

SUPPORTING INFORMATION:

A Multi-Disciplinary Approach Toward the Rapid
and Preparative Scale Biocatalytic Synthesis of
Chiral Amino Alcohols: A Concise Transketolase /
 ω -Transaminase-Mediated Synthesis of (2*S*,3*S*)-2-
Aminopentane-1,3-diol

Mark E. B. Smith¹, Bing H. Chen^{2,a}, Edward G. Hibbert^{2,b}, Ursula Kaulmann^{3,c}, Kirsty Smithies¹, James L. Galman¹, Frank Baganz², Paul A. Dalby², Helen C. Hailes¹, Gary J. Lye², John M. Ward³, John M. Woodley⁴, Martina Micheletti^{2,d}

¹Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK; ²Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; ³ Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK; ⁴Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark.

- a) Current address: Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- b) Current address: Illumina Cambridge Ltd, Chesterford Research Park, Cambridge, CB10 1XL, UK
- c) Current address: Biotica Ltd, Chesterford Research Park, Cambridge, CB10 1XL, UK.
- d) Corresponding author (Email: m.micheletti@ucl.ac.uk).

Contents:

1. General experimental	S1
2.1 2-Benzylaminopentane-1,3-diol	S2
2.2 2-Aminopentane-1,3-diol hydrochloride	S2
3.1 2-Benzamido-3-hydroxypentanol dibenzoate ester	S3
3.2 Chiral HPLC assay for the determination of <i>ee</i> and <i>de</i> of transaminase derived 2-aminopentane-1,3-diol	S3
4 References	S4

1. General experimental

Unless otherwise noted, solvents and reagents were reagent grade from commercial suppliers (Sigma-Aldrich) and used without further purification. All moisture-sensitive reactions were performed under a nitrogen or argon atmosphere using oven-dried glassware. Reactions were monitored by TLC on Kieselgel 60 F₂₅₄ plates with detection by UV, potassium permanganate and phosphomolybdic acid stains. Flash column chromatography was carried out using silica gel (particle size 40-63 μ m). ¹H NMR and ¹³C NMR spectra were recorded at the field indicated using Bruker AMX300 MHz, Avance-500 MHz and Avance-600 MHz machines. Coupling constants are measured in Hertz (Hz) and unless otherwise specified, NMR spectra were recorded at 298 K. Mass spectra were recorded on a Thermo Finnegan MAT 900XP spectrometer.

Racemic 1,3-dihydroxypentan-2-one was prepared as previously described using the biomimetic TK reaction,¹ and 1,3-diacetoxyhydroxypentan-2-one was prepared for GC analysis as previously reported.²

2. Four diastereomer mixture of 2-aminopentane-1,3-diol hydrochloride

2.1 2-Benzylaminopentane-1,3-diol. NaCNBH₃ (543 mg, 8.64 mmol) was added to a solution of *rac*-1,3-dihydroxypentan-2-one (340 mg, 2.88 mmol) and benzylamine (629 μ L, 5.76 mmol) in MeOH (10 mL). The pH was adjusted to 6 using glacial acetic acid and the reaction stirred at RT overnight. The reaction mixture was concentrated to dryness *in vacuo* and the residue partitioned between CH₂Cl₂ (100 mL) and NaHCO₃ (sat) (100 mL). The aqueous was extracted with further CH₂Cl₂ (2 \times 100 mL) and the combined organics dried over MgSO₄. The organics were concentrated *in vacuo* and the residue purified by flash silica chromatography (MeOH/EtOAc, 1:9) to give the *titled compound* as an oil (330 mg, 55%) and a 55:45 mixture of *anti:syn* isomers. ¹H NMR (400 MHz; *d*₄-MeOD) δ 0.93 (1.35H, t, *J* 7.4, CH₃), 0.96 (1.65H, t, *J* 7.4, CH₃), 1.32–1.70 (2H, m, CH₂CH₃), 2.55 (0.45H, dt, *J* 6.0 and 4.9, CHHN), 2.62 (0.55H, dt, *J* 6.2 and 4.5, CHHN), 3.47–3.94 (5H, m, CH₂OH, CHOH and CH₂Ph), 7.20–7.37 (5H, m, ArH); ¹³C NMR (100 MHz; *d*₄-MeOD) δ 10.7 and 11.0 (CH₃), 27.3 and 27.5 (CH₂CH₃), 52.5 and 53.0 (CH₂N), 61.6 and 61.4 (CH₂O), 63.2 and 63.7 (CHN), 73.6 and 73.7 (CHOH), 128.2, 129.5 (signals superimposed), 141.1 and 141.3.

2.2 2-Aminopentane-1,3-diol hydrochloride. 2-Benzylamino-pentane-1,3-diol (140 mg, 0.67 mmol) was dissolved in MeOH (5 mL) and the pH adjusted to 1–2 using 1 M HCl (aq). The mixture was concentrated to dryness *in vacuo* and redissolved in MeOH (5 mL). Pd/C (100 mg) was added and the mixture subjected to H₂ (1 atm.) for 48 h. The reaction was then filtered and concentrated to yield the *titled compound* as an oil (103 mg, 99%), and a 55:45 mixture of *anti³:syn* isomers. ¹H NMR (300 MHz; *d*₄-MeOD) δ 0.99 (1.35H, t, *J* 7.3, CH₃), 1.00 (1.65H, t, *J* 7.3, CH₃), 1.49 (2H, m, CH₂CH₃), 3.07 (0.45H, dt, *J* 6.8 and 4.1, CHNH₃Cl), 3.22 (0.55H, dt, *J* 8.5 and 4.0, CHNH₃Cl), 3.57–3.86 (3H, m, CH₂OH and CHOH); ¹³C NMR

(75 MHz, d_4 -MeOD) δ 9.9 and 10.7 (CH₃), 27.2 and 27.7 (CH₂CH₃), 58.2, 58.8, 58.9, 60.5, 70.4 and 71.8 (CHOH); m/z (+HRCI) [M-Cl] calcd for C₅H₁₄NO₂ 120.10245; found 120.10231.

3. Chiral HPLC assay for the determination of *e.e.* and *d.e.* of transaminase-derived 2-aminopentane-1,3-diol

To facilitate chiral HPLC assay development, benzoylated samples of both the four diastereomer mixture and the transaminase-derived 2-aminopentane-1,3-diol were synthesised.

3.1 2-Benzamido-3-hydroxypentanol dibenzoate ester. Benzoyl chloride (120 μ L, 1.03 mmol) was added to a stirred solution of 2-aminopentane-1,3-diol hydrochloride (four diastereomer mixture) (40 mg, 0.257 mmol) in pyridine (3 mL) at 0 °C. The mixture was warmed to RT and stirred for 17 h. The final suspension was concentrated to dryness *in vacuo* and the residue partitioned between EtOAc (50 mL) and 0.3 M KHSO₄ (50 mL). The organic phase was washed with NaHCO₃ (sat.) (50 mL) and dried (MgSO₄). Concentration *in vacuo* gave a residue which was purified by flash silica chromatography (EtOAc/hexane, 1:2) to yield the *titled compound* as a white solid (111 mg, 100%). ¹H NMR (300 MHz; CDCl₃) δ 1.06 (1.35H, t, *J* 7.4, CH₃), 1.07 (1.65H, t, *J* 7.4, CH₃), 1.85–2.04 (2H, m, CH₂CH₃), 4.45–4.68 (2H, m, CH₂OH), 4.86–4.96 (1H, m, CHN), 5.33 (0.55H, dt, *J* 7.6 and 4.9, CHOH), 5.47 (0.45H, dt, *J* 6.6 and 4.8, CHOH), 6.65 (0.45H, d, *J* 9.2, NH), 6.65 (0.55H, d, *J* 8.7, NH), 7.34–7.59 (9H, m, ArH), 7.72–7.79 (2H, m, ArH), 7.94–8.05 (4H, m, ArH); ¹³C NMR (150 MHz; CDCl₃) δ 9.9 and 10.1 (CH₃), 24.9 and 25.4 (CH₂CH₃), 51.1 and 51.4 (CN), 63.3 and 64.5 (CH₂O), 75.0 and 76.9 (CHO), 127.0, 127.1, 128.50, 128.54, 128.62, 128.65, 128.75, 128.78, 129.5, 129.6, 129.7, 129.76, 129.78, 129.9, 131.79, 131.82, 133.29, 133.33, 133.48, 133.51, 134.2, 166.60, 166.64, 166.86, 166.93, 167.3, 167.6; m/z (+HRCI) MH calcd for C₂₆H₂₆NO₅ 432.18110; found 432.18045.

The same procedure was used to obtain a sample of (2S,3S) and (2S,3R)-2-benzamido-3-hydroxypentanol dibenzoate ester from the transaminase-derived 2-aminopentane-1,3-diol.

3.2 Chiral HPLC assay for the determination of *ee* and *de* of transaminase derived 2-aminopentane-1,3-diol. The HPLC assay was developed using the four diastereomer sample of 2-benzamido-3-hydroxypentanol dibenzoate. Analysis was performed on a Varian Prostar instrument equipped with a Chiracel OD chiral column (Daicel, 25 cm x 0.46 cm). HPLC conditions: injection volume, 10 μ L; mobile phase, ⁱPrOH:Hexane, 5:95; Flow rate, 0.8 mL/min; detection, 210 nm.

Retention times for the four-isomer mixture of 2-benzamido-3-hydroxypentanol dibenzoate ester: 26.7 min, 31.5 min, 40.6 min, 47.8 min. The transaminase-derived 2-aminopentane-1,3-diol which was benzoylated to give (2S,3S) and (2S,3R)-2-benzamido-3-hydroxypentanol dibenzoate ester gave products with retention times of 31.5 min for the (2S,3S) *syn*-isomer and 40.6 min for the (2S,3R)-*anti*-isomer (61% *de*). The remaining peaks in the four isomer mixture were then tentatively assigned as 26.7 min - the (2R,3S) *anti*-isomer and 47.8 min - the (2R,3R) *syn*-isomer.

4. References

1. Smith, M. E. B.; Smithies, K.; Senussi, T.; Dalby, P. A.; Hailes, H. C. *Eur. J. Org. Chem.* **2006**, 5, 1121–1123.
2. Smith, M. E. B.; Hibbert, E. G.; Jones, A. B.; Dalby, P. A.; Hailes, H. C. *Adv. Synth. Catal.* **2008**, 350, 2631–2638.

3. Thevissen, K.; Hillaert, U.; Meert, E. M. K.; Chow, K. K.; Cammue, B. P. A.; Calenbergh, S. V.; Francois, I. E. J. A. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 3728–3730.