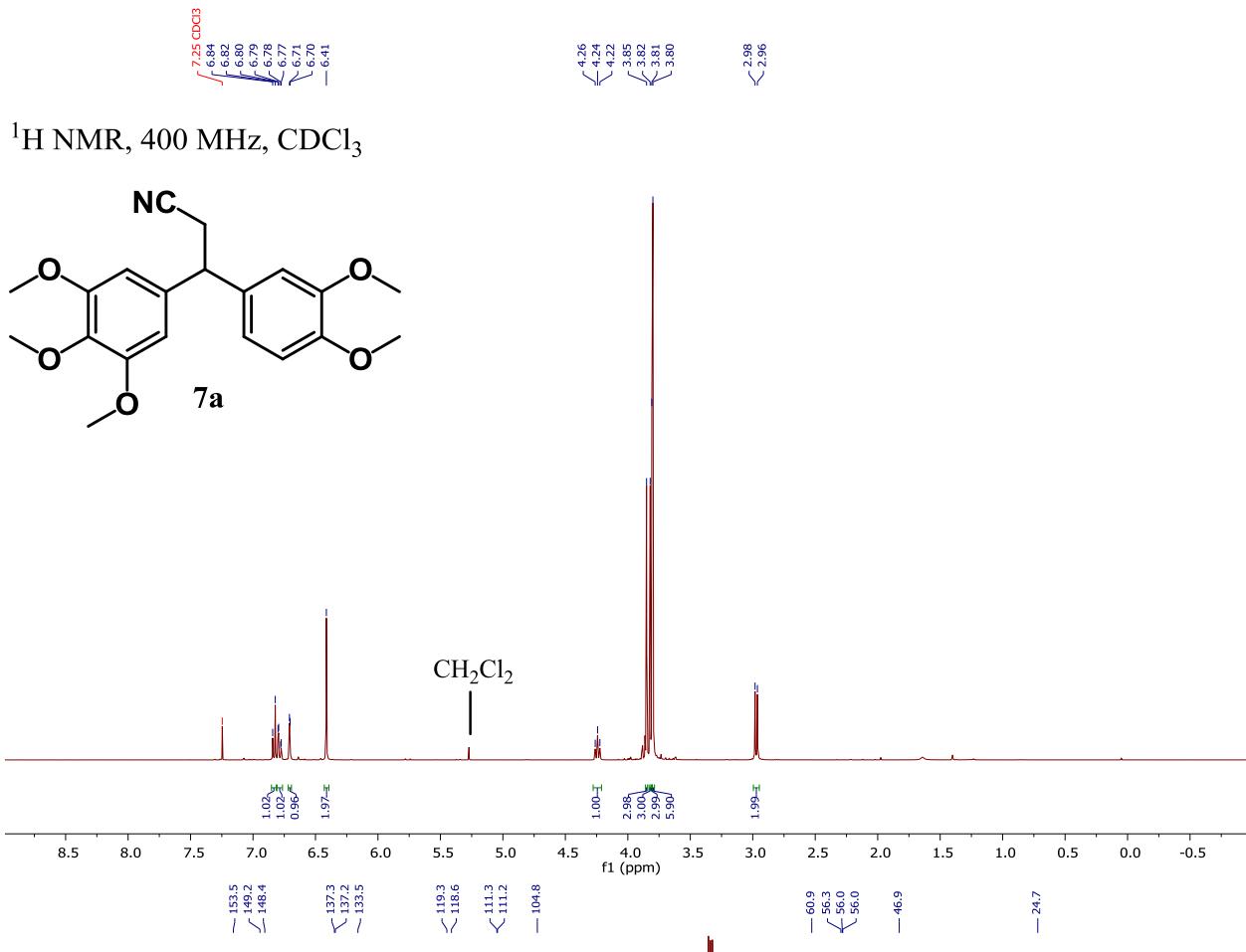
¹H NMR (400 MHz, CDCl₃): δ = 7.19 (d, J = 1.9 Hz, 1H), 6.81 (d, J = 8.3 Hz, 1H), 6.76 (dd, J = 8.3, 2.0 Hz, 1H), 6.70 (d, J = 2.0 Hz, 2H), 4.38 (dd, J = 7.9, 7.9 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.79 (s, 3H), 3.78 (s, 3H), 3.06–2.96 (each dd, J = 16.0, 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 176.7, 152.6, 149.1, 148.0, 147.8, 141.6, 135.1, 129.2, 119.3, 112.7, 111.4, 111.3, 92.8, 60.5, 56.1, 56.1, 56.0, 45.7, 40.7. HRMS (ESI+) *m/z* calcd for C₁₉H₂₁IO₆Na [M+Na]⁺ 492.0281, found 495.0291.

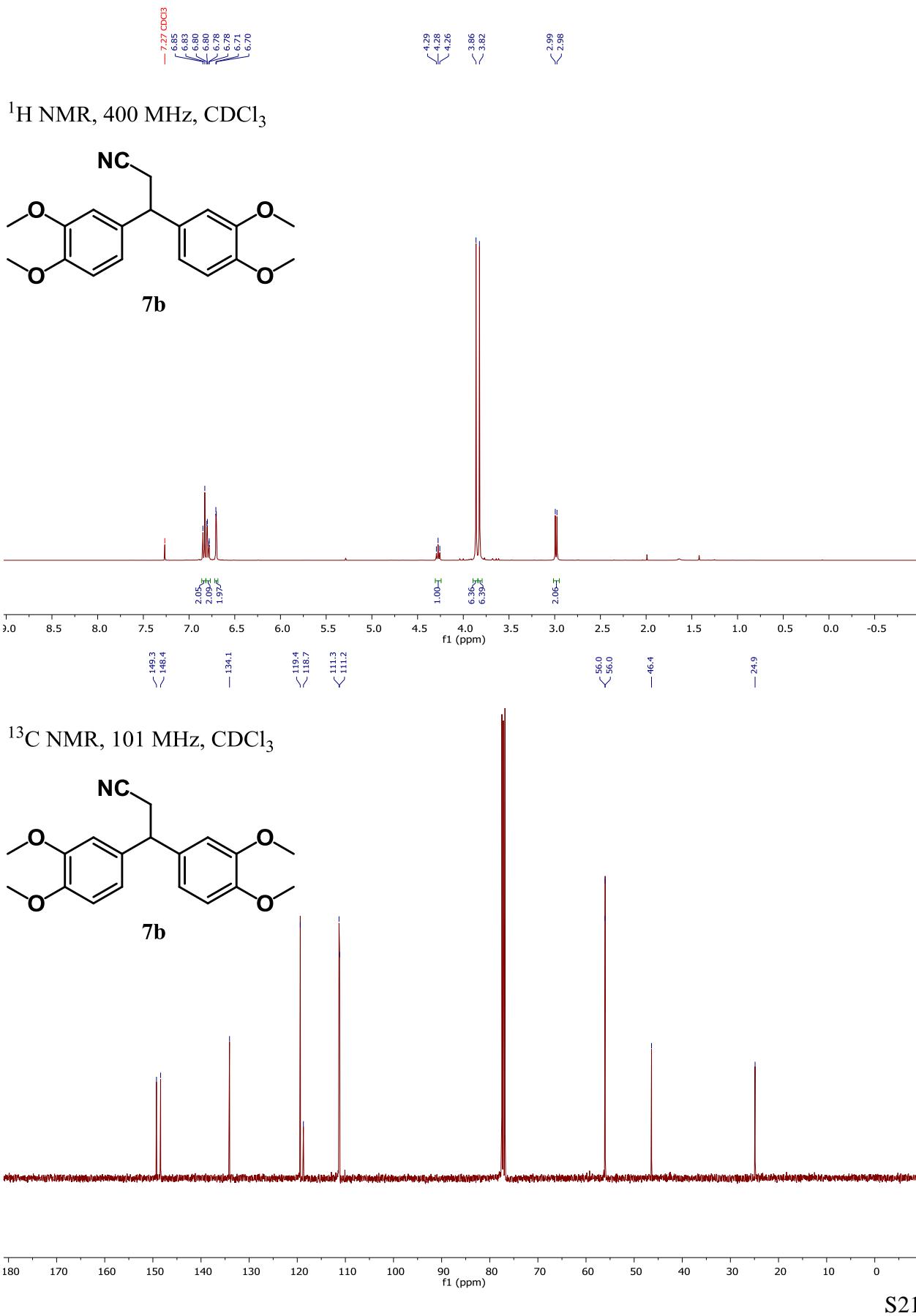

3-(4,5-Dimethoxy-3-iodophenyl)-3-(3,4-dimethoxyphenyl)propionic acid 12d

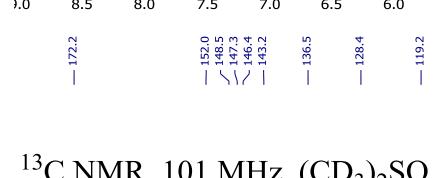
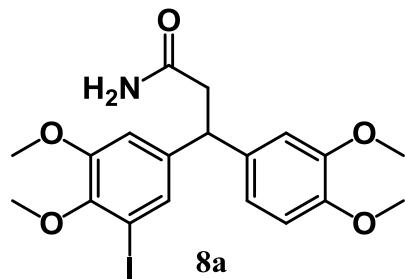


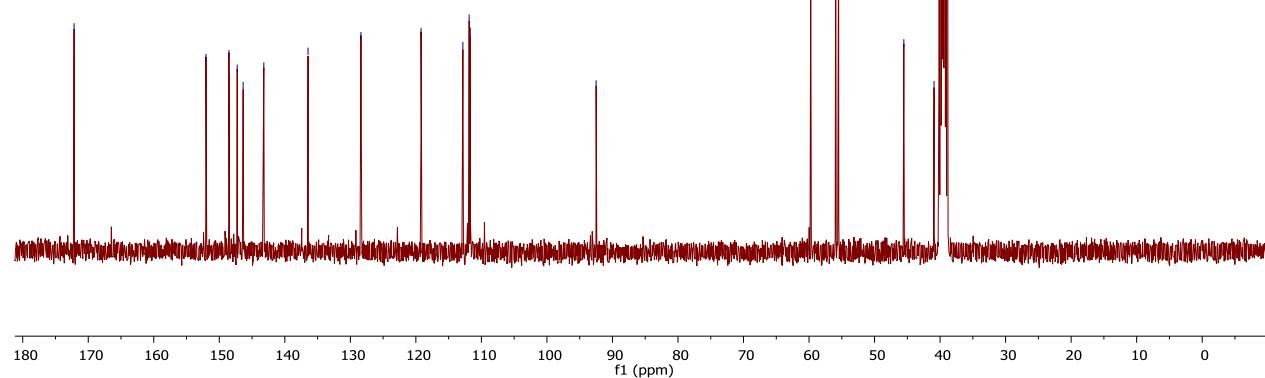
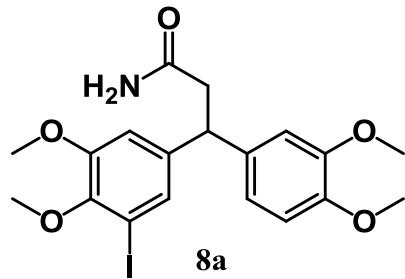

According to the protocol for the acid catalyzed 1,4-addition of veratrole (B II), 3-methoxycinnamic acid **4d** (1.00 g, 5.61 mmol) was treated with veratrole (1.15 g, 8.42 mmol) in trifluoroacetic acid (6 mL) for 96 h. The crude product was purified by flash column chromatography (eluent: cyclohexane/ethyl acetate, 1:1) to yield compound **12d** as a colorless solid (295 mg, 17%).

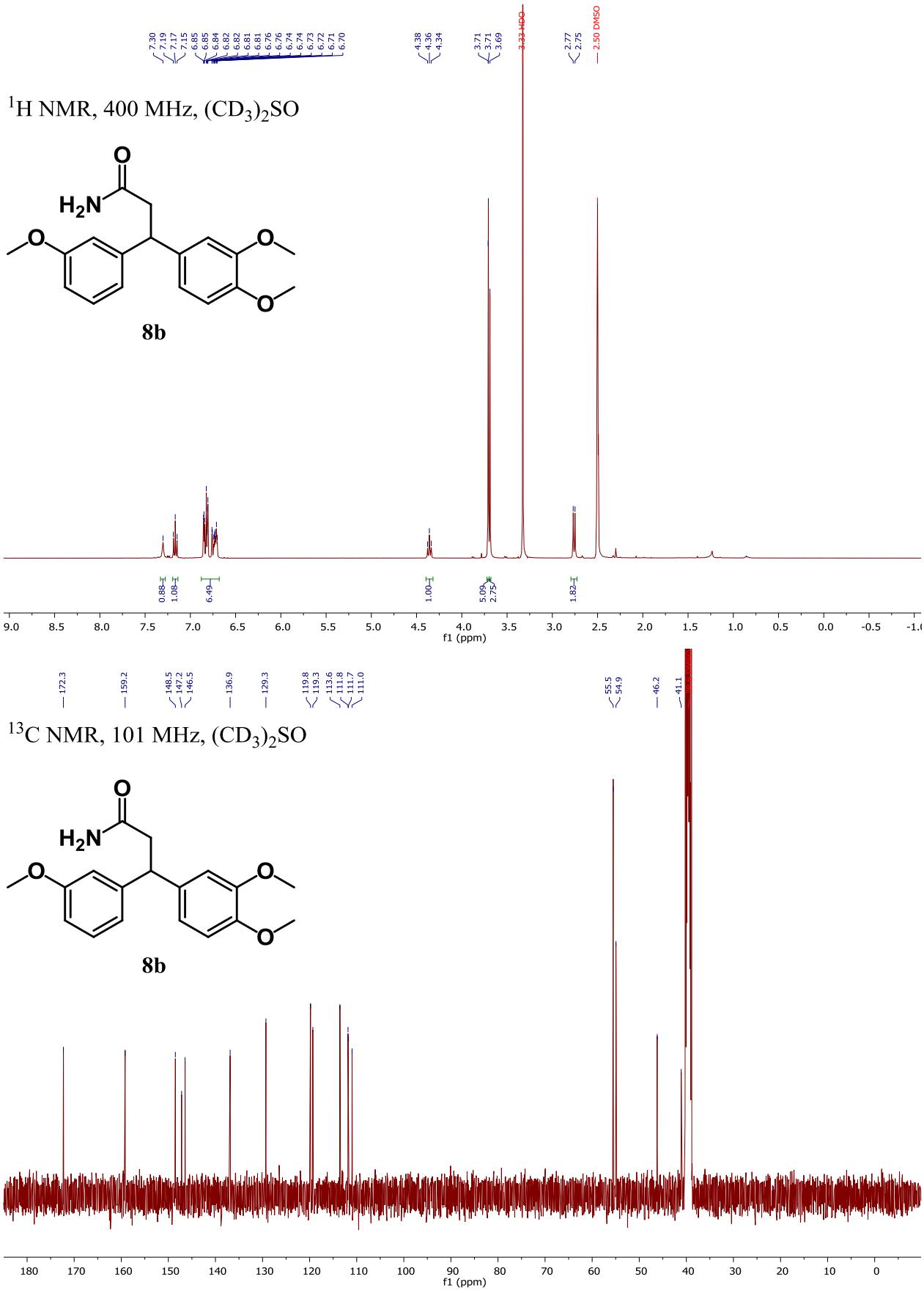

¹H NMR (400 MHz, CDCl₃): δ = 7.20 (t, *J* = 7.9 Hz, 1H), 7.18 (t, *J* = 8.1 Hz, 1H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.79–6.72 (m, 5H), 4.44 (t, *J* = 7.9 Hz, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.76 (s, 3H), 3.04 (d, *J* = 7.9 Hz, 2H).
¹³C NMR (101 MHz, CDCl₃): δ = 177.7, 159.8, 149.0, 147.9, 145.2, 135.7, 129.7, 119.9, 119.4, 113.9, 111.7, 111.3, 111.3, 56.0, 56.0, 55.3, 46.3, 40.7. HRMS (ESI+) *m/z* calcd for C₁₈H₂₀O₅Na [M+Na]⁺ 339.1208, found 339.1212.



NMR spectra

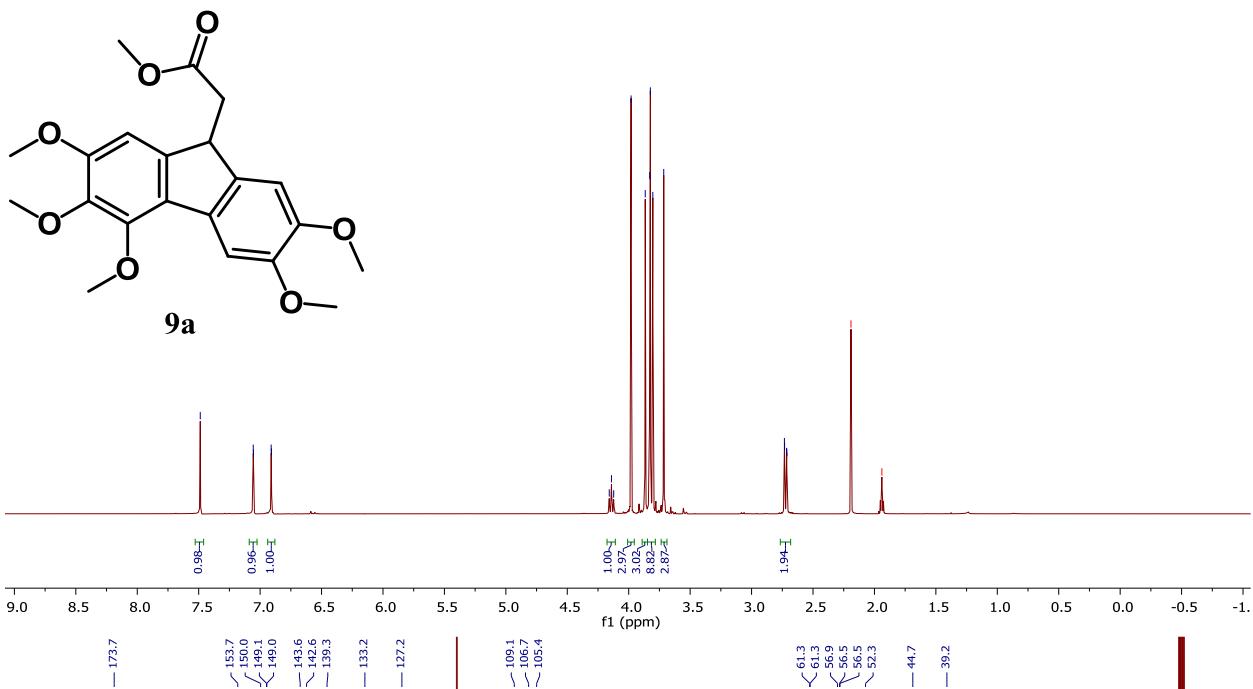


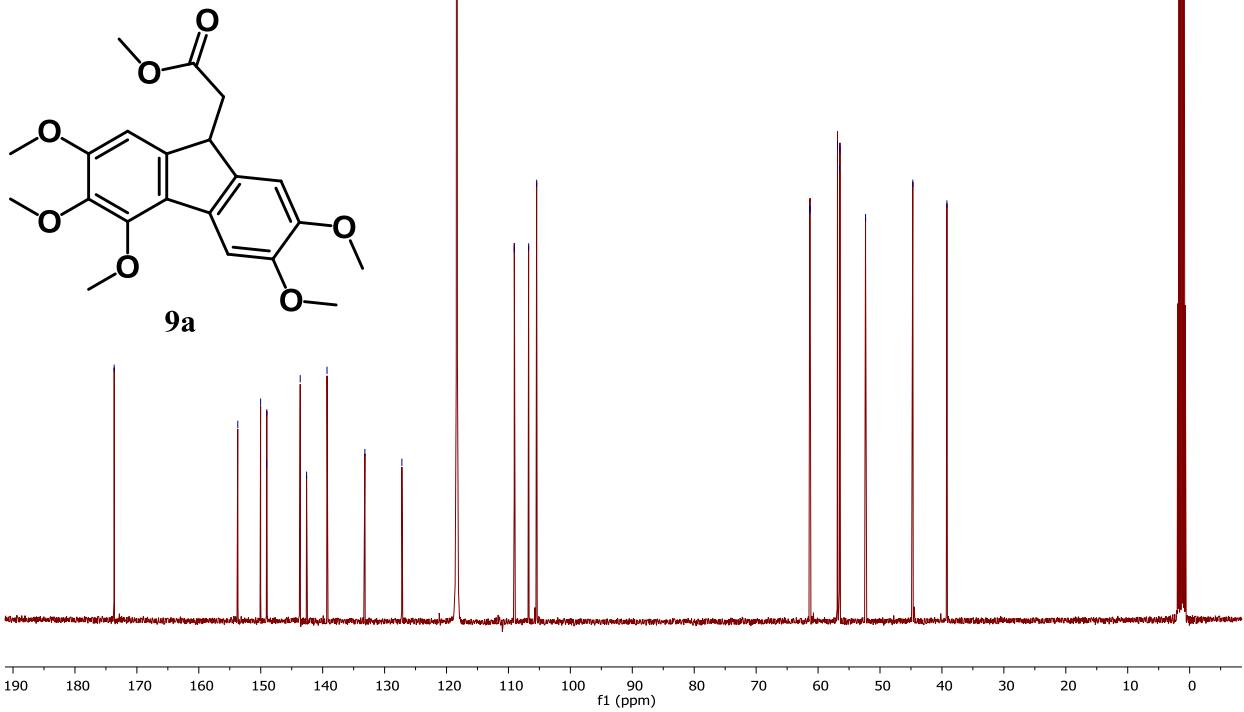



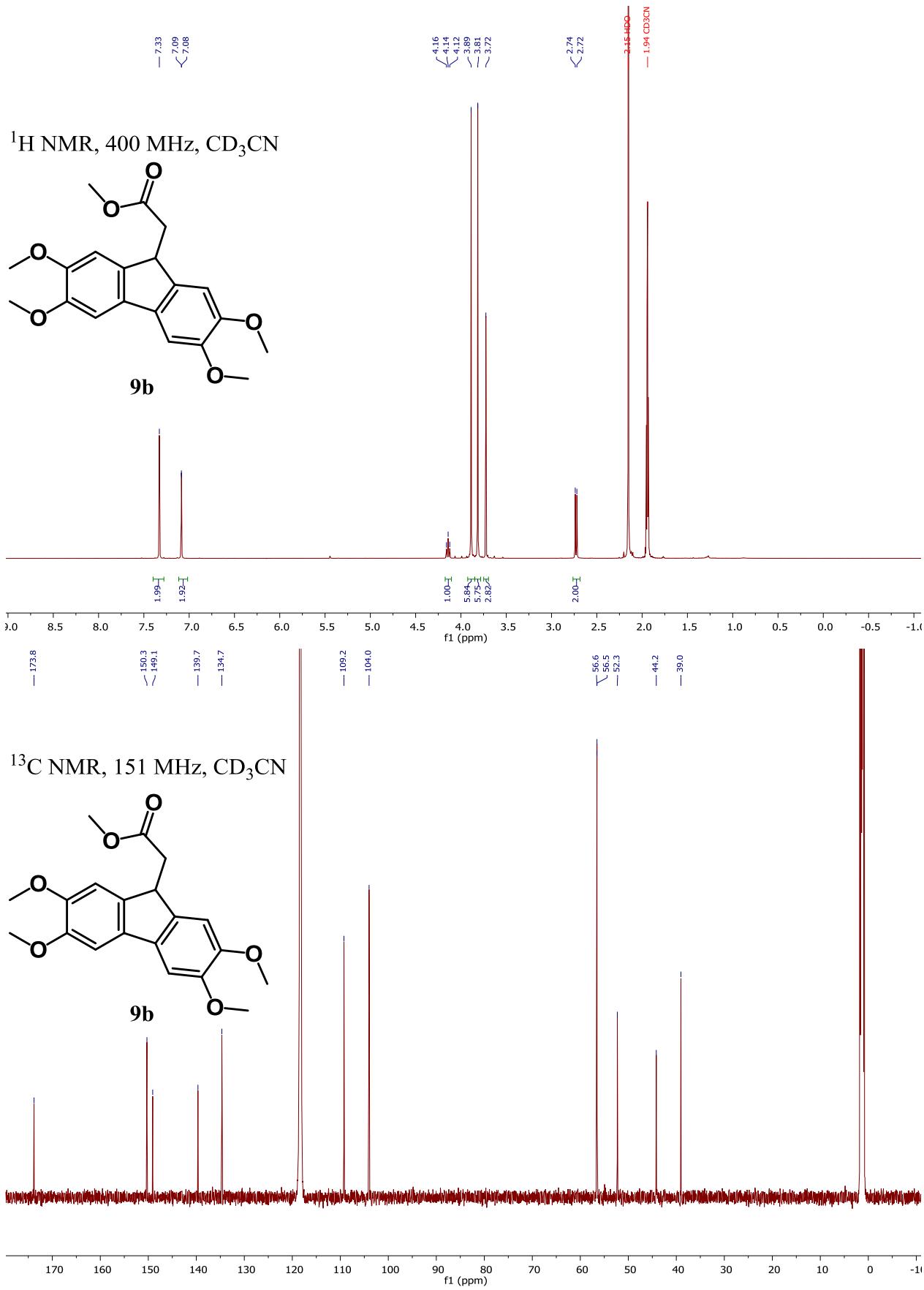


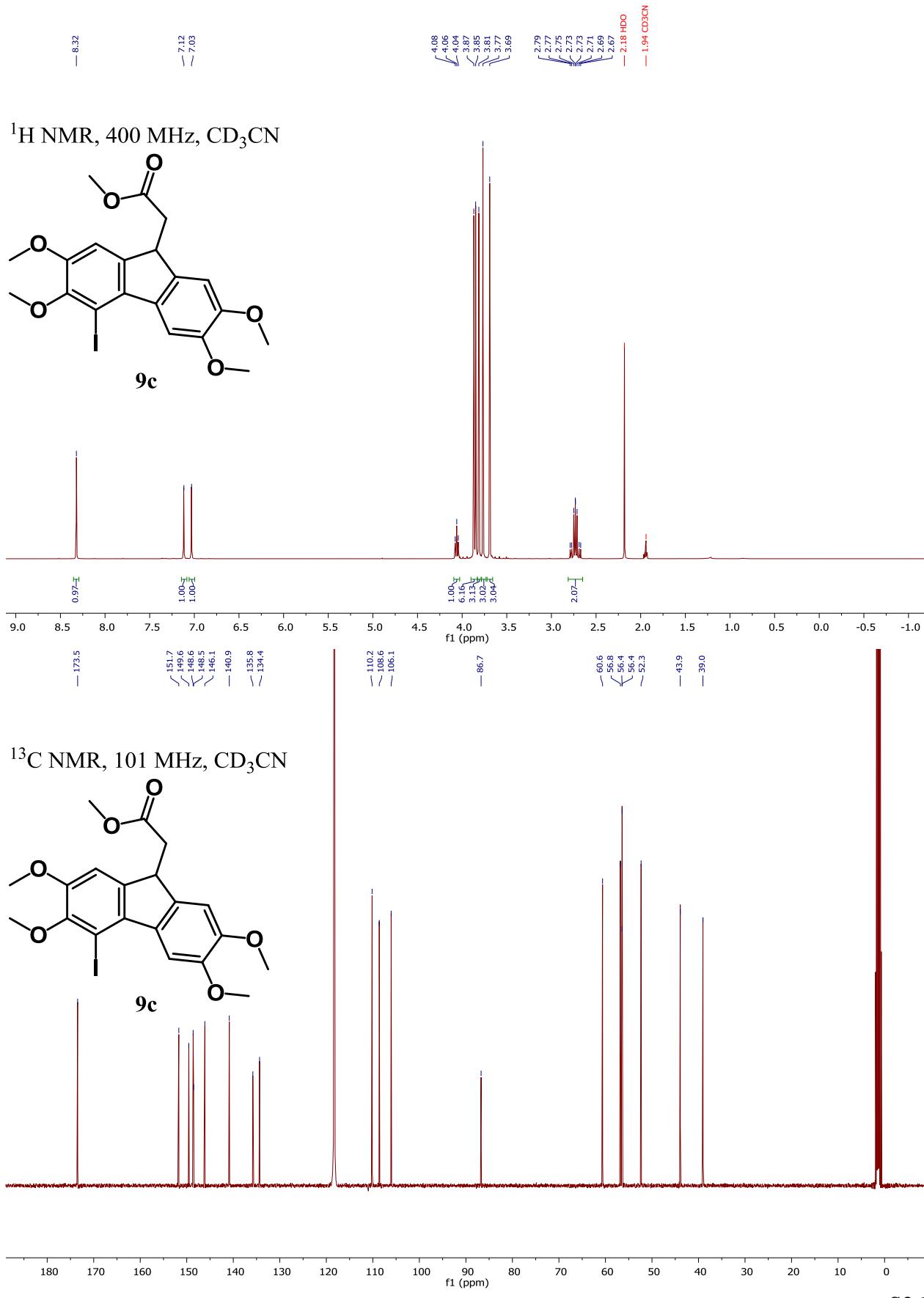
¹H NMR, 400 MHz, (CD₃)₂SO

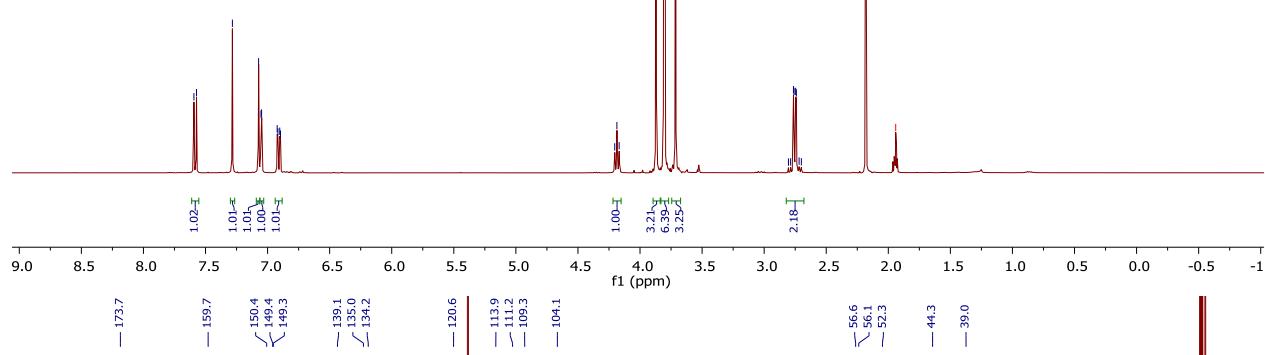
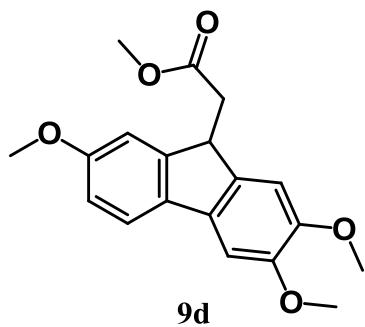


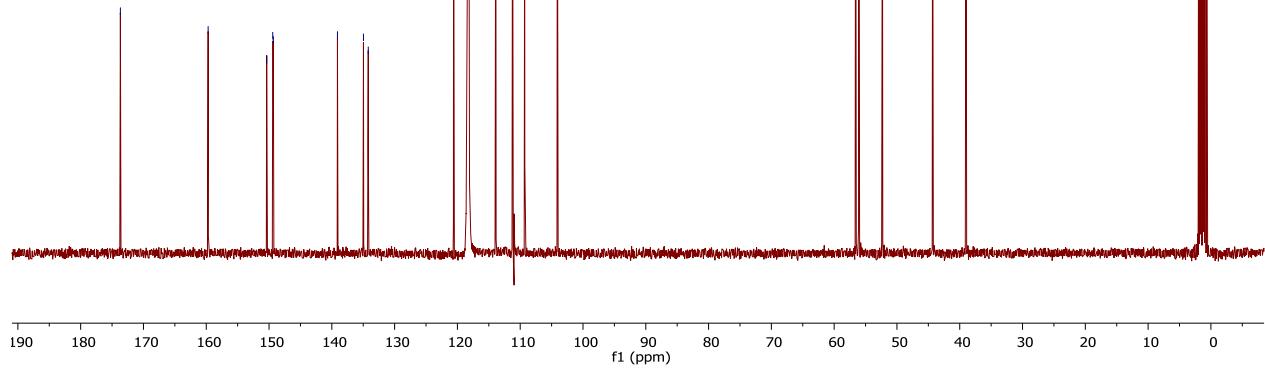
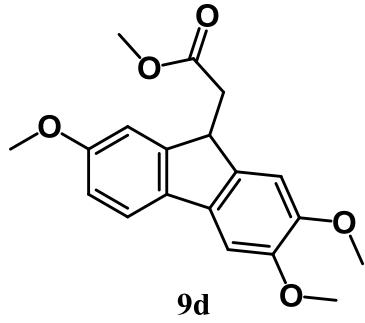
¹³C NMR, 101 MHz, (CD₃)₂SO

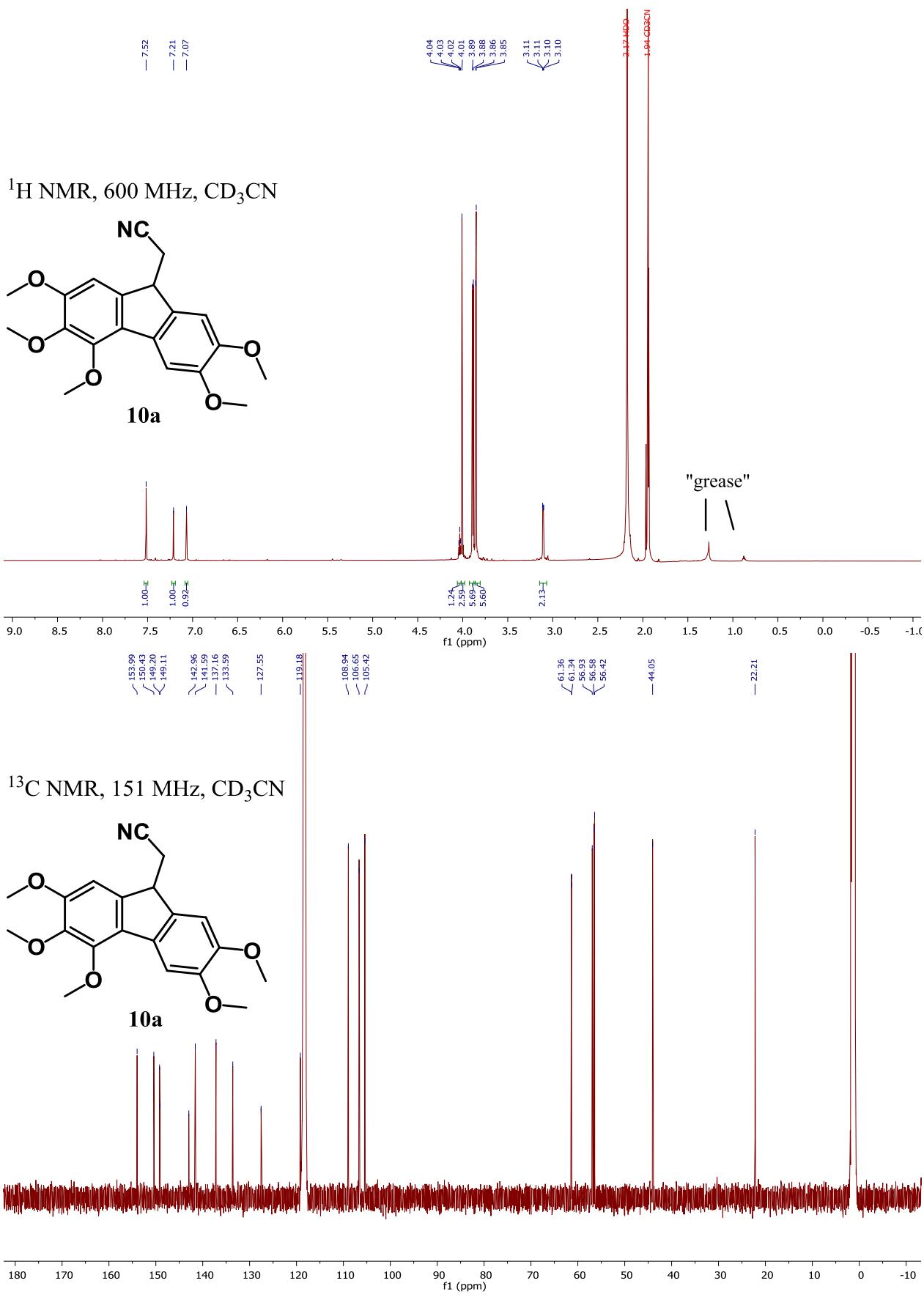


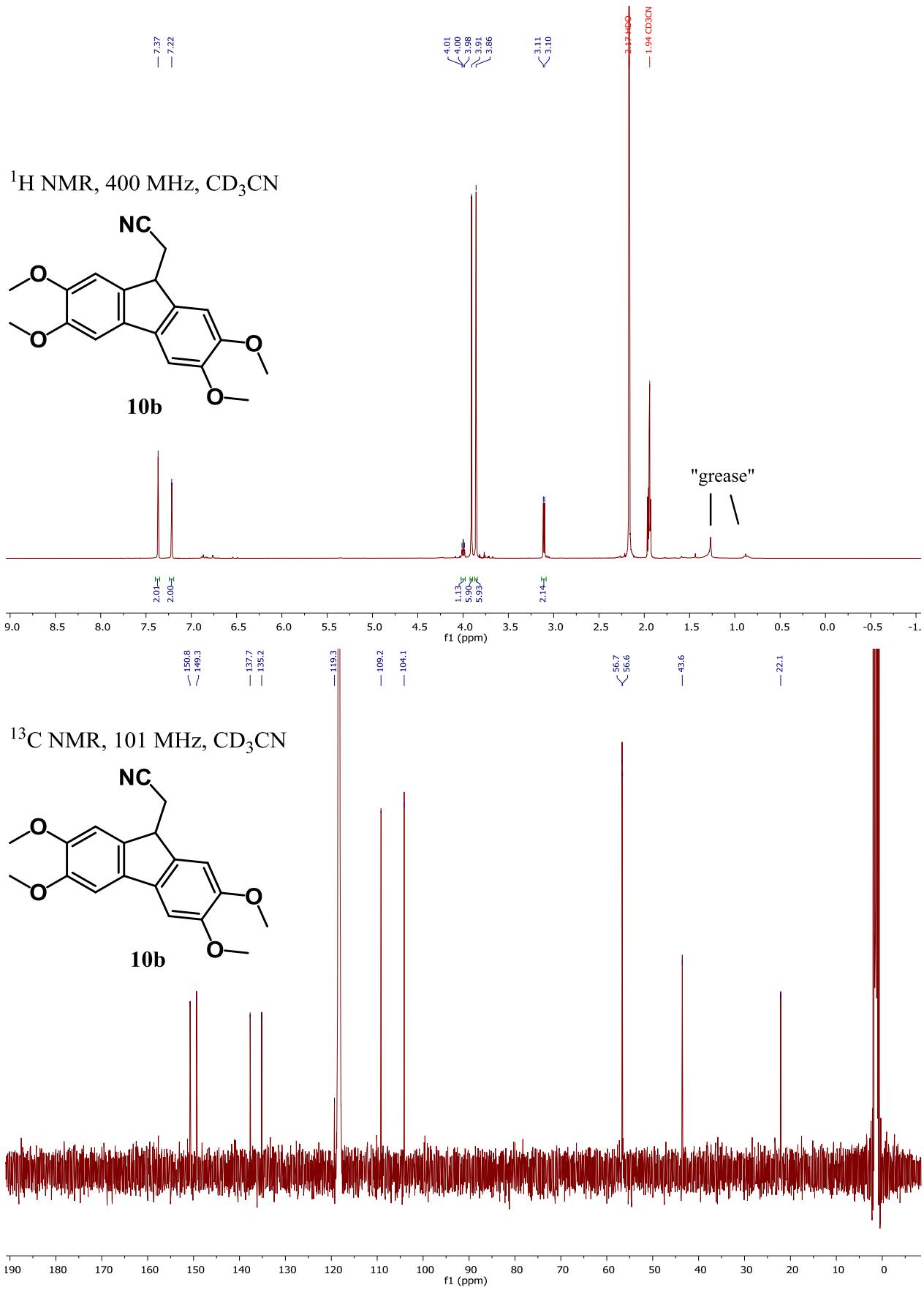


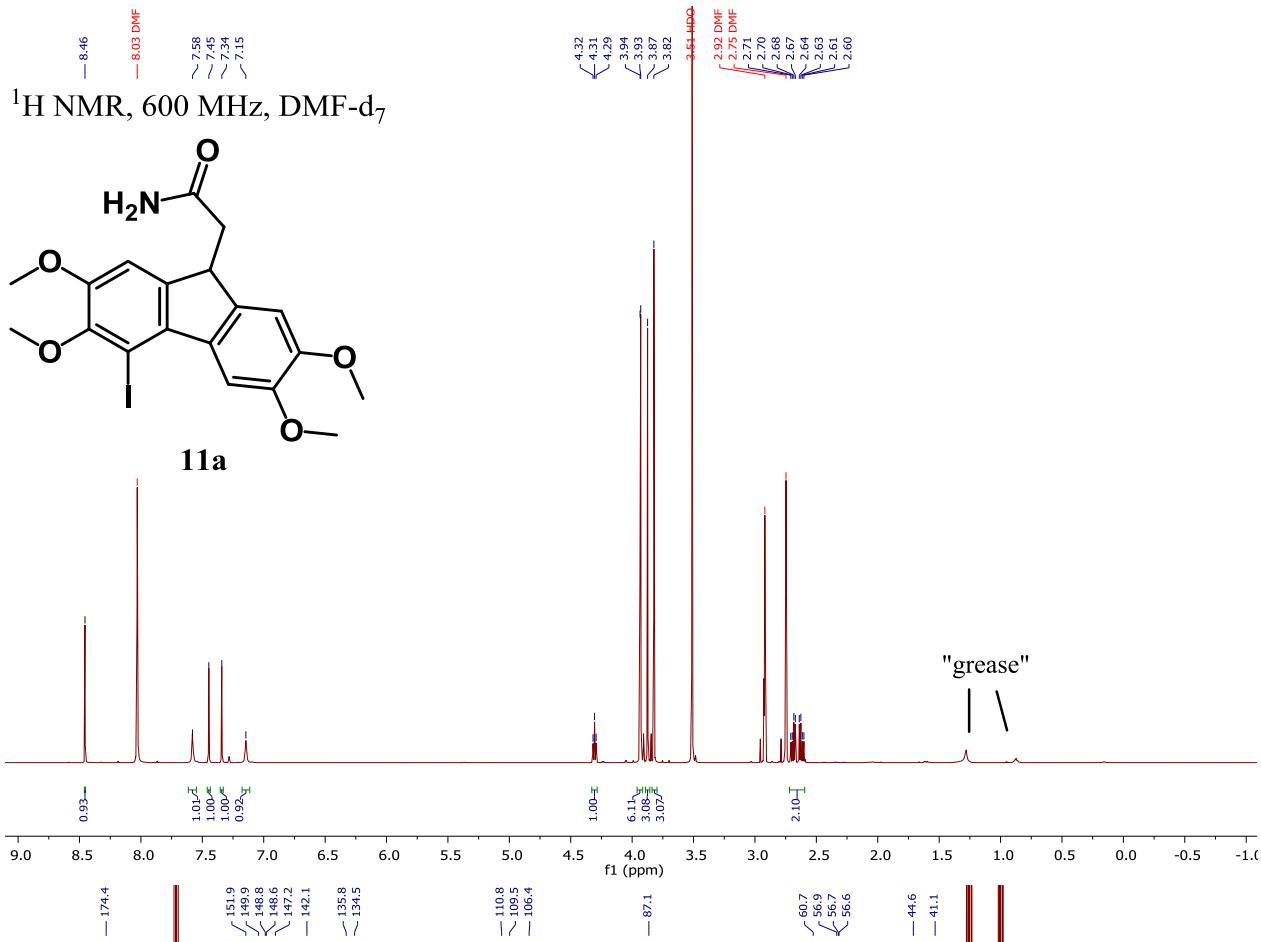

^1H NMR, 400 MHz, CD_3CN



^{13}C NMR, 101 MHz, CD_3CN

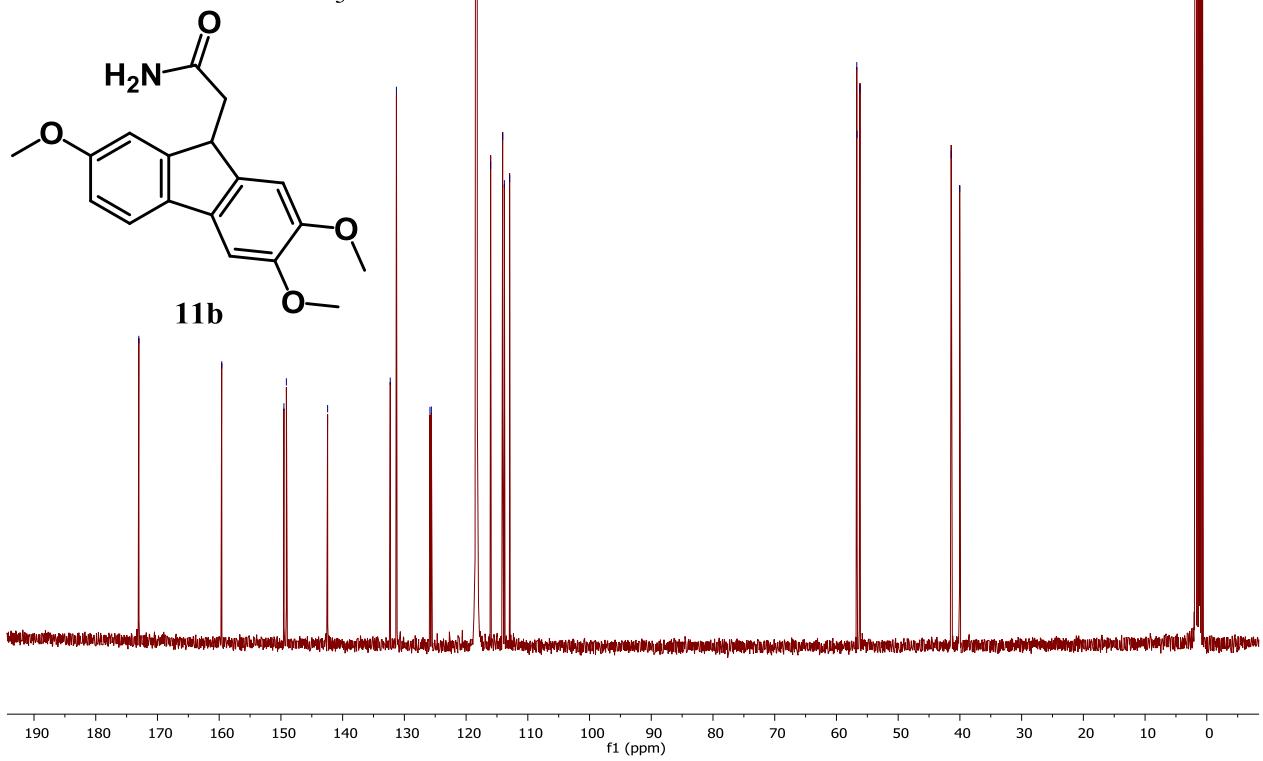






¹H NMR, 400 MHz, CD₃CN



¹³C NMR, 101 MHz, CD₃CN



¹H NMR, 400 MHz, CD₃CN

¹³C NMR, 101 MHz, CD₃CN

References

- (1) Armarengo, W. L. F.; Chai, C. L. L. *Purification of Laboratory Chemicals*; Butterworth-Heinemann: Oxford/UK, 2013; Vol.7.
- (2) Schubert, M.; Leppin, J.; Wehming, K.; Schollmeyer, D.; Heinze, K.; Waldvogel, S. R. *Angew. Chem. Int. Ed.* **2014**, *53*, 2494–2497.
- (3) Rao, V. R.; Muthenna, P.; Shankaraiah, G.; Akileshwari, C.; Babu, K. H.; Suresh, G.; Babu, K. S.; Kumar, C.; Sateesh, R.; Prasad, K. R.; Yadav, P. A.; Pettrash, J. M.; Reddy, G. B.; Rao, J. M. *Eur. J. Med. Chem.* **2012**, *57*, 344–361.
- (4) Maki, S.; Okawa, M.; Makii, T.; Hirano, T.; Niwa, H. *Tetrahedron Lett.* **2003**, *44*, 3717–3721.
- (5) Pardin, C.; Pelletier, J. N.; Lubell, W. D.; Keillor, J. W. *J. Org. Chem.* **2008**, *73*, 5766–5775.
- (6) Reuveni, H.; Sasson, R.; Levitzki, A.; Steiner, L.; Ben-David, I.; Weissberg, A. Novel protein kinase modulators and therapeutic use thereof. WO2008068751 A1, June 12, 2008.
- (7) D'Auria, M.; Racioppi, R. *Tetrahedron* **1997**, *53*, 17307–17316.
- (8) Linder, J.; Blake, A. J.; Moody, C. J. *Org. Biomol. Chem.* **2008**, *6*, 3908–3916.
- (9) Han, Y.-P.; Song, X.-R.; Qiu, Y.-F.; Hao, X.-H.; Wang, J.; Wu, X.-X.; Liu, X.-Y.; Liang, Y.-M. *J. Org. Chem.* **2015**, *80*, 9200–9207.
- (10) Muller, G. W.; Shire, M. Immunotherapeutic agents. US5929117 A, August 12, 1996.
- (11) Kano, S.; Yuasa, Y.; Shibuya, S. *Heterocycles* **1984**, *22*, 2327–2333.