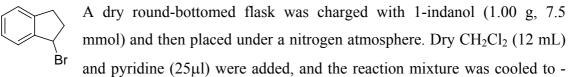
Supporting information for

Palladium-Catalyzed Cross-Coupling Reaction of Secondary Benzylic Bromides with Grignard Reagents

Ana López-Pérez, Javier Adrio*and Juan C. Carretero*

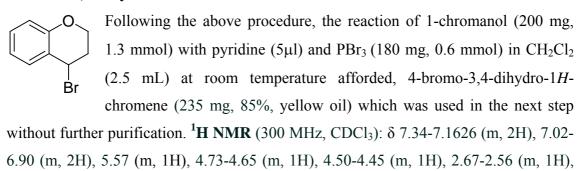
Departamento de Química Orgánica. Facultad de Ciencias. Universidad Autónoma de Madrid. Cantoblanco.28049 Madrid. Spain.

Table of Contents


1.	General methods.	S2
2.	Typical procedure for the synthesis of benzylic bromides	S2-S3
3.	Typical procedure for the cross-coupling reaction	S4-S12
4.	Cross-coupling reaction example using a primary benzylic bromide	S12
5.	Screning of ligands for the cross-coupling reaction.	S13
6.	NMR spectra collection.	.S14-S33

General methods

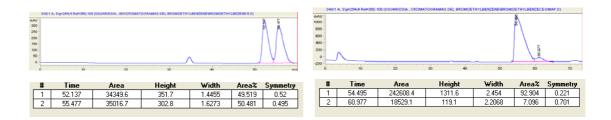
All anaerobic and moisture-sensitive manipulations were carried out in anhydrous solvents and under nitrogen. Dichloromethane, THF and CH₃CN were dried and stored over microwave-activated 4Å molecular sieves. Melting points were taken in open-end capillary tubes. Reactions were monitored by thin-layer chromatography carried out on 0.25 mm silica gel plates (230-400 mesh). Flash column chromatographies were performed using silica gel (230-400 mesh). NMR spectra were recorded on AC-300 MHz instrument and calibrated using residual undeuterated solvent (CDCl₃) as internal reference. MS spectra were recorded on a VG *AutoSpec* mass spectrometer. (1-Bromoethyl)benzene and bromodiphenylmethane are commercially available. Grignard reagents were purchased from Aldrich excepting biphenylmagnesium bromide and *m*-methoxyphenylmagnesium bromide which were prepared from the corresponding bromides and magnesium under usual reaction conditions. The HPLC chromatograms of the racemic and enantiomerically enriched products are also included.


Typical procedure for the synthesis of benzylic bromides.

1-Bromo-2,3-dihydro-1*H*-indene¹

10°C. PBr₃ (1.01 g, 3.7 mmol) was dissolved separately in dry CH₂Cl₂ (1,5 mL) and the resulting solution was added dropwise for a period of 10 min to the reaction mixture. The solution was stirred at -10 °C for 12 h and 5% aqueous Na₂CO₃ was added to the mixture. The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (10 mL). The combined organic layers were dried over Na₂SO₄, and concentrated under vacuum to give a yellow residue that was taken up in Et₂O (10 mL), passed through an nylon syringe filter, and evaporated under reduced pressure to afford 1-bromo-2,3-dihydro-1*H*-indene (905 mg, 90%, yellow oil) which was used in the next step without further purification. ¹H NMR (300 MHz, CDCl₃): δ 7.18-7.16 (m, 1H), 7.01-6.98 (m, 3H), 5.33 (dd, J = 5.9, 2.5 Hz, 1H), 2.99-2.88 (m, 1H), 2.67-2.58 (m, 1H), 2.39-2.22 (m, 2H).

4-Bromo-3,4-dihydro-2H-chromene¹


Methyl 4-(1-bromoethyl)benzoate²

2.51-2.44 (m, 1H).

To a solution of methyl 4-ethylbenzoate (200 mg, 1.2 mmol) in benzene, N-bromosuccinimide (320 mg, 1.8 mmol) and AIBN (9.8 mg, 0.06 mmol) were added. The reaction mixture was refluxed for 14 h and then concentrated under vacuum. The residue was purified by silica gel flash chromatography (hexane-CH₂Cl₂ 10:1) to afford methyl 4-(1-bromoethyl)benzoate (158 mg, 54%, colourless oil).
1
H NMR (300 MHz, CDCl₃): δ 8.00 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 5.19 (q, J = 6.9 Hz, 1H), 3.91 (s, 3H), 2.03 (d, J = 6.9 Hz, 3H).

(S)-(1-Bromoethyl)benzene³

To a solution of (*R*)-1-phenyl-1-ethanol (200 mg, 1.6 mmol) in dry hexane (8 mL), DMAP (400 mg, 3.2 mmol) was added and the reaction mixture was cooled to 0 °C. POBr₃ (300 mg, 1.1 mmol) was dissolved separately in dry hexane (2.0 mL) and the resulting solution was added dropwise. The mixture was stirred at room temperature for 2 h, then filtered and the solid washed with hexane. The combined filtrate was washed with water and saturated aqueous solution Na₂CO₃. The organic layer was dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by silica gel flash chromatography (hexane) to afford methyl (*S*)-(1-bromoethyl)benzene (250 mg, 82%, colourless oil). [α]_D²⁰: -40.6 (*c* 1 CHCl₃), 86% *ee*.[α]_D²⁰ Lit³: -67 (neat). **HPLC**: 85-86% *ee* (reaction running twice) Daicel Chiralpak OJ, *i*-PrOH-hexane 0/100, flow rate 0.2 mL/min, t_R : 52.1 min (*S*)-isomer and 55.5 min (*R*)-isomer, 256 nm. ¹**H NMR** (300 MHz, CDCl₃): δ 7.46-7.43 (m, 2H), 7.38-7.26 (m, 3H), 5.22 (q, J = 6.9 Hz, 1H), 2.05 (d, J = 6.9 Hz, 3H).

Typical procedure for the cross-coupling reaction:

To a solution of Xantphos ligand (4.6 mg, 0.008 mmol) and Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) in THF (1.0 mL) or CH₃CN (1.0 mL), under nitrogen atmosphere, (1-bromoethyl)benzene (35 μl, 0.26 mmol) was added. The resulting solution was cooled to 0 °C and vinylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol) was added dropwise. The mixture was stirred overnight (10-14h) at room temperature and filtered through a plug of Celite[®] with the aid of CH₂Cl₂ (5.0 mL). The solvent was removed under reduced pressure and the residue was purified by silica gel flash chromatography (the eluent is indicated in each case).

1-(But-2-en-2-yl)benzene⁴

Following the typical procedure, the reaction of 1-(1-bromoethyl)benzene (35 µl, 0.26 mmol) with vinylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in THF (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane) 1-(but-2-en-2-yl)benzene (32.8 mg, 98%, colourless oil). ¹H NMR (300 MHz, CDCl₃): δ 7.32-7.18 (m, 5H), 6.00 (ddd, J =16.8, 10.3, 6.9 Hz, 1H), 5.07-5.00 (m, 2H), 3.46 (quin, J = 6.9 Hz, 1H), 1.36 (d, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 145.6, 143.3, 128.3, 127.2, 126.0, 113.1, 43.2, 20.7. MS (EI⁺) 132 (M⁺, 19%), 117 (100), 115 (35), 91 (14). HRMS (EI⁺): Calcd for C₁₀H₁₂ [M⁺]: 132.0950, found: 132.0939.

1,1-Diphenylethane⁵

Following the typical procedure, the reaction of (1-bromoethyl)benzene (35 μ l, 0.26 mmol) with phenylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in THF (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane),

1,1-diphenylethane (44.7 mg, 96%, colourless oil). ¹**H NMR** (300 MHz, CDCl₃): δ 7.37-7.26 (m, 10H), 4.24 (quin, J = 7.3 Hz, 1H), 1.74 (d, J = 7.3 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃): δ 146.3, 128.3, 127.6, 126.0, 44.8, 21.8. **MS** (EI⁺) 182 (M⁺, 26%), 167 (100), 165 (24), 152 (16). **HRMS** (EI⁺): Calcd for C₁₄H₁₄ [M⁺]: 182.1100, found: 182.1096.

1-Fluoro-4-(1-phenylethyl)benzene

Following the typical procedure, the reaction of (1-bromoethyl)benzene (35 μ l, 0.26 mmol) with *p*-fluorophenylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos

ligand (4.6 mg, 0.008 mmol) in THF (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane), 1-fluoro-4-(1-phenylethyl)benzene (48.6 mg, 95%, yellow oil). This reaction was scaled up to 500 mg, 2.6 mmol of (1-bromoethyl)benzene using 20mg of Pd(CH₃CN)₂Cl₂ and 40mg of Xantphos, providing the product in 93% yield (476 mg). ¹H NMR (300 MHz, CDCl₃): δ 7.33-7.31 (m, 2H), 7.26-7.19 (m, 5H), 7.03-6.90 (m, 2H), 4.18 (quin, J = 7.3 Hz, 1H), 1.67 (d, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 162.9, 146.1, 142.0, 128.9, 128.4, 127.5, 126.1, 114.9, 44.0, 22.0. MS (EI⁺) 200 (M⁺, 24%), 185 (100), 183 (21), 165 (20). HRMS (EI⁺): Calcd for C₁₄H₁₃F [M⁺]:200.1007, found: 200.1001.

4-(1-Phenylethyl)anisole⁶

Following the typical procedure, the reaction of (1-bromoethyl)benzene (35 µl, 0.26 mmol) with p-methoxyphenylmagnesium bromide (0.5 M in THF, 0.66 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in THF (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane), 4-(1-phenylethyl)anisole (53.2 mg, 98%, colourless oil). 1 H NMR (300 MHz, CDCl₃): δ 7.26-7.13 (m, 5H), 7.11 (d, J = 8.7 Hz, 2H), 6.81 (d, J = 8.7 Hz, 2H), 4.08 (q, J = 7.2 Hz, 1H), 3.75 (s, 3H), 1.59 (d, J = 7.2 Hz, 3H). 13 C NMR (75 MHz, CDCl₃): δ 157.8, 146.7, 138.5, 128.5, 128.3, 127.5, 125.9, 113.7, 55.2, 43.9, 22.0. MS (EI⁺) 212 (M⁺, 23%), 197 (100), 165 (14), 153 (11). HRMS (EI⁺): Calcd for C₁₅H₁₆O [M⁺]: 212.1203, found: 212.1201.

4-(1-Phenylethyl)biphenyl⁷

Following the typical procedure, the reaction of (1-bromoethyl)benzene (35 µl, 0.26 mmol), biphenylmagnesium bromide (0.7 M in THF, 0.47 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in THF (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane), 4-(1-phenylethyl)biphenyl (62.2 mg, 94%, white solid). **m.p.:** 61-62°C. 1 H **NMR** (300 MHz, CDCl₃): δ 7.59-7.48 (m, 8H), 7.44-7.25 (m, 6H), 4.17 (q, J = 7.2 Hz, 1H), 1.66 (d, J = 7.2 Hz, 3H). 13 C **NMR** (75 MHz, CDCl₃): δ 146.2, 145.5, 141.2, 138.9, 128.7, 128.4, 127.6, 127.1, 127.0, 126.9, 126.1, 44.4, 21.8. **MS** (EI⁺) 258 (M⁺, 38%), 243 (100), 165 (20). **HRMS** (EI⁺): Calcd for C₂₀H₁₈ [M⁺]: 258.1410, found: 258.1409.

2-(1-Phenylethyl)naphthalene⁸

Following the typical procedure, the reaction of (1bromoethyl)benzene (35)μl, 0.26 mmol), 2naphthalenmagnesium bromide (0.5 M in THF, 0.66 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in THF (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane), 2-(1-phenylethyl)naphthalene (33.9 mg, 57%, colourless oil) and styrene (11 mg 40%, colourless oil). ¹H NMR (300 MHz, CDCl₃): δ 7.78-7.68 (m, 4H), 7.62-7.39 (m, 6H), 7.30-7.18 (m, 2H), 4.30 (q, J = 7.2 Hz, 1H), 1.72(d, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 146.2, 143.7, 133.5, 132.0, 128.4, 127.9, 127.7, 127.6, 127.5, 126.8, 126.1, 125.9, 125.4, 125.3, 44.8, 21.7.

2-(1-Phenylethyl)thiophene⁹

Following the typical procedure, the reaction of (1-bromoethyl)benzene (35 μ l, 0.26 mmol), 2-thiophenylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in THF (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane), 2-(1-phenylethyl)thiophene (45.8 mg, 95%, colourless oil). ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.13 (m, 5H), 7.02-6.99 (m, 1H), 6.92-6.89 (m, 1H), 6.80-6.79 (m, 1H), 4.35 (q,

J = 7.2 Hz, 1H), 1.70 (d, J = 7.2 Hz, 3H). ¹³C **NMR** (75 MHz, CDCl₃): δ 150.7, 146.0, 128.5, 127.3, 126.5, 124.3, 123.6, 123.5, 40.7, 23.3. **MS** (EI⁺) 188 (M⁺, 27%), 173 (100), 129 (12). **HRMS** (EI⁺): Calcd for C₁₂H₁₂S [M⁺]: 188.0663, found: 188.0660.

1-Methoxy-3-(1-phenylethyl)benzene

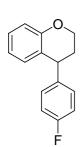
Following the typical procedure, the reaction of (1-OMe bromoethyl)benzene (35 μ l, 0.26 mmol) with *m*-methoxyphenylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in THF (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane), 1-methoxy-3-(1-phenylethyl)benzene (38.0 mg, 70%, colourless oil). ¹H NMR (300 MHz, CDCl₃): δ 7.26-7.19 (m, 6H), 6.86-6.82 (m, 2H), 6.76-6.72 (m, 1H), 4.14 (q, J = 7.3 Hz, 1H), 3.76 (s, 3H), 1.65 (d, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 159.6, 147.9, 146.1, 129.2, 128.3, 127.5, 126.0, 120.1, 113.7, 110.9, 56.0, 44.7, 21.7.

1-Vinylindane¹⁰

Following the typical procedure, the reaction of 1-bromo-2,3-dihydro-1*H*-indene (50.6 mg, 0.26 mmol), vinylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in CH₃CN (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane), 1-vinylindane (34.7 mg, 94%, colourless oil). ¹**H NMR** (300 MHz, CDCl₃): δ 7.23-7.13 (m, 4H), 5.86 (ddd, J = 17.3, 9.9, 8.3 Hz, 1H), 5.17-5,06 (m, 2H), 3.75 (q, J = 8.3 Hz, 1H), 2.93-2.84 (m, 2H), 2.46-2.27 (m, 1H), 2.17-2.03 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 141.1, 134.1, 126.3, 126.0, 125.8, 124.5, 121.0, 114.8, 49.8, 33.1, 32.0. **MS** (EI⁺) 144 (M⁺, 62%), 143 (20), 129 (100), 128 (48), 127 (11). **HRMS** (EI⁺): Calcd for C₁₁H₁₂ [M⁺]: 144.0938, found: 144.0939.

2-(2,3-Dihydro-1H-inden-1-yl)thiophene

mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in CH₃CN (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane), 2-(2,3-dihydro-1H-inden-1-yl)thiophene (47.6 mg, 93%, yellow oil). ¹**H NMR** (300 MHz, CDCl₃): δ 7.39-7.19 (m, 4H), 7.09 (dd, , J = 5.0, 3.7 Hz, 1H), 6.69-6.63 (m, 2H), 4.42 (t, J = 7.6 Hz, 1H), 3.14-2.98 (m, 2H), 2.61-2.50 (m, 1H), 2.27-2.13 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 152.4, 145.2, 143.8, 127.7, 126.3, 124.5, 120.2, 47.3, 38.7, 31.7. **MS** (EI⁺) 200 (M⁺, 2%), 117 (100), 115 (30). **HRMS** (EI⁺): Calcd for C₁₃H₁₂S [M⁺]: 200.0638, found: 200.0660.


3,4-Dihydro-4-vinyl-2*H*-chromene

Following the typical procedure, the reaction of 4-bromo-3,4-dihydro-1*H*-chromene (40.0 mg, 0.26 mmol), vinylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in CH₃CN (2.0 mL) at room

temperature afforded, after purification by silica gel flash chromatography (hexane), 3,4-dihydro-4-vinyl-2*H*-chromene (17.2 mg, 42%, colourless oil) and the β-elimination product¹¹ (13.7 mg, 40%, colourless oil). ¹**H NMR** (300 MHz, CDCl₃): δ 7.38-7.07 (m, 2H), 7.97-6.76 (m, 2H), 5.87 (ddd, , J = 17.4, 10.2, 7.8 Hz, 1H), 5.19-5.05 (m, 2H), 4.26-4.16 (m, 2H), 3.56-3-49 (m, 1H), 2.14-2.01 (m, 1H), 1.94-1.86 (m, 1H). ¹³**C NMR** (75 MHz, CDCl₃): δ 155.9, 141.4, 128.9, 127.9, 127.4, 120.5, 117.3, 117.2, 65.4, 37.6, 36.5. **MS** (EI⁺) 160 (M⁺, 35%), 133 (100), 105 (26). **HRMS** (EI⁺): Calcd for C₁₁H₁₂O [M⁺]: 160.0888, found: 160.0878.

4-(4-Fluorophenyl)-3,4-dihydro-2*H*-chromene

Following the typical procedure, the reaction of 4-bromo-3,4-dihydro-1*H*-chromene (40.0 mg, 0.26 mmol), *p*-fluorophenylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in CH₃CN (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane), 4-(4-fluorophenyl)-3,4-dihydro-2*H*-chromene

(30.9 mg, 53%, yellow oil) and the β-elimination product¹¹ (11.3 mg, 33%, colourless oil). ¹**H NMR** (300 MHz, CDCl₃): δ 7.28-7.23 (m, 2H), 7.11-7.08 (m, 2H), 7.03-6.90 (m, 4H), 4.47-4.26 (m, 3H), 2.24-2.13 (m, 1H), 1.95-1.83 (m, 1H). ¹³**C NMR** (75 MHz, CDCl₃): δ 155.9, 155.2, 128.9, 127.9, 127.6, 124.5, 123.8, 120.5, 117.2, 117.1, 65.4,

37.8, 36.6. **MS** (EI⁺) 228 (M⁺, 15%), 133 (100), 105 (26). **HRMS** (EI⁺): Calcd for $C_{15}H_{13}FO$ [M⁺]: 228.0950, found: 228.0953.

3,3-Diphenylprop-1-ene

Following the typical procedure, the reaction of bromodiphenylmethane (50.0 mg, 0.26 mmol), vinylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in CH₃CN (2.0 mL) at room temperature afforded, after purification by

silica gel flash chromatography (hexane), 3,3-diphenylprop-1-ene (24.8 mg, 50%, colourless oil) and the reduction product¹² (14.0 mg, 32%, colourless oil).. ¹**H NMR** (300 MHz, CDCl₃): δ 7.32-7.26 (m, 10H), 6.36 (ddd, J = 17.2, 10.1, 7.2 Hz, 1H), 5.29-5.26 (m, 1H), 5.07-5.02 (m, 1H), 4.78 (m, 1H). ¹³**C NMR** (75 MHz, CDCl₃): δ 142.2, 141.0, 128.5, 128.1, 125.8, 116.3, 56.3. **MS** (EI⁺) 194 (M⁺, 100%), 193 (71), 180 (12), 179 (53), 178 (46). **HRMS** (EI⁺): Calcd for C₁₅H₁₄ [M⁺]: 194.1104, found: 194.1096.

Diphenyl 4-fluorophenyl methane¹³

Following the typical procedure, the reaction of diphenylbromomethane (50.0)0.26 mmol), mg, pfluorophenylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in CH₃CN (2.0 mL) at room

temperature afforded, after purification by silica gel flash chromatography (hexane), diphenyl 4-fluorophenyl methane (65.8 mg, 98%, yellow solid). **m.p.:** 59-60°C. 1 H **NMR** (300 MHz, CDCl₃): δ 7.40-7.39 (m, 2H), 7.11-6.98 (m, 10H), 6.93-6.90 (m, 2H), 4.74 (s, 1H). 13 C **NMR** (75 MHz, CDCl₃): δ 160.7, 143.4, 136.3, 128.6, 128.5, 128.1, 125.8, 115.8, 56.3. **MS** (EI⁺) 262 (M⁺, 100%), 261 (31), 185 (54), 183 (57), 165 (44).. **HRMS** (EI⁺): Calcd for $C_{19}H_{15}F$ [M⁺]: 262.1154, found: 262.1158.

Methyl 4-(but-3-en-2-yl)benzoate

Following the typical procedure, the reaction of methyl 4-(1-bromoethyl)benzoate (52.0 mg, 0.26 mmol) vinylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol),

Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in CH₃CN (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane:AcOEt 30:1), methyl 4-(but-3-en-2-yl)benzoate (29.0 mg, 61%, colourless oil) and the β-elimination product¹⁴ (18.5 mg, 43%, colourless oil). ¹**H NMR** (300 MHz, CDCl₃): δ 7.82 (d, J = 8.3 Hz, 2H), 7.13 (d, J = 8.3 Hz, 2H), 5.84 (ddd, J = 16.3, 9.8, 6.9 Hz, 1H), 4.94-4.89 (m, 2H), 3.75 (s, 3H), 3.38 (quin, J = 6.9 Hz, 1H), 1.22 (d, J = 6.9 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃): δ 167.1, 150.9, 142.3, 129.8, 127.3, 126.1, 113.6, 51.9, 43.2, 20.5. **MS** (EI⁺) 190 (M⁺, 24%), 131 (100), 116 (23), 115 (33), 91 (25). **HRMS** (EI⁺): Calcd for C₁₂H₁₄O₂ [M⁺]: 190.0987, found: 190.0994.

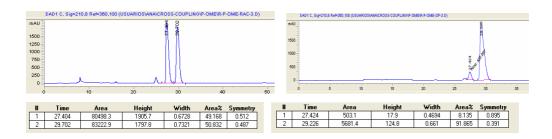
Methyl 4-(1-(4-fluorophenyl)ethyl)benzoate

$$MeO_2C$$

Following the typical procedure, the reaction of methyl 4-(1-bromoethyl)benzoate (52.0 mg, 0.26 mmol), *p*-fluorophenylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol)

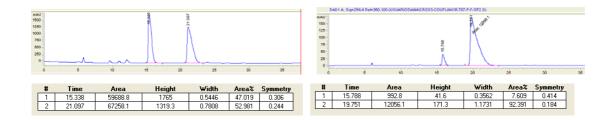
and Xantphos ligand (4.6 mg, 0.008 mmol) in CH₃CN (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane:AcOEt 30:1), methyl 4-(1-(4-fluorophenyl)ethyl)benzoate (63.4 mg, 94%, colourless oil). ¹H NMR (300 MHz, CDCl₃): δ 7.86 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.3 Hz, 2H), 7.18-7.13 (m, 2H), 7.00-6.94 (m, 2H), 4.18 (q, J = 7.1 Hz, 1H), 3.90 (s, 3H), 1.63 (d, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 167.0, 163.0, 151.4, 141.1, 129.8, 129.0, 128.9, 127.5, 115.3, 52.0, 44.1, 21.7. MS (EI⁺) 258 (M⁺, 22%), 243 (100), 199 (11), 184 (22), 183 (35). **HRMS** (EI⁺): Calcd for C₁₆H₁₅FO₂ [M⁺]: 258.1068, found: 258.1056.

Methyl 4-(1-(thiophen-2-yl)ethyl)benzoate


Following the typical procedure, the reaction of methyl 4-(1-bromoethyl)benzoate (52.0 mg, 0.26 mmol), 2-thiophenylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and

Xantphos ligand (4.6 mg, 0.008 mmol) in CH₃CN (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane:AcOEt 30:1), methyl 4-(1-(thiophen-2-yl)ethyl)benzoate (45.4 mg, 72%, yellow oil) and the β-elimination product¹⁴ (7.2 mg, 17%, colourless oil). ¹H NMR (300 MHz, CDCl₃): δ

7.98 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 7.18-7.15 (m, 1H), 6.95-6.92 (m, 1H), 6.81-6.80 (m, 1H), 4.39 (q, J = 7.1 Hz, 1H), 3.90 (s, 3H), 1.71 (d, J = 7.1 Hz, 3H). ¹³C **NMR** (75 MHz, CDCl₃): δ 166.9, 151.2, 149.5, 129.9, 127.3, 126.6, 126.1, 123.8, 52.0, 40.7, 23.0. **MS** (EI⁺) 246 (M⁺, 32%), 231 (100), 172 (16), 171 (22). **HRMS** (EI⁺): Calcd for C₁₆H₁₅FO₂ [M⁺]: 246.0718, found: 247.0715.


(R)-4-(1-Phenylethyl)anisole⁶ (1)

Following the typical procedure, the reaction of (*S*)-(1-bromoethyl)benzene (85%ee) (35 μ l, 0.26 mmol) with *p*-methoxyphenylmagnesium bromide (0.5 M in THF, 0.66 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in THF (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane), (*R*)-1 (52.6 mg, 97%, colourless oil). [α]_D²⁰: -10.6 (*c* 0.60 CHCl₃), 84% *ee*. [α]_D²⁰ Lit⁶: -12.7 (*c* 0.65 CHCl₃), 94% ee. **HPLC**: Daicel Chiralpak OJ, *i*-PrOH-hexane 15/85, flow rate 0.5 mL/min, t_R : 27.4 min (*S*)-isomer and 29.7 min (*R*)-isomer, 210 nm.

(R)-1-Fluoro-4-(1-phenylethyl)benzene (2)

Following the typical procedure, the reaction of (*S*)-(1-bromoethyl)benzene (86% *ee*) (35 µl, 0.26 mmol) with *p*-fluorophenylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in THF (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane), (*R*)-2 (48.1 mg, 94%, yellow oil). [α]_D²⁰: -3.3 (*c* 0.60 CHCl₃), 85% *ee*. **HPLC:** Daicel Chiralpak OJ, *i*-PrOH-hexane 0/100, flow rate 0.8 mL/min, t_R : 15.3 min (*S*)-isomer and 21.1 min (*R*)-isomer, 210 nm.

Cross-coupling reaction example using a primary benzylic bromide 1-Allylbenzene¹²

Following the typical procedure, the reaction of 1bromomethylbenzene (43.0 mg, 0.26 mmol) vinylmagnesium bromide (1.0 M in THF, 0.33 mL, 0.33 mmol), Pd(CH₃CN)₂Cl₂ (2.0 mg, 0.008 mmol) and Xantphos ligand (4.6 mg, 0.008 mmol) in THF (2.0 mL) at room temperature afforded, after purification by silica gel flash chromatography (hexane), 1allylbenzene (28.7 mg, 95%, colourles oil). ¹**H NMR** (300 MHz, CDCl₃): δ 7.36-7.14 (m, 5H), 6.03-5.89 (m, 1H), 5.10-5.03 (m, 2H), 3.39-3.37 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 142.3, 136.1, 129.8, 127.3, 126.1, 113.8, 43.2. **MS** (EI⁺) 118 (M⁺, 68%), 117 (100), 115 (40), 91 (19). **HRMS** (EI⁺): Calcd for C_9H_{10} [M⁺]: 118.0788, found: 118.0783.

Screening of other ligands for cross-coupling reaction of 1-bromoethylbenzene with vinyl magnesium bromide.

Several ligands were tested in the model reaction using 10 mol% of $Pd(CH_3CN)_2Cl_2$ as catalyst and THF as solvent at room temperature. No reaction was observed in the absence of ligand or when PPh₃ or PCy₂ were used. In the presence of the bidentate phosphines Binap, DTBM-Segphos, or Josiphos the reaction afforded styrene as major product, likely as result of a β -hydride elimination process. The coupling product C was not detected with these ligands.

Per MgBr
$$\frac{Pd(CH_3CN)_2Cl_2}{Iigand} = \frac{Pd(CH_3CN)_2Cl_2}{Iigand} = \frac{Pd(CH_3CN)_2Cl_2}{Iigan$$

^{1.} Forrest, O.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482.

^{2.} Marsham, P. R.; Jackman, A. L.; Hayter, A. J.; Daw, M. R.; Snowden, J. L.; O'Connor, B. M.; Bishop, J. A. M.; Calvert, A. H.; Hughes, L. R. *J. Med. Chem.* **1991**, *34*, 2209.

^{3.} Dauben H.J, McCoy L. L. J. Am. Chem. Soc. 1959, 81, 5404.

^{4.} López, F.; van Zijl, A. W.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2006, 409.

^{5.} Schoenebeck, F.; Murphy, J. A.; Zhou S.; Uenoyama, Y.; Miclo, Y.; Tuttle, T. *J. Am. Chem. Soc.* **2007**, *129*, 13368.

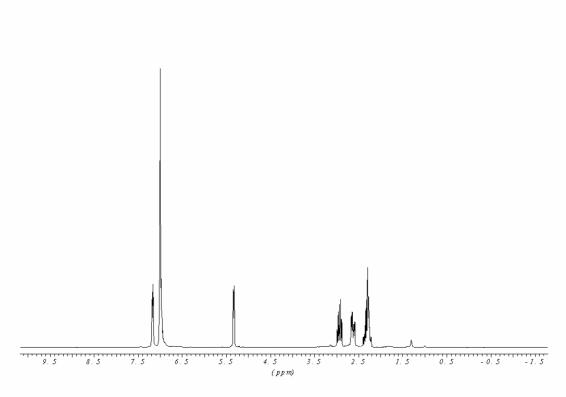
^{6.} Fessard, T. C.; Andrews, S. P.; Motoyoshi, H.; Carreira, E. M. Angew. Chem. Int. Ed. 2007, 46, 9331.

^{7.} Howkins, E. G. E.; Thompson, R. D. J. Am. Chem. Soc. 1961, 83, 370.

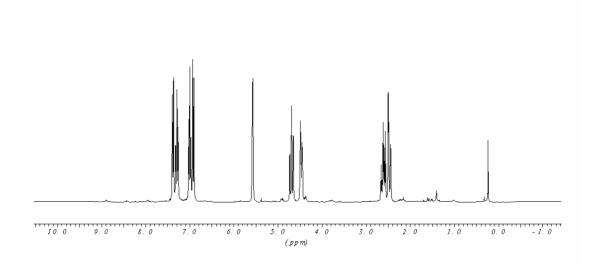
^{8.} Guam, B.-T.; Xiang, S.-K.; Wang, B.-Q.; Sum, Z.-P.; Wang, Y. Zhao, K.-Q. Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 3268.

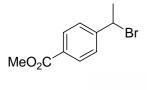
^{9.} Podder, S.; Choudhury, J.; Roy, S. J. Org. Chem. 2007, 72, 3129.

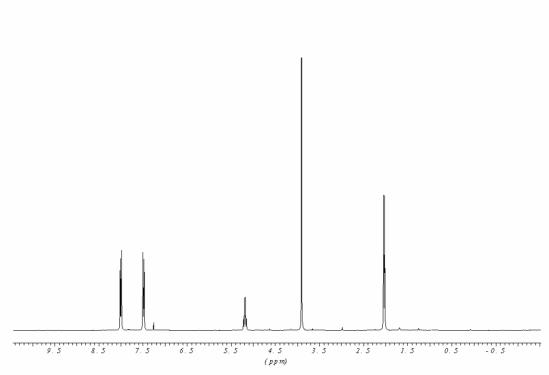
^{10.} Dong, S.; Kooyeon, L.; Hyunseok, K.; Phil Ho, L. Chem. Eur. J. 2007, 13, 5197.

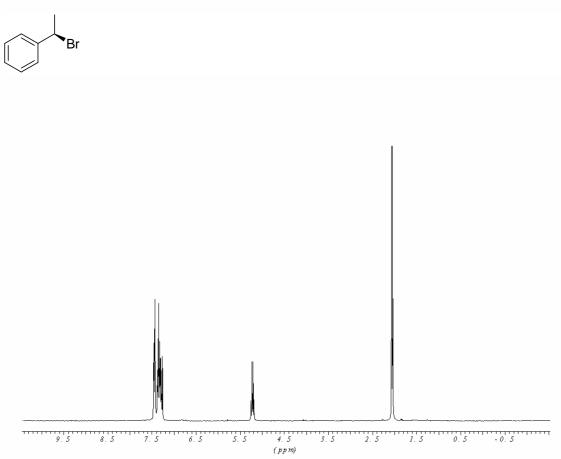

^{11.} Varela, J. A.; Gonzalez-Rodriguez, C.; Rubín, S. G.; Castedo, L.; Saá, C. J. Am. Chem. Soc. 2006, 118, 9576.

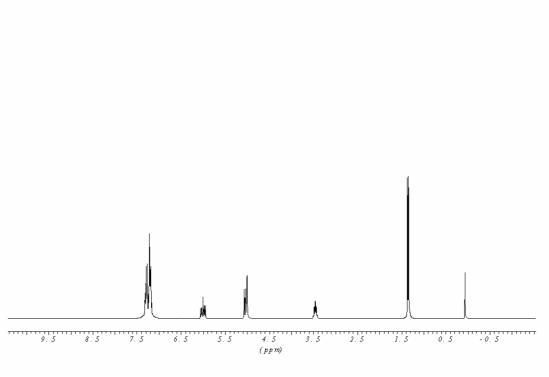
^{12.} Alacid, E.; Nájera, C. Org. Lett. 2008, 10, 5011.

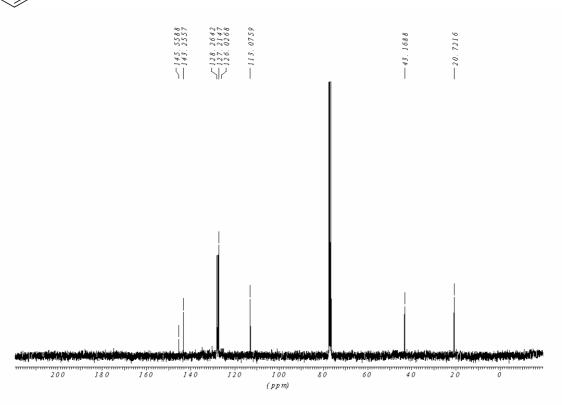

^{13.} Shutske, G. M. J. Org. Chem. 1977, 42, 374.

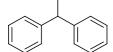

^{14.} Su, W.; Urgaonkar, S.; Verkade, J. G. Org. Lett. 2004, 6, 1421.

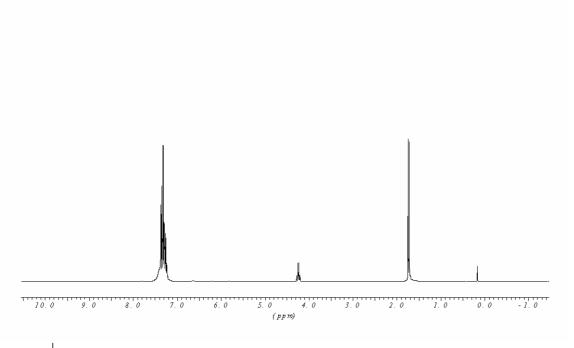


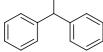


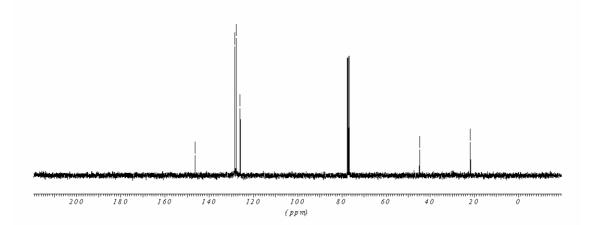


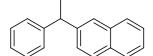


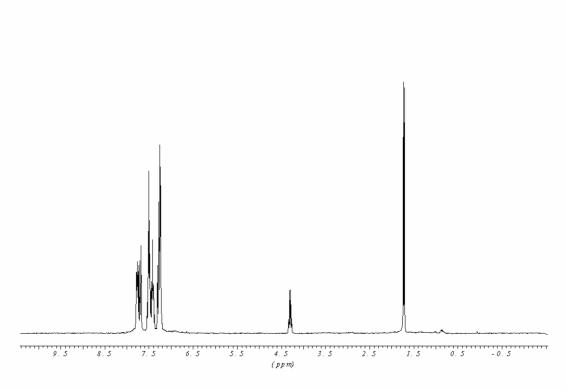


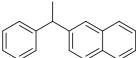


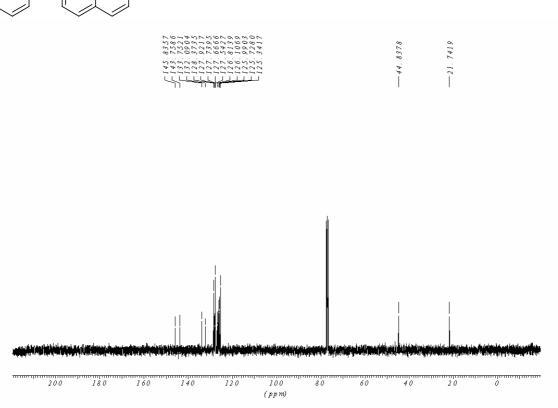


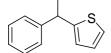


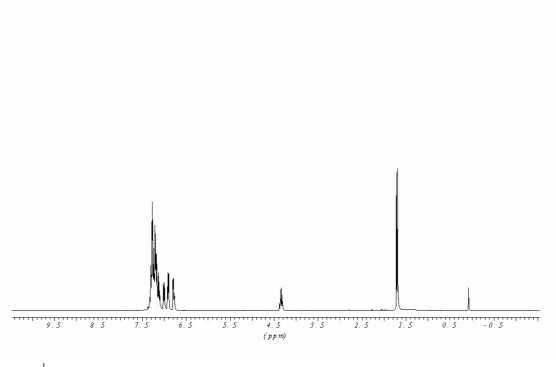


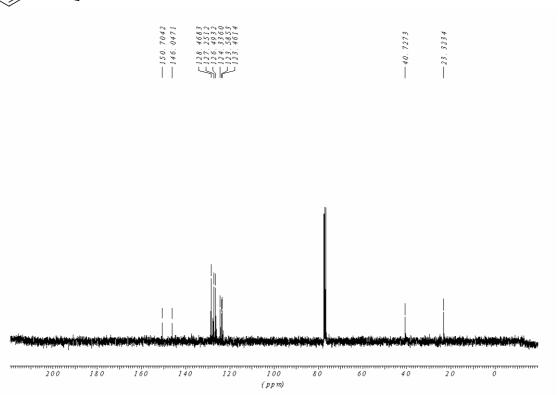


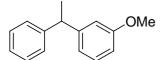


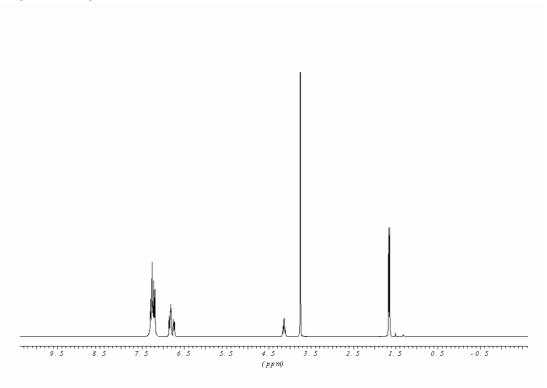


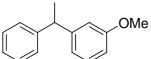


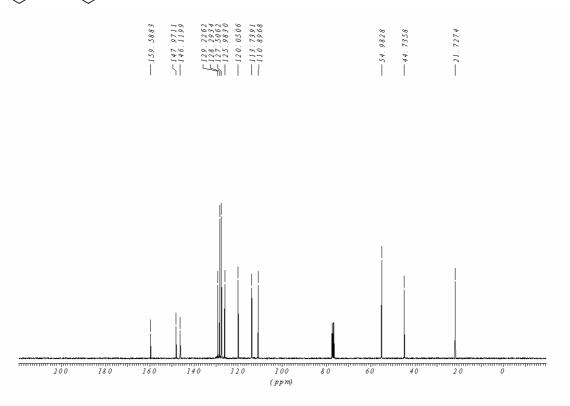


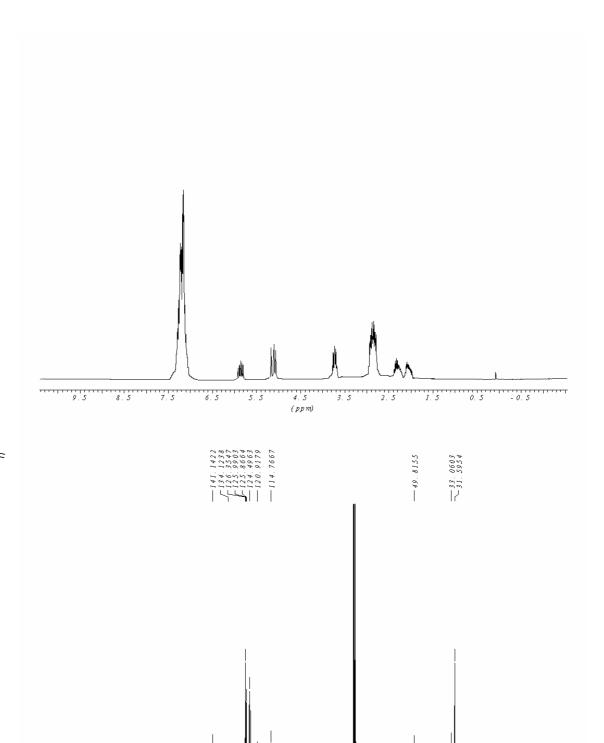


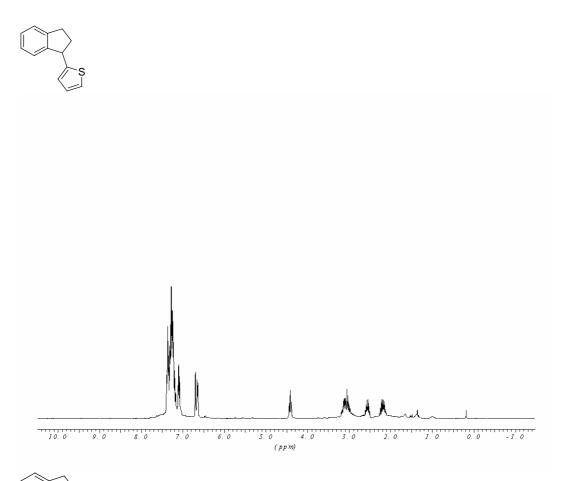


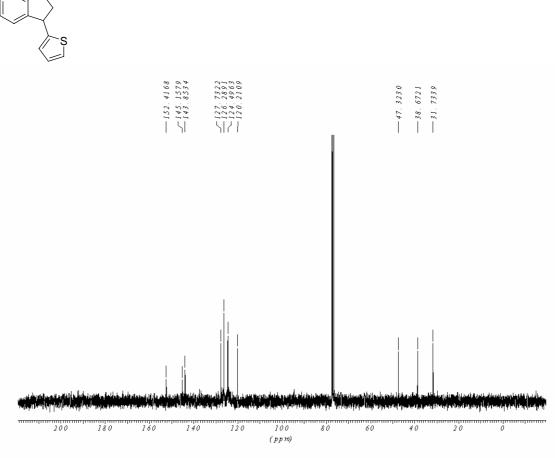


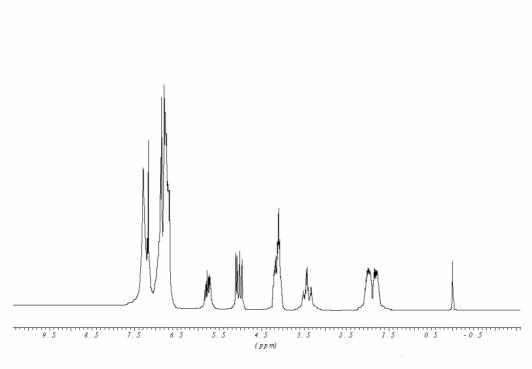




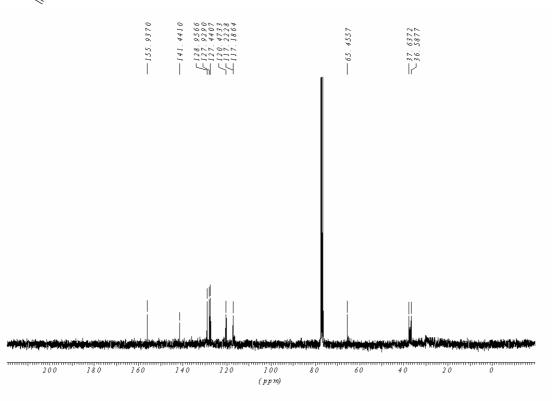


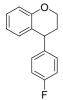


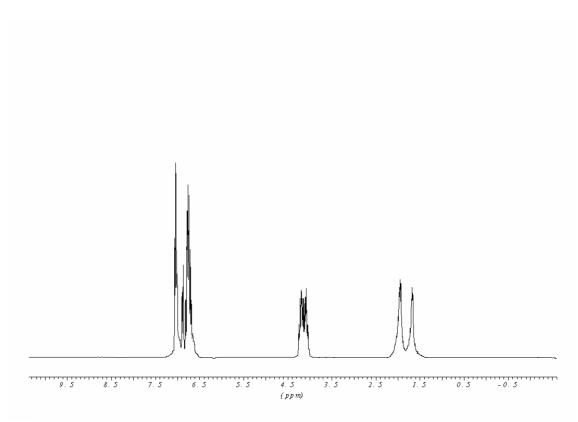


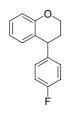

100 (ppm)

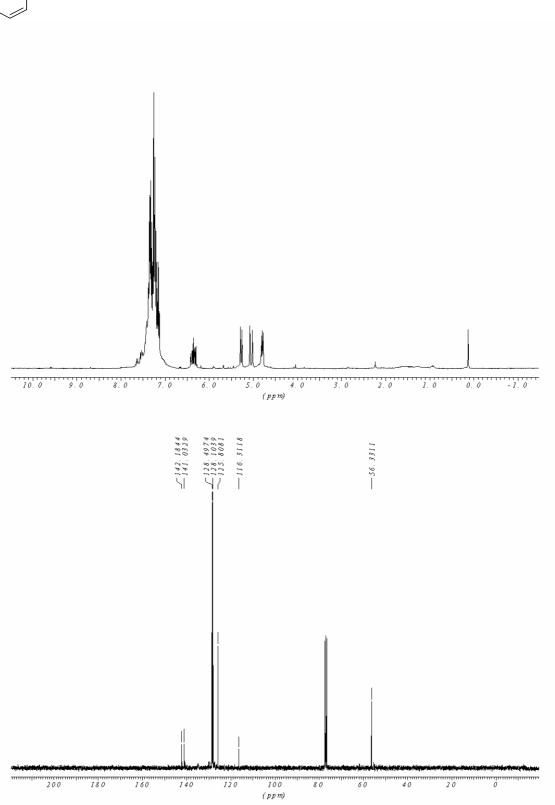
160 140

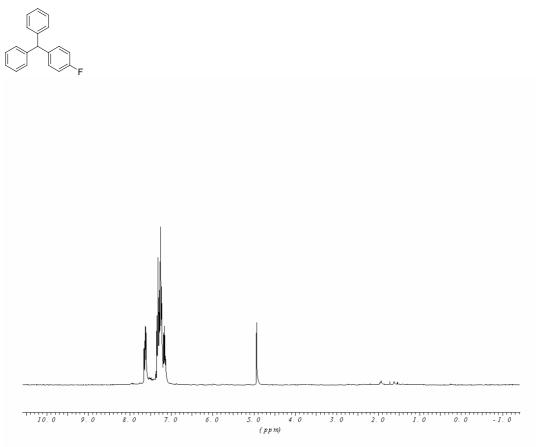


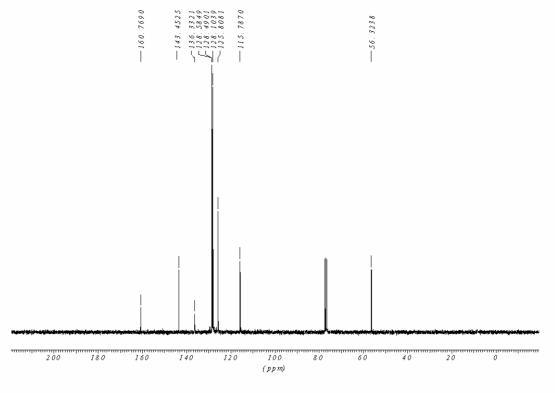


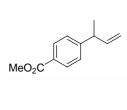


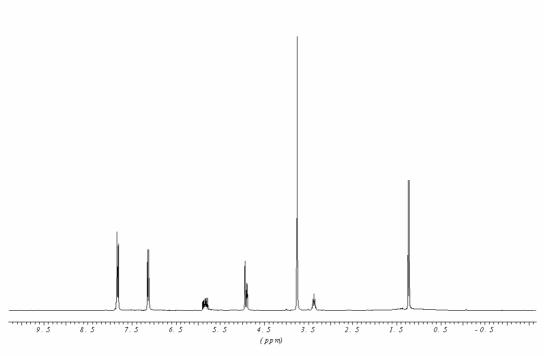


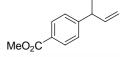


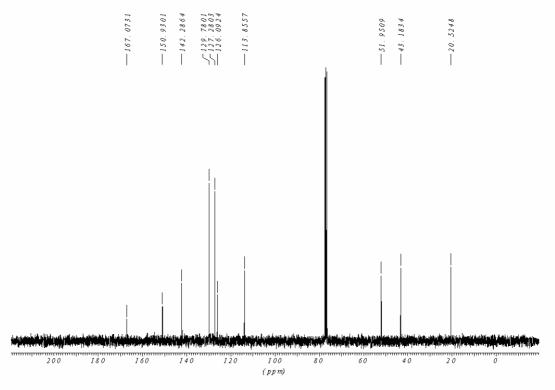


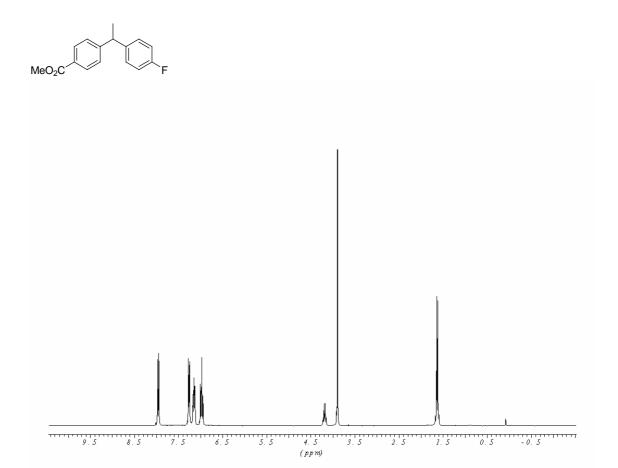


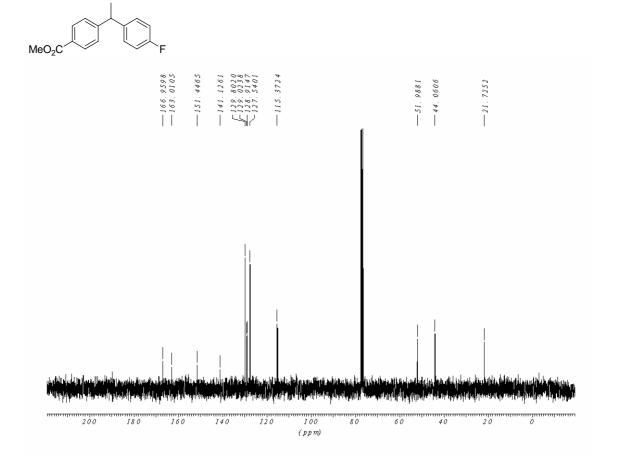


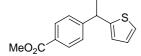


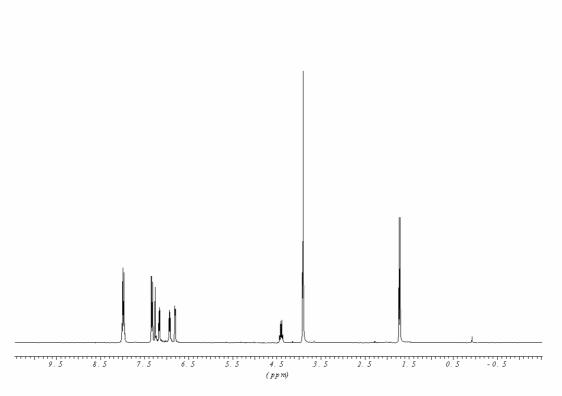


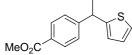


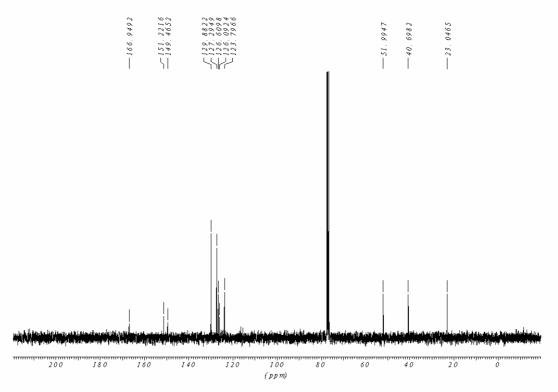


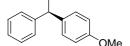


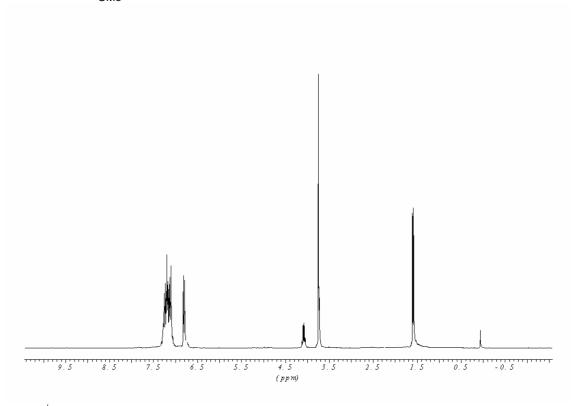


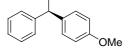


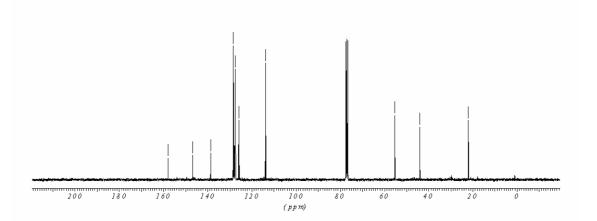


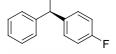


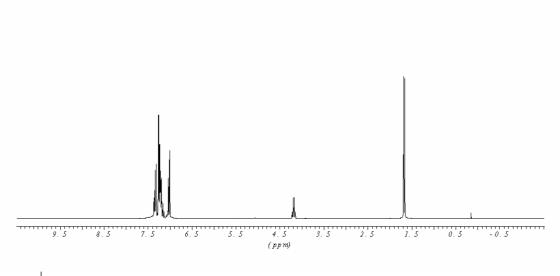


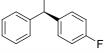


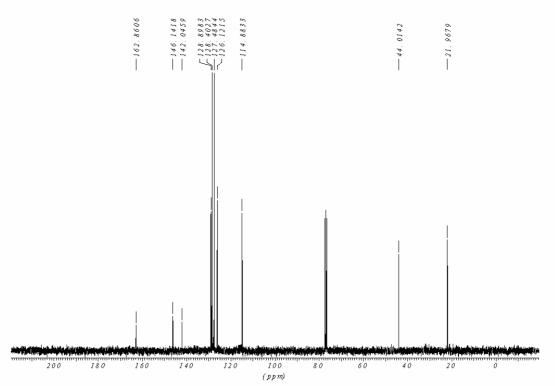











9	0	60000	2			
4	4	10000	K	_	42	42
2	42	40-00	~	∞0	0,	50
90	~	2 4000	_	80	~	60
				~	0,	0
7	9	~ ~ ~ ~ ~ ~	60			
40	4	20000	r	ω	60	~
~	~	~ ~~~~	~	٠,	4-	~
		44 /				

