Biosynthetic Studies of Aziridine Formation in Azicemicins

Yasushi Ogasawara and Hung-wen Liu*

Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712

Supporting Information

Materials. Isotopically-labeled precursors used in the feeding experiments include sodium [1-13C]acetate (99 atom % 13C, Isotec (Champaign, IL)), sodium [1,2-13C2]acetate (99 atom % 13C, Isotec), L-[3,3,3-2H3]alanine (99.8 atom % D, CDN Isotopes (Quebec, Canada)), D,L-[2,3,3-2H3]serine (98 atom % D, Cambridge Isotope Laboratories (Andover, MA)), and D,L-[2,3,3-2H3]aspartic acid (99 atom % D, CDN Isotopes). Enzymes and molecular weight standards used for the cloning experiments were purchased from Invitrogen (Carlsbad, CA) or New England Biolabs (Ipswich, MA). Kits for DNA gel extraction and minipreps are products of Qiagen (Valencia, CA). Antibiotics and chemicals were acquired from Sigma-Aldrich Chemical Co. (St. Louis, MO) or Fisher Scientific (Pittsburgh, PA). Deep vent (exo-) DNA polymerase and KOD hot start DNA polymerase were obtained from New England Biolabs and Novagen (Madison, WI), respectively. Growth medium components were purchased from Becton Dickinson (Sparks, MD). Oligonucleotide primers were ordered from Integrated DNA Technologies (Coralville, IA) or Invitrogen.

General. NMR spectra were recorded on a Varian Unity 500 MHz spectrometer at the NMR facility of the Department of Chemistry and Biochemistry, University of Texas at Austin, and chemical shifts (δ in parts per million) are reported relative to that of the solvent peak (δ = 7.26 for CDCl₃ in ¹H NMR spectra). Genetic manipulations of *E. coli* were performed according to standard protocols. DNA sequencing was performed by the Core Facilities of the Institute of Cellular and Molecular Biology, University of Texas at Austin.

Culture Conditions and Isolation of Azicemicin A. The azicemicin-producing bacteria, *Kibdelosporangium* sp. MJ126-NF4, was kindly provided by Dr. Yuzuru Akamatsu (Microbial Chemistry Research Center, Tokyo, Japan), and was maintained on yeast-starch agar plates (0.2% yeast

extract, 1% soluble starch, 1.5% agar (all w/v)). To isolate azicemicins, Kibdelosporangium sp. MJ126-NF4 cells were first grown in seed medium (2% galactose, 2% dextrin, 1% Bacto-Soytone, 0.5% corn steep liquor, 1% glycerol, 0.2% (NH₄)₂SO₄, and 0.2% CaCO₃, pH 7.4). An aliquot (20 mL) of the 4day preculture was transferred into 1 L of the production medium (2% dextrin, 1% Bacto-Soytone, 2% glycerol, 0.3% yeast extract, 0.2% (NH₄)₂SO₄, and 0.2% CaCO₃, pH 7.4) and the culture was incubated with shaking at 30 °C for 5 days. Supplementation with isotopically-labeled compounds was carried out as follows. Equal portions of sodium [1-13C]acetate (a total of 1 g) was added to a growth culture (1 L) by pulse feeding after 42, 64, 86, and 108 h of inoculation. Similarly, portions of sodium [1,2-¹³C₂ acetate (total 1 g) and D₂L-[2,3,3-²H₃] serine (total 0.5 g) were separately added to cultures by pulse feeding 48, 64, 84, and 102 h after inoculation. For L-[3,3,3-2H₃]alanine (total 0.5 g) and D,L-[2,3,3-²H₃]aspartic acid (total 0.5 g), the feedings were carried out 46, 70, and 92 h after inoculation. After five days, the culture broths were centrifuged at $9000 \times g$ for 30 min. The supernatants were extracted three times with ethyl acetate and the organic extracts were collected. After removal of the organic solvent by evaporation, azicemicin A was purified through several silica gel chromatography steps using a combination of two different solvent systems (CHCl₃:MeOH = 10:1, or ethyl acetate). The structure of the purified product was verified by NMR and MS analysis. (Table S1, Figure S1)

Table S1: ¹³C NMR results from the incorporation of ¹³C-labeled acetate.

Position	Chemical Shift	[1- ¹³ C]acetate relative ¹³ C intensities	[1,2- ¹³ C ₂]acetate coupling constant (Hz)
1	206.5	3.2	38.3
2	47.2	1.0	*
2 3	70.8	2.0	48.0
4	41.5	1.0	31.5
4a	41.1	3.1	31.5
5	37.5	1.0	41.2
6	200.7	2.6	41.2
6a	105.7	0.9	64.5
7	164.6	2.3	64.5
7a	110.2	1.1	63.6
8	150.7	1.8	63.6
9	133.5	0.9	70.8
10	154.2	1.4	70.8
11	98.3	1.0	61.2
11a	131.5	1.7	61.2
12	143.9	1.0	78.0
12a	123.8	1.8	78.0
12b	75.5	0.9	38.3
1'	44.0	1.0	48.0
2'	31.7	1.1	*
9-OMe	61.0	0.9	-
12-OMe	62.3	0.8	-
N-Me	46.9	0.8	-

^{*} Signal intensities increased

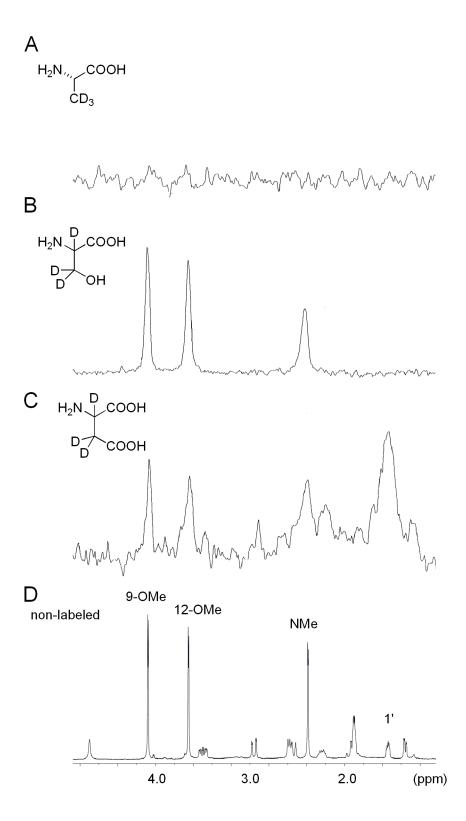


Figure S1: Feeding experiments with deuterium labeled amino acids. The ²H-NMR spectrum (77 MHz, CHCl₃) of labeled azicemicin A with deuterated (A) alanine,(B) serine, and (C) aspartate. (D) ¹H NMR spectrum (500 MHz, CDCl₃) of non-labeled azicemicin A.

Identification and Cloning of the Azicemicin Biosynthetic Gene Cluster. The genomic DNA of *Kibdelosporangium* sp. was isolated according to a published procedure.¹ For construction of the genomic library, the chromosomal DNA was partially digested with Sau3AI, isolated by ethanol precipitation, and ligated into the pOJ446 cosmid that had been subjected to linearization by HpaI, calf intestinal alkaline phosphatase (CIAP) treatment, and digestion with BamHI. Gigapack III Gold packaging extract (Stratagene, La Jolla, CA) was used to perform the *in vitro* packaging based on the manufacturer's protocol. Degenerate PCR primers were designed based on multiple sequence alignments of several known KS α 's from actinomycetes: KSaF2, 5'-GGSTGCACSTCVGGSMTSGAC-3'; KSaR1, 5'-CCGATSGCRCCSAGSGAGTG-3'. (S = G + C, V = A + C + G, M = A + C, R = A + G) The PCR based screening of the genomic library was carried out with the following conditions: 1 cycle at 95 °C for 2 min, 30 cycles of 95 °C for 20 sec, 51 °C for 10 sec, and 70 °C for 30 sec, using deep vent (exo-) DNA polymerase.

Sequencing and Homology Analysis. Sequencing was performed using a capillary-based AB 3700 DNA analyzer, and the DNA sequencing data were assembled and analyzed using the Vector NTI Suite program (Version 10, Invitrogen). Open reading frame (ORF) assignments were made with the assistance of FramePlot² and the Vector NTI software. The resulting ORFs were analyzed by BLAST³. These genes and their proposed functions are shown in Figure 1 and Table S2.

Table S2: Proposed function of each ORF in the azicemicin biosynthetic gene cluster.

ORF	Proposed Function	Typical Homology	Identity/Similarity (%)
azicR2	regulator	two-component system response regulator, Streptomyces coelicolor	64 / 75
azicR1	regulator	two-component system sensor kinase, Streptomyces coelicolor	46 / 56
azicO1	dehydrogenase	dehydrogenase, Streptomyces steffisburgensis	57 / 68
azicZ	aspartate racemase	aspartate racemase, Polaromonas sp.	43 / 61
azicU1	unknown	secreted protein, Streptomyces coelicolor	32 / 46
azicU2	unknown	hypothetical protein, Streptomyces coelicolor	59 / 69
azicO2	P450	P450 hydroxylase, Streptomyces atroolivaceus	43 / 62
azicO3	oxygenase	FAD-dependent oxygenase, SimA7, Streptomyces antibioticus	64 / 77
azicY	drug-resistance transporter	transmembrane efflux protein, Streptomyces hygroscopicus	40 / 53
azicX	PMP oxidase	pyridoxamine 5'-phosphate oxidase, ActVA2, Streptomyces coelicolor	49 / 64
azicU3	unknown	hypothetical protein, Nocardia farcinica	37 / 57
azicR3	regulator	repressor-response regulator, med-ORF30, Streptomyces sp. AM-7161	57 / 74
azicO4	oxygenase	FAD-dependent monooxygenase, UrdE, Streptomyces fradiae	65 / 75
azicA	ketosynthase α subunit	ketosynthase α subunit, PgaA, Streptomyces sp. PGA64	74 / 87
azicB	ketosynthase β subunit	ketosynthase β subunit, SimA2, Streptomyces antibioticus	71 / 83
azicC	acyl carrier protein	minimal PKS acyl carrier protein, UrdC, Streptomyces fradiae	69 / 81
azicD	polyketide ketoreductase	polyketide ketoreductase, PgaD, Streptomyces sp. PGA64	82 / 87
azicE	cyclase	bifunctional cyclase/aromatase, PgaL, Streptomyces sp. PGA64	71 / 77
azicO5	oxygenase	monooxygenase, UrdM, Streptomyces fradiae	53 / 65
azicF	reductase	reductase, LanV, Streptomyces cyanogenus	59 / 76
azicG	decarboxylase	decarboxylase, PgaI, Streptomyces sp. PGA64	79 / 89
azicH	FMN-reductase	NADPH-dependent FMN reductase, UrdO, Streptomyces fradiae	57 / 68
azicO6	oxygenase	FMNH ₂ -utilizing oxygenase, <i>Streptomyces avermitilis</i>	48 / 61
azicO7	oxygenase	polyketide synthesis hydroxylase, TcmG, <i>Bacillus thuringiensis</i>	36 / 50
azicU4	unknown	hypothetical protein, Mycobacterium vanbaalenii	22 / 36
azicU5	unknown	hypothetical protein, Alkaliphilus metalliredigenes	27 / 46
azicU6	unknown	hypothetical protein, <i>Mycobacterium sp.</i>	36 / 51
azicI	fatty acid desaturase	delta fatty acid desaturase, Streptomyces coelicolor	53 / 66
azicU7	unknown	hypothetical protein, <i>Thermobifida fusca</i>	35 / 49
azicR5	regulator	two-component system response regulator, Streptomyces hygroscopicus	59 / 72
azicR4	regulator	two component sensor kinase, Streptomyces hygroscopicus	37 / 48
azicK	acyltransferase	acyltransferase, AknF, Streptomyces galilaeus	49 / 63
azicJ	cyclase	cyclase, JadI, Streptomyces venezuelae	57 / 67
azicU8	unknown	hypothetical protein, Frankia alni	50 / 63
azicL	methyltransferase	O-methyltransferase, Streptomyces kanamyceticus	45 / 64
azicU9	unknown	hypothetical protein, Salinispora tropica	39 / 50
azicM	adenylyltransferase	amino acid adenylation, Salinispora tropica	55 / 68
azicN	decarboxylase	PLP-dependent decarboxylase, VinO, Streptomyces halstedii	41 / 54
azicP	acyl carrier protein	PKS/NRPS acyl-carrier-protein, VinL, Streptomyces halstedii	38 / 63
azicQ	acyl-CoA dehydrogenase	acyl-CoA dehydrogenase, Salinispora tropica	57 / 69
azicS	acyl-CoA dehydrogenase	acyl-CoA dehydrogenase, Salinispora tropica	57 / 69
azicT	phosphopantetheinyltransferase		60 / 68
azicU10	unknown	hypothetical protein, Salinispora tropica	36 / 48
azicV	adenylyltransferase	amino acid adenylation, Salinispora arenicola	56 / 68
azicW	drug-resistance transporter	drug-registance transporter, Nocardia farcinica	69 / 81

Expression of AzicM and AzicV in E. coli. The azicM and azicV genes were each PCR-amplified from appropriate cosmids using primers with engineered NdeI and EcoRI restriction sites at the 5' and 3' termini, respectively. The gene for azicM was amplified using PCR primers AzicM-N-(NdeI): 5'-CGCATATGACCCTGTTACACCACATCG-3' and AzicM-C-(EcoRI): 5'-CGGCGAATTCTCATCCA-CCGTCGGCC-3', with the following PCR conditions: 1 cycle at 95°C for 2 min, 30 cycles of 95 °C for 20 sec, 51 °C for 10 sec, and 70 °C for 30 sec, using KOD hot start DNA polymerase. The primers for azicV were AzicV-N-(NdeI): 5'-CATATGCAGACCATGTACGACTGG-3' and AzicV-C-(EcoRI): 5'-TAAGTGACCTCGCTCGAATTCAGGC-3', and the PCR conditions were 1 cycle at 95 °C for 2 min, 30 cycles of 95 °C for 20 sec, 50 °C for 10 sec, 70 °C for 30 sec, with KOD hot start DNA polymerase. The introduced NdeI and EcoRI restriction sites are underlined. The PCR-amplified genes were purified, digested with the appropriate restriction enzymes, and ligated into the pET28b(+) vector digested with the same enzymes. The sequences of each construct were confirmed by DNA sequencing. The resulting plasmids, pET28 azicM and pET28 azicV, were used to transform E. coli BL21 star (DE3) strains (Invitrogen) for protein over-expression. An overnight culture of each transformant was grown in 2 L of LB medium supplemented with 30 µg/mL kanamycin. The culture was grown at 37 °C until an OD₆₀₀ of 0.6 was reached, after which 0.3 mM isopropyl β-D-thiogalactoside (IPTG) was added, and the culture was grown at 18 °C for 12 additional hours. The harvested wet-cells were suspended in 60 mL of buffer (50 mM Tris·HCl, 300 mM NaCl, pH 8.0) and disrupted by sonication. The cell lysate was clarified by centrifugation (15000 rpm, 30 min), and Azic Ware purified from the supernatant using Ni-NTA column chromatography.

Assays for AzicM and AzicV. Enzyme reactions were carried out at 30 °C in the presence of 1 mM ATP, 2 mM of the appropriate amino acid, 0.5 mM MgCl₂, and 4 μM of either AzicM or AzicV in a total volume of 500 μL of 50 mM Tris·HCl buffer, pH 8.0. Amino acids used for the assay were purchased from Sigma-Aldrich (Milwaukee, WI) or TCI America (Portland, OR), with the exception of (*S*)- and (*R*)-aziridine-2-carboxylic acid, which were chemically synthesized using reported method.⁴ After a 30 min incubation period, the reactions were quenched by boiling for 2 min. The protein precipitates were removed by centrifugation and the supernatants were transferred to a new tube and subjected to a pyrophosphate (PP_i) quantitation assay. Each 200 μL sample was diluted with an equal volume of water and then mixed with 25 μL of the molybdate reagent (2.5% (NH₄)₆Mo₇O₂₄·4H₂O in 5 M H₂SO₄), 50 μL of bisulfate solution A (10% NaHSO₃, 0.5% Na₂SO₃) and 25 μL of a 10% thioglycerol

solution. After 10 min, 0.4 mL of isoamyl alcohol was added, and the solutions were mixed and centrifuged for 1 min at $500 \times g$. The top layers were discarded and the bottom layers ($400 \mu L$), which contained the PP_i-molybdate complex, was transferred to a new tube. $50 \mu L$ of bisulfite solution B (1:15 dilution of bisulfate solution A), $25 \mu L$ of the thioglycerol solution, and $50 \mu L$ of ethanol were then added to this solution. After mixing, the absorbance at 575 nm of the resulting solution was recorded. The amount of PP_i generated in each reaction was calculated using a standard curve obtained with a tetrapotassium pyrophosphate standard. The relative rates of each enzyme for the various amino acid substrates were obtained by normalization with respect to the rate of the substrate with the largest activity of each enzyme (AzicM: D-aspartate, 0.028 min⁻¹, and AzicV: L-cysteine, 0.078 min⁻¹,)

- (1) Kieser, T.; Bibb, M. J.; Buttner, M. J.; Chater, K. F.; Hopwood, D. A. *Practical Streptomyces Genetics*; The John Innes Foundation: Norwich, England, 2000.
- (2) http://watson.nih.go.jp/~jun/cgi-bin/frameplot.pl
- (3) http://blast.ncbi.nlm.nih.gov/Blast.cgi
- (4) Nakajima, K.; Takai, F.; Tanaka, T.; Okawa, K. Bulletin of the Chemical Society of Japan 1978, 51, 1577-1578.