

Supporting Information

Enantioselective Ring Opening of Epoxides by Fluoride Anion Promoted by a Cooperative Dual-Catalyst System

Julia A. Kalow and Abigail G. Doyle*

*Department of Chemistry, Princeton University
Frick Chemical Laboratory, Princeton, NJ 08544 USA*

E-mail: agdoyle@princeton.edu

Table of Contents

I.	General Information.....	S-1
II.	General Procedure for Racemic Fluoride Ring Opening and Related Studies.....	S-3
III.	General Procedure for Screening.....	S-4
IV.	Optimization Studies.....	S-4
V.	Preparation of Epoxides.....	S-8
VI.	General Procedure for Enantioselective Fluoride Ring Opening	
	General Procedure for the Desymmetrization of Meso Epoxides.....	S-10
	General Procedure for the Kinetic Resolution of Terminal Epoxides.....	S-13
VII.	NMR Spectra.....	S-16
VIII.	GC and HPLC Traces.....	S-27

I. General Information

General Procedures. Unless otherwise noted, reactions were performed without exclusion of air or moisture. Screens were performed in 1-dram borosilicate vials, and all other reactions were performed in round-bottom flasks. Flasks were sealed with rubber septa or Teflon caps. Stainless steel cannulae or syringes were used to transfer air- and moisture-sensitive reagents. Reactions were monitored by GC (see below) or thin-layer chromatography (TLC) on EMD Silica Gel 60 F₂₅₄ plates, visualizing with fluorescence quenching, KMnO₄, or ceric ammonium molybdate (CAM). Organic solutions were concentrated under reduced pressure using a Büchi rotary evaporator with an ice-water bath for volatile compounds. Column chromatography was performed using SiliCycle SiliaFlash F60 (40-53 μ m, 60 \AA).

Materials. Commercial reagents were purchased from Sigma Aldrich, Acros, Alfa Aesar, or TCI, and used as received with the following exceptions. Epoxides were distilled from CaH₂ and stored at 5 °C. Diethyl ether (Et₂O), dichloromethane (CH₂Cl₂), tetrahydrofuran (THF), toluene, and benzene were dried by passing through activated alumina columns; acetonitrile (CH₃CN) was dried

by passing through a column of activated molecular sieves.¹ (1R,2R)-(-)-1,2-Cyclohexanediamino-*N,N'*-bis(3,5-di-*t*-butylsalicylidene)cobalt(II) was purchased from Strem and used as received. (-)-Tetramisole hydrochloride was purchased from Sigma; the free base, a white solid, was prepared according to literature procedure² and stored at 5 °C. *Tert*-butyl methyl ether (TBME, anhydrous, >99.8%) was purchased from Aldrich in a Sure/SealTM bottle and used as received. 2-Methyl-2-butanol (*t*-AmOH, 99%) was purchased from Aldrich and used as received.

Instrumentation. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker 500 AVANCE spectrometer (500 and 125 MHz, respectively). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.27). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent residual peak (CDCl₃ = δ 77.16 ppm). ¹⁹F spectra were recorded on a Varian Inova 300 (282 MHz) spectrometer; chemical shifts are reported in parts per millions and are referenced to CFCl₃ (δ 0 ppm). NMR data are represented as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in Hertz (Hz), integration. High-resolution mass spectra were obtained on a Kratos MS 50 using electrospray ionization time-of-flight (ESI-TOF). FT-IR spectra were recorded on a Perkin-Elmer Paragon 500 and are reported in terms of frequency of absorption (cm⁻¹) and intensity (s = strong, m = moderate, w = weak, br = broad). Gas chromatography (GC) was performed on an Agilent 7890A series instrument equipped with a split-mode capillary injection system and flame ionization detectors. Enantiomeric excesses were determined using J&W Scientific Cyclodex-B (30 m x .25 mm) and Macherey-Nagel Hydrodex β-TBDAc (25 m x .25 mm) columns. High-performance liquid chromatography (HPLC) was performed on an Agilent 1200 series instrument with a binary pump and a diode array detector, using a Chiraldex AD-H (25 cm x .46 cm) column. Optical rotations were recorded on a Jasco P-1010 polarimeter using a 1-mL cell with a 0.5 dm path length; concentration (c) is in g/100mL and [α]_D values are in degrees.

¹ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics*, **1996**, *15*, 1518.

² Birman, V. B.; Li, X. *Org. Lett.* **2006**, *8*, 1351.

II. General Procedure for Racemic Fluoride Ring Opening and Related Studies

To a solution of epoxide (1.0 mmol) in 1 mL TBME in a polypropylene vial, benzoyl fluoride (0.218 mL, 2.0 mmol), 1,1,1,3,3-hexafluoroisopropanol (0.416 mL, 4.0 mmol), and DBN (24 μ L, 0.20 mmol) were added. The vial was sealed, wrapping with Teflon tape, and heated to 50 °C for the designated time. Upon completion, the reaction was cooled, quenched with sat. NaHCO_3 (10 mL), extracted with Et_2O (2 x 5 mL), dried over MgSO_4 , concentrated, and purified by standard methods.

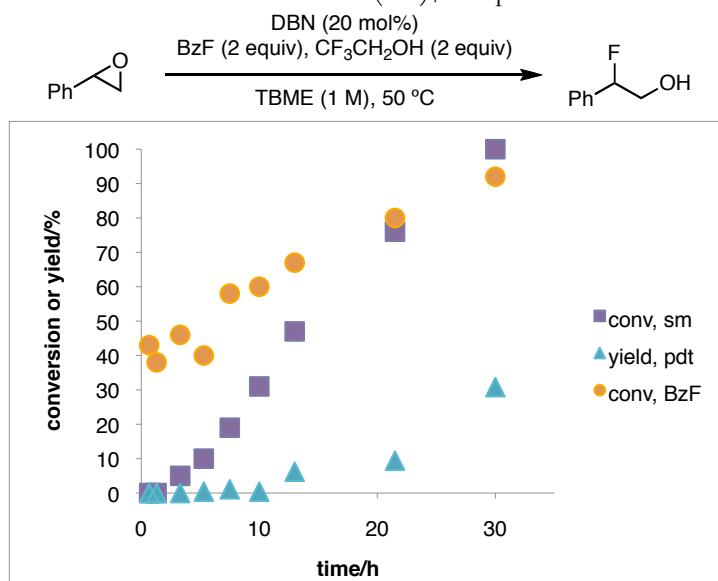

Benzoylated product was not observed by GC analysis of the crude reaction under any conditions.

Table S1. Stoichiometry screen with 100 mol% DBN.

equiv	DBN (100 mol%)	
	BzF, $\text{CF}_3\text{CH}_2\text{OH}$ (x equiv)	TBME (1 M), 50 °C, 18h
1		
2		
4		
6		
10		

^a Determined by GC using dodecane as an internal standard.

Figure S1. The induction period observed in the reaction of styrene oxide corresponds to the formation of the active DBN•(HF)₄ complex.

III. General Procedure for Screening

A 1 M stock solution was prepared in the designated solvent (0.2 mL/rxn), containing cyclohexene oxide (20.2 μ L/rxn, 0.2 mmol/rxn, 1 equiv), decene (18.9 μ L/rxn, 0.5 equiv), and benzoyl fluoride (43.5 μ L/rxn, 2 equiv). An aliquot was reserved for measurement of the initial ratio by GC. To undried 1-dram borosilicate vials, catalysts, 1,1,1,3,3,3-hexafluoroisopropanol (83.1 μ L, 4 equiv), and 0.8 mL solvent were added, followed by 282 μ L stock solution. The vials were stirred open to air for 1–15 minutes then sealed and stirred for the designated time. Upon completion, an aliquot (~0.1 mL) was removed and filtered through a short plug of SiO_2 , eluting with Et_2O . Conversion, yield, and enantiomeric excess were determined by GC using commercial columns.

NB: Ratios of amine: Lewis acid greater than 1 result in diminished rates and ee's (see Table S5).

IV. Optimization Studies

Table S2. Preliminary results in the co-catalytic fluoride ring-opening reaction.

entry	Lewis acid	temp (°C)	time (h)	conv. (%) ^a	yield (%) ^a	ee (%) ^b
1	none	50	3	80	54	-
2	(R,R)- 4a ^c	50	3	100	82	27
3	(R,R)- 5 ^d	50	3	96	52	19
4	none	rt	24	31	16	-
5	(R,R)- 4a ^c	rt	24	100	80	49
6	(R,R)- 5 ^d	rt	24	57	20	25
7	(R,R)- 6 ^e	rt	18	56	23	4

^a Determined by GC using dodecane as an internal standard. ^b Determined by chiral GC analysis.

^c **4a** = (salen)Co. ^d **5** = (salen)CrCl. ^e **6** = (salen)AlCl. DBN = 1,5-diazabicyclo[4.3.0]non-5-ene.

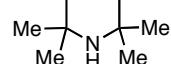
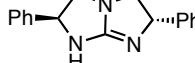
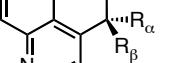
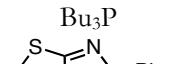
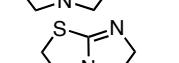
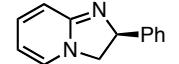
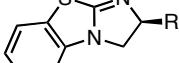
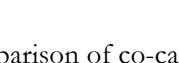
HFIP = 1,1,1,3,3,3-hexafluoroisopropanol.

Table S3. Concentration screen.

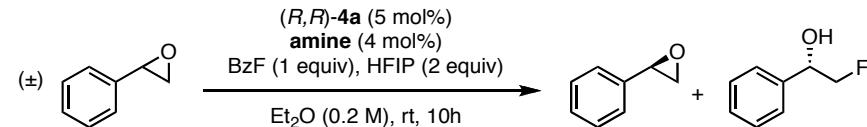
entry	concentration (M)	conv. (%)	yield (%)	ee (%)
1	1.0	97	63	38
2	0.5	93	74	44
3	0.2	73	64	56
4	0.05	11	8	59

Table S4. Solvent screen.

		(<i>R,R</i>)- 4a (10 mol%) DBN (10 mol%) BzF (2 equiv), HFIP (4 equiv) solvent (0.2 M), rt, 6h			
entry	solvent	conv. (%)	yield (%)	ee (%)	
1	TBME	67	63	57	
2	THF	37	33	16	
3	Et ₂ O	72	70	49	
4	dioxane	29	21	40	
5	DME	45	33	45	
6	<i>t</i> -AmOH	43	37	65	

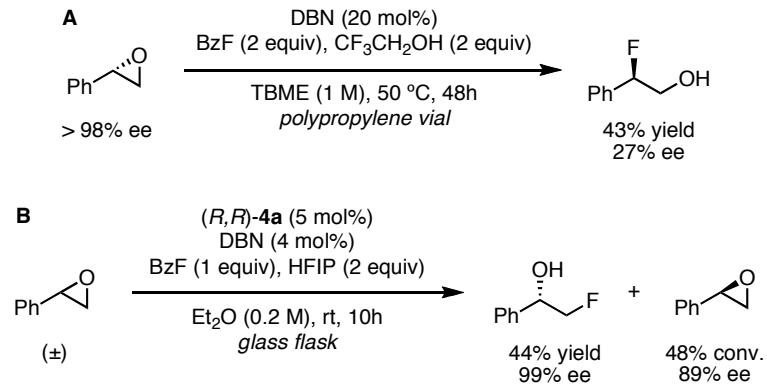








Table S5. Effect of amine: Lewis acid (LA) ratio.

		(<i>R,R</i>)- 4a (10 mol%) DBN (x mol%) BzF (2 equiv), HFIP (4 equiv) TBME (0.2 M), rt, 5h			
entry	DBN (mol%)	DBN:LA	conv. (%)	yield (%)	ee (%)
1	5	1:2	68	62	63
2	10	1:1	70	62	63
3	20	2:1	57	50	55
4	40	4:1	37	31	42

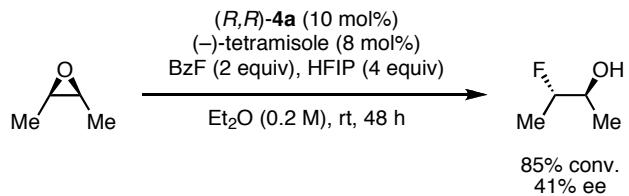

Table S6. Reaction of cyclopentene oxide, varying solvent and counterion.

		(<i>R,R</i>)- 4 (10 mol%) (-)-tetramisole (8 mol%) BzF (2 equiv), HFIP (4 equiv) solvent (0.2 M), 24h			
entry	solvent	LA	conv. (%)	yield (%)	ee (%)
1	<i>t</i> -AmOH	4a	18	14	86
2	<i>t</i> -AmOH	4b	5	0	-
3	TBME	4a	41	36	84
4	TBME	4b	15	11	86
5	Et ₂ O	4a	56	52	81

Table S7. Co-catalyst screen.

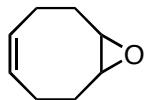

entry	co-catalyst	(R,R) -4a (10 mol%) base (10 mol%) BzF (2 equiv), HFIP (4 equiv) TBME (0.2 M), rt, 6.5h			ee (%)
		conv. (%)	yield (%)	ee (%)	
1	none	48	37	54	
2	DBN	81	73	61	
3	Et ₃ N	69	61	60	
4	DMAP	37	30	33	
5		64	50	50	
6		76	44	63	
7		64	57	62	
8		68	59	67	
9 ^a		61	52	58	
10 ^b		65	56	54	
11		34	28	45	
12		94	86	75	
13		54	48	58	
14		79	74	73	
15 ^c		91	83	65	
16 ^d		81	71	44	

^a R_β = OBz, R_α = H. ^b R_β = H, R_α = OBz. ^c R = Ph. ^d R = *i*-Pr.

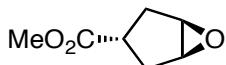

Table S8. Comparison of co-catalysts in the kinetic resolution of styrene oxide.

entry	amine	conv. (%)	yield (%)	ee _{sm} (%)	ee _{pdt} (%)	k _{rel} ^a
1	none	21	7	17	>99	>200
2	DBN	53	41	88	99	>300
3	($-$)-tetramisole	29	20	32	97	83

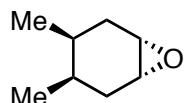
^a Calculated based on ee and yield of product.

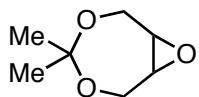


Scheme S1. Comparison of the reaction catalyzed by DBN alone (**A**) to the enantioselective co-catalytic reaction (**B**).



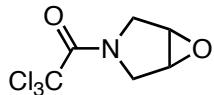
Scheme S2. Acyclic meso substrates react with lower selectivity.


V. Preparation of Epoxides


9-oxabicyclo[6.1.0]non-4-ene. Prepared according to a published procedure; spectral data were in agreement with literature values.³

trans methyl 6-oxabicyclo[3.1.0]hexane-3-carboxylate. Prepared according to published procedures;⁴ spectral data were in agreement with literature values.

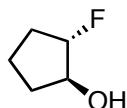
(1R,3R,4S,6S)-3,4-dimethyl-7-oxabicyclo[4.1.0]heptane. Prepared as a 10:1 mixture of diastereomers according to published procedures;⁵ spectral data were in agreement with literature values.

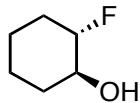

4,4-dimethyl-3,5,8-trioxabicyclo[5.1.0]octane. To 2-methoxypropene (5.74 mL, 60.0 mmol) and Na₂SO₄ (2 g) in a flame-dried flask at 0 °C, *cis*-2-butene-1,4-diol (1.64 mL, 20.0 mmol) and catalytic *p*-toluenesulfonic acid (10 mg) were added. The reaction was stirred at 0 °C for 1 hour, then solid Na₂CO₃ (5 g) was added and the slurry stirred vigorously. The reaction mixture was filtered, concentrated *in vacuo*, and the crude residue purified by Kugelrohr distillation (0.5 torr, 80 °C) to obtain 1.09 g (43% yield) 2,2-dimethyl-4,7-dihydro-1,3-dioxepine. The alkene was epoxidized according to a literature procedure⁶ to obtain 0.874 g (71% yield) of the title product. IR (thin film, cm⁻¹) 2991 (m), 2940 (m), 1374 (m), 1220 (s), 1150 (m), 1120 (m), 1086 (m), 1034 (m); ¹H NMR (500 MHz, CDCl₃): δ 4.03 (dd, J = 28.1, 14.3 Hz, 4H), 3.22 (s, 2H), 1.37 (s, 3H), 1.32 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 102.36, 60.10, 56.51, 24.79, 23.50; HRMS (ESI+): calculated for C₇H₁₂NaO₃ ([M+Na]⁺): 167.06787, found: 167.06797.

³ Davies, S. G.; Polywka, M. E. C.; Thomas, S. E. *J. Chem. Soc. Perkin Trans. 1* **1986**, 1277.

⁴ (a) Deprés, J.-P.; Greene, A. E. *Org. Synth.* **1998**, 75, 195. (b) Lizotte, K. E.; Marecki, P. E.; Mertes, M. P. *J. Org. Chem.* **1983**, 48, 3594.

⁵ (a) O'Brien, P.; Tournayre, J. J. *Tetrahedron* **1997**, 53, 17527. (b) Rickborn, B.; Lwo, S.-Y. *J. Org. Chem.* **1965**, 30, 2212. (c) Kasai, T.; Watanabe, H.; Mon, K. *Bioorg. Med. Chem.* **1993**, 1, 67.

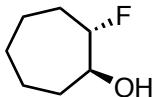

⁶ Inaba, T.; Birchler, A. G.; Yamada, Y.; Sagawa, S.; Yokota, K.; Ando, K.; Uchida, I. *J. Org. Chem.* **1998**, 63, 7582.


1-(6-oxa-3-azabicyclo[3.1.0]hexan-3-yl)-2,2,2-trichloroethanone. To a solution of diallylamine (1.23 mL, 10.0 mmol) and pyridine (1.21 mL, 15.0 mmol) in dry CH_2Cl_2 (20 mL) at 0 °C, trichloroacetyl chloride (1.34 mL, 12.0 mmol) was added dropwise and the reaction mixture was warmed to room temperature over 2 hours. The reaction was poured into water (20 mL), washed with 1 M HCl (10 mL), and the aqueous layer extracted with CH_2Cl_2 (1 x 20 mL). The combined organics were washed with sat. NaHCO_3 (15 mL), dried over MgSO_4 , filtered, and concentrated *in vacuo*. The crude residue was diluted with 40% Et_2O /pentane and filtered through a plug of SiO_2 , then concentrated to yield *N,N*-diallyl-2,2,2-trichloroacetamide (2.41 g, quant.). The diene (10.0 mmol) was degassed in 10 mL dry CH_2Cl_2 by bubbling through argon, then was added to a solution of Grubbs' 1st-generation catalyst (41.1 mg, 0.05 mmol) in degassed CH_2Cl_2 (100 mL). The reaction was stirred under argon at room temperature for 3.5 hours, then quenched by bubbling air through the reaction mixture for 15 minutes. The reaction was concentrated *in vacuo* and purified by Kugelrohr (0.5 torr, 180 °C) to provide 2,2,2-trichloro-1-(2,5-dihydro-1*H*-pyrrol-1-yl)ethanone (1.93 g, 90% yield). The *N*-trichloroacetyl pyrroline (8.81 mmol) was dissolved in CH_3CN (75 mL) and 0.4 mM aqueous Na_2EDTA solution (45 mL) and cooled to 0 °C. 1,1,1-Trifluoroacetone (8.69 mL, 88.1 mmol) was charged via a cooled syringe. A mixture of oxone (27.1 g, 44.1 mmol) and NaHCO_3 (6.07 g, 70.5 mmol) was added portionwise over 1 hour, and the reaction was stirred, warming to room temperature, for an additional 1 hour. The reaction was diluted with brine (75 mL) and filtered, then extracted with CH_2Cl_2 (3 x 75 mL). The combined organic layers were dried over Na_2SO_4 , filtered, and concentrated *in vacuo*. No further purification of the title product (1.89 g, 93% yield) was necessary. IR (thin film, cm^{-1}) 2876 (w), 1672 (s), 1421 (m), 1391 (m), 1202 (w), 847 (s), 811 (s); ¹H NMR (500 MHz, CDCl_3): δ 4.50 (d, *J* = 12.9 Hz, 1H), 4.15 (d, *J* = 14.0 Hz, 1H), 3.86–3.78 (m, 3H), 3.60 (d, *J* = 14.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl_3) δ 159.97, 93.01, 56.11, 53.38, 50.49, 50.06; HRMS (ESI+) calculated for $\text{C}_6\text{H}_7\text{Cl}_3\text{NO}_2$ ($[\text{M}+\text{H}]^+$): 229.95369, found: 229.95363 (100.0%), calculated for $\text{C}_6\text{H}_6\text{Cl}_3\text{NaNO}_2$ ($[\text{M}+\text{Na}]^+$): 251.93563, found: 251.93553 (72.4%).

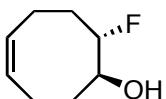
VI. General Procedure for Enantioselective Fluoride Ring Opening

General Procedure for the Desymmetrization of Meso Epoxides. To an undried 10-mL round-bottom flask were added (1R,2R)-(-)-1,2-cyclohexanediamino-*N,N'*-bis(3,5-di-*t*-butylsalicylidene)cobalt(II) (**4a**) (60.4 mg, 0.10 mmol, 10 mol%) and (-)-tetramisole (16.3 mg, 0.08 mmol, 8 mol%). 1,1,1,3,3,3-hexafluoroisopropanol (0.416 mL, 4.0 mmol, 4 equiv) was charged and the brown slurry was diluted with 5 mL of Et₂O, TBME, or *t*-AmOH. Epoxide (1.0 mmol, 1 equiv) was then added, followed by benzoyl fluoride (0.218 mL, 2.0 mmol, 2 equiv), and the mixture was stirred, open to air, for 1 minute. The flask was sealed with a Teflon cap, which was secured with Parafilm, and stirred at room temperature for the designated time. Yields and enantiomeric excesses are representative values for two or more reactions.

(1*S*,2*S*)-2-fluorocyclopentanol. Cyclopentene oxide (175 μ L, 2.0 mmol, 1 equiv) was subjected to the general procedure (scaled by 2x) in Et₂O. After stirring at room temperature for 72 hours, the reaction was quenched with 0.5 M NH₃ in Et₂O (4 mL) and concentrated *in vacuo*, cooling with an ice bath. The reaction was purified by column chromatography on SiO₂, eluting with 5–40% Et₂O in pentane to provide the title product (160 mg, 77% yield). The enantiomeric excess was determined to be 85% by chiral GC analysis (β -TBDAc, 110 °C isotherm, 1 mL/min, t_R (major) = 12.4 min, t_R (minor) = 14.1 min); $[\alpha]^{22}_D = +10.3$ (CHCl₃, c = 1.1). Spectral data were in agreement with literature values.⁷

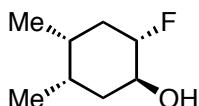


(1*S*,2*S*)-2-fluorocyclohexanol. Modification of the general procedure. To an undried 50-mL round-bottom flask were added (1R,2R)-(-)-1,2-cyclohexanediamino-*N,N'*-bis(3,5-di-*t*-butylsalicylidene)cobalt(III) tosylate (**4b**) (387 mg, 0.50 mmol, 10 mol%) and (-)-tetramisole (81.7 mg, 0.40 mmol, 8 mol%). 1,1,1,3,3,3-hexafluoroisopropanol (2.1 mL, 20 mmol, 4 equiv) was charged and the brown slurry was diluted with 25 mL *t*-AmOH. Epoxide (506 μ L, 5.0 mmol, 1 equiv) was then added, followed by benzoyl fluoride (1.1 mL, 10 mmol, 2 equiv), and the flask was sealed with a Teflon cap, which was secured with Parafilm, and stirred at room temperature. After 24 hours, *t*-AmOH was removed via distillation using a 9-inch Vigreux column (bath temperature, 150 °C), adding cyclohexane as an azeotrope as needed. The reaction was purified by column chromatography on SiO₂, eluting with 5–30% Et₂O in pentane to provide the title product (384 mg, 65% yield). The enantiomeric excess was determined to be 93% by chiral GC analysis (β -TBDAc, 100 °C isotherm, 1 mL/min, t_R (major) = 19.6 min, t_R (minor) = 30.8 min); $[\alpha]^{23}_D = +19.4$ (CHCl₃, c = 1.0) (lit.⁸ $[\alpha]^{20}_D = +16.4$ (CHCl₃, c = 1.0, >95% ee (*S,S*))). Spectral data were in agreement with


⁷ Shellhamer, D. F.; Briggs, A. A.; Miller, B. M.; Prince, J. M.; Scott, D. H.; Healsley, V. L. *J. Chem. Soc., Perkin Trans. 2*. **1996**, 973.

⁸ Haufe, G.; Bruns, S. *Adv. Synth. Catal.* **2002**, 344, 165.

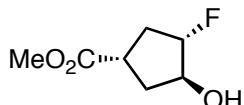
literature values.⁹



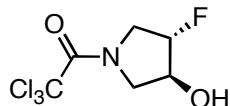
(1*S*,2*S*)-2-fluorocycloheptanol. Cycloheptene oxide (112 mg, 1.0 mmol) was subjected to the general procedure in TBME. After stirring at room temperature for 72 hours, ~7 M NH₃ in MeOH (3 mL) was added and the reaction resealed and stirred for several hours. The mixture was concentrated and purified by column chromatography on SiO₂, eluting with 5–20% Et₂O in pentane to provide the title product (109 mg, 82% yield). The enantiomeric excess was determined to be 90% by chiral GC analysis (β -TBDAc, 120 °C isotherm, 1 mL/min, t_R(major) = 6.1 min, t_R(minor) = 8.0 min); [α]²³_D = -4.0 (CHCl₃, c = 1.0). Spectral data were in agreement with literature values.¹⁰

(1*S*,8*S*,*Z*)-8-fluorocyclooct-4-enol. 9-oxabicyclo[6.1.0]non-4-ene (124 mg, 1.0 mmol) was subjected to the general procedure in TBME. After stirring at room temperature for 72 hours, ~7 M NH₃ in MeOH (3 mL) was added and the reaction resealed and stirred for several hours. The mixture was concentrated and purified by column chromatography on SiO₂, eluting with 5–20% Et₂O in pentane to provide the title product (125 mg, 87% yield). The enantiomeric excess was determined to be 95% by chiral GC analysis (Cyclodex-B, 110 °C isotherm, 1.2 mL/min, t_R(minor) = 22.2 min, t_R(major) = 23.5 min); [α]²³_D = -2.3 (CHCl₃, c = 1.0). Spectral data were in agreement with literature values.¹¹

Using (*S,S*)-**4a**, product was obtained in 6% GC yield and -32% ee after 24 hours.

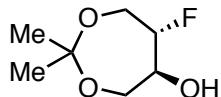

(1*S*,2*S*,4*R*,5*S*)-2-fluoro-4,5-dimethylcyclohexanol. (1*R*,3*R*,4*S*,6*S*)-3,4-dimethyl-7-oxabicyclo[4.1.0]heptane (126 mg, 1.0 mmol, 10:1 dr) was subjected to the general procedure in *t*-AmOH. After stirring at room temperature for 120 hours, the reaction was quenched with 3 mL ~7M NH₃ in MeOH and *t*-AmOH was removed via distillation using a 9-inch Vigreux column (bath temperature, 150 °C), adding cyclohexane as an azeotrope as needed. The crude reaction mixture was purified by column chromatography on SiO₂, eluting with 5–30% Et₂O in pentane to provide the title product (123 mg, 10 wt% *t*-AmOH, 75% yield, 10:1 dr). The enantiomeric excess of the major diastereomer was determined to be 90% by chiral GC analysis (β -TBDAc, 110 °C isotherm, 1 mL/min, t_R(major) = 10.53 min, t_R(minor) = 18.38 min) and that of the minor diastereomer was determined to be 41% (t_R(major) = 11.72 min, t_R(minor) = 20.00 min); [α]²⁴_D = +26.4 (CHCl₃, c = 1.0); FTIR (thin film, cm⁻¹) 3992 (br), 2960 (s), 2937 (s), 2876 (s), 1458 (m), 1379 (m), 1099 (m), 1061 (s), 1023 (s), 973 (m); ¹H NMR (500 MHz, CDCl₃; minor diastereomer indicated

⁹ Bruns, S.; Haufe, G. *J. Fluorine Chem.* **2000**, *104*, 247.


¹⁰ Pietz, S.; Frölich, R.; Haufe, G. *Tetrahedron* **1997**, *53*, 17055.

¹¹ Alvergne, G.; Laurent, A.; Haufe, G. *J. Fluorine Chem.* **1986**, *34*, 147.

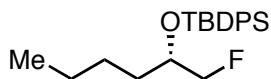
by *) δ 4.49 (dddd, $J_{HF} = 51.8$ Hz, 1H*, CHF), 4.29 (dddd, $J = 51.9, 11.2, 8.6, 5.2$ Hz, 1H CHF), 3.68 (m, 1 H*, CHOH), 3.85 (dddd, $J = \text{ddddd}$, $J = 24.6, 12.8, 8.5, 4.6, 2.7$ Hz, 1H, , CHOH), 2.34 (d, $J = 2.3$ Hz, 1H*, OH), 2.28 (d, $J = 2.4$ Hz, OH), 1.90–1.72 (m, 4H + 4H*), 1.54–1.40 (m, 2H + 2H*), 0.93 (d, $J = 6.8, 3H + 3H^*$, CH₃), 0.91 (d, $J = 7.2$ Hz, 3H + 3H*, CH₃); ¹³C NMR (125 MHz, CDCl₃; minor diastereomer indicated by *) δ 97.27 (d, $^1J = 173.4$ Hz), 94.56* (d, $^1J = 170.8$ Hz), 73.85* (d, $^2J = 17.8$ Hz), 69.45 (d, $^2J = 18.0$ Hz), 38.31 (d, $^3J = 7.3$ Hz), 32.97 (d, $^2J = 16.1$ Hz), 33.05 (d, $^3J = 9.6$ Hz), 32.74 (d, $^4J = 1.9$ Hz), 18.97, 18.91*, 12.63, 12.55*; ¹⁹F NMR (282 MHz, CDCl₃; minor diastereomer indicated by *) δ -182.0 (d, $J_{HF} = 51.8$ Hz), -190.6* (d, $J_{HF} = 53.6$ Hz); HRMS (ESI+) calculated for C₈H₁₅FNaO ([M+Na]⁺): 169.09991, found: 169.10003.



(1S,3S,4S)-methyl 3-fluoro-4-hydroxycyclopentanecarboxylate. *Trans* methyl 6-oxabicyclo[3.1.0]hexane-3-carboxylate (142 mg, 1.0 mmol) was subjected to the general procedure in TBME. After stirring at room temperature for 120 hours, the reaction was quenched with saturated NaHCO₃ (10 mL) and extracted with EtOAc (3 x 5 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by column chromatography on SiO₂, 5–40% EtOAc in hexane, to provide the title product (142 mg, 88% yield). The enantiomeric excess was determined to be 86% by chiral GC analysis (Cyclodex-B, 120 °C isotherm, 1 mL/min, t_R (major) = 40.6 min, t_R (minor) = 41.6 min); $[\alpha]^{23}_D = -6.0$ (CHCl₃, c = 1.0); IR (thin film, cm⁻¹) 3448 (br), 2995 (m), 1735 (s), 1438 (m), 1215 (s), 1179 (m), 1073 (s), 968 (m); ¹H NMR (500 MHz, CDCl₃) δ 4.86 (dddd, $J = 51.5, 7.2, 3.2, 1.7$ Hz, 1H, CHF), 4.40 (dddd, 10.8, 7.6, 3.9, 1.9 Hz, 1H, CHOH), 3.71 (s, 3H, CH₃), 3.15–3.08 (m, 1H, CHCO₂CH₃), 2.45 (dddd, $J = 30.3, 15.1, 9.8, 5.3$ Hz, 1H, *c*-PentH), 2.29 (dddd, $J = 14.1, 8.8, 5.4, 2.8$ Hz, 1H, *c*-PentH), 2.19 (dddd, $J = 28.1, 15.1, 6.5, 2.8$ Hz, 1H, *c*-PentH), 1.99 (ddd, $J = 14.0$ Hz, 8.3, 2.1 Hz, 1H, *c*-PentH) 1.91–1.55 (br s, 1H, OH); ¹³C NMR (125 MHz, CDCl₃) δ 175.71, 98.41 (d, $^1J = 178.4$ Hz), 76.06 (d, $^2J = 27.4$ Hz), 52.24, 39.82 (d, $^3J = 0.9$ Hz), 35.25, 33.68 (d, $^2J = 22.1$ Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -178.5 (m, $J_{HF} = 51.7$ Hz); HRMS (ESI+) calculated for C₇H₁₂FO₃ ([M+H]⁺): 163.07650, found: 163.07659 (30.4%), calculated for C₇H₁₁FNaO₃ ([M+Na]⁺): 185.05844, found: 185.05848 (100.0%).

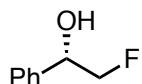
2,2,2-trichloro-1-((3S,4S)-3-fluoro-4-hydroxypyrrolidin-1-yl)ethanone. 1-(6-oxa-3-azabicyclo[3.1.0]hexan-3-yl)-2,2,2-trichloroethanone (230 mg, 1.0 mmol) was subjected to the general procedure in *t*-AmOH. After stirring at room temperature for 120 hours, the reaction mixture was quenched with sat. NaHCO₃ (10 mL) and extracted with EtOAc (3 x 5 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by column chromatography on SiO₂, 10–40% EtOAc in hexane, to provide the title product (211 mg, 84% yield; contains a minor impurity). The enantiomeric excess was determined to be 80% by chiral HPLC analysis (Chiracel AD-H, 90:10 hexane/*i*-PrOH, 1 mL/min, $\lambda = 220$ nm, t_R (major) = 10.2 min, t_R (minor) = 8.3 min); $[\alpha]^{23}_D = +12.8$ (CHCl₃, c = 1.1); FTIR (thin film, cm⁻¹) 3449 (br), 2952 (w), 1664 (s), 1418 (m), 1061 (m), 849 (m), 813 (m), 668 (m); ¹H NMR (500 MHz, CDCl₃; mixture of rotamers, indicated by *) δ 5.07 (d, $J = 49.7$ Hz, 1H, CHF), 5.01 (dd, J

δ = 50.5, 2.8 Hz, 1H*, **CHF**), 4.58-4.57 (m, 1H, **CHOH**), 4.52-4.50 (m, 1H*, **CHOH**), 4.43-3.78 (m, 4H + 4H*, **CH₂**), 2.20 (br s, 1H + 1H*, **OH**); ¹³C NMR (125 MHz, CDCl₃; mixture of rotamers, indicated by *) δ 159.76, 159.71*, 95.20* (d, ¹J = 182.7 Hz), 92.96, 92.19 (d, ¹J = 180.4 Hz), 73.91 (d, ²J = 27.8 Hz), 70.42* (d, ²J = 28.2 Hz), 55.80*, 54.71, 53.69 (d, ²J = 22.6 Hz), 52.81* (d, ²J = 21.7 Hz); ¹⁹F NMR (282 MHz, CDCl₃; mixture of rotamers, indicated by *) δ -183.2 (m), -185.7* (m); HRMS (ESI+) calculated for C₆H₈Cl₃FNO₂ ([M+H]⁺): 249.95992, found: 249.95999 (100.0%), calculated for C₆H₇Cl₃FNaO₂ ([M+Na]⁺): 271.94186, found: 271.94117 (44.6%).


(5S,6S)-6-fluoro-2,2-dimethyl-1,3-dioxepan-5-ol. 4,4-dimethyl-3,5,8-trioxabicyclo[5.1.0]octane (144 mg, 1.0 mmol) was subjected to the general procedure in TBME. After stirring at room temperature for 120 hours, the reaction mixture was quenched with sat. NaHCO₃ (10 mL) and extracted with Et₂O (3 x 5 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by column chromatography on SiO₂, 5-20% acetone in pentane, to provide the title product (90 mg, 55% yield). The enantiomeric excess of the trimethylsilyl ether was determined to be 58% by chiral GC analysis (Cyclodex-B, 110 °C isotherm, 1.0 mL/min, t_R(major) = 11.0 min, t_R(minor) = 11.5 min); $[\alpha]^{24}_D$ = -21.4 (CHCl₃, c = 1.0); FTIR (thin film, cm⁻¹) 3448 (br), 2991 (m), 2944 (m), 1377 (m), 1220 (s), 1159 (m), 1099 (m), 1056 (s), 852 (m); ¹H NMR (500 MHz, CDCl₃) δ 4.44 (ddd, J = 43.9, 3.9, 3.9 Hz, 1H, **CHF**), 4.01 (d, 12.8 Hz, 1H, **CH₂**), 3.92-3.80 (m, 3H, **CH₂**), 3.60 (ddd, J = 12.7, 4.3, 1.1 Hz, 1H, **CHOH**), 2.59 (d, J = 8.4 Hz, 1H, **OH**), 1.39 (s, 3H **CH₃**), 1.36 (s, 3H **CH₃**); ¹³C NMR (125 MHz, CDCl₃) δ 102.0, 91.7 (d, ¹J = 176.6 Hz), 70.0 (d, ²J = 29.4 Hz), 60.4, 59.4 (d, ²J = 20.9 Hz), 25.0, 24.0; ¹⁹F NMR (282 MHz, CDCl₃) δ -195.7 (m); HRMS (ESI+) calculated for C₇H₁₄FO₃ ([M+H]⁺): 165.09215, found: 165.09219 (9.4%), calculated for C₇H₁₃FNaO₃ ([M+Na]⁺): 187.07409, found: 187.07410 (100.0%).

General Procedure for the Kinetic Resolution of Terminal Epoxides. To an undried 50-mL round-bottom flask were added (1R,2R)-(-)-1,2-cyclohexanediamino-N,N'-bis(3,5-di-*t*-butylsalicylidene)cobalt(II) (**4a**) (60.4 or 151 mg, 0.1 or 0.25 mmol, 2 or 5 mol%) and DBN (9.6 or 24 μ L, 0.08 or 0.2 mmol, 1.6 or 4 mol%). 1,1,1,3,3,3-hexafluoroisopropanol (1.04 mL, 10.0 mmol, 2 equiv) was charged and the brown slurry was diluted with 25 mL of Et₂O. Epoxide (5.0 mmol, 1 equiv) was then added, followed by benzoyl fluoride (.55 mL, 5.0 mmol, 1 equiv), and the mixture was stirred, open to air, for 15 minutes. The flask was sealed with a Teflon cap, which was secured with Parafilm, and stirred at room temperature until the reaction reached approximately 50% conversion as determined by GC. Yields and enantiomeric excesses are representative values for two or more reactions.

Lower-bound selectivity factors ($k_{\text{rel}} = k_{\text{fast}}/k_{\text{slow}}$) were measured using the equation of Kagan,¹² based on the enantiomeric excess of product (ee) and yield (c, as a surrogate for conversion):

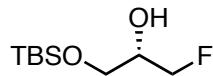

$$k_{\text{rel}} = \ln[1 - c(1 + ee)]/\ln[1 - c(1 - ee)]$$

¹² Kagan, H. B.; Fiaud, J. C. in *Topics in Stereochemistry*, Vol. 14; Eliel, E. L., Wilen, S. H., Eds., Wiley: New York: 1987; pp 249-330.

(S)-1-fluorohexan-2-ol. (\pm)-Butyloxirane (603 μ L, 5.0 mmol) was subjected to the general procedure (using 2 mol% (salen)Co and 1.6 mol% DBN) until the reaction reached 47% conversion (30 hours), as determined by GC analysis using 1-decene as an internal standard. The reaction was quenched with \sim 7 M NH₃ in MeOH (10 mL), sealed, and stirred for several hours. Solvents, epoxide, and fluorohydrin were purified from nonvolatiles by vacuum transfer. MeOH was removed by diluting the distillate with 20 mL pentane and washing with 1 M NaOH (2 \times 10 mL). The aqueous layer was extracted with 1:1 Et₂O/pentane (20 mL) and the combined organics were dried over MgSO₄, filtered, and concentrated *in vacuo*, cooling with an ice bath. The residue was diluted with 4 mL CH₂Cl₂ and 1 mL DMF, then treated with imidazole (0.43 g, 6.25 mmol, 1.25 equiv) and TBPDSCl (1.5 mL, 6 mmol, 1.2 equiv). Upon full conversion of the alcohol as determined by GC, the reaction was diluted with 10% LiCl (20 mL) and hexane (40 mL). The layers were separated and the organic layer was washed once more with 10% LiCl (20 mL). The organics were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude residue was filtered through a short plug of SiO₂, eluting with hexane, to provide the silyl-protected title product (0.639 g, 36% yield). The enantiomeric excess of the product (prior to silyl protection) was determined to be 99% by chiral GC analysis (Cyclodex-B, 80 °C isotherm, 1 mL/min, t_R (major) = 13.6 min, t_R (minor) = 14.2 min); $[\alpha]^{24}_D$ = +18.4 (silyl ether, CHCl₃, c = 1.0). Spectral data for the free alcohol were in agreement with literature values.¹³

The unreacted (R)-butyloxirane was also isolated during the above sequence and converted to the azido trimethylsilyl ether (azide opening with NaN₃/NH₄Cl¹⁴ followed by silylation with TMSCl/Et₃N). The enantiomeric excess was determined to be 96% by chiral GC analysis (Cyclodex-B, 80 °C isotherm, 1 mL/min t_R (minor) = 52.3 min, t_R (major) = 53.8 min). The major enantiomer was determined by comparison to the literature GC

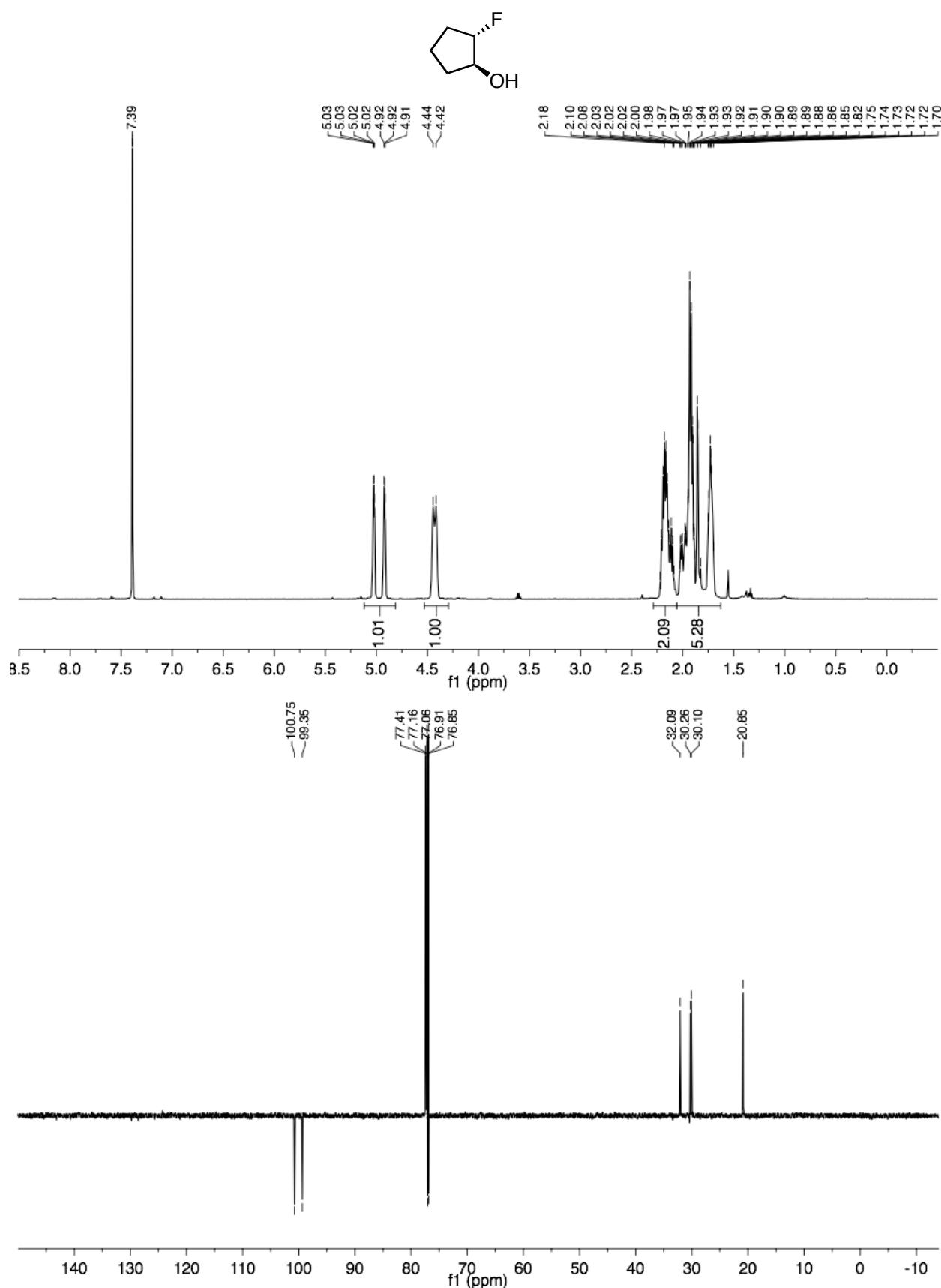
(S)-2-fluoro-1-phenylethanol. (\pm)-Styrene oxide (572 μ L, 5.0 mmol) was subjected to the general procedure (using 5 mol% (salen)Co and 4 mol% DBN) until the reaction reached 48% conversion (10 hours), as determined by GC analysis using 1-decene as an internal standard. The reaction was quenched with \sim 7M NH₃ in MeOH (7.5 mL) and concentrated, then purified by column chromatography on SiO₂, 5–20% Et₂O in pentane, to provide the title product (305 mg, 44% yield). The enantiomeric excess was determined to be 99% by chiral GC analysis (Cyclodex-B, 100 °C, 15 min, 15 °C/min, 150 °C, 4 min, t_R (major) = 21.0 min, t_R (minor) = 21.3 min); $[\alpha]^{24}_D$ = +60.0 (CHCl₃, c = 1.0) (lit.¹⁵ $[\alpha]^{24}_D$ = -67.3 (MeOH, c = 0.94, 85% ee (R))). Spectral data were in agreement with literature values.¹⁶

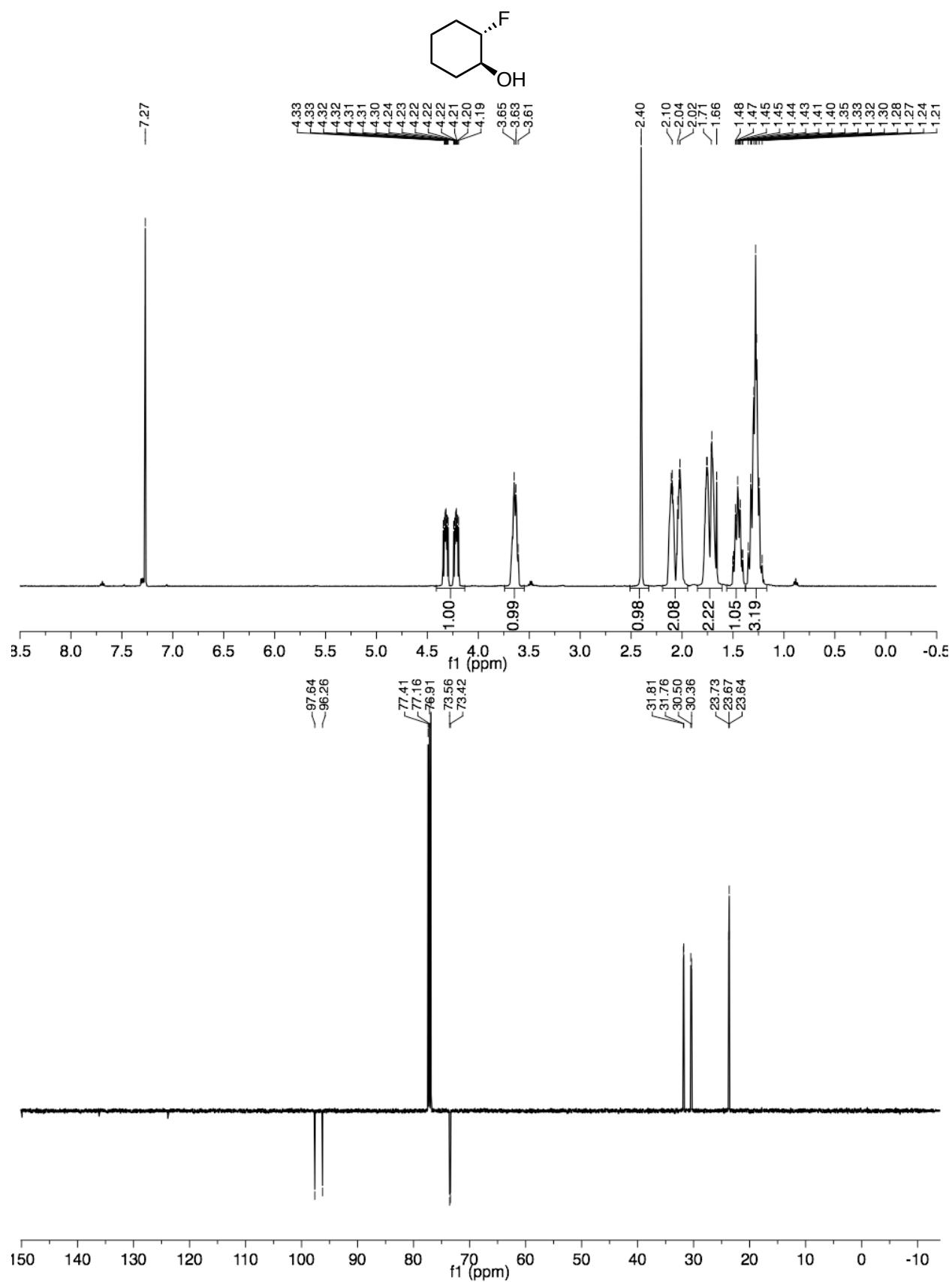

¹³ Shellhamer, D. F.; Anstine, D. T.; Gallego, K. M.; Ganesh, B. R.; Hanson, A. A.; Hanson, K. A.; Henderson, R. D.; Prince, J. M.; Healsley, V. L. *J. Chem. Soc. Perkin Trans. 2* **1995**, 861.

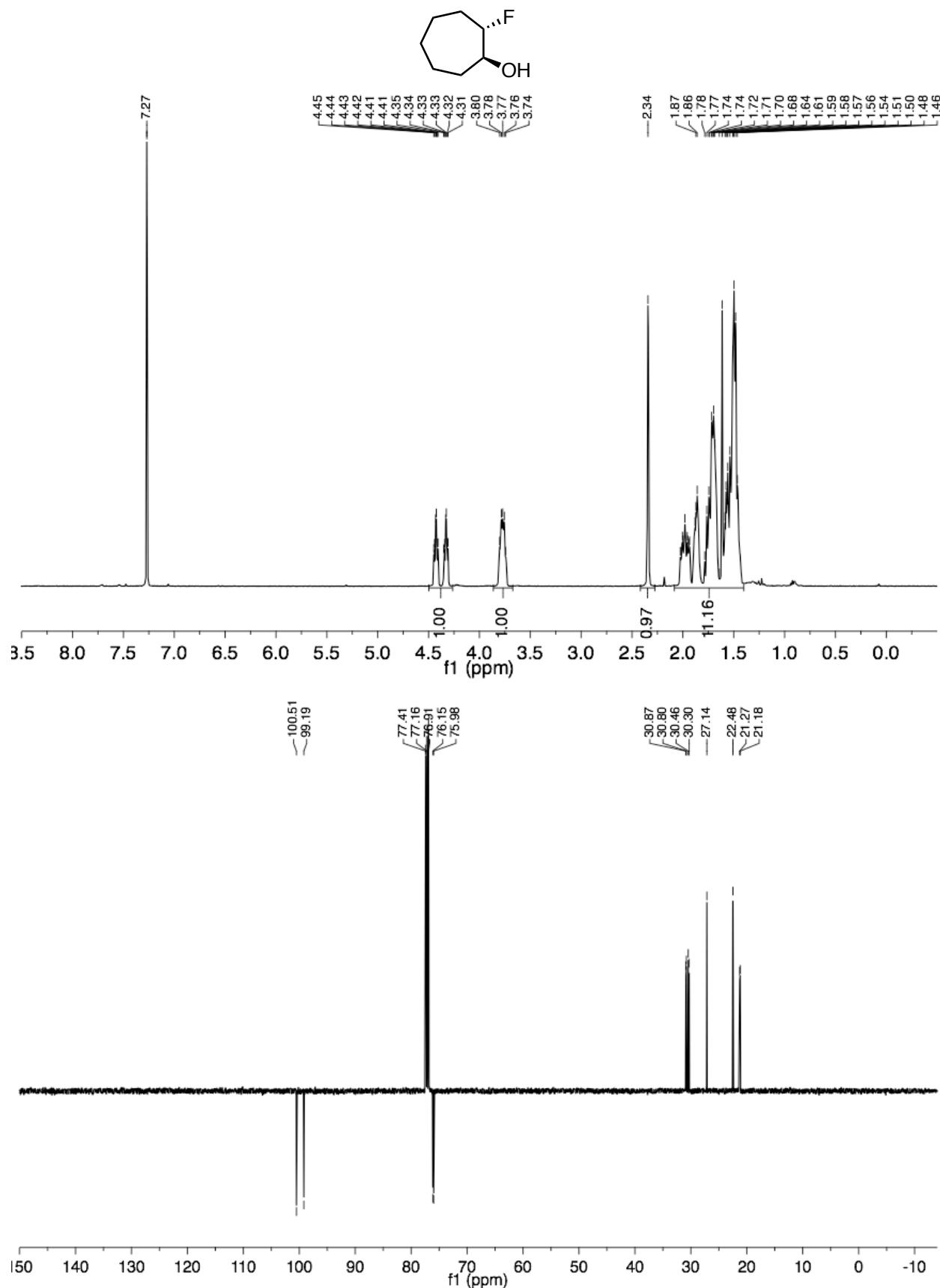
¹⁴ Stewart, I. C.; Lee, C. C.; Bergman, R. G.; Toste, F. D. *J. Am. Chem. Soc.* **2005**, 127, 17676.

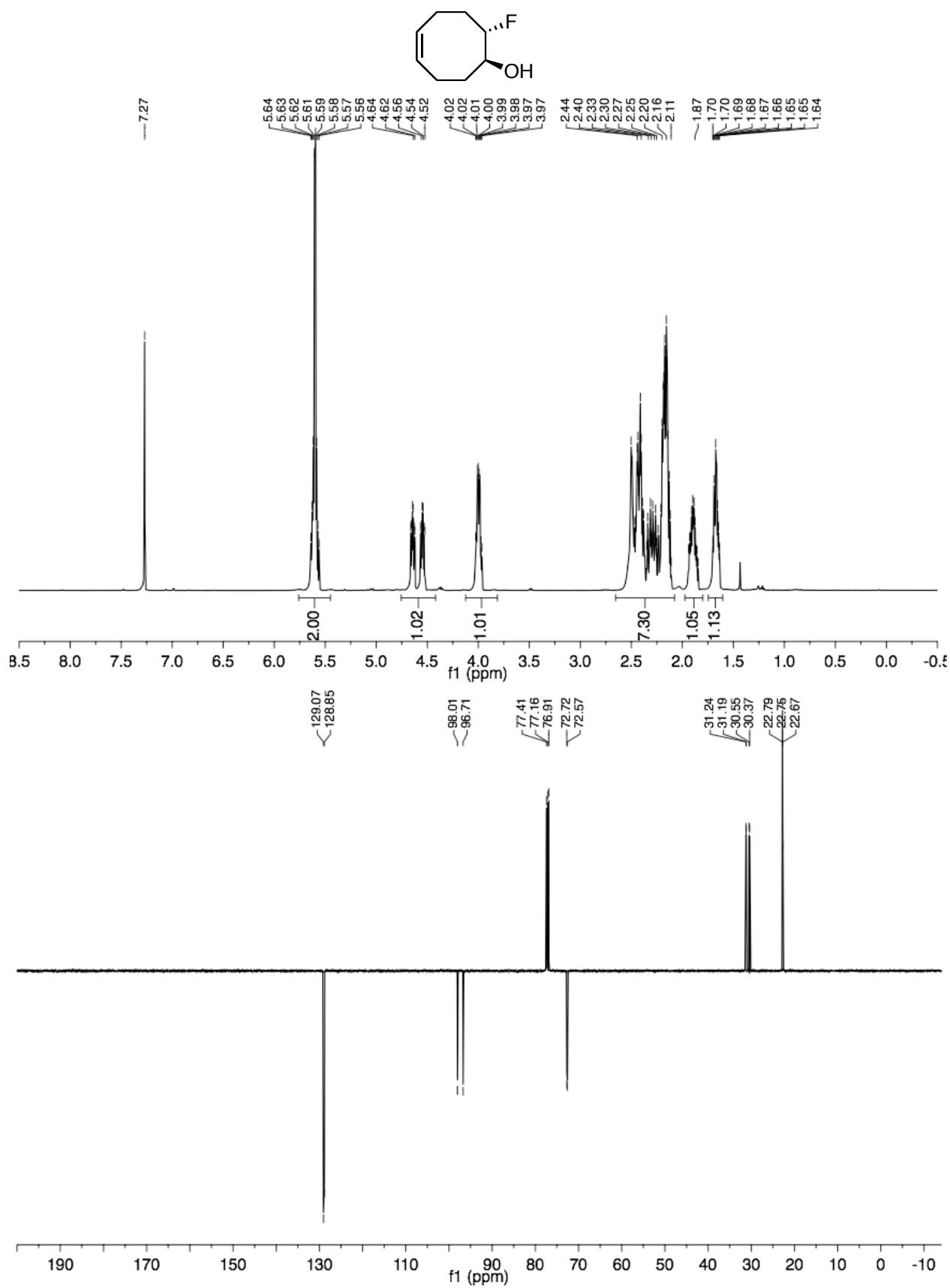
¹⁵ Kitazume, T.; Asai, M.; Lin, J. T.; Yamazaki, T. *J. Fluorine Chem.* **1987**, 35, 477.

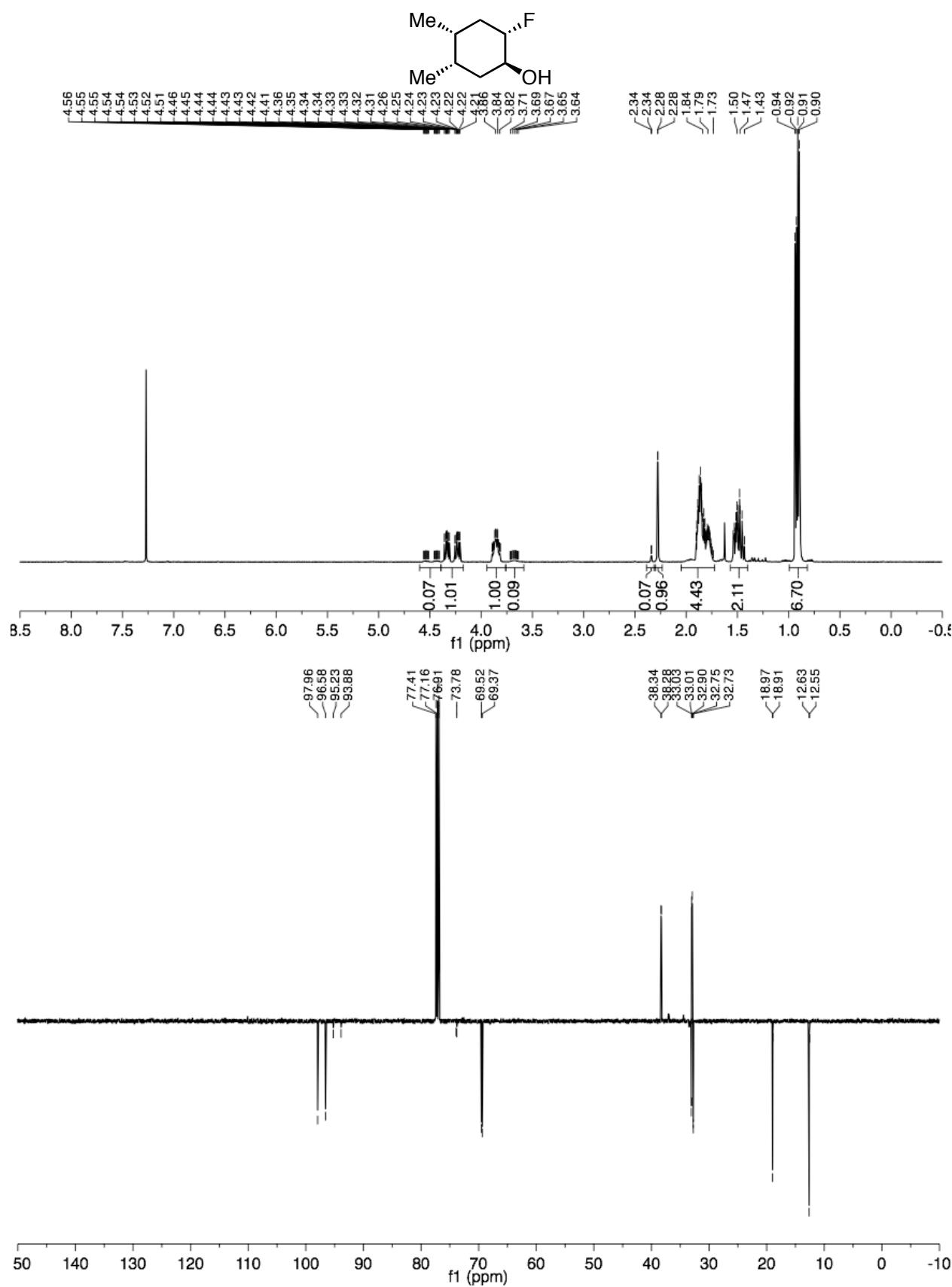
¹⁶ DesMarteau, D. D.; Xu, Z.-Q.; Witz, M. *J. Org. Chem.* **1992**, 57, 629.

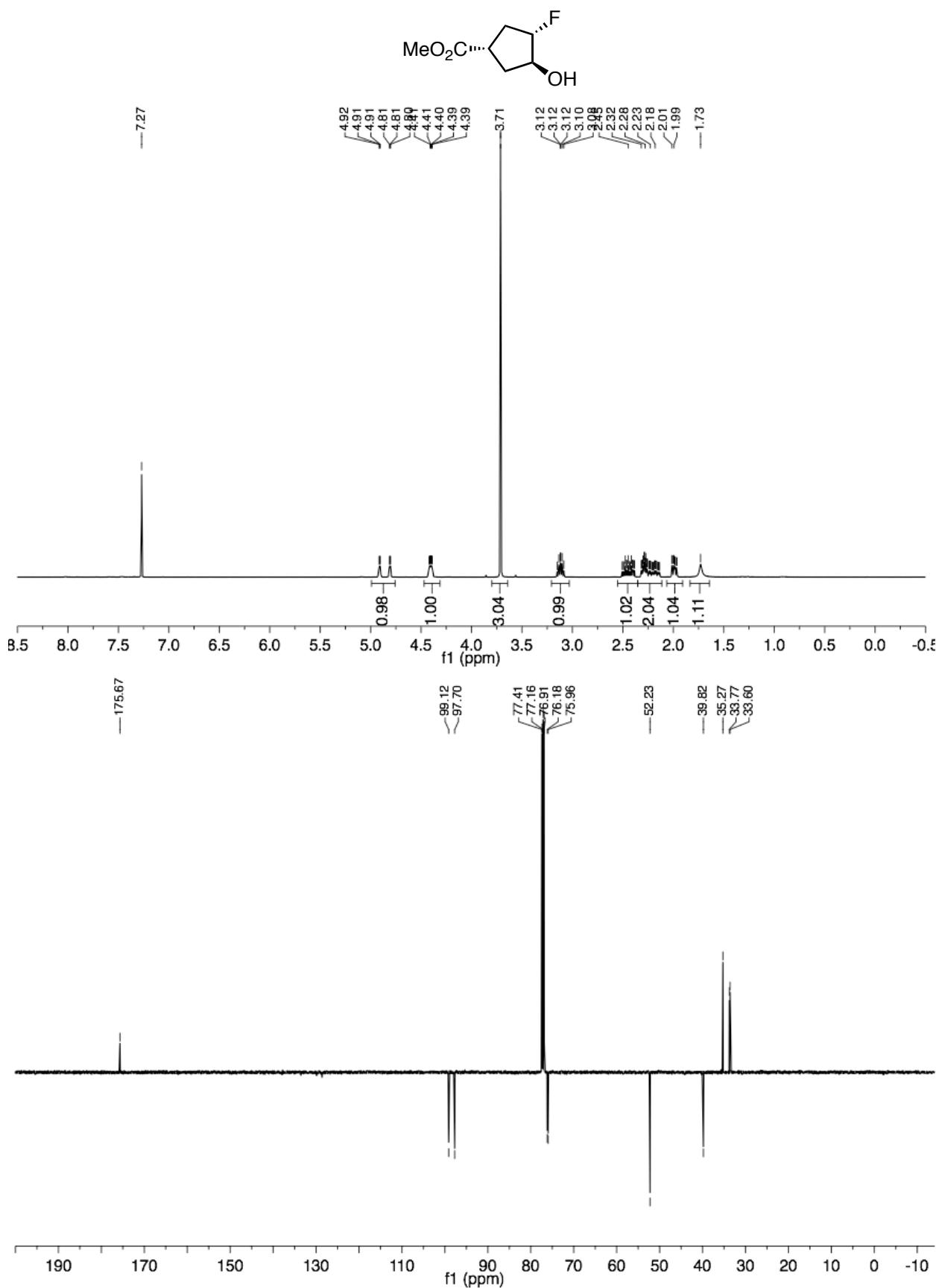

The enantiomeric excess of the unreacted (R)-styrene oxide was determined to be 89% by chiral GC analysis (Cyclodex-B, 100 °C isotherm, t_R (major) = 13.7 min, t_R (minor) = 14.2 min).

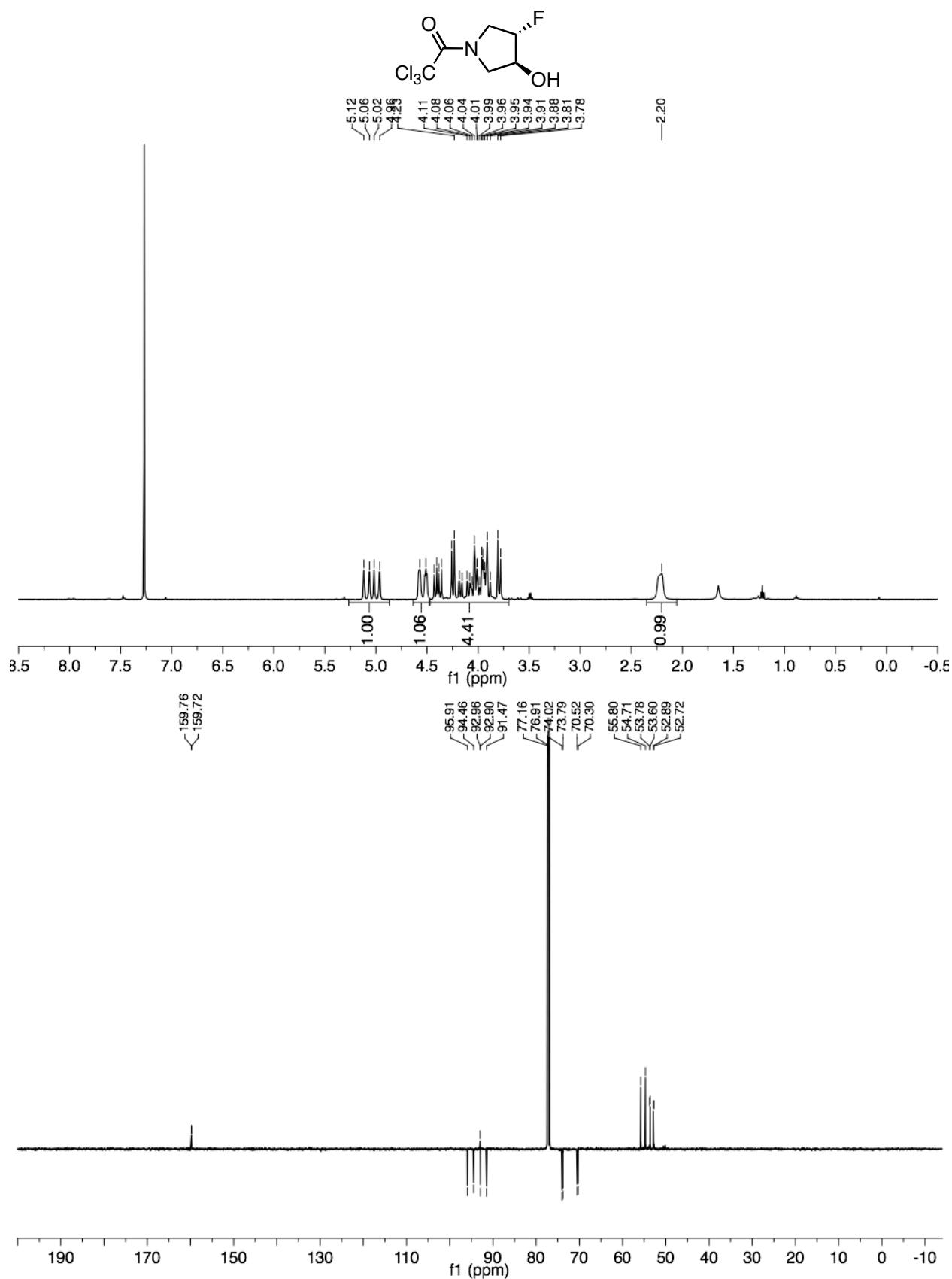


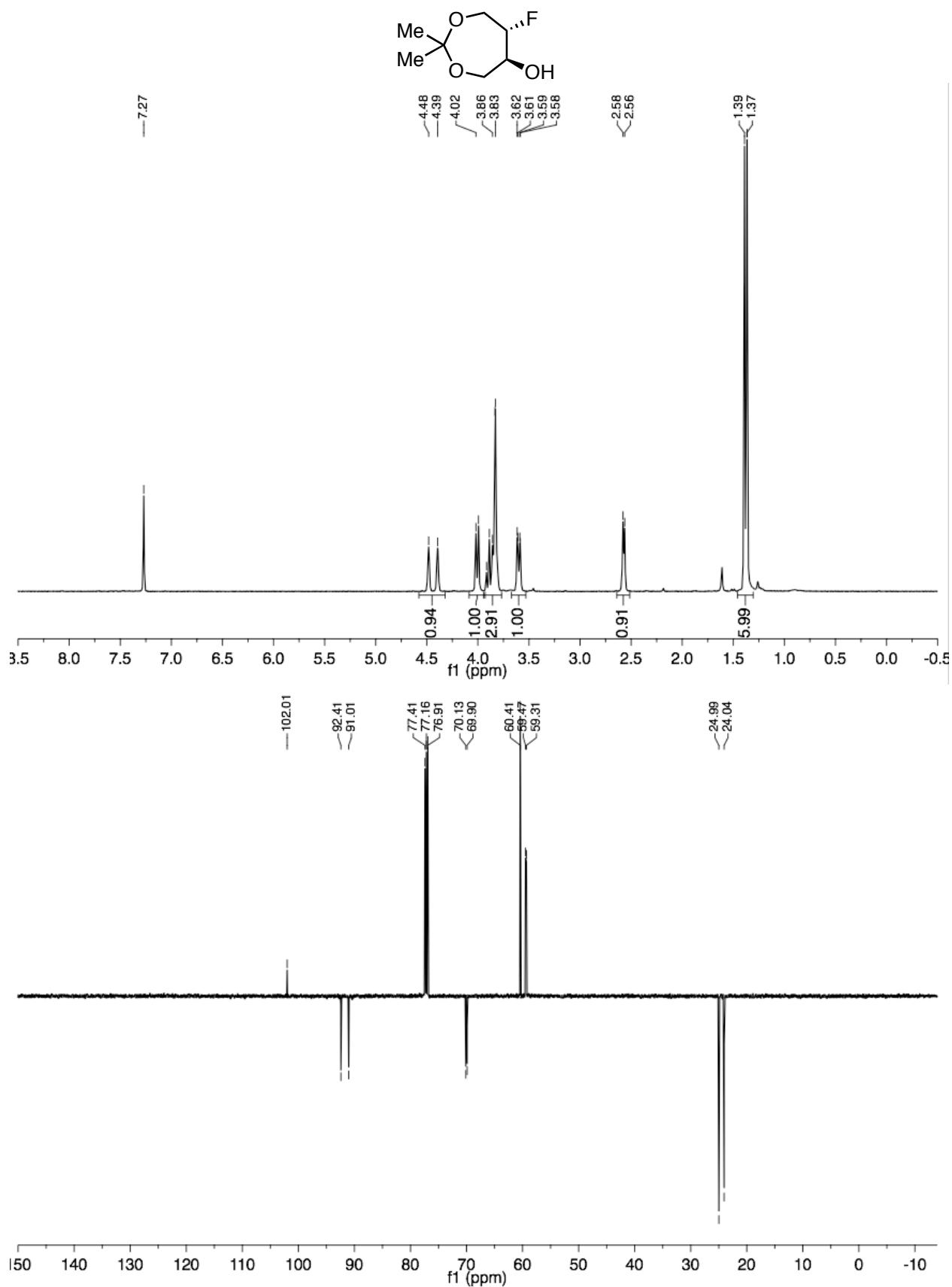

(S)-1-(tert-butyldimethylsilyloxy)-3-fluoropropan-2-ol. *Tert*-butyldimethylsilyl (\pm)-glycidyl ether (1.05 mL, 5.0 mmol) was subjected to the general procedure (using 5 mol% (salen)Co and 4 mol% DBN) in a 50-mL polypropylene tube until the reaction reached 52% conversion (24 hours), as determined by GC analysis using 1-decene as an internal standard. The reaction was quenched with sat. NaHCO_3 (50 mL) and extracted with Et_2O (2 x 25 mL), then the combined organics were dried over MgSO_4 , filtered, and concentrated. The crude mixture was purified by column chromatography on SiO_2 , 5–20% Et_2O in pentane, to provide the title product (0.460 g, 44% yield). Enantiomeric excess was determined to be 88% by chiral GC analysis (Cyclodex-B, 100 °C isotherm, t_R (minor) = 20.1 min, t_R (major) = 20.7 min); $[\alpha]^{24}_D = +2.3$ (CHCl_3 , $c = 1.1$); FTIR (thin film, cm^{-1}) 3411 (br), 2956 (s), 2931 (s), 2859 (s), 1472 (m), 1258 (s), 1100 (s), 1019 (s), 838 (s), 779 (s); ^1H NMR (500 MHz, CDCl_3) δ 4.45 (dddd, $J = 47.2, 14.7, 9.5, 5.2$ Hz, 2H, CH_2F), 3.90 (ddd, $J = 27.1, 10.7, 5.2$ Hz, 1H, CHOH), 3.71 (dddd, $J = 15.6, 10.2, 4.9, 1.4$ Hz, 2H, CH_2OSi), 2.40 (d, $J = 6$ Hz, 1H, OH), 0.91 (s, 9H, $\text{SiC}(\text{CH}_3)_3$), 0.09 (s, 6H, SiCH_3); ^{13}C NMR (125 MHz, CDCl_3) δ 83.5 (d, $^1\text{J} = 169.1$ Hz), 70.3 (d, $^2\text{J} = 20.2$ Hz), 62.8 (d, $^3\text{J} = 6.3$ Hz), 26.0, 18.4, -5.3; ^{19}F NMR (282 MHz, CDCl_3) δ -194.7 (m); HRMS (ESI+) calculated for $\text{C}_9\text{H}_{22}\text{FO}_2\text{Si}$ ($[\text{M}+\text{H}]^+$): 209.13676, found: 209.13673 (28.8%), calculated for $\text{C}_9\text{H}_{21}\text{FNaO}_2\text{Si}$ ($[\text{M}+\text{Na}]^+$): 231.11871, found: 231.11873 (100.0%).

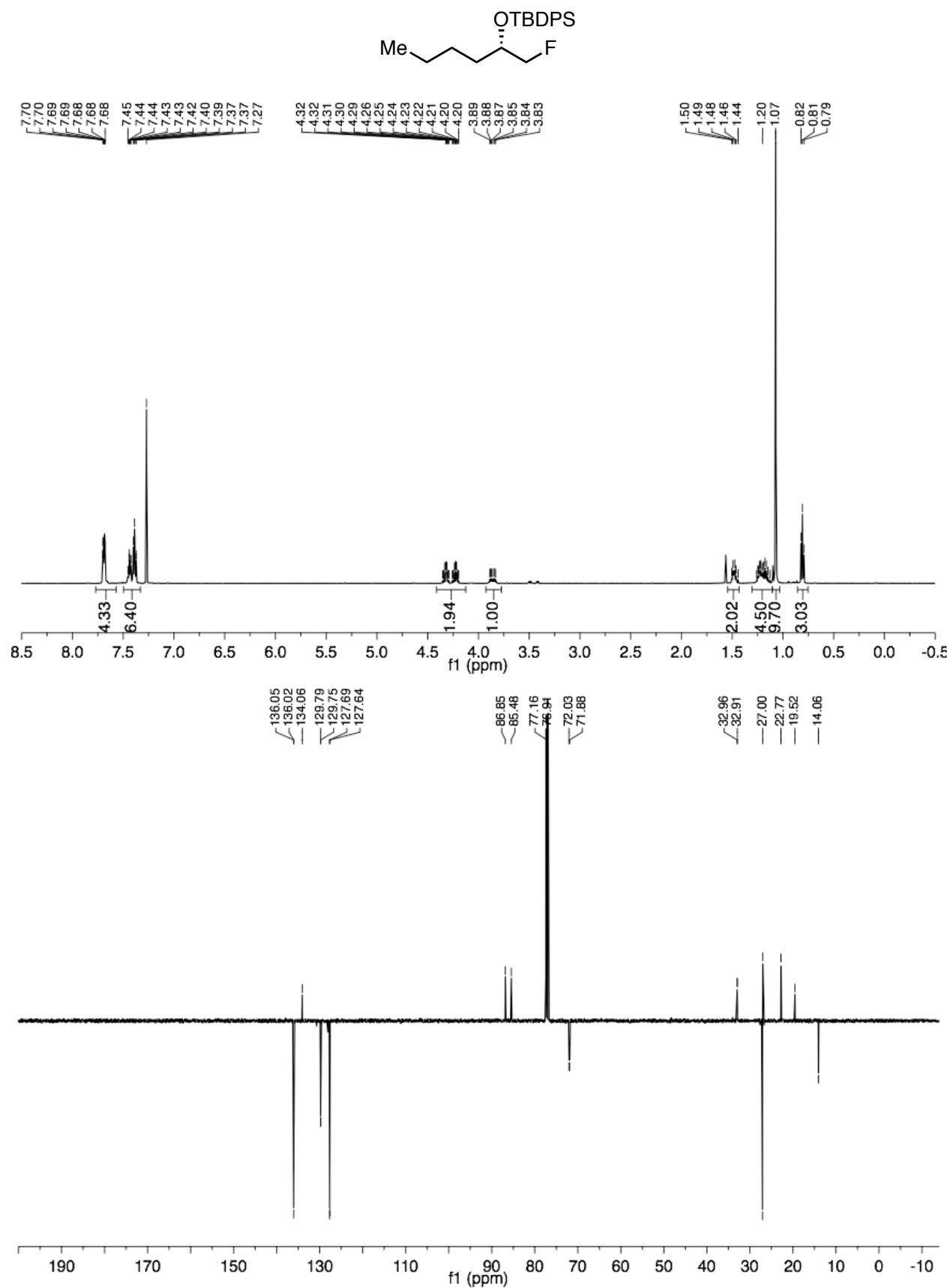

The unreacted TBS (R)-glycidyl ether was also isolated during the above sequence and converted to the azido trimethylsilyl ether (azide opening with $\text{NaN}_3/\text{NH}_4\text{Cl}$ followed by silylation with $\text{TMSCl/Et}_3\text{N}$). The enantiomeric excess was determined to be 95% by chiral GC analysis (Cyclodex-B, 90 °C isotherm, t_R (minor) = 85.3 min, t_R (major) = 87.4 min).

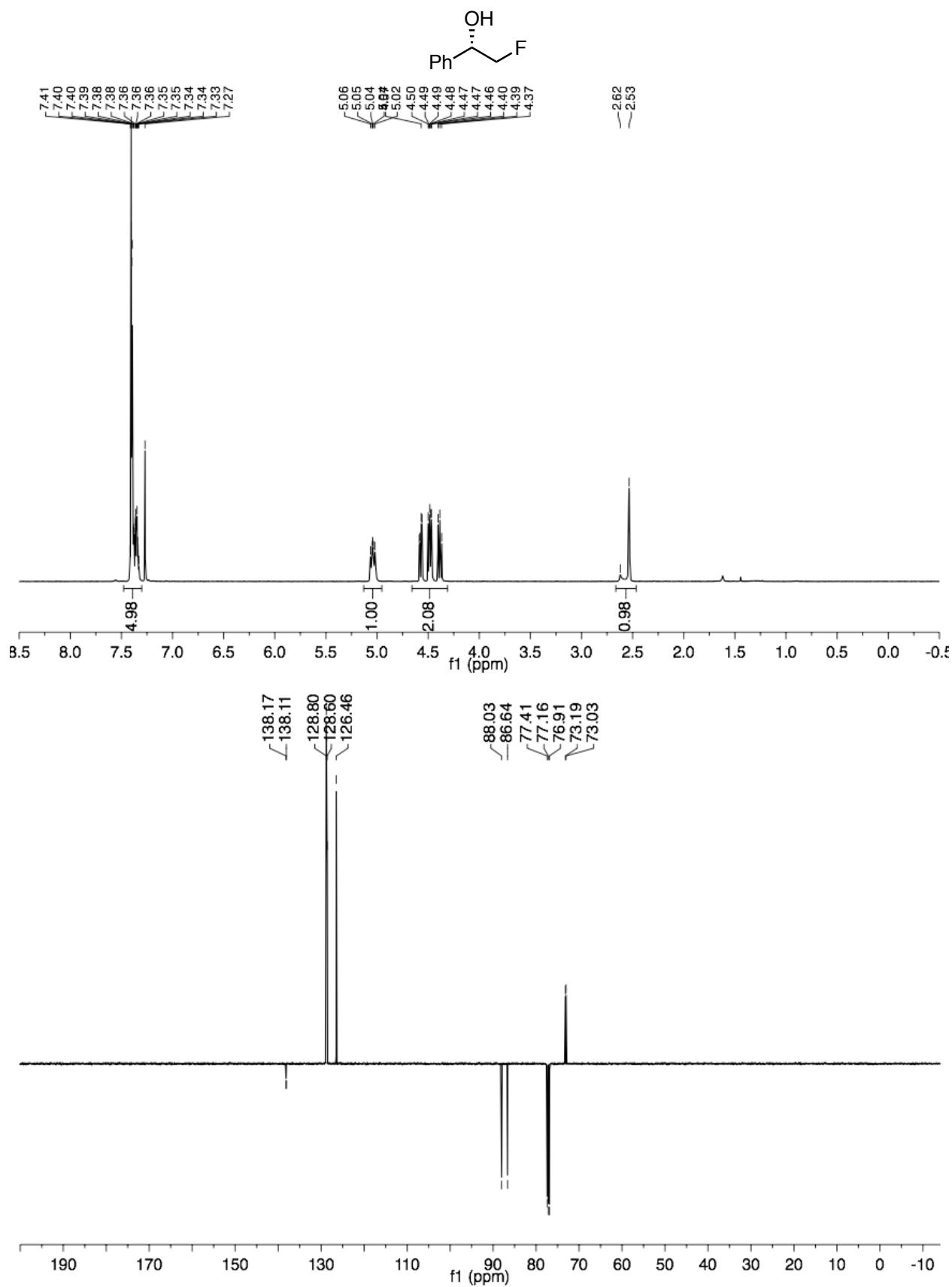

VII. NMR Spectra

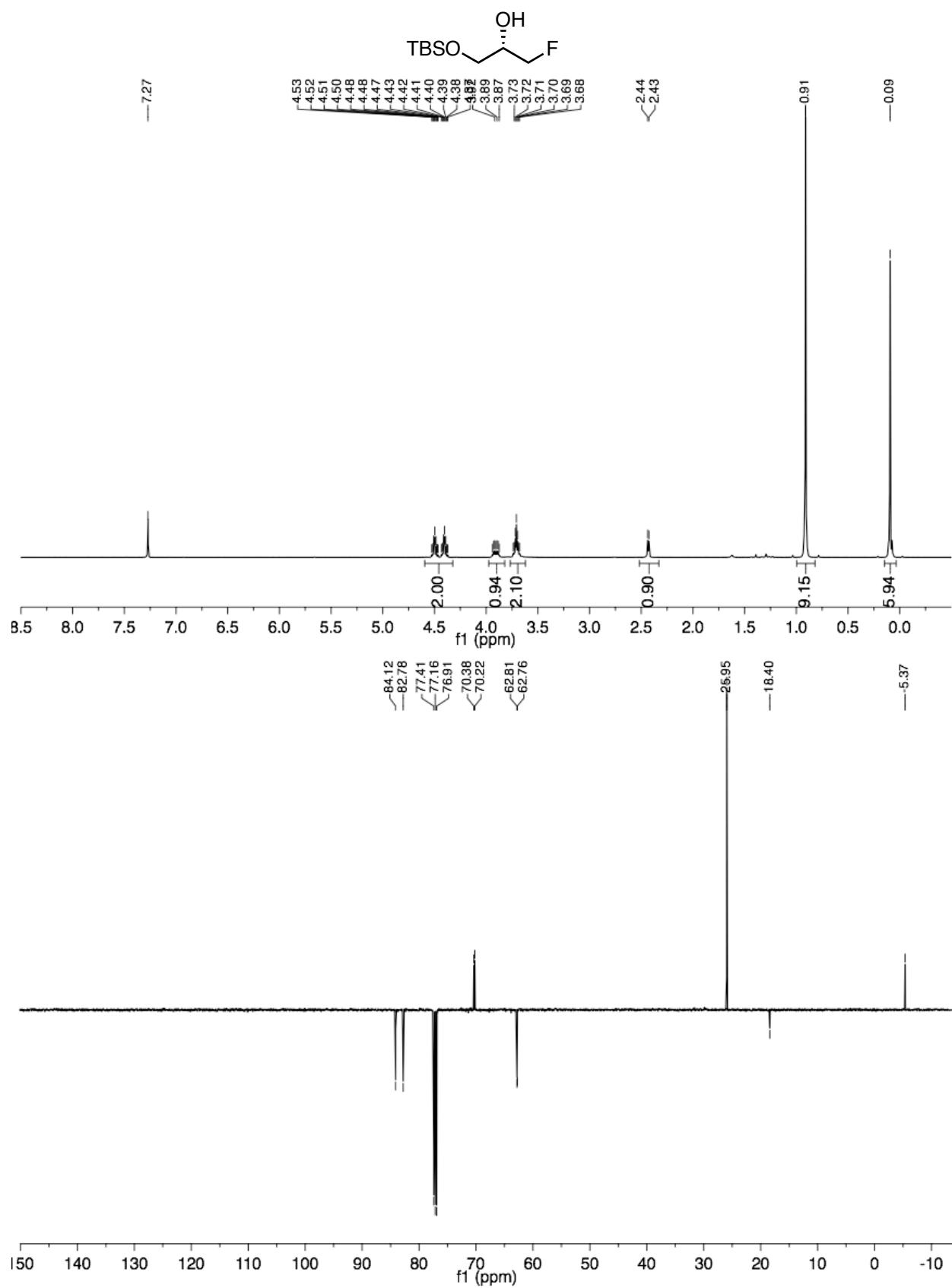


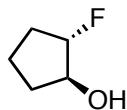


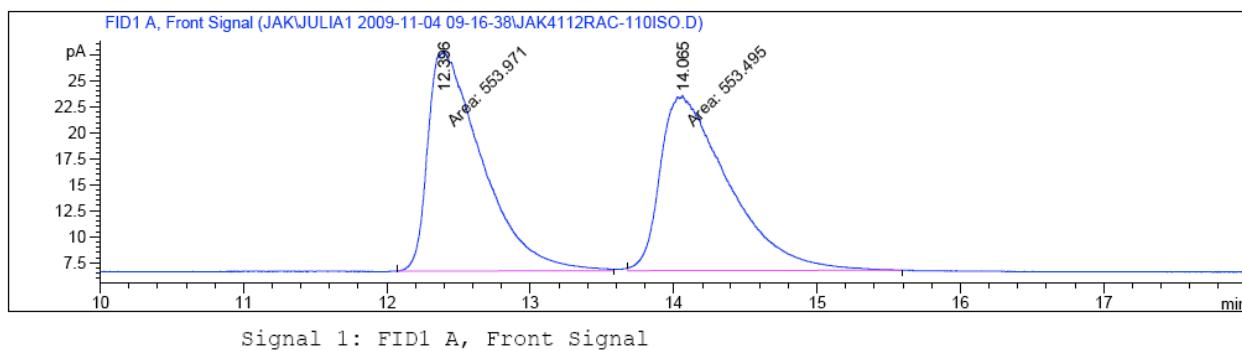


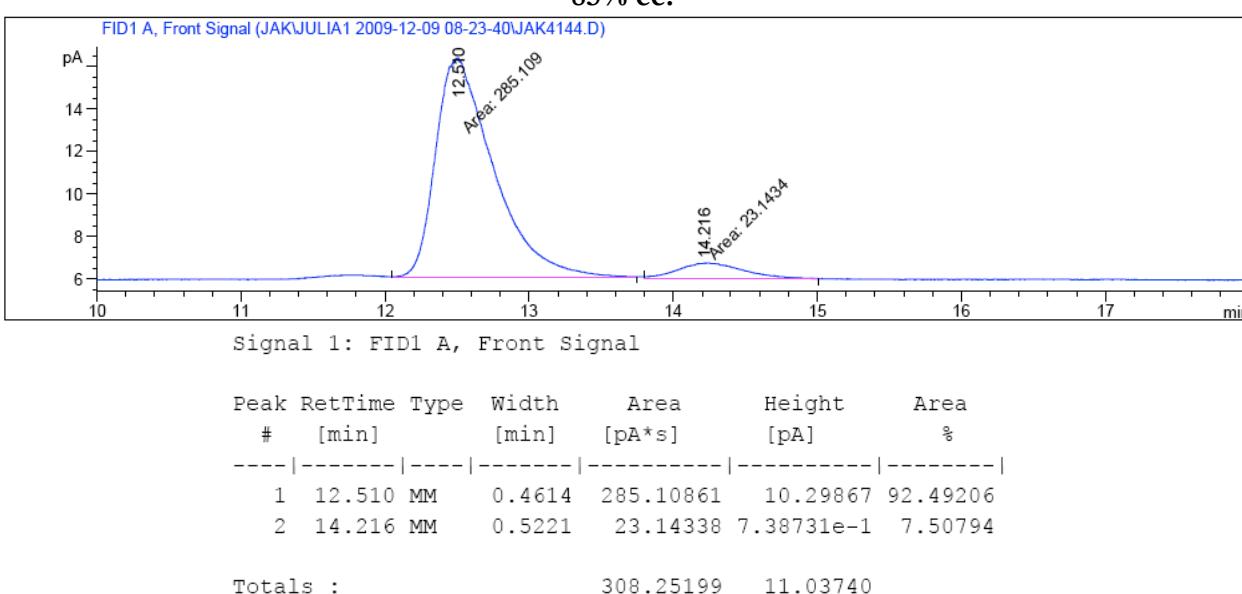


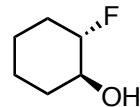




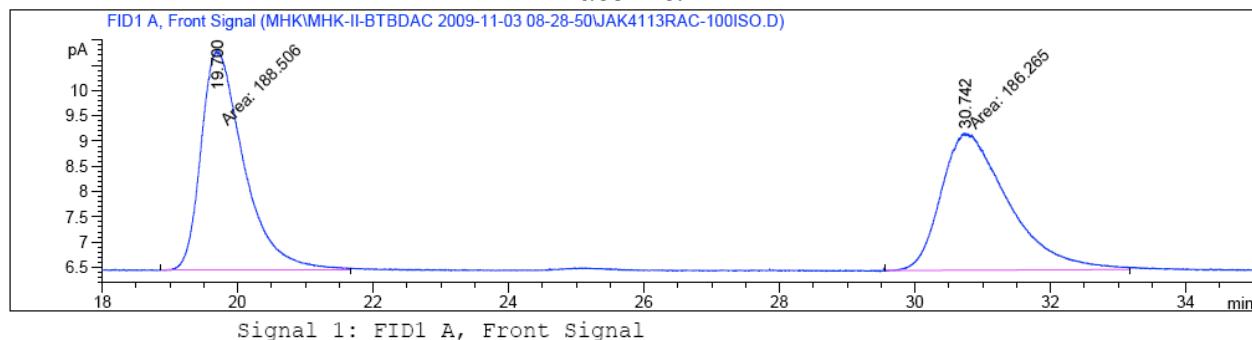




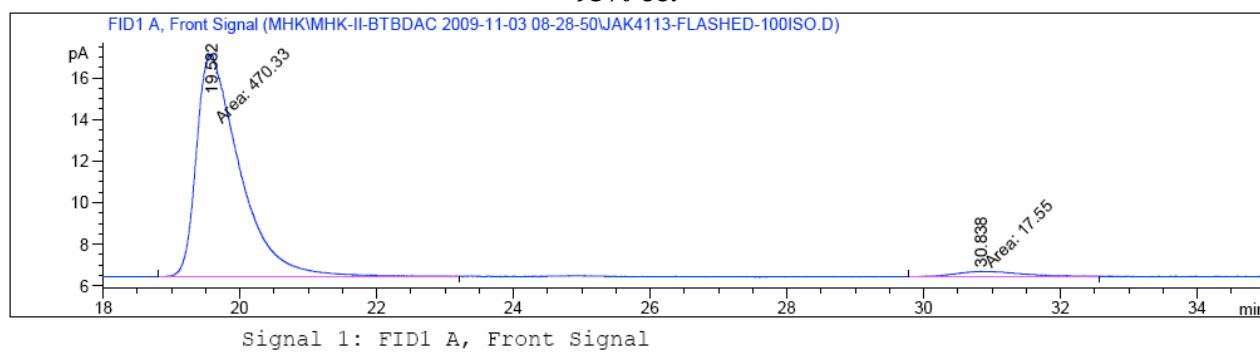

VIII. GC and HPLC Traces



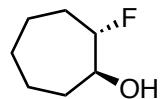
β -TBDAc, 110 °C isotherm, 1 mL/min
racemic:



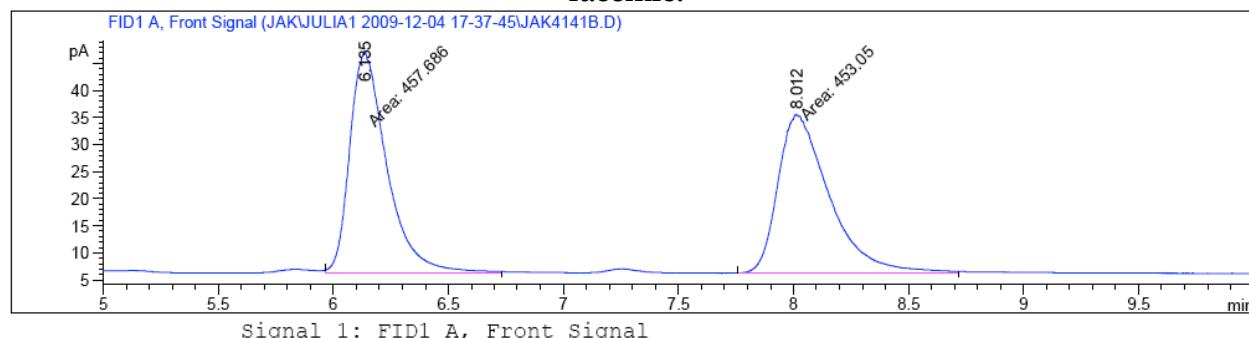
85% ee:



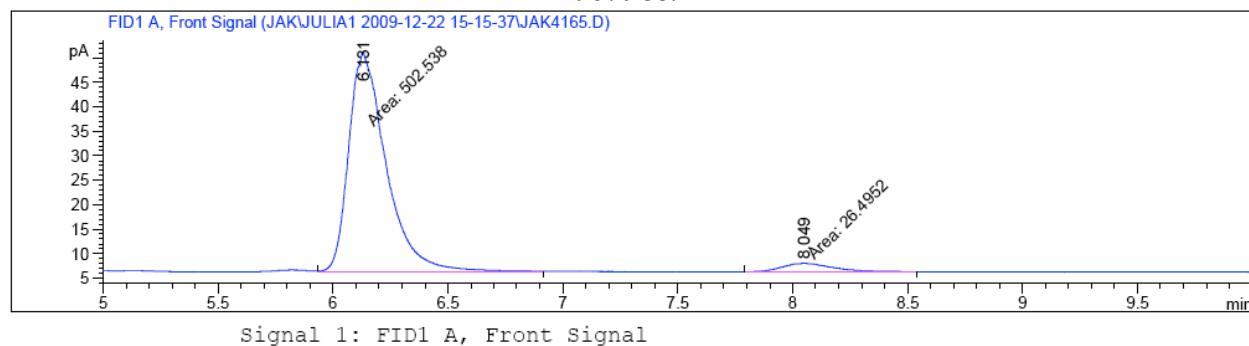
β -TBDAC, 100 °C isotherm, 1 mL/min
racemic:



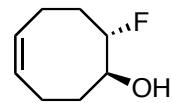
Peak #	RetTime [min]	Type	Width [min]	Area [pA*s]	Height [pA]	Area %
1	19.700	MM	0.7231	188.50551	4.34462	50.29889
2	30.742	MM	1.1428	186.26521	2.71660	49.70111
Totals :					374.77072	7.06123


93% ee:

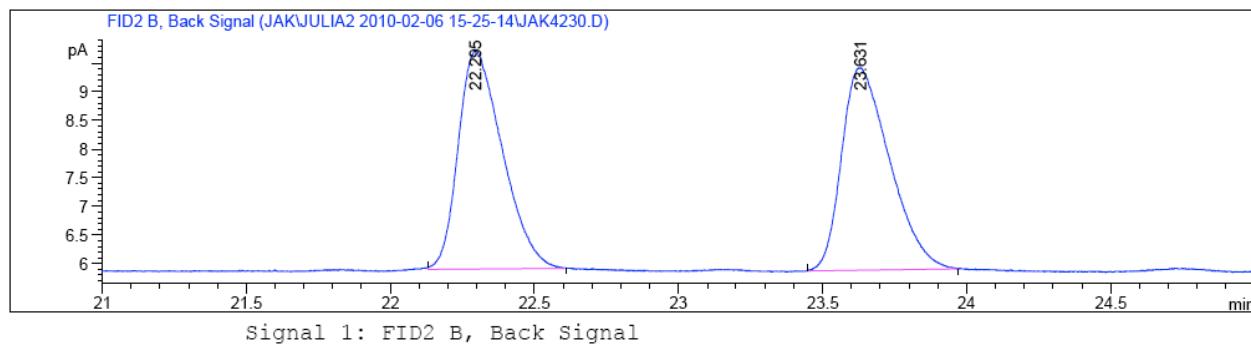
Peak #	RetTime [min]	Type	Width [min]	Area [pA*s]	Height [pA]	Area %
1	19.582	MM	0.7303	470.32996	10.73351	96.40281
2	30.838	MM	1.1161	17.54997	2.62084e-1	3.59719
Totals :					487.87992	10.99560

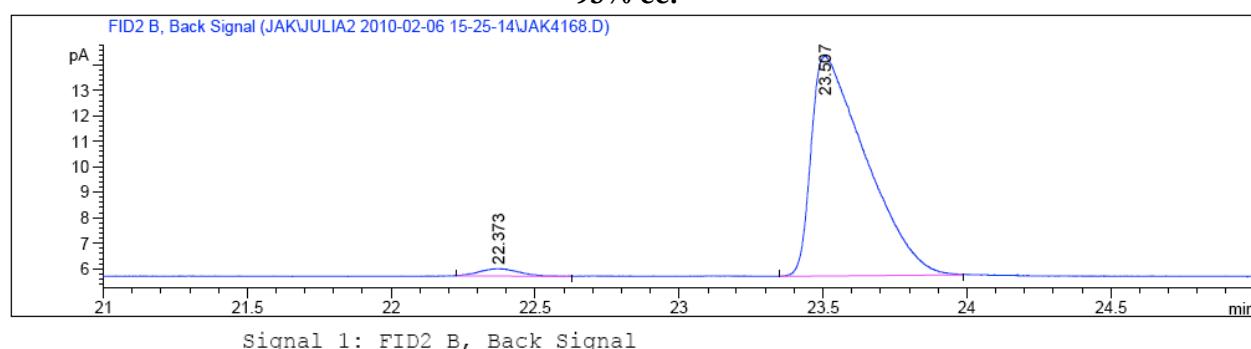


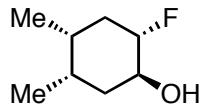
β -TBDAc, 120 °C isotherm, 1 mL/min
racemic:

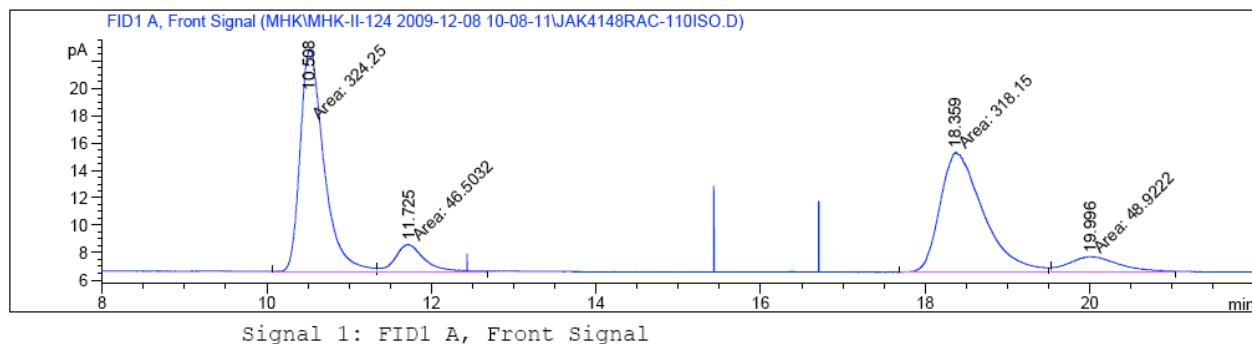


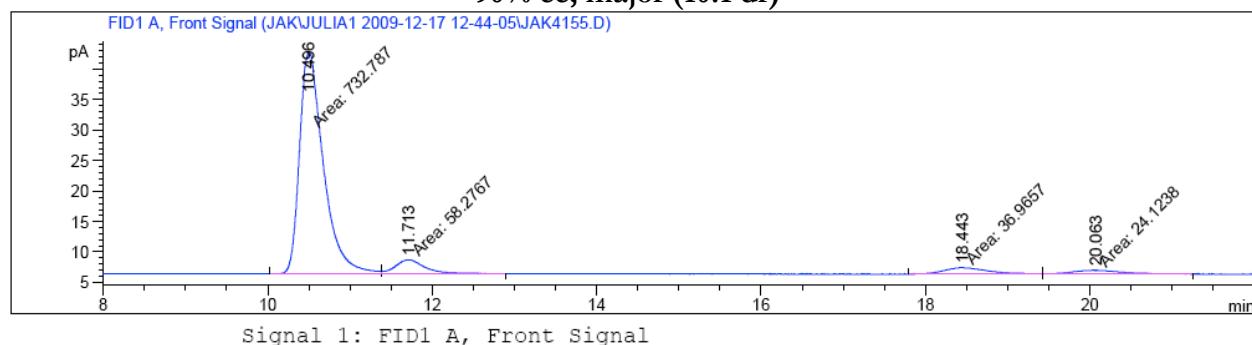
Peak #	RetTime [min]	Type	Width [min]	Area [pA*s]	Height [pA]	Area %
1	6.135	FM	0.1864	457.68604	40.91931	50.25453
2	8.012	MM	0.2576	453.04977	29.31019	49.74547
Totals :					910.73581	70.22950

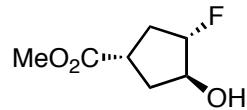

90% ee:

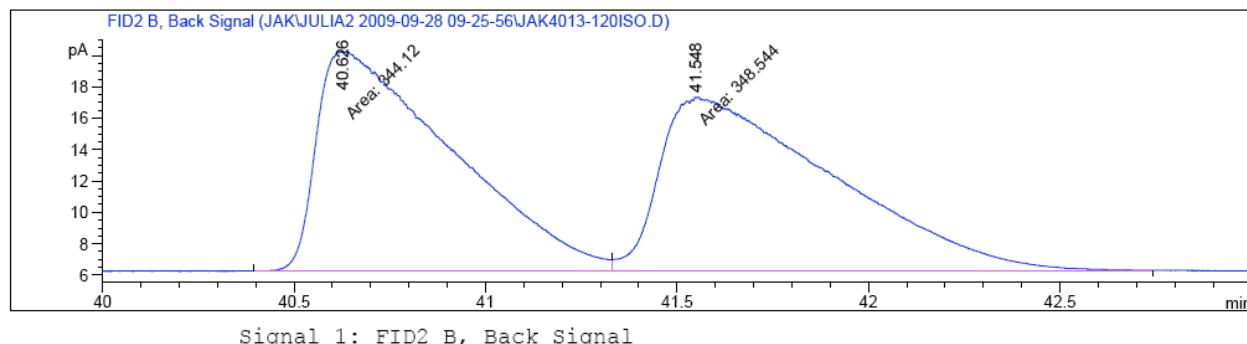

Peak #	RetTime [min]	Type	Width [min]	Area [pA*s]	Height [pA]	Area %
1	6.131	FM	0.1862	502.53827	44.97766	94.99177
2	8.049	MM	0.2539	26.49523	1.73900	5.00823
Totals :					529.03350	46.71666


Cyclodex-B, 110 °C isotherm, 1.2 mL/min
racemic:

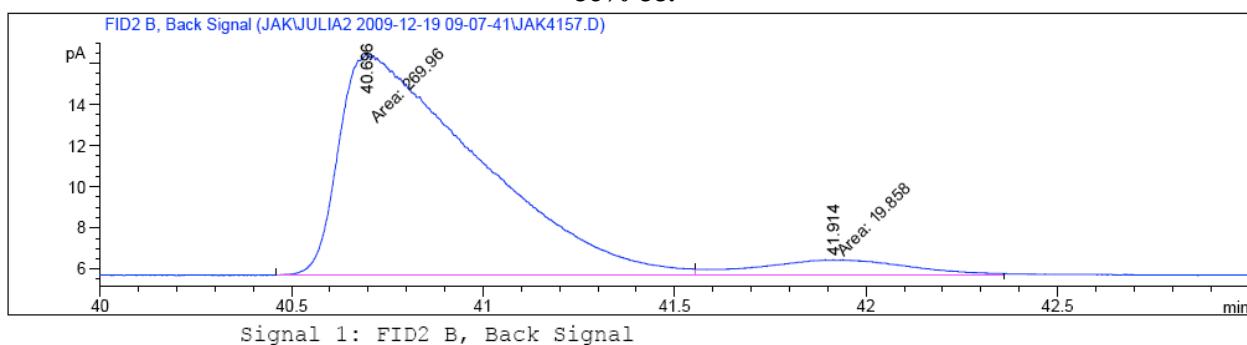

95% ee:


Totals : 116.57331 8.92903

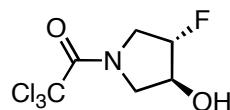

β -TBDAc, 110 °C isotherm, 1 mL/min
racemic:


90% ee, major (10:1 dr)

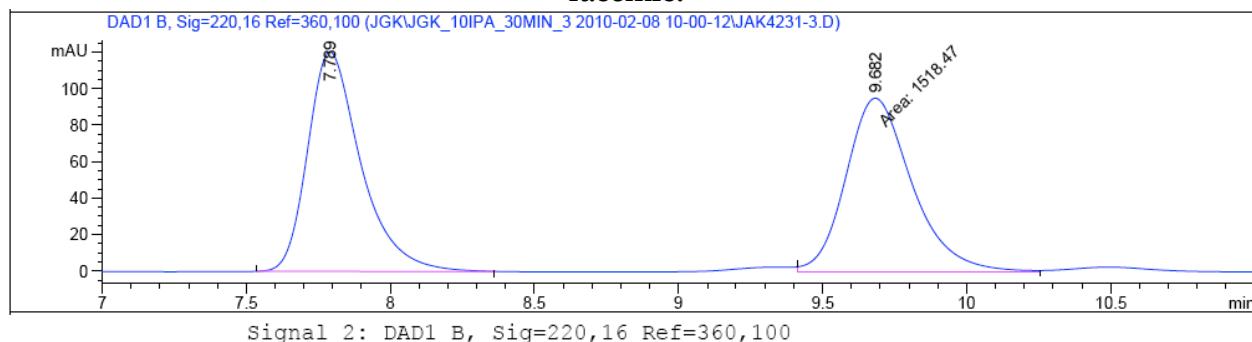
Totals : 852.15293 40.24556



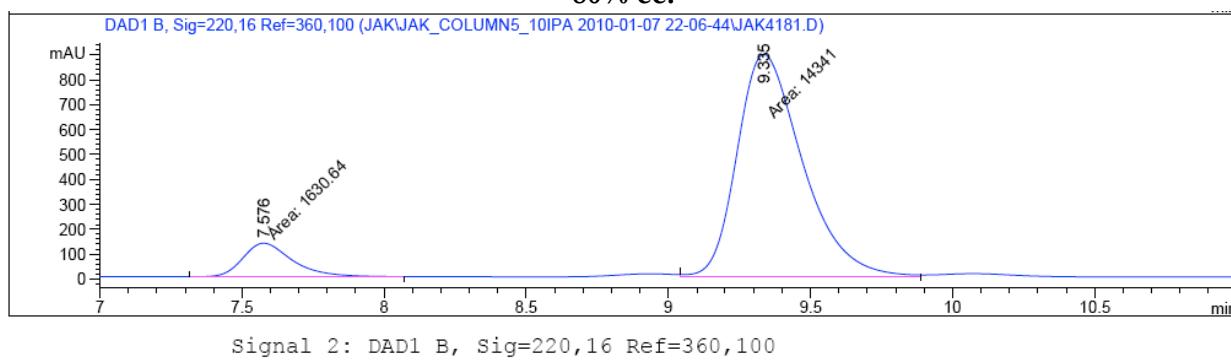
Cyclodex-B, 120 °C isotherm, 1 mL/min
racemic:



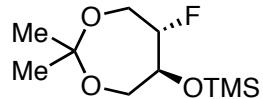
Peak #	RetTime [min]	Type	Width [min]	Area [pA*s]	Height [pA]	Area %
1	40.626	MF	0.4074	344.11960	14.07832	49.68062
2	41.548	FM	0.5239	348.54404	11.08866	50.31938
Totals :					692.66364	25.16698


86% ee:

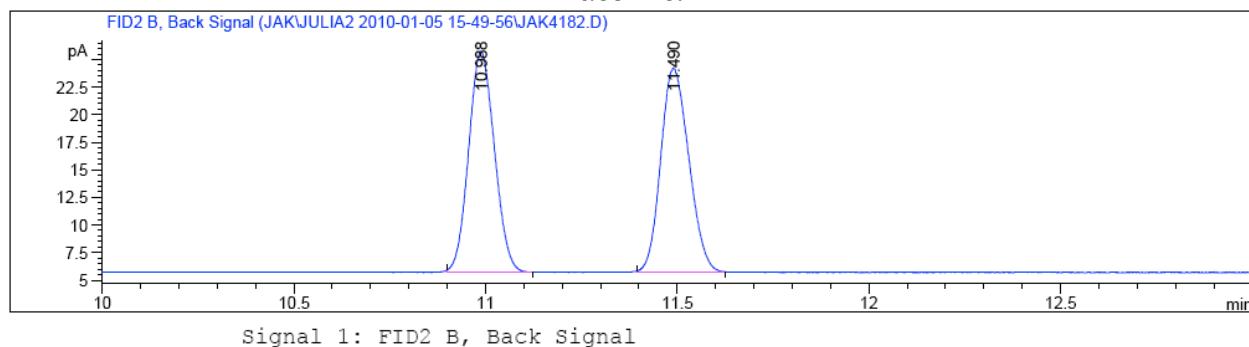
Peak #	RetTime [min]	Type	Width [min]	Area [pA*s]	Height [pA]	Area %
1	40.696	MF	0.4186	269.95950	10.74928	93.14811
2	41.914	FM	0.4532	19.85797	7.30210e-1	6.85189
Totals :					289.81747	11.47949



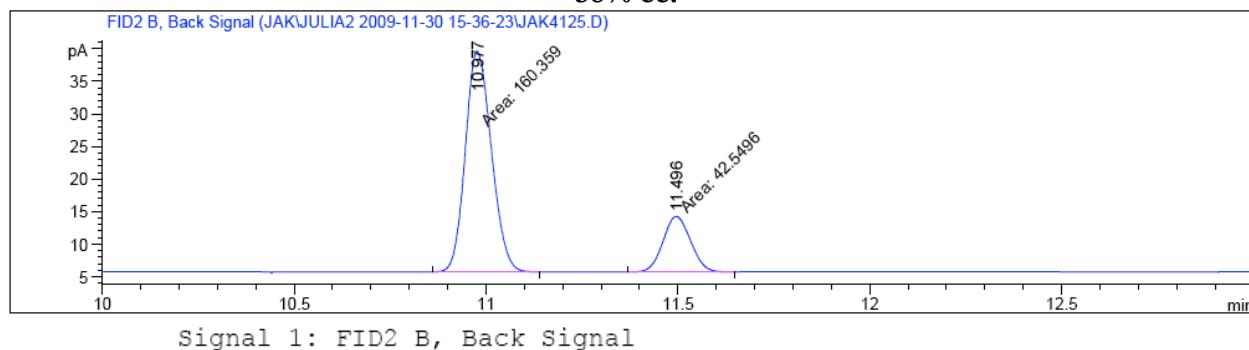
Chiracel AD-H, 90% hexane/IPA, 1 mL/min
racemic:



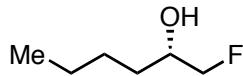
Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.789	BB	0.1944	1552.57629	120.45594	50.5553
2	9.682	FM	0.2661	1518.47144	95.10176	49.4447
Totals :				3071.04773	215.55770	


80% ee:

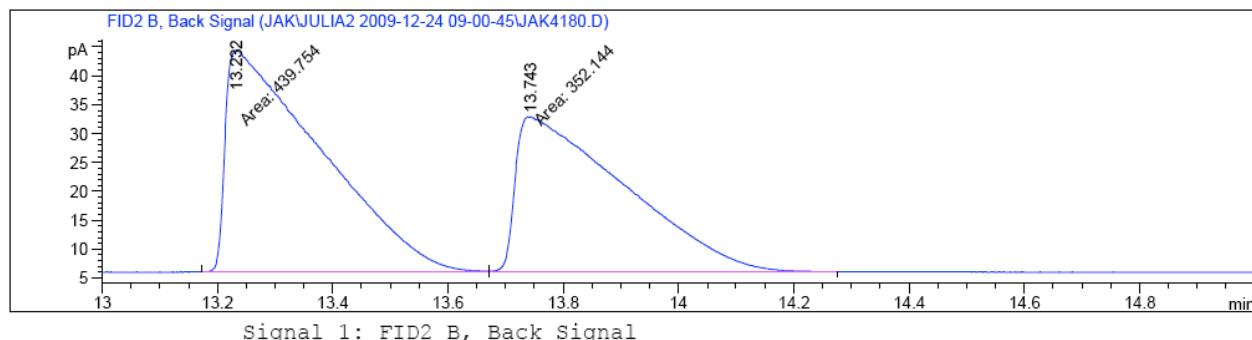
Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.576	MM	0.2019	1630.64185	134.63554	10.2096
2	9.335	MF	0.2675	1.43410e4	893.67841	89.7904
Totals :				1.59716e4	1028.31395	

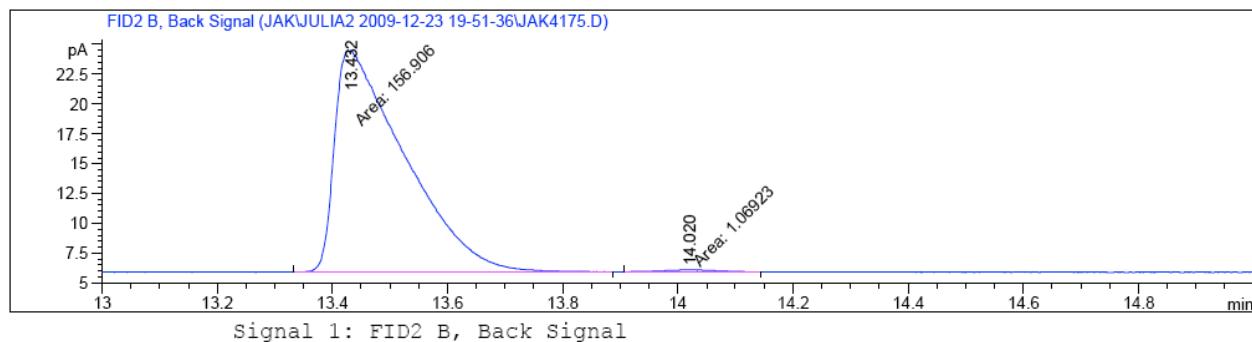


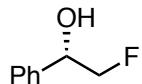
Cyclodex-B, 110 °C isotherm, 1 mL/min
racemic:



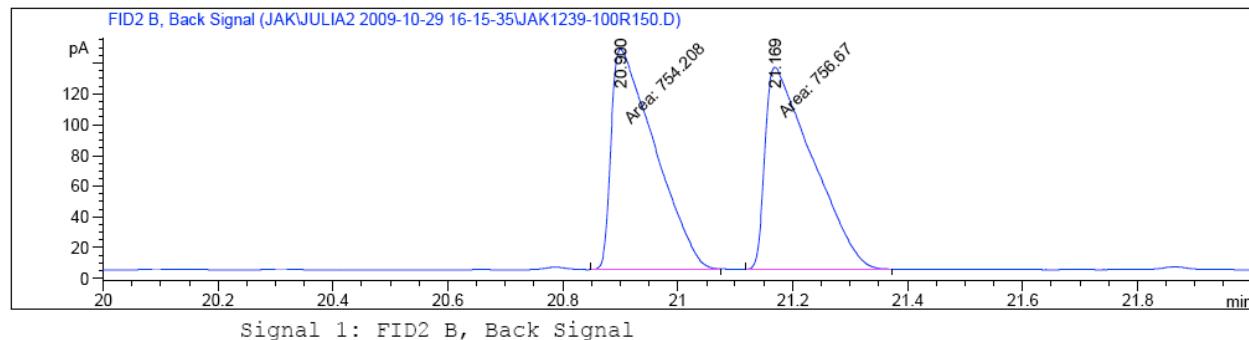
Peak #	RetTime [min]	Type	Width [min]	Area [pA*s]	Height [pA]	Area %
1	10.988	BB	0.0745	93.44767	19.98779	49.80962
2	11.490	BB	0.0794	94.16201	18.48276	50.19038
Totals :				187.60968	38.47055	


58% ee:

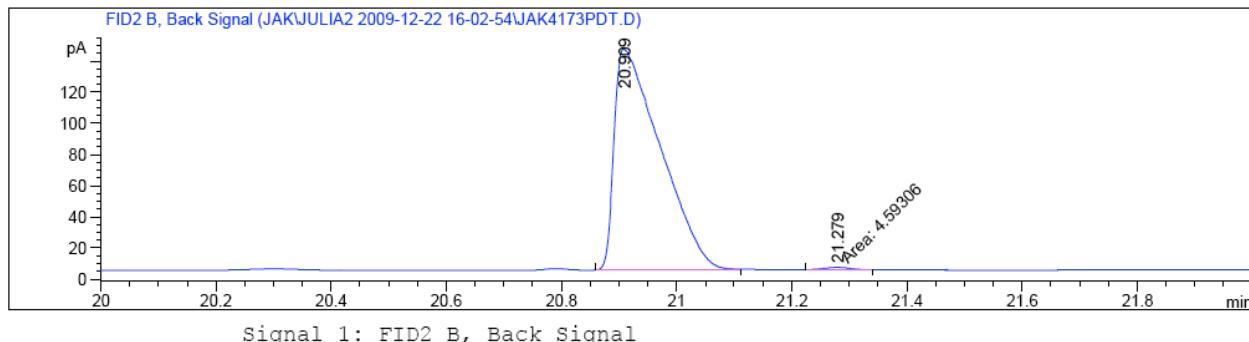

Peak #	RetTime [min]	Type	Width [min]	Area [pA*s]	Height [pA]	Area %
1	10.977	MM	0.0789	160.35948	33.88081	79.03020
2	11.496	MM	0.0830	42.54963	8.54139	20.96980
Totals :				202.90911	42.42220	



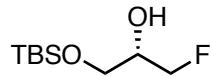
Cyclodex-B, 80 °C isotherm, 1 mL/min
racemic:



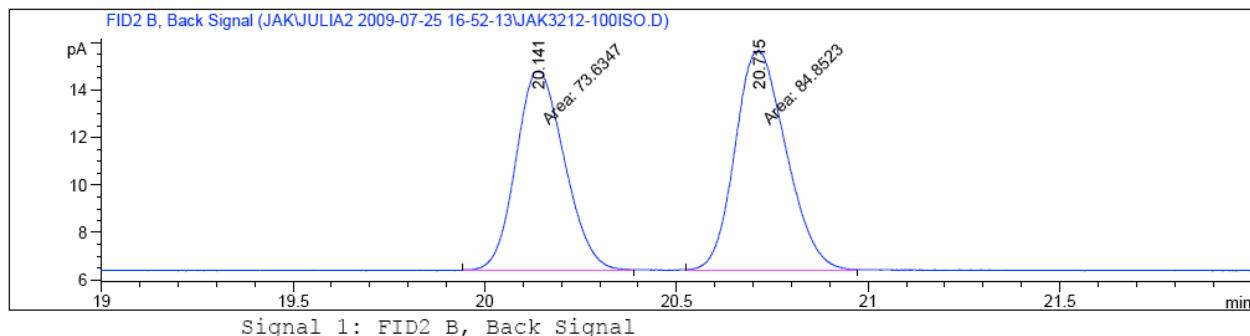
99% ee:

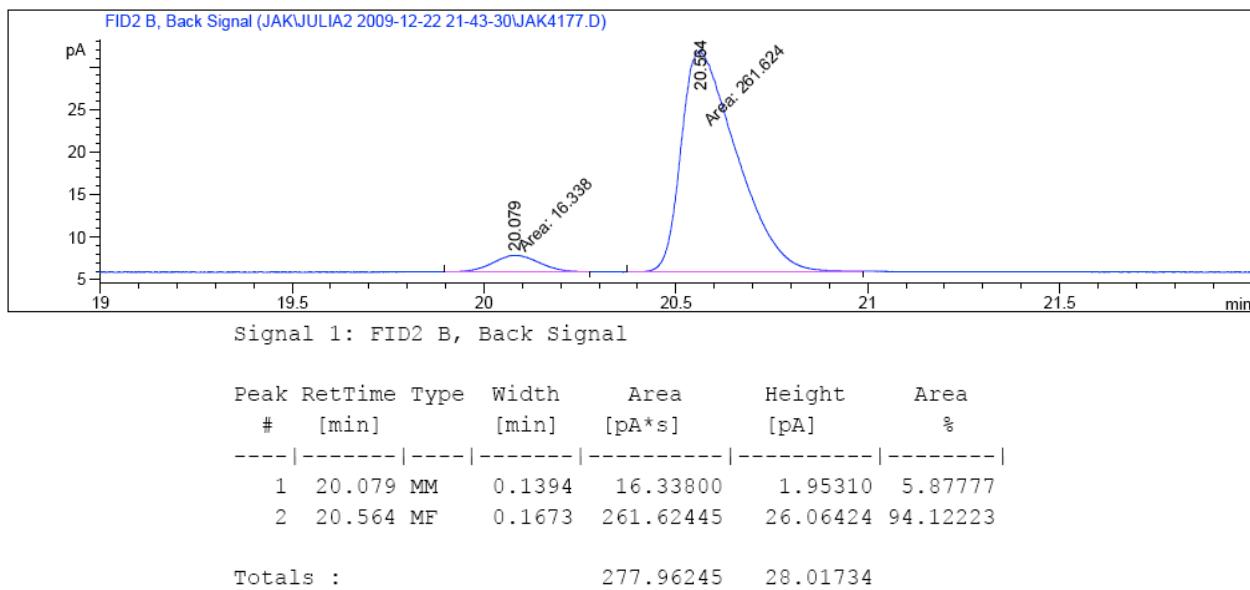


Cyclodex-B, 100 °C, 15 min; 15 °C/min, 150 °C, 4 min, 1 mL/min
racemic:



Peak #	RetTime [min]	Type	Width [min]	Area [pA*s]	Height [pA]	Area %
1	20.900	MM	0.0876	754.20819	143.54425	49.91854
2	21.169	MM	0.0957	756.66968	131.80058	50.08146
Totals :					1510.87787	275.34483


99% ee:


Peak #	RetTime [min]	Type	Width [min]	Area [pA*s]	Height [pA]	Area %
1	20.909	BB	0.0770	789.81348	141.66470	99.42183
2	21.279	MM	0.0506	4.59306	1.51328	0.57817
Totals :					794.40653	143.17798

Cyclodex-B, 100 °C isotherm, 1 mL/min
racemic:

88% ee:

