ELECTRONIC SUPPORTING INFORMATION

Phenylalanine aminomutase-catalyzed addition of ammonia to substituted cinnamic acids – a route to enantiopure α - and β -amino acids

Wiktor Szymanski, Bian Wu, Barbara Weiner, Stefaan de Wildeman, Ben L. Feringa and Dick B. Janssen

TABLE OF CONTENTS:

General Remarks	S2
Experimental procedures and analytical data of compounds	S3-S10
NMR-spectra of new compounds	S11-S17

General Remarks:

¹H-NMR spectra were recorded at 300 or 400 MHz with CDCl₃ as solvent. ¹³C-NMR spectra were obtained at 75.4 or 100.59 MHz in CDCl₃. Chemical shifts were determined relative to the residual solvent peaks (CHCl₃, $\delta = 7.26$ ppm for hydrogen atoms, $\delta = 77.0$ for carbon atoms). The following abbreviations are used to indicate signal multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br s, broad signal. Enantiomeric excess determination was performed by capillary GC analysis or HPLC analysis using flame ionization detector or UV-detection, respectively (all in comparison with racemic products, column and conditions further specified in relevant experimentals). Optical rotations were measured on a polarimeter with a 10 cm cell (c given in g/100 mL). Absolute configuration of the products was determined by comparison of the sign of the optical rotations with those of compounds previously published. Thin-layer chromatography (TLC) was performed using commercial Kieselgel 60, F₂₅₄ silica gel plates, and components were visualized with KMnO₄ or phosphomolybdic acid reagent. Flash chromatography was performed on silica gel. Drying of solutions was performed with MgSO₄ or Na₂SO₄ and solvents were removed with a rotary evaporator.

Compounds (R)-phenylalanine ((R)-2a), (S)-phenylalanine ((S)-2a), (S)-2-fluorophenylalanine ((S)-2b),(*S*)-2-chloro-phenylalanine ((S)-2c),(*S*)-2-bromo-(S)-2-methyl-phenylalanine (S)-3-fluorophenylalanine ((S)-2d),((S)-2e),phenylalanine (S)-3-chloro-phenylalanine (*S*)-3-bromo-((S)-2h),((S)-2i),phenylalanine ((S)-2j),(*S*)-3-methyl-phenylalanine ((S)-2k),(S)-4-fluorophenylalanine (*S*)-4-chloro-phenylalanine (*S*)-4-bromo-((S)-2n),((S)-20),phenylalanine ((S)-2p),(*S*)-4-methyl-phenylalanine ((S)-2q),(S)-4-methoxyphenylalanine ((S)-2r), (S)-4-nitro-phenylalanine ((S)-2w), (R)- β -phenylalanine ((R)-**3a**), (S)- β -phenylalanine ((R)-**3a**), (R)-3-amino-3-(2-fluoro-phenyl)-propionic acid ((R)-3b), (R)-3-amino-3-(2-chloro-phenyl)-propionic acid ((R)-3c), (R)-3-amino-3-(2bromo-phenyl)-propionic acid ((R)-3d), (R)-3-amino-3-(2-methyl-phenyl)-propionic acid ((R)-3e), (S)-3-amino-3-(2-methyl-phenyl)-propionic acid ((S)-3e), (R)-3-amino-3-(3-fluoro-phenyl)-propionic acid ((R)-3h),(R)-3-amino-3-(3-chloro-phenyl)propionic acid ((R)-3i), (R)-3-amino-3-(3-bromo-phenyl)-propionic acid ((R)-3j), (R)-3-amino-3-(3-methyl-phenyl)-propionic acid ((R)-3k), (R)-3-amino-3-(4-fluoro-

phenyl)-propionic acid ((R)-3n), (S)-3-amino-3-(4-fluoro-phenyl)-propionic acid ((S)-3n), (R)-3-amino-3-(4-chloro-phenyl)-propionic acid ((S)-3o), (S)-3-amino-3-(4-chloro-phenyl)-propionic acid ((S)-3o), (S)-3-amino-3-(4-methyl-phenyl)-propionic acid ((S)-3q), (S)-3-amino-3-(4-methyl-phenyl)-propionic acid ((S)-3q), (S)-3-amino-3-(4-methoxy-phenyl)-propionic acid ((S)-3r), (S)-3-amino-3-(4-methoxy-phenyl)-propionic acid ((S)-3p), (S)-3-amino-3-(4-methoxy-phen

General procedure for the synthesis of substituted cinnamic acids (1):

A mixture of substituted benzaldehyde (4.00 mmol), malonic acid (8.80 mmol) and piperidine (70 μ L) in pyridine (1.80 mL) was stirred under gentle reflux for 80-180 min. The reaction mixture was cooled and slowly poured into ice-cold aqueous HCl (2N, 35 mL). The precipitate was filtered off and dried under vacuum.

1b: (*E*)-2-fluoro-cinnamic acid. Yield: 99%, >99% of (*E*) isomer. Light yellow solid. Mp. 173-174 °C (lit. 175 °C); 1 H NMR (400 MHz, CDCl₃): δ 6.56 (d, ${}^{3}J$ = 16.0 Hz, 1H, vinyl CH), 7.10-7.59 (m, 4H, ArH). 7.93 (d, ${}^{3}J$ = 16.0 Hz, 1H, vinyl CH); 1 H NMR consistent with literature data. 2

1c: (*E*)-2-chloro-cinnamic acid. Yield: 93%, >99% of (*E*) isomer. White solid. Mp. 210.9-211.2 °C (lit.³ 208-210 °C); ¹H NMR (400 MHz, CDCl₃): δ 6.59 (d, ³J = 16.0 Hz, 1H, vinyl CH), 7.86 (d, ³J = 16.4 Hz, 1H, vinyl CH), 7.36-7.92 (m, 4H, ArH).

.

¹ Kindler, V. K. *Lieb*, *Ann. Chem.* **1928**, 464, 286.

² Yuzikhin, O. S.; Vasil'ev, A. V.; Rudenko, A. P. Russ. J. Org. Chem. 2000, 36, 1743.

³ Ito, Y.; Borecka, B.; Olovsson, G.; Trotter, J.; Scheffer, J. R. Tetrahedron Lett. 1995, 36, 6087.

1d: (*E*)-**2-bromo-cinnamic acid**. Yield: 73%, >99% of (*E*) isomer. White solid. Mp. 219.5-219.7 °C (lit.⁴ 217.5-218.5 °C); ¹H NMR (400 MHz, CDCl₃): δ 6.54 (d, ³J = 16.0 Hz, 1H, vinyl CH), 7.82 (d, ³J = 15.6 Hz, 1H, vinyl CH), 7.32-7.90 (m, 4H, ArH); ¹H NMR consistent with literature data.⁵

1h: (*E*)-3-fluoro-cinnamic acid. Yield: 99%, >99% of (*E*) isomer. White solid. Mp. 167.5-168.5 °C (lit. 6 166.2-166.8 °C); 1 H NMR (400 MHz, DMSO-d6): 6.60 (d, 3 *J* = 16.0 Hz, 1H, vinyl CH), 7.21-7.61 (m, 5H, ArH, vinyl H). 1 H NMR consistent with literature data. 7

1i: (*E*)-3-chloro-cinnamic acid. Yield: 96%, >99% of (*E*) isomer. White solid. Mp. 161.4-162.3 °C (lit.⁶ 162.6-163.2 °C); ¹H NMR (400 MHz, CDCl₃): δ 6.60 (d, ³J = 16.0 Hz, 1H, vinyl CH), 7.55 (d, ³J = 15.6 Hz, 1H, vinyl CH), 7.40-7.80 (m, 4H, ArH); ¹H NMR consistent with literature data.⁸

1j: (*E*)-**3-bromo-cinnamic acid**. Yield: 92%, >99% of (*E*) isomer. White solid. Mp. 175.0-176.3 °C (lit. 9 176-178 °C); 1 H NMR (400 MHz, CDCl₃): δ 6.61 (d, 3 *J* = 15.6 Hz, 1H, vinyl CH), 7.65 (d, 3 *J* = 16.0 Hz, 1H, vinyl CH), 7.39-7.90 (m, 4H, ArH).

1p: (*E*)-**4-bromo-cinnamic acid**. Yield: 88%, >99% of (*E*) isomer. White solid. Mp. 264.0-265.0 °C (lit. 10 264-266 °C); 1 H NMR (400 MHz, CDCl₃): δ 6.55 (d, ^{3}J = 16.0 Hz, 1H, vinyl CH), 7.55 (d, ^{3}J = 15.6 Hz, 1H, vinyl CH), 7.58-7.65 (m, 4H, ArH); 1 H NMR consistent with literature data. 10

1t: (*E*)-**4-ethyl-cinnamic acid**. Yield: 96%, >99% of (*E*) isomer. White solid. Mp. 143 °C (lit. 11 143 °C); ¹H NMR (400 MHz, CDCl₃): δ 1.25 (t, ³J =7.6 Hz, 3H, CH₃), 2.68 (q, ³J =7.6 Hz, 2H, CH₂), 6.42 (d, ³J = 15.6 Hz, 1H, vinyl CH), 7.22-7.49 (m,

S4

⁴ Brittelli, D. R. J. Org. Chem. **1981**, 46, 2514.

⁵ Berry, J. M.; Watson, C. Y.; Whish, W. J. D.; Threadgill, M. D. J. Chem. Soc.-Perkin 1 1997, 1147.

⁶ Fuchs, R.; Bloomfield. J. J. J. Org. Chem. 1966, 31, 3423.

⁷ Jenkins, S. L.; Almond, M. J.; Hollins. B. Phys. Chem. Chem. Phys. 2005, 7, 1966.

⁸ Jovanovic, B.; Misicvukovic, M.; Drmanic, S.; Csanadi. J. Heterocycles **1994**, 37, 1495.

⁹ Uekama, K.; Otagiri, M.; Kanie, Y.; Tanaka, S.; Ikeda. S. *Chem. Pharm. Bull.* **1975**, 23, 1421.

¹⁰ Mikroyannidis, J. A.; Spiliopoulos, L. K. Kasimis, T. S.; Kulkarni, A. P.; Jenekhe. S. A. *Macromolecules* **2003**, *36*, 9295.

¹¹ Lock, G.; Bayer, E. Chem.Ber. **1939**, 1064.

4H, Ar**H**). 7.78 (d, ${}^{3}J$ = 16.0 Hz, 1H, vinyl C**H**); ${}^{1}H$ NMR consistent with literature data. 12

1u: (*E*)-**4-***n*-**propyl-cinnamic acid**. Yield: 92%, >99% of (*E*) isomer. White solid. Mp. 176.0-177.0 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.95 (t, ³*J* = 7.2 Hz, 3H, CH₃), 1.61-1.70 (m, 2H, CH₃CH₂), 2.62 (t, ³*J* = 8.0 Hz, 2H, CH₂Ar), 6.42 (d, ³*J* = 15.6 Hz, 1H, vinyl CH), 7.21-8.49 (m, 4H, ArH), 7.78 (d, ³*J* = 15.6 Hz, 1H, vinyl CH); ¹³C NMR (100 MHz, DMSO-d₆): δ 14.3, 24.5, 37.7, 118.9, 128.9, 129.6, 132.5, 144.6, 145.4, 168.4; MS (EI) *m/z* 190 (M⁺, 40), 161 (100), 115 (75); HRMS (EI+) calc. for C₁₂H₁₄O₂: 190.0994, found: 190.0996.

1w: (*E*)-4-nitrocinnamic acid. Yield: 95%, >99% of (*E*) isomer. Yellow solid. Mp. 292-293 °C (lit. 9 293 °C); 1 H NMR (400 MHz, DMSO-d6): δ 6.74 (d, 3J = 16.4 Hz, 1H, vinyl CH), 7.68 (d, 3J = 16.4 Hz, 1H, vinyl CH), 7.96-8.24 (m, 4H, ArH). 1 H NMR consistent with literature data. 13

1x: (*E*)-4-tert-butyl-cinnamic acid. Yield: 99%, >99% of (*E*) isomer. White solid. Mp. 202.4-204.2 °C (lit.² 201-203 °C); ¹H NMR (400 MHz, CDCl₃): δ 1.35 (s, 9H, (CH₃)₃); 6.43 (d, ³*J* = 15.6 Hz, 1H, vinyl CH), 7.42-8.51 (m, 4H, ArH), 7.78 (d, ³*J* = 16.0 Hz, 1H, vinyl CH); ¹³C NMR (50 MHz, CDCl₃): δ 31.4, 35.2; 116.4, 126.2, 128.5, 131.5, 147.1, 172.0. MS (EI) m/z 204 (M⁺, 24), 189 (100); HRMS (EI+) calc. for C₁₃H₁₆O₂: 204.1150, found: 204.1159.

¹² Basavaiah, D.; Rao. A. J. Synth. Commun. **2002**, 32, 195.

¹³ Fukuyama, T.; Arai, M.; Matsubara, H.; Ryu L. J. Org. Chem. **2004**, 69, 8105.

General procedure for the synthesis of β -amino acids (3):¹⁴

A suspension of substituted benzaldehyde (2.00 mmol), malonic acid (2.00 mmol) and ammonium acetate (4.0 mmol) in ethanol was heated under reflux for 3 h. The solid product was filtered off and titrated with boiling methanol.

3b: 3-Amino-3-(2-fluoro-phenyl)-propionic acid. Yield: 41%. White solid. Mp. 219.0-219.5 °C (lit. 15 234-236 °C); 1 H NMR (400 MHz, D₂O + K₂CO₃): 2.46-2.53 (m, 2H, C**H**₂COOH), 4.36 (t, 3 *J* = 7.2 Hz, 1H, C**H**NH₂), 6.96-7.31 (m, 4H, ArH). 1 H NMR consistent with literature data. 15

3c: 3-Amino-3-(2-chloro-phenyl)-propionic acid. Yield: 31%. White solid. Mp. 230.2-231.8 °C (lit. 16 219 °C); ¹H NMR (400 MHz, D₂O + K₂CO₃): 2.41 (dd, ²J = 15.2 Hz ³J = 8.0 Hz, 1H, C**H**₂COOH), 2.54 (dd, ²J = 15.2 Hz ³J = 6.0 Hz, 1H, C**H**₂COOH), 4.54-4.60 (m, 1H, C**H**NH₂), 7.13-7.36 (m, 4H, ArH).

3d: 3-Amino-3-(2-bromo-phenyl)-propionic acid. Yield: 13%. White solid. Mp. 229.2-229.5 °C; ¹H NMR (400 MHz, D₂O + K₂CO₃): 2.38 (dd, ²J = 14.8 Hz ³J = 8.0 Hz, 1H, C**H**₂COOH), 2.54 (dd, ²J = 14.8 Hz ³J = 6.0 Hz, 1H, C**H**₂COOH), 4.51-4.54 (m, 1H, C**H**NH₂), 7.05-7.52 (m, 4H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 45.2, 51.8, 118.8, 123.0, 127.3, 128.2, 129.0, 133.1, 167.4; NMR data is identical for the one obtained for commercial enantiopure sample; (ESI+) calc. for C₉H₁₁O₂NBr: 243.9968, found: 243.9967.

3h: 3-Amino-3-(3-fluoro-phenyl)-propionic acid. Yield: 67%. White solid. Mp. 217.8-218.4 °C; 1 H NMR (400 MHz, D₂O + K₂CO₃): 2.40-2.46 (m, C**H**₂COOH), 4.12 (t, 3 J = 6.8 Hz, 1H, C**H**NH₂), 6.91-7.26 (m, 4H, ArH). NMR data is identical for the one obtained for commercial enantiopure sample.

3i: 3-Amino-3-(3-chloro-phenyl)-propionic acid. Yield: 56%. White solid. Mp. 221.8-222.0 °C; 1 H NMR (400 MHz, D₂O + K₂CO₃): 2.41-2.45 (m, C**H**₂COOH), 4.10

¹⁶ Tan, C. Y. K.; Weaver, D. F. Tetrahedron **2002**, 58, 7449.

_

¹⁴ Rault, S.; Dallemagne, P.; Robba, M. *Bull.Soc. Chim.Fr.* **1987**, *6*, 1079.

¹⁵ Soloshonok, V. A.; Fokina, N. A.; Rybakova, A. V.; Shishkina, I. P.; Galushko, S. V.; Sorochinsky, A. E.; Kukhar, V. P.; Savchenko, M. V.; Svedas, V. K. *Tetrahedron:Asymmetry* **1995**, *6*, 1601.

(t, ${}^{3}J$ = 7.2 Hz, 1H, CHNH₂), 7.16-7.28 (m, 4H, ArH); 13 C NMR (75 MHz, CDCl₃): δ 46.9, 52.8, 124.9, 126.5, 127.4, 130.3, 133.8, 146.2, 167.3; NMR data is identical for the one obtained for commercial enantiopure sample. HRMS (ESI+) calc. for $C_{9}H_{11}O_{2}NCl$: 200.0473, found: 200.0473.

3j: 3-Amino-3-(3-bromo-phenyl)-propionic acid. Yield: 55%. White solid. Mp. 225.4-225.6 °C (lit. 17 243-245 °C (dec)); 1 H NMR (400 MHz, D₂O + K₂CO₃): 2.40-2.44 (m, CH₂COOH), 4.03-4.10 (m, 1H, CHNH₂), 7.13-7.43 (m, 4H, ArH). 1 H NMR consistent with literature data. 17

3k: 3-Amino-3-(3-methyl-phenyl)-propionic acid. Yield: 56%. White solid. Mp. 219.0-219.2 °C (lit. 18 221-222 °C); 1 H NMR (400 MHz, D₂O + K₂CO₃): 2.20 (s, 3H, C**H**₃), 2.41-2.44 (m, 2H, C**H**₂COOH), 4.09 (t, 3 *J* = 7.2 Hz, 1H, C**H**NH₂), 7.02-7.19 (m, 4H, ArH); 1 H NMR consistent with literature data. 16

3p: 3-Amino-3-(4-bromo-phenyl)-propionic acid. Yield: 29%. White solid. Mp. 228.0-228.7 °C (lit. 16 234 °C); 1 H NMR (400 MHz, D₂O + K₂CO₃): 2.37-2.50 (m, 2H, C**H**₂COOH), 4.08 (t, 3 J = 6.8 Hz, 1H, C**H**NH₂), 7.14-7.17 (m, 2H, ArH), 7.39-7.42 (m, 2H, ArH); 1 H NMR consistent with literature data. 16

3t: 3-Amino-3-(4-ethyl-phenyl)-propionic acid. Yield: 60%. White solid. Mp. 219.6-220.7 °C; 1 H NMR (400 MHz, D₂O + K₂CO₃): 1.04 (t, ${}^{3}J$ = 7.6 Hz, 3H, C**H**₃), 2.40-2.43 (m, 2H, C**H**₂COOH), 2.48 (q, ${}^{3}J$ = 8.0, CH₃C**H**₂), 4.05-4.10 (m, 1H, ArC**H**), 7.13-7.19 (m, 4H, ArH); 13 C NMR (75 MHz, CDCl₃): δ 15.2, 28.0, 46.9, 52.8, 166.1, 126.7, 128.3, 144.1, 167.7; MS (EI) m/z 193 (M⁺, 16), 134 (100); Anal. calc. for C₁₁H₁₅NO₂: C 68.37, H 7.82, N 7.25; found: C 68.20, H 7.88, N 7.19.

3u: 3-Amino-3-(4-propyl-phenyl)-propionic acid. Yield: 31%. White solid. Mp. 217.8-218.3 °C; ¹H NMR (400 MHz, D₂O + K₂CO₃): 0.75 (t, ³J = 7.2 Hz, 3H, CH₃CH₂), 1.42-1.50 (m, 2H, CH₃CH₂), 2.41-2.47 (m, 4H, CH₂Ar, CH₂COOH), 4.10 (t, ³J = 7.2Hz, 1H, ArCH), 7.12-7.20 (m, 4H, ArH); ¹³C NMR (125 MHz, D₂O +

¹⁸ Shih, Y. E.; Wang, J. S.; Chen C. T. *Heterocycles* **1978**, *9*, 1277.

_

¹⁷ Lebedev, A. V.; Lebedeva, A. B.; Sheludyakov, V. D.; Kovaleva, E. A.; Ustinova, O. L.; Kozhevnikov, I. B. *Russ. J. Gen. Chem.* **2005**, *75*, 1113.

 K_2CO_3): δ 13.2, 24.3, 37.0, 46.7, 52.8, 126.5, 129.0, 142.6, 166.5, 180.2; Anal. calc. for $C_{12}H_{17}NO_2$: C 69.54, H 8.27, N 6.76; found: C 69.46, H 8.27, N 6.72. HRMS (EI+) calc. for $C_{12}H_{18}O_2N$: 208.1332, found: 208.1333.

3v: 3-Amino-3-(4-*iso***-propyl-phenyl)-propionic acid**. Yield: 60%. White solid. Mp. 243.1-243.4 °C; ¹H NMR (400 MHz, D₂O + K₂CO₃): 1.05 (d, ³J = 6.8 Hz, 6H, (CH₃)₂CH), 2.39 (d, ³J = 7.2 Hz, 2H, CH₂COOH), 2.75 (sept, ³J = 6.6, (CH₃)₂CH), 4.07 (t, ³J = 7.2Hz, 1H, ArCH), 7.15-7.20 (m, 4H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 23.3, 36.7, 47.0, 51.2, 121.5, 124.2, 126.6, 126.8, 168.1; MS (EI) m/z 207 (M⁺, 16), 148 (100); Anal. calc. for C₁₂H₁₇NO₂: C 69.54, H 8.27, N 6.76; found: C 69.40, H 8.25, N 6.74.

$$O_2N$$
 + COOH + O_2N + O_2N + O_2N + O_2N O_2N + O_2N O_2N + O_2N COOH O_2N + O_2N

3w: 3-Amino-3-(4-nitrophenyl)-propionic acid (modification of literature procedure¹⁶). A suspension of 4-nitrobenzaldehyde (6.65 mmol, 1.00 g), malonic acid (6.70 mmol, 0.70 g) and ammonium acetate (14.2 mmol, 1.09 g) in 2-propanol was heated under reflux for 22 h. The solid was filtered off, redissolved in aqueous HCl (1N, 10 mL) and washed with Et₂O (3 x 10 ml). The aqueous phase was concentrated to give 0.30 g (1.42 mmol, 21 %) of a yellow solid. ¹H NMR (400 MHz, D₂O + K_2CO_3): δ 2.44-2.50 (m, 2H, C**H**₂COOH), 4.21-4.32 (m, 1H, C**H**NH), 7.41-8.10 (m, 4H, Ar**H**).

Racemic α -amino acids (2) were synthesized by literature procedure, ¹⁹ and spectral data were found to be identical with commercial enantiopure samples. Analytical data for commercially unavailable α -amino acids 2t, 2u and 2v are presented below:

2t x HCl: 4-Ethylphenylalanine hydrochloride. White solid; ¹H NMR (300 MHz, CD₃OD): δ 1.21 (t, ³*J*=7.6 Hz, 3H; C**H**₃), 2.62 (q, ³*J*=7.6 Hz, 2H; C**H**₂), 3.15 (dd, ⁴*J*=14.7 Hz, ³*J*=7.4 Hz, 1H; C**H**₂), 3.28 (dd, ⁴*J*=14.8 Hz, ³*J*=5.8 Hz, 1H; C**H**₂), 4.23

_

¹⁹ Panella, L.; Marco Aleixandre, A.; Kruidhof, G. J.; Robertus, J.; Feringa, B. L.; de Vries, J. G.; Minnaard, A. J. *J. Org. Chem.* **2006**, *71*, 2026.

(dd, ${}^{3}J$ =7.2 Hz, ${}^{3}J$ =6.0 Hz, 1H; C**H**), 7.18-7.24 (m, 4H; Ar**H**). 13 C NMR (100 MHz, CD₃OD): δ =15.0 (CH₃), 28.3 (CH₂), 35.7 (CH₂) 15.1 (CH), 128.4 (CH), 129.4 (CH), 131.5 (C), 143.9 (C), 170.8 (CO). HR-ESI-MS: m/z calcd for C₁₁H₁₆NO₂ [M+H]⁺ 194.1176, found 194.1174.

2u x HCl: 4-Propylphenylalanine hydrochloride. White solid. ¹H NMR (400 MHz, $D_2O + K_2CO_3$): δ 0.73 (t, J = 7.6 Hz, 3H, CH_3), 1.41-1.47 (m, 2H, CH_3CH_2), 2.42 (t, J = 7.6 Hz, 2H, Ph CH_2), 2.61-2.83 (m, 2H, Ph CH_2), 3.25-3.46 (m, 1H, CH_2), 7.02-7.09 (m, 4H, Ar H_2). ¹³C NMR (75 MHz, $CDCl_3$): δ =13.1 (CH_3), 24.2 (CH_2), 35.3 (CH_2), 37.0 (CH_2), 54.2 (CH_2), 116.1 (CH_2), 118.8 (C_2), 124.3 (CH_2), 126.5 (CH_2), 131.2 (CH_2), 143.2 (CH_2), 171.5 (CO_2). HR-ESI-MS: m/z calcd for $C_{12}H_{18}NO_2$ [CH_2] (CH_2) found 208.1334.

2v x HCl: 4-*iso*-propylphenylalanine hydrochloride. White solid. Mp. 260-262. °C ¹H NMR (300 MHz, D₂O): δ 1.09 (d, ${}^{3}J$ = 6.6 Hz, 6H, (CH₃)₂CH), 2.81 (sept, ${}^{3}J$ = 6.6, (CH₃)₂CH), 3.03 (dd, ${}^{2}J$ = 14.7 Hz ${}^{3}J$ = 7.8 Hz, 1H, ArCH₂), 3.16 (dd, ${}^{2}J$ = 14.7 Hz ${}^{3}J$ = 5.4 Hz, 1H, ArCH₂), 4.07 (dd, ${}^{3}J$ = 7.5 Hz ${}^{3}J$ = 5.4 Hz, 1H, NHCH), 7.13-7.24 (m, 4H, ArH); ${}^{1}H$ NMR consistent with literature data.

Determination of kinetic parameters for the amination activity of PAM

UV-Vis spectroscopy was used to determine the kinetic parameters of the PAM-catalyzed ammonia addition reaction. A 6 M ammonia solution was prepared and the pH was adjusted to 10 by passing CO_2 into the solution. In a typical assay, (*E*)-cinnamic acid or a derivative at various concentrations was incubated with 0.06 mg of purified PAM in ammonia solution (300 μ l). The reaction mixture was incubated at 30 °C. The ammonia addition activity was monitored by UV-Vis spectroscopy. The initial rates were plotted against the substrate concentration and these data were fitted to the Michaelis-Menten equation to obtain the kinetic constants.

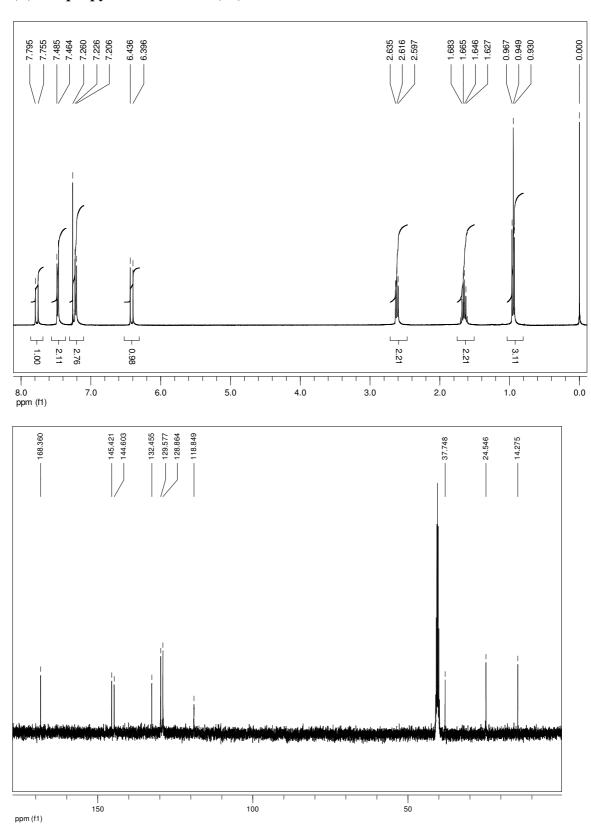
Stereochemical analysis of the phenylalanine products by chiral HPLC.

Purified PAM (0.02 mg) was added to 5 mM of (E)-cinnamic acid or a derivative in ammonia solution (6M, pH 10, 200 μ l). The reaction mixture was incubated for 24 h

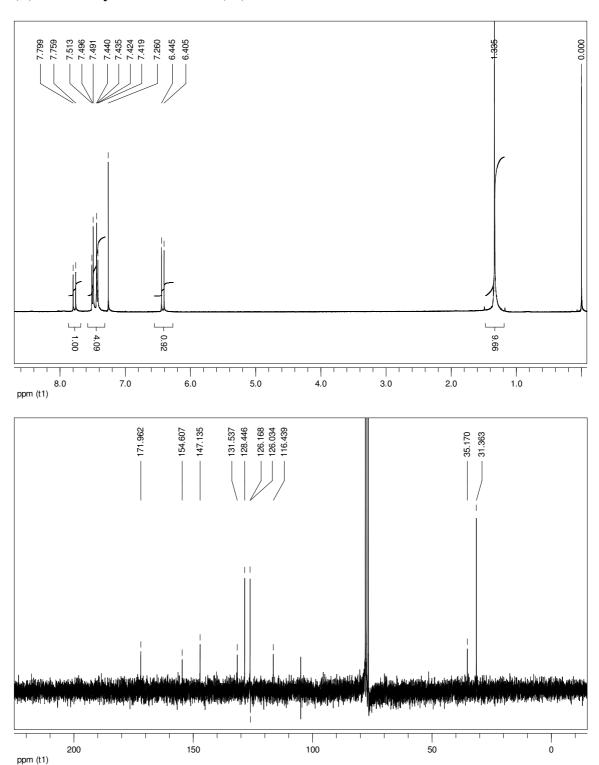
-

²⁰ Wadia, M. S.; Mali, R. S.; Tilve, S. G.; Yadav, V. J. Synthesis **1987**, 4, 401.

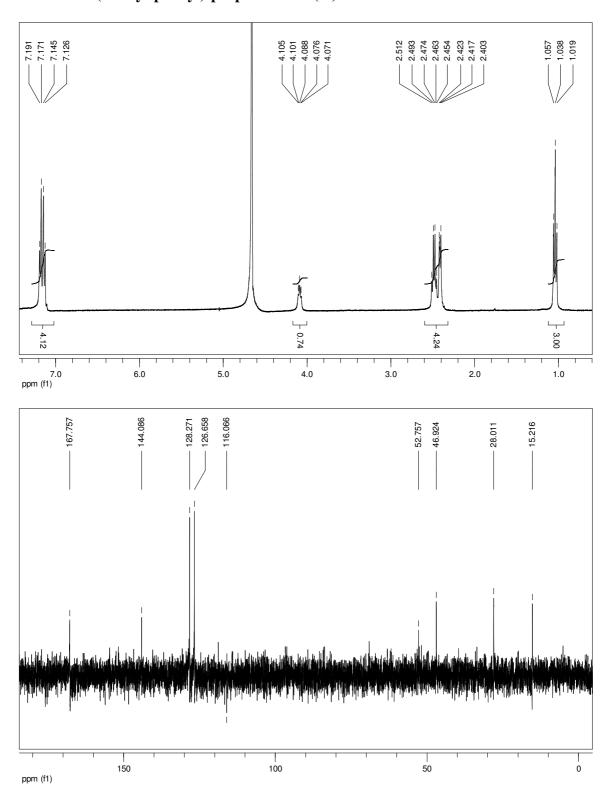
at 30 °C. Subsequently, a 20-μl portion was taken and the reaction was quenched by heating for 5 min at 99 °C. A 40-μl portion of 2 M aqueous NaOH was added to remove the excess of ammonia. The sample was then frozen in liquid nitrogen. Subsequently, the sample was lyophilized and dissolved in 55 μl of 2 M aqueous HClO₄. Analysis was carried out on a Crownpak CR(+) (4 mm x 150 mm) column. Compounds were eluted isocratically with aqueous HClO₄ in 15% MeOH (pH given in table) and with UV detection at 210 nm. Retention times and other resolution parameters are given in table.

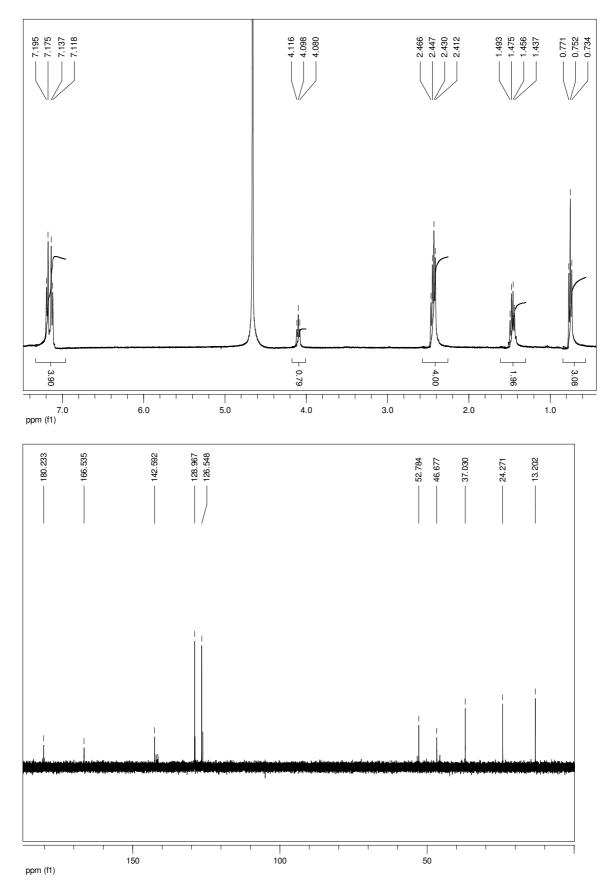

				Rt (min)			
R	Eluent Ph	Flow	Temp	(R)-2	(S)-2	(S)- 3	(R)- 3
Н	pH 1.8	0.3 mL/min	-7 °C	17.5	32.3	45.4	56.3
2-F	pH 2.4	0.3 mL/min	-7 °C	29.8	40.6	-	-
2-C1	pH 2.4	0.3 mL/min	-7 °C	165.6	103.8	-	-
2-Br	pH 2.6	0.3 mL/min	-7 °C	77.6	94.3	-	-
2-Me	pH 2.3	0.3 mL/min	-7 °C	86.6	100.5	-	ı
3-F	pH 2.0	0.3 mL/min	-7 °C	57.1	74.0	-	-
3-C1	pH 2.0	0.3 mL/min	-7 °C	118.6	160.8	-	-
3-Br	pH 2.6	0.3 mL/min	-7 °C	114.4	197.8	-	-
3-Me	pH 2.3	0.3 mL/min	-7 °C	155.8	111.1	150.8	123.1
3-1VIC	pH 2.0	0.3 mL/min	-7 °C	217.6	151.0	187.7	151.8
4-F	pH 2.5	0.3 mL/min	-5 °C	22.0	35.6	53.8	68.3
4-C1	pH 2.7	0.3 mL/min	-6 °C	45.8	73.9	136.6	155.1
4-Br	pH 2.6	0.3 mL/min	-7 °C	122.5	163.3	198.5	219.7
4-Me	pH 2.6	0.3 mL/min	-5 °C	34.7	71.5	109.8	126.3
4-MeO	pH 2.7	0.3 mL/min	-6 °C	24.7	41.5	74.4	106.2
4-Et	pH 2.6	0.3 mL/min	-7 °C	-	-	175.0 [*]	231.6*
4-Pr	pH 3.0	0.3 mL/min	-7 °C	1	-	250.1*	387.3 [*]
4-iPr	pH 1.8	0.5 mL/min	20 °C	-	-	280*	294*
4-NO ₂ **	pH 2.2	0.3 mL/min	-6 °C	58.6	72.1	-	-

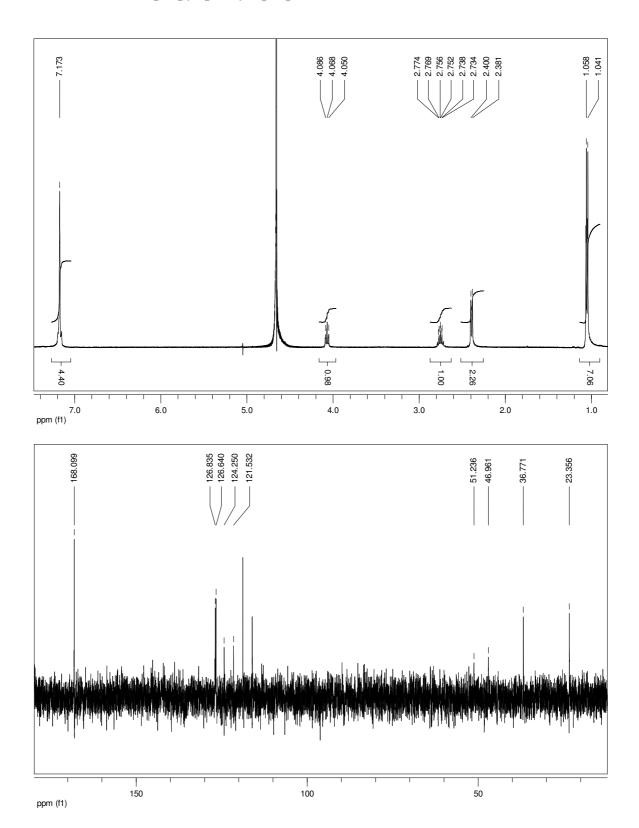
^{*} Absolute configuration not determined

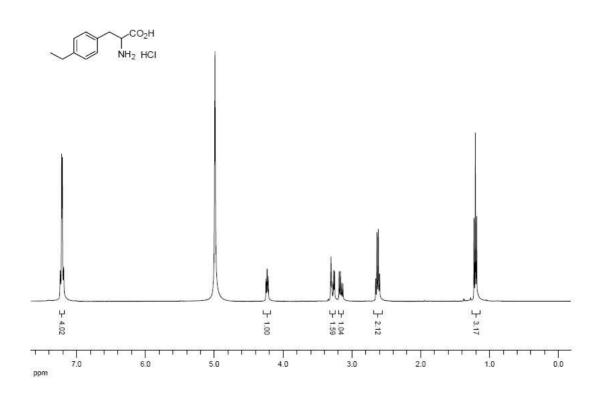

^{** 10%} methanol used in the eluent

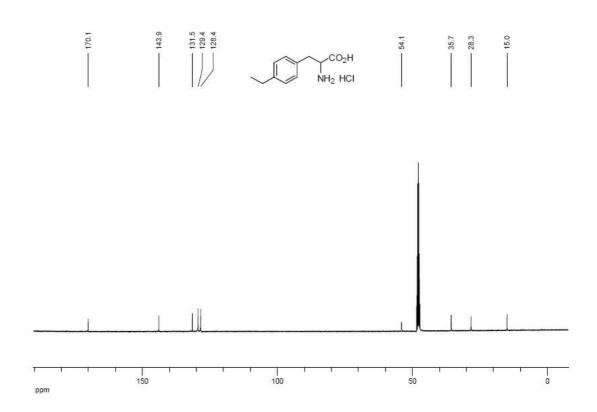
NMR-spectra of new compounds.


(E)-4-n-propyl-cinnamic acid (1u):

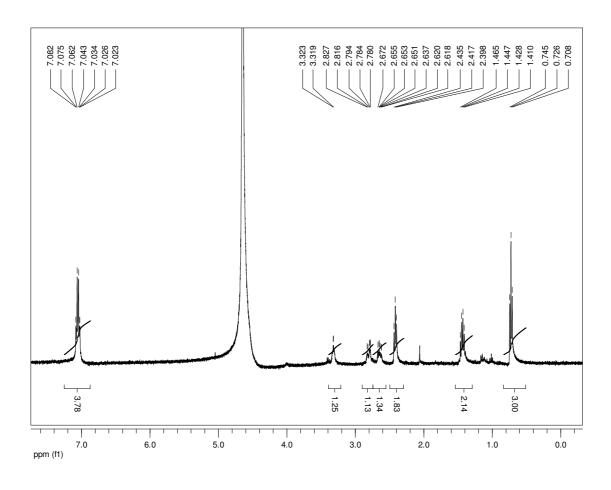

(E)-4-tert-butyl-cinnamic acid (1x):

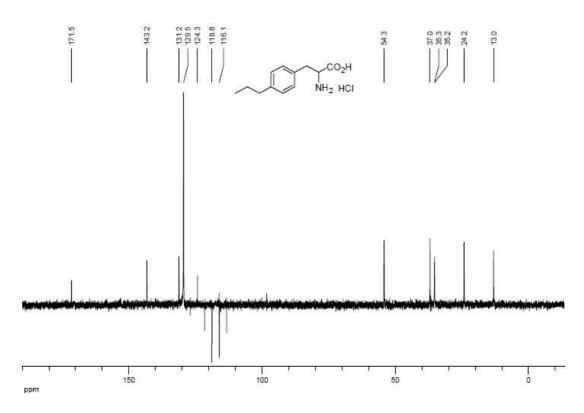

3-Amino-3-(4-ethyl-phenyl)-propionic acid (3t):


3-Amino-3-(4-propyl-phenyl)-propionic acid (3u):



3-Amino-3-(4-iso-propyl-phenyl)-propionic acid (3v):




4-Ethylphenylalanine hydrochloride (2t):

4-Propylphenylalanine hydrochloride (2u):

