

SUPPORTING INFORMATION

Stereoselective Syntheses of L-Pipecolic Acid and (2S,3S)-3-Hydroxypipecolic Acid From a Chiral *N*-Imino-2-phenyl-1,2-dihydropyridine Intermediate.

Alexandre Lemire and André B. Charette*

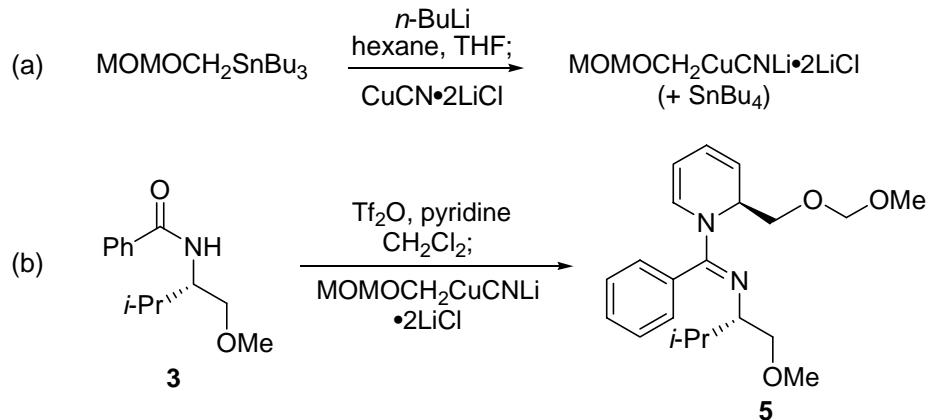
Département de chimie, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec, Canada H3C 3J7.

E-Mail: andre.charette@umontreal.ca

General information	S3
Synthesis and Characterization of Compound 5	S4
Synthesis and Characterization of Compound 6	S5
Synthesis and Characterization of Compound 7	S6
Chromatograms of (+/-)- 7 and enantioenriched (+)- 7	S7-S8
Synthesis and Characterization of Compound 9	S8
Synthesis and Characterization of Compound 10	S9
Chromatograms of (+/-)- 10 and enantioenriched (-)- 10	S11
Synthesis and Characterization of Compound 1	S12
Synthesis and Characterization of Compound 11a	S13
Chromatograms of (+/-)- 11a and enantioenriched (-)- 11a	S14
Synthesis and Characterization of Compound 13	S15
Synthesis and Characterization of Compound 14	S16
Synthesis and Characterization of Compound 15	S18

Synthesis and Characterization of Compound 2	S19
¹ H NMR of Compound 5	S21
¹³ C NMR of Compound 5	S22
¹ H NMR of Compound 6	S23
¹³ C NMR of Compound 6	S24
¹ H NMR of Compound 7	S25
¹ H NMR of Compound 9	S26
¹³ C NMR of Compound 9	S27
¹ H NMR of (<i>S</i>)-2-phenylpiperidine	S28
¹³ C NMR of (<i>S</i>)-2-phenylpiperidine	S29
¹ H NMR of <i>N</i> -Benzyl- <i>O</i> -methyl-L-valinol	S30
¹³ C NMR of <i>N</i> -Benzyl- <i>O</i> -methyl-L-valinol	S31
¹ H NMR of Compound 10	S32
¹³ C NMR of Compound 10	S33
¹ H NMR of Compound 1	S34
¹ H NMR of Compound 11a	S35
¹³ C NMR of Compound 11a	S36
¹ H NMR of Compound 13	S37
¹³ C NMR of Compound 13	S38
¹ H NMR of Compound 14	S39
¹³ C NMR of Compound 14	S40
¹ H NMR of Compound 15	S41
¹³ C NMR of Compound 15	S42
¹ H NMR of Compound 2	S43

General information. Unless otherwise stated, reactions were run under argon atmosphere with rigid exclusion of moisture from reagents and glassware using standard techniques for manipulating air-sensitive compounds.¹ All glassware were rinsed with a base bath, left to stand for 15 min., washed with water, then acetone and stored in the oven and/or were flame-dried under an argon atmosphere prior to use. Dichloromethane, diethyl ether, tetrahydrofuran and acetonitrile were obtained by filtration through drying columns. Analytical thin-layer chromatography (TLC) was performed on precoated, glass-backed silica gel. Visualization of the developed chromatogram was performed by UV and aqueous potassium permanganate. Flash column chromatography was performed using 230-400 mesh silica. Melting points are uncorrected. Optical rotation data are reported as follows: $[\alpha]_D^{20}$ [observed rotation x volume (mL)]/[length (dm) x mass (g)], concentration (c in g/100 mL), and solvent. Chemical shifts for ¹H NMR spectra are recorded in parts per million from tetramethylsilane with the solvent resonance as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, sx = sextet, h = heptet, o = octet, m = multiplet and br = broad), coupling constant in Hz, integration. Chemical shifts for ¹³C NMR spectra are recorded in parts per million from tetramethylsilane using the central peak of the solvent resonance (deuterochloroform = 77.23 ppm) as the internal standard. All ¹³C NMR spectra were obtained with complete proton decoupling. When ¹³C-¹⁹F couplings are present, data are reported as follow: chemical shift, multiplicity (q = quartet, m = multiplet), coupling constant in Hz. High resolution mass spectrometry (HRMS) was performed on a LC-MSD-TOF instrument with a metastable atom bombardment (MAB) source or an electrospray (ES) source. Low resolution mass spectrometry (LRMS) was performed on a LC-MSD instrument with an atmospheric pressure chemical ionization (APCI) source. HPLC or SFC separation data are reported as follow: column type, eluent, flow rate, and retention time (t_r). GC separation data are reported as follow: column type, column lenght, initial temperature, rate of heating, final temperature, flow rate, and retention time (t_r).

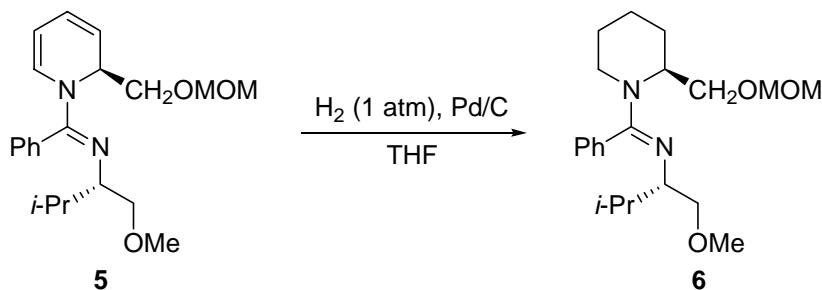

Reagents: Unless otherwise stated, commercial reagents were used without purification. Triflic anhydride was distilled over a small amount of P₂O₅. Pyridine was distilled over calcium hydride. Chiral amide **3**, and dihydropyridine **8** were prepared as reported in literature.² Tributyl[(methoxymethoxy)methyl]stannane (MOMOCH₂SnBu₃) was prepared as

(1) Shriver, D. F.; Drezdzon, M. A. *The manipulation of air-sensitive compounds*; 2nd Edition ed.; Wiley: New York, 1986.

(2) Charette, A. B.; Grenon, M.; Lemire, A.; Pourashraf, M.; Martel, J. *J. Am. Chem. Soc.* **2001**, *123*, 11829.

reported in literature.³ Dry copper cyanide and lithium chloride were weighed in a glove box under argon atmosphere.

N-[(1*E*)-[(2*S*)-2-[(Methoxymethoxy)methyl]pyridin-1(2*H*)-yl](phenyl)methylene]-N-[(1*S*)-1-(methoxymethyl)-2-methylpropyl]amine (5).

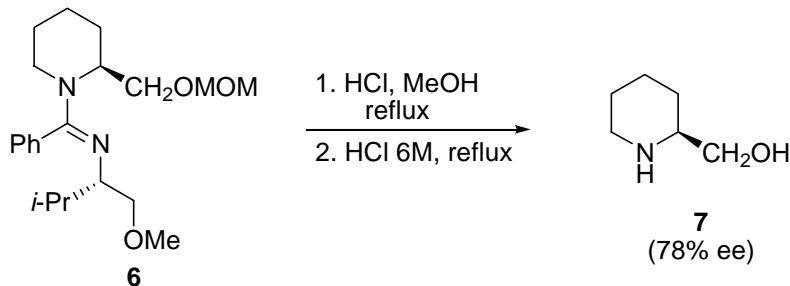


To a solution of pyridine (0.12 mL, 0.12 g, 1.5 mmol) and amide **3** (111 mg, 0.50 mmol) in dichloromethane (2.5 mL), cooled to -40 °C, was added Tf_2O (0.10 mL, 0.18 g, 0.65 mmol) dropwise. The mixture was warmed to room temperature and stirred for 3 hours. In a separate flask was added CuCN (141 mg, 1.58 mmol) and LiCl (134 mg, 3.16 mmol), in a glove box under argon atmosphere. The flask were removed from the glove box, salts were solubilized in THF (4.2 mL), the solution was cooled to -78 °C, then $i\text{-PrMgCl}$ (0.055 mL of a 1.48 M solution in THF, 0.08 mmol) was added. In a third flask was added $\text{Bu}_3\text{SnCH}_2\text{OMOM}$ (566 mg, 1.55 mmol), the tin reagent was solubilized in THF (2.2 mL) and the solution was cooled to -78 °C. $n\text{-Butyllithium}$ (0.59 mL of a 2.5 M solution in hexane, 1.50 mmol) was added and the mixture was stirred for 6 minutes. The $\text{CuCN}\bullet 2\text{LiCl}$ solution at -78 °C was then canulated over the LiCH_2OMOM reagent at -78 °C. The solution was stirred for 35 minutes, then preformed pyridinium salt was transferred drop wise using a syringe. The mixture was stirred for 3 hours at -78 °C and was quenched with a saturated solution of aqueous ammonium chloride. The mixture was transferred to an extraction funnel, phases were separated and the aqueous phase was extracted using dichloromethane. The combined organic phase was dried over magnesium sulfate, filtered and concentrated under

(3) (a) Johnson, C. R.; Medich, J. R. *J. Org. Chem.* **1988**, *53*, 4131. See also: (b) Danheiser, R. L.; Romines, K. R.; Koyama, H.; Gee, S. K.; Johnson, C. R.; Medich, J. R. *Org. Synth.* **1993**, *71*, 133. (c) Johnson, C. R.; Medich, J. R.; Danheiser, R. L.; Romines, K. R.; Koyama, H.; Gee, S. K.; *Org. Synth.* **1993**, *71*, 140.

reduced pressure. Oily residue (711 mg)⁴ was purified over silica gel (gradient 0-10% EtOAc/hexane) to afford **5** (129 mg, 72%) as a yellow oil: R_f 0.20 (25% EtOAc/hexane); $[\alpha]_D^{20} = -469$ (*c* 1.31, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) 7.45-7.35 (m, 3H), 7.29 (br s, 1H), 7.10 (br s, 1H), 5.98 (dd, *J* = 9.0, 5.4 Hz, 1H), 5.96 (br s, 1H), 5.55 (dd, *J* = 9.3, 5.8 Hz, 1H), 5.52 (br s, 1H), 4.87 (t, *J* = 6.5 Hz, 1H), 4.68 (d, *J* = 12.5 Hz, 1H), 4.66 (d, *J* = 12.5 Hz, 1H), 3.72 (dd, *J* = 9.3, 7.1 Hz, 1H), 3.66 (dd, *J* = 9.4, 4.6 Hz, 1H), 3.45 (dd, *J* = 9.4, 4.9 Hz, 1H), 3.37 (s, 3H), 3.31 (dd, *J* = 9.3, 7.5 Hz, 1H), 3.27 (s, 3H), 2.97 (dt, *J* = 7.5, 4.8 Hz, 1H), 1.65 (hd, *J* = 6.8, 4.7 Hz, 1H), 0.83 (d, *J* = 6.8 Hz, 3H), 0.71 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 157.2 (C), 133.0 (C), 129.7 (CH), 129.2 (CH), 128.8 (2CH), 128.7 (CH), 128.6 (CH), 123.4 (CH), 118.3 (CH), 101.2 (CH), 96.6 (CH₂), 76.1 (CH₂), 66.8 (CH₂), 63.6 (CH), 59.1 (CH₃), 55.3 (CH₃), 51.4 (CH), 31.0 (CH), 20.2 (CH₃), 17.8 (CH₃); FTIR (film) 3078, 3052, 1629, 1599, 1567, 1336, 1151, 1040, 715, 703 cm⁻¹; HRMS (MAB) calc. for C₂₁H₃₀N₂O₃ (M)⁺: 358.2256, found 358.2248.

N-[{(1*E*)-{(2*S*)-2-[(Methoxymethoxy)methyl]piperidin-1-yl}(phenyl)methylene]-*N*-(1*S*)-1-(methoxymethyl)-2-methylpropyl]amine (6).

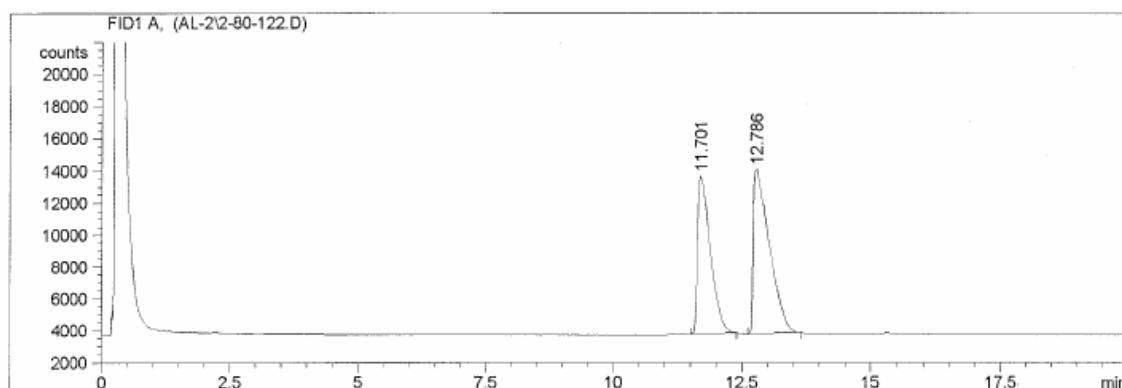


To a solution of dihydropyridine **5** (68 mg, 0.19 mmol) in THF (2.3 mL) was added Pd/C (103 mg of Pd 10%/C, 0.097 mmol). The mixture was purged 3x under hydrogen atmosphere (water vacuum followed by hydrogen fill), then stirred for 18 hours under hydrogen atmosphere (1 atm). The mixture was filtered over Celite®, the solids were rinsed with dichloromethane and the filtrate was concentrated under reduced pressure. Oily residue was purified over silica gel (gradient 0-50% EtOAc/hexane containing 1% NEt₃) to afford **6** (43 mg, 63%) as a pale yellow oil: R_f 0.47 (10:10:80 AcOH:MeOH:CH₂Cl₂); $[\alpha]_D^{20} = -71$ (*c* 2.2, CHCl₃); ¹H NMR (C₆D₆, 400 MHz) δ 7.35-7.28 (m, 3H), 7.15 (d, *J* = 7.7 Hz, 2H), 4.62

(4) Regiomer ratio (**5** : 4-methoxymethyl-1,4-dihydropyridine) is 90:10 in the crude mixture by ¹H NMR analysis. Diastereomeric ratio at C-2 of 81:19 in the crude mixture. After purification, diastereomeric ratio could be enriched to 91:9. The minor regioisomer methyl signals on the isopropyl group of the chiral auxiliary are found at 1.04 ppm and 0.93 ppm and those of the minor diastereoisomer are found at 0.91 ppm and 0.82 ppm.

(d, $J = 10.1$ Hz, 1H), 4.60 (d, $J = 10.2$ Hz, 1H), 4.12 (br s, 1H), 3.76 (dd, $J = 9.5, 6.0$ Hz, 1H), 3.70-3.58 (m + dd, $J = 9.2, 8.7$ Hz, 2H), 3.37-3.33 (m, 1H), 3.34 (s, 3H), 3.19 (s, 3H), 3.16 (dd, $J = 9.6, 6.9$ Hz, 1H), 2.84 (dt, $J = 6.7, 5.3$ Hz, 1H), 2.72 (td, $J = 12.8, 3.0$ Hz, 1H), 1.75-1.35 (m, 7H), 0.85 (d, $J = 6.8$ Hz, 3H), 0.74 (d, $J = 6.8$ Hz, 3H); ^{13}C NMR (C_6D_6 , 100 MHz) δ 160.8 (C), 135.2 (C), 128.4 (2CH), 128.0 (2CH), 127.8 (CH), 96.2 (CH₂), 76.3 (CH₂), 64.4 (CH₂), 62.8 (CH), 58.8 (CH₃), 55.1 (CH₃), 50.5 (CH), 41.6 (CH₂), 30.7 (CH), 25.6 (CH₂), 25.4 (CH₂), 20.1 (CH₃), 20.0 (CH₂), 17.8 (CH₃); FTIR (film) 1616, 1597, 1113, 1046 cm^{-1} ; HRMS (MAB) calc. for $\text{C}_{21}\text{H}_{34}\text{N}_2\text{O}_3$ (M^+): 362.2569, found 362.2561.

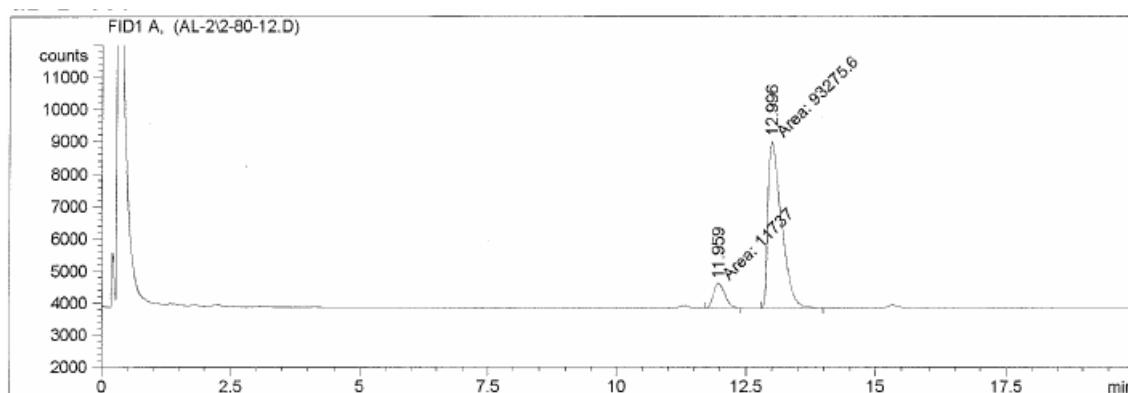
(2*S*)-Piperidin-2-ylmethanol (7).



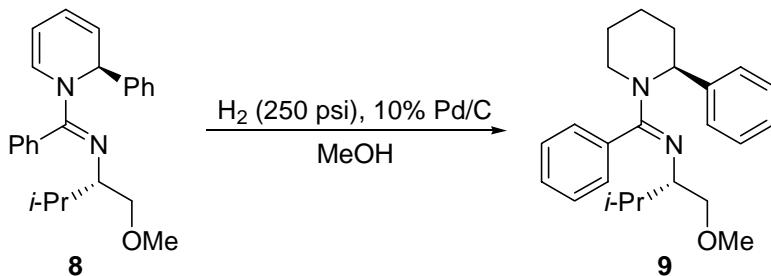
To a solution of piperidine **6** (43 mg, 0.12 mmol) in methanol (2.4 mL) was added concentrated hydrochloric acid (6 drops). The solution was heated under reflux for 13 hours. The mixture was then concentrated under reduced pressure, the residue was dissolved with a solution of aqueous potassium carbonate (1.0 M, 5 mL) and was transferred into a separatory funnel. Aqueous phase was extracted with dichloromethane (3x10 mL), the combined organic layer was dried over potassium carbonate, filtered and concentrated under reduced pressure. The residue (28 mg) was then dissolved with hydrochloric acid (2.0 mL of a 6 M solution), and the solution was refluxed for 4 hours. The mixture was cooled to room temperature and transferred into a separatory funnel. The aqueous phase was washed with dichloromethane (3x10 mL) and concentrated. The afforded residue was dissolved with aqueous sodium hydroxide (2 mL of a 2 M solution), dichloromethane was added (10 mL), the mixture was transferred into a separatory funnel and the organic layer was collected. The aqueous phase was extracted using dichloromethane (3x10 mL), the combined organic layer was dried over potassium carbonate, filtered and concentrated under reduced pressure to afford **7** (7.2 mg, 63%) as a beige solid: Mp 66-68 °C, lit.⁵ 68-70 °C (racemic); Rf 0.08 (10:10:80

(5) Aldrich Catalogue Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee, WI, É.-U.

AcOH:MeOH:CH₂Cl₂); $[\alpha]_D^{20} = 12$ (*c* 0.55, EtOH), lit.^{6a} 15.9 (*c* 2.50, EtOH), lit. (enantiomer of **7**)^{6b} -13.5 (*c* 2.38, EtOH); ¹H NMR (CDCl₃, 400 MHz) δ 3.70 (dd, *J* = 10.8, 3.7 Hz, 1H), 3.27 (dd, *J* = 10.8, 8.1 Hz, 1H), 3.20 (br s, 2H), 3.07 (br d, *J* = 11.9 Hz, 1H), 2.67-2.55 (m, 2H) 1.83-1.74 (m, 1H), 1.65-1.57 (m, 1H), 1.57-1.49 (m, 1H), 1.48-1.27 (m, 2H), 1.11 (qd, 12.0, 7.9 Hz, 1H). Optical purity of **7** was 77% *ee* by comparison of optical rotation with ref. 6a. Enantiomeric purity of **7** was 78% *e.e.* (89:11 *e.r.*) by GC analysis : sample (1 mg) was dissolved in dichloromethane (1 mL), TFAA (10 μ L) was added to generate the bistrifluoroacetyl derivative; column Chiraldex G-TA; 25 psi (H₂); split 1/100; 80 °C for 1 minute, gradient 2 °C/minute up to 120 °C, kept for 10 minutes: (-)-**7** T_r, 12.0 min, (+)-**7** T_r, 13.0 min.

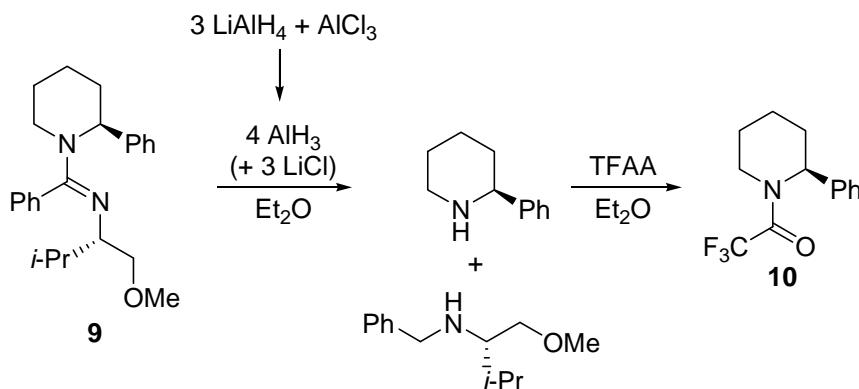

Chromatogram of (-/+) **7**

Peak #	RetTime [min]	Type	Width [min]	Area counts*s	Height [counts]	Area %
1	11.701	PB	0.2111	1.73089e5	9896.21875	43.92299
2	12.786	PB	0.2560	2.20984e5	1.02709e4	56.07701
Totals :					3.94073e5	2.01671e4


(6) (a) Segat-Dioury, F.; Lingibé, O.; Graffe, B.; Sacquet, M.-C.; Lhommet, G. *Tetrahedron* **2000**, *56*, 233. (b) Kawaguchi, M.; Hayashi, O.; Sakai, N.; Hamada, M.; Yamamoto, Y.; Oda, J.'i. *Agric. Biol. Chem.* **1986**, *50*, 3107.

Chromatogram of enantioenriched (+) 7

Peak #	RetTime [min]	Type	Width [min]	Area counts*s	Height [counts]	Area %
1	11.959	MM	0.2535	1.17370e4	771.63348	11.17676
2	12.996	MM	0.3003	9.32756e4	5176.35986	88.82324
Totals :						1.05013e5 5947.99335


*N-[(1*S*)-1-(Methoxymethyl)-2-methylpropyl]-*N*-{(1*E*)-phenyl[(2*S*)-2-phenylpiperidin-1-yl]methylene}amine (9).*

The dihydropyridine derivative **8** (240 mg, 0.667 mmol) was charged in a small Parr bomb. Methanol (3.3 mL) was added, followed by the palladium catalyst (23 mg of 10 wt. % Pd/C, 0.022 mmol Pd). The Parr bomb was closed and the mixture purged three times with hydrogen atmosphere (pressurized to 250 psi followed by releasing pressure to atmospheric). Hydrogen (250 psi) was then introduced in the Parr bomb and the mixture was stirred for 50 hours at room temperature. The reaction mixture was then filtered through Celite®, the solids were rinsed with CH_2Cl_2 (50 mL) and the filtrate was concentrated under reduced pressure. Flash chromatography of the oily residue (25:75:0, then 25:74.5:0.5 to 50:49.5:0.5 $\text{EtOAc:hexane:NEt}_3$) afforded 194 mg of **9** (80%) as a colorless oil. R_f 0.40 (85:10:5 $\text{CH}_2\text{Cl}_2:\text{MeOH:AcOH}$); $[\alpha]_D^{20} = -124$ (c 1.07, CHCl_3); $^1\text{H NMR}$ (C_6D_6 , 300 MHz) δ 7.38 (d, $J = 8.2$ Hz, 2H), 7.28 (d, $J = 8.9$ Hz, 2H), 7.26 (t, $J = 7.9$ Hz, 2H), 7.11 (t, $J = 7.7$ Hz, 3H), 7.03 (t, $J = 7.4$ Hz, 1H), 5.54 (br s, 1H), 3.82 (br d, $J = 13.7$ Hz, 1H), 3.44 (dd, $J = 9.0, 5.1$

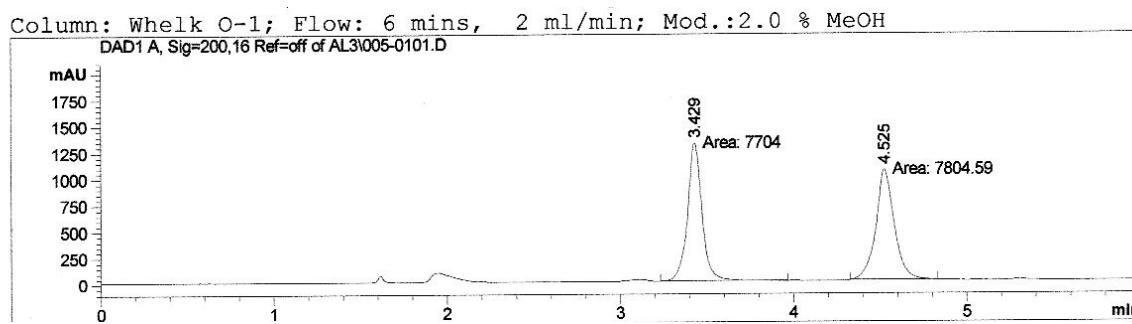
Hz, 1H), 3.31 (t, J = 9.0 Hz, 1H), 3.18 (dt, J = 7.8, 5.1 Hz, 1H), 3.13 (s, 3H), 2.84 (dt, J = 14.6, 2.7 Hz, 1H), 2.02 (dq, J = 13.7, 2.0 Hz, 1H), 1.96-1.74 (m, 2H), 1.54-1.32 (m, 3H), 1.13-1.09 (m + d, J = 6.7 Hz, 4H), 0.92 (d, J = 6.8 Hz, 3H); ^{13}C NMR (C_6D_6 , 75 MHz) δ 161.6 (C), 142.5 (C), 136.1 (C), 129.0 (2CH), 128.9 (2CH), 128.8 (2CH), 128.5 (CH), 127.9 (2CH), 126.6 (CH), 77.2 (CH₂), 64.0 (CH), 59.2 (CH₃), 54.3 (CH), 42.3 (CH₂), 31.8 (CH), 28.5 (CH₂), 26.3 (CH₂), 21.0 (CH₃), 20.9 (CH₂), 18.7 (CH₃); FTIR (neat) 3059, 1615, 1596, 1494, 1446, 1273, 1127, 1113, 701 cm^{-1} ; HRMS (MAB) calcd. for $\text{C}_{24}\text{H}_{32}\text{N}_2\text{O}$ (M) $^+$: 364.2515, found 364.2523. Anal. calcd. for $\text{C}_{24}\text{H}_{32}\text{N}_2\text{O}$: C, 79.08; H, 8.85; N, 7.68, found C, 79.13; H, 8.90; N, 7.58.

(2S)-2-Phenyl-1-(trifluoroacetyl)piperidine (10).

Lithium aluminum hydride (169 mg, 4.45 mmol) was suspended in Et₂O (5.4 mL) and cooled to 0-5 °C (ice bath cooling). A solution of aluminum chloride (197 mg, 1.48 mmol) in Et₂O (4.0 mL) was added and the mixture stirred for 15 minutes. A solution of the piperidine **9** (540 mg, 1.48 mmol) in Et₂O (4.4 mL) was added dropwise, the flask rinsed twice with Et₂O (1 mL) and the mixture was warmed to room temperature. After stirring for 2.5 hours, the reaction was quenched by slow addition of the resultant suspension to a heavily-stirred biphasic solution of Et₂O (30 mL), saturated aqueous sodium-potassium tartrate (30 mL) and 2.0 M aqueous NaOH (1.5 mL). After 1 hour of vigorous stirring, two clear phases were obtained and separated. The aqueous phase was extracted with CH₂Cl₂ (3x25 mL), organic phases were combined, dried over potassium carbonate, filtered and concentrated under reduced pressure which afforded 510 mg of a yellow oil. Flash chromatography of the oily residue with MeOH/CH₂Cl₂ (gradient from 1:99 to 10:90) afforded 196 mg (82%) of (S)-2-phenylpiperidine as a colorless oil.⁷ R_f 0.31 (80:10:10 CH₂Cl₂:MeOH:AcOH); $[\alpha]_D^{20} = -30.3$

(7) (a) Vetuschi, C.; Ottolino, A.; Tortorella, V. *Gazz. Chim. Ital.* **1975**, 105, 935. (b) Hattori, K.; Yamamoto, H. *Tetrahedron* **1993**, 49, 1749. (c) Willoughby, C. A.; Buchwald, S. L. *J. Am. Chem. Soc.* **1994**, 116, 8952. (d) Poerwono, H.; Higashiyama, K.; Yamauchi, T.; Takahashi, H. *Heterocycles* **1997**, 46, 385.

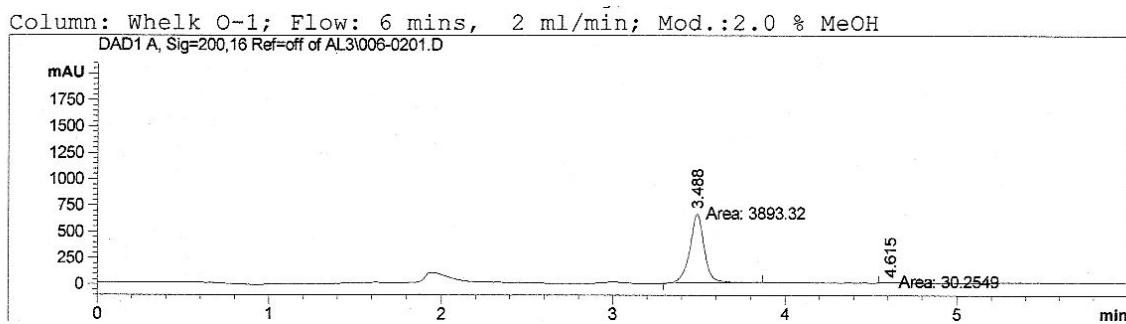
(*c* 0.27, MeOH), lit.^{7d} -27.0 (*c* 0.43, MeOH), lit.^{7a} (enantiomer) 35.3 (MeOH), lit.^{7b} 27.6 (*c* 1.0, MeOH), lit.^{7c} 49.5 (*c* 0.202, CH₂Cl₂). ¹H NMR (C₆D₆, 300 MHz) δ 7.41 (dtd, *J* = 8.2, 1.5, 0.5 Hz, 2H), 7.22 (tdd, *J* = 7.1, 2.7, 1.0 Hz, 2H), 7.13 (tt, *J* = 7.2, 2.3 Hz, 1H), 3.37 (dd, *J* = 10.8, 2.4 Hz, 1H), 2.92 (dddd, *J* = 11.2, 4.0, 2.4, 1.8 Hz, 1H), 2.47 (td, *J* = 11.3, 3.2 Hz, 1H), 1.72-1.62 (m, 2H), 1.58-1.38 (m, 3H), 1.29 (tt, *J* = 12.5, 4.0 Hz, 2H); ¹³C NMR (C₆D₆, 75 MHz) δ 147.0 (C), 128.9 (2CH), 127.5 (CH), 127.4 (2CH), 62.8 (CH), 48.0 (CH₂), 36.2 (CH₂), 26.4 (CH₂), 26.1 (CH₂); FTIR (neat) 3400-3100, 3062, 3026, 2932, 2851, 2788, 1602, 1491, 1453, 1441, 1325, 1109, 1020, 753, 699 cm⁻¹; LRMS (APCI) calcd. for C₁₁H₁₆N (M+H)⁺: 162.1, found 162.2.


From the same reaction mixture was isolated 214 mg *N*-benzyl-*N*-[(1*S*)-1-(methoxymethyl)-2-methylpropyl]amine⁸ (*N*-benzyl-*O*-methylvalinol) (70%) as a colorless oil. *R*_f 0.51 (10:90 MeOH:CH₂Cl₂); $[\alpha]_D^{20}$ = -7.9 (*c* 2.0, MeOH), lit.^{8a} -5.9 (*c* 1.0, MeOH); ¹H NMR (CDCl₃, 300 MHz) δ 7.34-7.24 (m, 4H), 7.19 (tt, *J* = 6.8, 1.8 Hz, 1H), 3.76 (s, 2H), 3.41 (dd, *J* = 9.5, 4.1 Hz, 1H), 3.28 (dd, *J* = 9.3, 7.1 Hz, 1H), 3.28 (s, 3H), 2.54 (ddd, *J* = 6.9, 4.9, 4.2 Hz, 1H), 1.85 (hd, *J* = 6.9, 5.0 Hz, 1H), 1.58 (s, 1H), 0.91 (d, *J* = 7.6 Hz, 3H), 0.89 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 141.2 (C), 128.4 (2CH), 128.3 (2CH), 126.8 (CH), 72.8 (CH₂), 61.9 (CH), 59.0 (CH₃), 52.2 (CH), 28.9 (CH), 19.1 (CH₃), 18.3 (CH₃); FTIR (neat) 3332, 3064, 3028, 1604, 1495, 1454, 1116 cm⁻¹; LRMS (APCI) calcd. for C₁₃H₂₂NO (M+H)⁺: 208.2, found 208.3.

A solution of the (S)-2-phenylpiperidine (190 mg, 1.19 mmol) in ether (5.5 mL) was cooled at -20 °C, trifluoroacetic anhydride (0.34 mL, 0.50 g, 2.4 mmol) was added and the afforded solution was stirred for 30 minutes. The mixture was warmed to room temperature, stirred for 2 hours and then concentrated under reduced pressure, which afforded 331 mg of a yellow oil. Flash chromatography of the oily residue with EtOAc/hexane (gradient from 5:95 to 25:75) afforded 296 mg (96%) of **10** as a colorless oil. *R*_f 0.62 (25:75 EtOAc:hexane); $[\alpha]_D^{20}$ = -130 (*c* 3.26, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ (69:31 mixture of rotamers, * for the minor rotamer) 7.38 (t, *J* = 7.5 Hz, 2H + 2H*), 7.32-7.20 (m, 3H + 3H*), 5.90 (d, *J* = 4.3 Hz, 1H), 5.32 (br s, 1H*), 4.45 (d, *J* = 13.9 Hz, 1H*), 3.84 (d, *J* = 13.9 Hz, 1H), 3.10 (dt, *J* = 12.2, 2.8 Hz, 1H), 2.77 (t, *J* = 11.7 Hz, 1H*), 2.56 (d, *J* = 14.5 Hz, 1H*), 2.49 (d, *J* = 14.0 Hz, 1H), 2.02-1.90 (m, 1H + 1H*), 1.77-1.55 (m, 4H + 4H*); ¹³C NMR (CDCl₃, 75 MHz) δ (69:31 mixture of rotamers, * for the minor rotamer) 156.7 (q, *J* = 35.3 Hz, 1C + 1C*), 137.4, (C), 137.2 (C*), 129.2 (2CH*), 129.1 (2CH), 127.5 (CH*), 127.3 (CH), 126.6 (2CH), 126.4

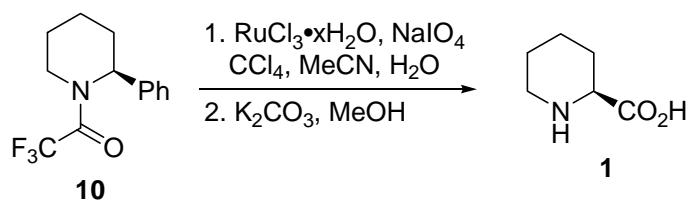
(8) (a) Ando, A.; Shioiri, T. *Tetrahedron* **1989**, *45*, 4969. (b) Yanada, R.; Negoro, N.; Okaniwa, M.; Miwa, Y.; Taga, T.; Yanada, K.; Fujita, T. *Synlett* **1999**, 537.

(2CH*), 117.0 (q, J = 286 Hz, 1C + 1C*), 55.9 (CH*), 52.9 (CH), 42.4 (CH₂), 39.9 (CH₂*), 28.5 (CH₂*), 27.0 (CH₂*), 26.3 (CH₂), 25.5 (CH₂*), 19.4 (CH₂), 19.3 (CH₂*); FTIR (neat) 3063, 1689, 1456, 1213, 1140, 1004 cm⁻¹; HRMS (MAB) calcd. for C₁₃H₁₄F₃NO (M)⁺: 257.1027, found 257.1025. Anal. calcd. for C₁₃H₁₄F₃NO : C, 60.70; H, 5.49; N, 5.44, found C, 60.55; H, 5.51; N, 5.24. Enantiomeric purity of **10** was 98.5% *e.e.* by SFC analysis (Whelk-01 column; 2% MeOH, 2 mL/min., 40 °C, 200 Bar, UV detector at 200 nm): (−)-**10** T_r, 3.5 min, (+)-**10** T_r, 4.5 min.


Chromatogram of (−/+) **10**

Signal 1: DAD1 A, Sig=200,16 Ref=off

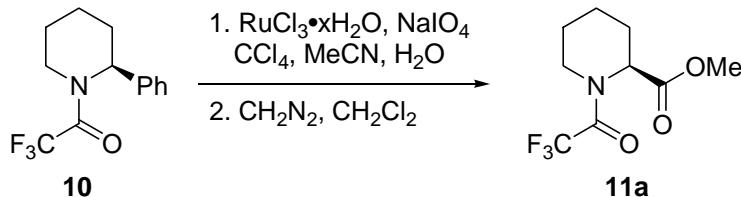
Peak #	RT [min]	Type	Width [min]	Area [mAU*sec]	Height [mAU]	Area %
1	3.429	MM	0.098	7704.00049	1309.91516	49.6757
2	4.525	MM	0.124	7804.59180	1048.66687	50.3243
Totals :					15508.59180	2358.58203


Chromatogram of enantioenriched (−) **10**

Signal 1: DAD1 A, Sig=200,16 Ref=off

Peak #	RT [min]	Type	Width [min]	Area [mAU*sec]	Height [mAU]	Area %
1	3.488	MM	0.099	3893.32031	656.53497	99.2289
2	4.615	MM	0.084	30.25490	6.03427	0.7711
Totals :					3923.57520	662.56921

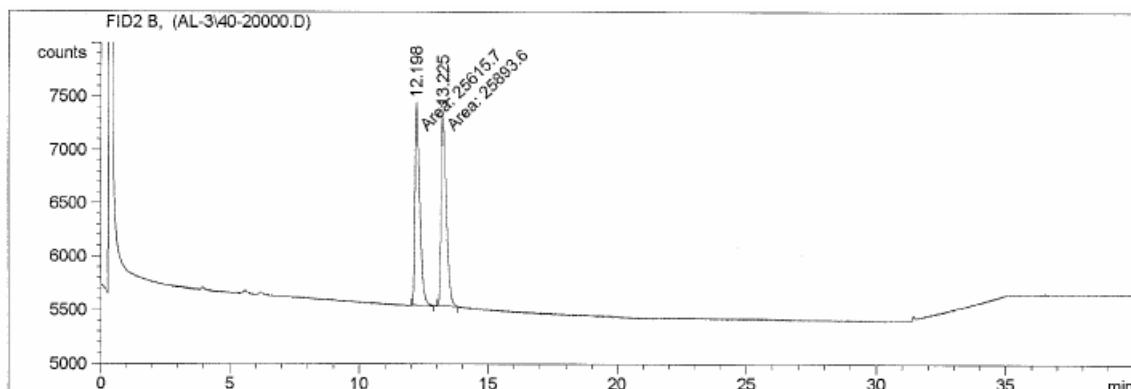
(2S)-Piperidine-2-carboxylic acid (L-pipeolic acid) (1).


Piperidine **10** (110 mg, 0.428 mmol) was diluted with CCl_4 (2.0 mL), acetonitrile (2.0 mL) and water (3.0 mL). To the biphasic mixture were added sequentially sodium periodate (1.42 g, 6.6 mmol) and ruthenium trichloride hydrate (5.0 mg, 0.021 mmol) under vigorous stirring. After 42 hours, dichloromethane was added, the mixture was filtrated over Celite®, the solids were rinsed with dichloromethane and the filtrate was dried over magnesium sulfate. The filtrate was concentrated under reduced pressure and the crude product showed 96% conversion by ^1H NMR analysis. The crude product was resubmitted to the oxidation conditions above (with 2.0 mL of CCl_4 , 2.0 mL of acetonitrile and 3.0 mL of water) with 20% of the sodium periodate stoichiometry (248 mg, 1.3 mmol) and ruthenium trichloride hydrate (1.3 mg, 0.005 mmol) for 48 hours. The mixture was filtrated over Celite®, rinsed with dichloromethane and the filtrate was dried over magnesium sulfate. The filtrate was concentrated under reduced pressure, the black residue was dissolved in ether (10 mL), filtrated over Celite®, and concentrated under reduced pressure, which afforded 100 mg of a black oil. The crude product showed complete conversion by ^1H NMR analysis. The crude product was dissolved in MeOH (5.2 mL), potassium carbonate (364 mg, 2.6 mmol) was added and the heterogeneous mixture was stirred for 48 hours. The mixture was concentrated under reduced pressure, dissolved in aqueous HCl (5 mL of a 1.2 M solution) and purified over ion exchange chromatography : Dowex 50WX8-200, 100-200 mesh (9.5 g), was pre-washed with water (30 mL), then 1.2 M HCl (30 mL); the HCl solution of the crude product was eluted with water (30 mL), 1.5 % NH_4OH (30 mL), 3% NH_4OH (30 mL) and 5% NH_4OH (30 mL). The ninhydrin containing fractions were evaporated under reduced pressure to afford 41 mg of a yellow solid. The solid was diluted with water (20 mL), carbon black (1 g) was added and the mixture was refluxed for 15 minutes. The carbon black was removed by filtration over filter paper and the filtrate was concentrated under reduced pressure, which afforded 40 mg (72%) of **1** as a white solid. $\text{Mp} > 250^\circ\text{C}$, lit. 272°C ; $[\alpha]_D^{20} = -25.6$ (c 1.2, H_2O), lit. -26.4 (c 1.0, H_2O), lit.⁹ -25.5 (c 1.3, H_2O), lit.¹⁰ -26.8 (c 0.5, H_2O). ^1H NMR (D_2O ,

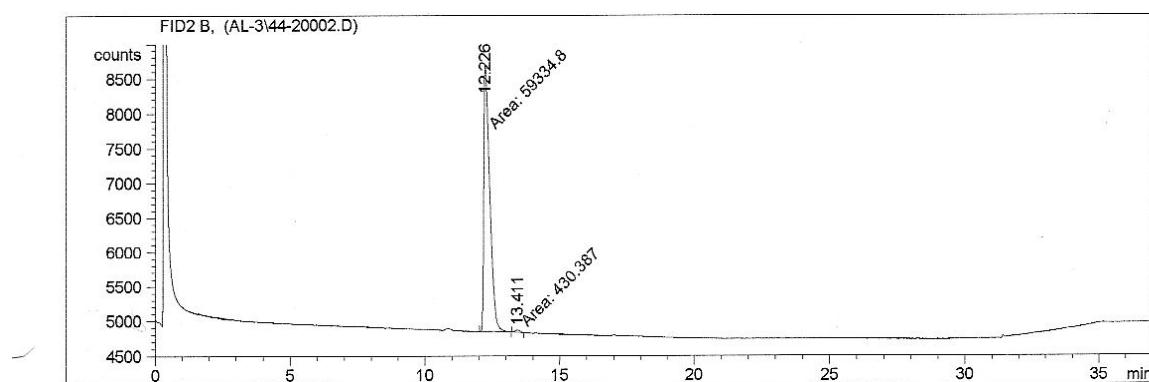
(9) Agami, C.; Kadouri-Puchot, C.; Kizirian, J. C. *Synth. Commun.* **2000**, *30*, 2565.

(10) Sánchez-Sancho, F. S.; Herradón, B. *Tetrahedron: Asymmetry* **1998**, *9*, 1951.

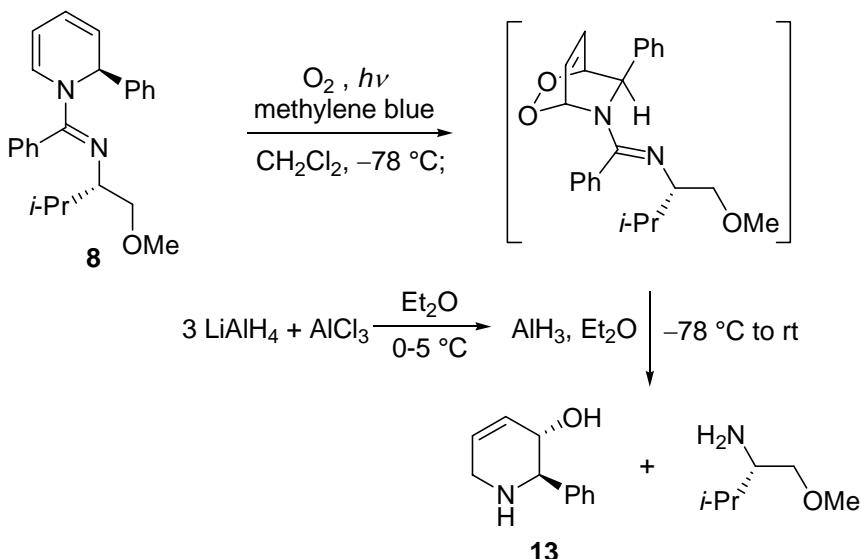
400 MHz) δ 3.52 (dd, J = 11.5, 3.2 Hz, 1H), 3.35 (br d, J = 12.7 Hz, 1H), 2.94 (tt, J = 12.2, 3.0 Hz, 1H), 2.16 (br dq, J = 13.8, 2.6 Hz, 1H), 1.86-1.75 (m, 2H), 1.66-1.46 (m, 3H).


(2S)-Methyl-1-(trifluoroacetyl)piperidine-2-carboxylate (11a).

Piperidine **10** (135 mg, 0.517 mmol) was diluted with CCl_4 (2.4 mL), acetonitrile (2.4 mL) and water (3.5 mL). To the biphasic mixture were added sequentially sodium periodate (1.66 g, 7.8 mmol) and ruthenium trichloride hydrate (6.1 mg, 0.026 mmol) upon stirring. After 22 hours, dichloromethane was added (10 mL), the mixture was filtrated over Celite®, the solids were rinsed with dichloromethane and the filtrate was dried over magnesium sulfate. The filtrate was concentrated under reduced pressure and the crude product showed 30% conversion by ^1H NMR analysis. The crude product was resubmitted to the same oxidation conditions as above for 48 hours and the mixture was filtrated over Celite®, the solids were rinsed with dichloromethane and the filtrate was dried over magnesium sulfate. The filtrate was concentrated under reduced pressure, the black residue was dissolved in ether (10 mL), charcoal (1 g) was added, followed by Celite® (3 g). The mixture was filtrated over Celite®, diazomethane (2.8 mL of a 0.2 M solution in dichloromethane, 1.2 mmol) was added, the yellow solution was stirred for 2 hours and then concentrated under reduced pressure, which afforded 96 mg of a pink oil. The crude product showed complete conversion by ^1H NMR analysis. Flash chromatography of the oily residue with $\text{EtOAc}/\text{hexane}$ (gradient from 0:100 to 25:75) afforded 76 mg (62%) of **11a** as a colorless oil. R_f 0.36 (25:75 $\text{EtOAc}/\text{hexane}$); $[\alpha]_D^{20} = -51.1$ (c 1.1, C_6H_6); ^1H NMR (C_6D_6 , 400 MHz) δ (79:21 mixture of rotamers, * for the minor rotamer) 5.20 (d, J = 4.9 Hz, 1H), 4.50 (d, J = 4.3 Hz, 1H*), 4.39 (br d, J = 13.6 Hz, 1H*), 3.60 (br d, J = 13.6 Hz, 1H), 3.17 (s, 3H + 3H*), 3.01 (td, J = 13.0, 3.4 Hz, 1H), 2.69 (td, J = 13.4, 3.1 Hz, 1H*), 1.95-1.85 (m, 1H + 1H*), 1.12-0.85 (m, 5H + 5H*); ^{13}C NMR (C_6D_6 , 75 MHz) δ (79:21 mixture of rotamers, * for the minor rotamer) 170.3 (C), 170.2 (C*), 157.3 (q, J = 35.8 Hz, 1C + 1C*), 117.7 (q, J = 288 Hz, 1C + 1C*), 56.5 (CH*), 53.9 (CH), 52.4 (CH₃*), 52.3 (CH₃), 43.9 (q, J = 3.7 Hz, 1CH₂), 41.5 (CH₂*), 27.4 (CH₂*), 26.5 (CH₂), 25.1 (CH₂), 24.5 (CH₂*), 21.0 (CH₂), 20.5 (CH₂*); FTIR (neat) 2955, 1746, 1694, 1450, 1210, 1141, 1015 cm^{-1} ; HRMS (ES) calcd. for $\text{C}_9\text{H}_{13}\text{F}_3\text{NO}_3$ ($\text{M} + \text{H}$)⁺: 240.0842, found 240.0841. Enantiomeric purity of **11a** was 98.5% ee by chiral GC analysis (Chiraldex

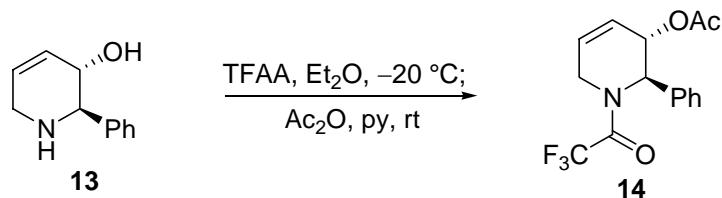

G-TA; 25 psi (H₂); split 1/100; 80 °C for 1 minute, gradient 2 °C/minute up to 120 °C, kept 10 minutes): (−)-**11a** T_r, 12.2 min, (+)-**11a** T_r, 13.2 min.

Chromatogram of (+/−) **11a**



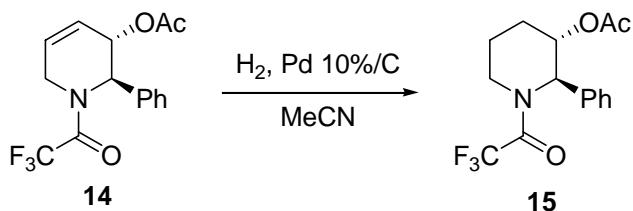
Peak #	RetTime [min]	Type	Width [min]	Area counts*s	Height [counts]	Area %
1	12.198	MM	0.2241	2.56157e4	1904.75891	49.73021
2	13.225	MM	0.2358	2.58936e4	1830.35107	50.26979
Totals :						5.15093e4 3735.10999

Chromatogram of enantioenriched (−) **11a**


Peak #	RetTime [min]	Type	Width [min]	Area counts*s	Height [counts]	Area %
1	12.226	MM	0.2565	5.93348e4	3855.30884	99.27987
2	13.411	MM	0.1963	430.38702	36.55085	0.72013
Totals :						5.97651e4 3891.85969

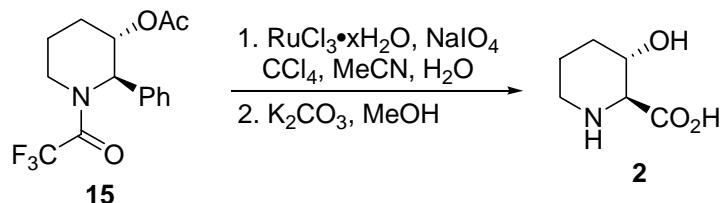
(2*R*,3*S*)-2-Phenyl-1,2,3,6-tetrahydropyridin-3-ol (13).

Methylene blue (26 mg, 0.070 mmol) and dihydropyridine **8** (143 mg, 0.398 mmol) were dissolved in dichloromethane (58 mL) and the blue solution was cooled at -78°C . Oxygen was bubbled through the solution with a needle and the solution was irradiated with a sunlamp (OSRAM Ultra-Vitalux 300W, 230V) placed at ca. 15 cm of the flask. The solution was irradiated for one hour with a constant oxygen flow. Completion of the hetero-Diels-Alder reaction was monitored by TLC. In a separate flask, lithium aluminum hydride (181 mg, 4.8 mmol) was suspended in ether (5.8 mL), cooled to $0-5^\circ\text{C}$ by means of an ice-water bath, followed by slow addition of aluminum chloride (4.3 mL of a 0.37 M solution in ether, 1.6 mmol) and the light grey suspension was stirred for 45 minutes. The freshly prepared AlH_3 suspension was cooled to -78°C then the solution of endoperoxide cycloadduct at -78°C was added to the alane suspension via a canula. The resultant suspension was then stirred at -78°C for 12 hours, warmed to room temperature and stirred for 2 hours. The reaction was quenched by slow addition of the suspension to a well stirred biphasic solution of ether (50 mL), saturated aqueous sodium-potassium tartrate (50 mL) and 2.0 M aqueous sodium hydroxide (2 mL). After 1 hour of vigorous stirring, two clear phases were obtained and separated. The aqueous phase was extracted with ether, organic phases were combined and dried over potassium carbonate. Activated charcoal (1 g) was added to the blue solution, the


afforded black mixture was stirred 5 minutes and Celite® (20 g) was added to the mixture. The suspension was filtered through Celite®, the solids were rinsed with dichloromethane and the filtrate was concentrated under reduced pressure to afford 177 mg of a yellow solid. Flash chromatography of the residue was performed using MeOH/CH₂Cl₂ (gradient 2:98-10:90) which afforded 43 mg of **13** (61%) as a white solid: Mp 139-140 °C; *R*_f 0.22 (10:90 MeOH:CH₂Cl₂); $[\alpha]_D^{20} = 58.7$ (c 1.90, MeOH); ¹H NMR (CD₃OD, 400 MHz) δ 7.44 (br d, *J* = 7.1 Hz, 2H), 7.37 (td, *J* = 7.1, 1.6 Hz, 2H), 7.31 (tt, *J* = 7.2, 1.7 Hz, 1H), 5.91 (ddt, *J* = 10.2, 4.0, 1.8 Hz, 1H), 5.84 (dq, *J* = 10.2, 1.8 Hz, 1H), 4.24 (ddq, *J* = 8.6, 3.5, 2.0 Hz, 1H), 3.51 (ddt, *J* = 17.3, 3.5, 2.5 Hz, 1H), 3.49 (d, *J* = 8.5 Hz, 1H), 3.34 (ddt, *J* = 17.4, 3.6, 1.8 Hz, 1H); ¹³C NMR (CD₃OD, 75 MHz) δ 143.1 (C), 132.0 (CH), 129.6 (2CH), 129.2 (2CH), 128.8 (CH), 128.5 (CH), 71.1 (CH), 66.2 (CH), 46.5 (CH₂); FTIR (neat) 3600-3000, 3584, 3269, 3091, 3030, 2898, 1649, 1586, 1491, 1288, 1088, 1044, 757, 702 cm⁻¹; LRMS (APCI) calcd for C₁₁H₁₄NO (M + H)⁺: 176.1, found 176.1; Anal. calcd for C₁₁H₁₃NO: C, 75.40; H, 7.48; N, 7.99, found C, 75.08; H, 7.73; N, 7.82. From the same reaction mixture was isolated 55 mg (66%) of *N*-benzyl-*N*[(1*S*)-1-(methoxymethyl)-2-methylpropyl]amine (*N*-benzyl-*O*-methylvalinol).

(2*R*,3*S*)-1-Trifluoroacetyl-2-phenyl-1,2,3,6-tetrahydropyridin-3-yl acetate (14).

A suspension of the piperidine **13** (38 mg, 0.22 mmol) in ether (1.0 mL) was cooled to -20 °C, trifluoroacetic anhydride (0.12 mL, 0.18 g, 0.87 mmol) was added and the resulting solution was stirred for 30 minutes. The mixture was warmed to room temperature, stirred for 3 hours and the solution was concentrated under reduced pressure. The residue was dissolved


in tetrahydrofuran (3.1 mL), pyridine (0.88 mL), sodium acetate (90 mg, 1.1 mmol), and acetic anhydride (0.41 mL, 4.3 mmol) were added. The mixture was stirred for 14 hours, cooled to 0-5 °C with an ice bath and saturated aqueous sodium bicarbonate (10 mL) was added. After stirring for 30 minutes, hexane (10 mL) was added, the mixture was transferred to a separatory funnel and the phases were separated. The aqueous phase was extracted using dichloromethane (3x10 mL), the combined organic phase was dried over magnesium sulfate, filtered and concentrated under reduced pressure, which afforded 78 mg of a yellow oil. Flash chromatography of the oily residue with EtOAc/hexane (gradient from 0:100 to 15:85) afforded 60 mg (89%) of **14** as a colorless oil: R_f 0.35 (25:75 EtOAc:hexane); $[\alpha]_D^{20} = +85.6$ (*c* 5.03, C₆H₆); ¹H NMR (C₆D₆, 400 MHz) δ (51:49 mixture of rotamers, * for the minor rotamer) 7.09-7.06 (m, 1H + 1H*), 7.01-6.98 (m, 4H + 4H*), 6.26 (s, 1H), 5.81 (ddd, *J* = 9.9, 5.7, 2.7 Hz, 1H), 5.61-5.57 (m, 1H + 1H*), 5.52 (br d, *J* = 5.8 Hz, 1H*), 5.34 (s, 1H*), 5.18 (ddd, *J* = 10.0, 3.9, 2.4 Hz, 1H*), 5.11 (ddd, *J* = 10.1, 4.4, 2.0 Hz, 1H), 4.64 (ddd, *J* = 19.8, 3.7, 2.5 Hz, 1*H), 3.82 (br d, *J* = 18.7 Hz, 1H), 3.06 (ddd, *J* = 18.9, 4.1, 2.1 Hz, 1H), 3.02 (br d, *J* = 20.0 Hz, 1H*), 1.65 (s, 3H*), 1.60 (s, 3H); ¹³C NMR (C₆D₆, 75 MHz) δ (51:49 mixture of rotamers, * for the minor rotamer) 170.3 (C + C*), 157.2 (q, *J* = 35.9 Hz, 1C + C*), 135.8 (C + C*), 130.4 (CH), 129.4 (2C + 2C*), 129.2 (CH*) 128.7 (CH + CH*), 127.8 (CH + CH*), 126.9 (CH + CH*), 123.1 (CH), 121.4 (CH*), 117.7 (q, *J* = 288 Hz, 1C*), 117.6 (q, *J* = 288 Hz, 1C), 67.2 (CH*), 66.9 (CH), 58.6 (CH*), 55.7 (CH), 41.4 (q, *J* = 4.2 Hz, 1CH₂), 40.6 (CH₂*), 20.7 (CH₃), 20.6 (CH₃*); FTIR (neat) 3063, 3035, 1739, 1694, 1667, 1452, 1234, 1203, 1141, 1023 cm⁻¹; HRMS (ES) calcd. for C₁₅H₁₄F₃NO₃ (M+Ag)⁺: 419.9971, found 419.9963. Anal. calcd. for C₁₅H₁₄F₃NO₃ : C, 57.51; H, 4.50; N, 4.47, found C, 57.24; H, 4.36; N, 4.50.

(2*R*,3*S*)-2-Phenyl-1-(trifluoroacetyl)piperidin-3-yl acetate (15).

To a solution of the tetrahydropyridine **14** (47 mg, 0.15 mmol) in acetonitrile (1.5 mL) was added palladium catalyst (4.3 mg of Pd/C (10 wt% Pd), 0.0041 mmol Pd). The mixture (purged three times with water vacuum then hydrogen atmosphere) was stirred under hydrogen atmosphere (1 atm) for 15 h at room temperature. The reaction mixture was then filtered through Celite®, the solids were rinsed with dichloromethane and the filtrate was concentrated under reduced pressure, which afforded 48 mg of a colorless oil. Flash chromatography of the oily residue with EtOAc/hexane (gradient from 0:100 to 15:85) afforded 44 mg (93%) of **15** as a colorless oil. R_f 0.35 (25:75 EtOAc:hexane); $[\alpha]_D^{20} = -42.8$ (*c* 0.975, C₆H₆); ¹H NMR (C₆D₆, 400 MHz) δ (55:45 mixture of rotamers, * for the minor rotamer) 7.06-6.88 (m, 5H + 5H*), 6.14 (s, 1H), 5.53 (q, *J* = 2.6 Hz, 1H), 5.43 (q, *J* = 2.5 Hz, 1H*), 5.26 (s, 1H*), 4.38 (br d, *J* = 13.4 Hz, 1H*), 3.51 (d, *J* = 14.2 Hz, 1H), 2.62 (td, *J* = 14.0, 2.6 Hz, 1H), 2.36 (td, *J* = 13.4, 2.7 Hz, 1H*), 1.67 (s, 3H*), 1.65 (s, 3H), 1.64 (qt, *J* = 13.4, 4.2 Hz, 1H + 1H*), 1.45 (br d, *J* = 14.9 Hz, 1H), 1.35 (br d, *J* = 14.1 Hz, 1H*), 1.23 (tdd, *J* = 13.9, 4.4, 2.7 Hz, 1H), 1.08 (tdd, *J* = 14.0, 4.3, 2.7 Hz, 1H*), 0.78 (br d, *J* = 12.4 Hz, 1H*), 0.74 (br d, *J* = 11.2 Hz, 1H); ¹³C NMR (C₆D₆, 75 MHz) δ (55:45 mixture of rotamers, * for the minor rotamer) 170.1 (C*), 170.0 (C), 157.8 (q, *J* = 35.6 Hz, 1C + 1C*), 135.7 (C), 135.6 (C*), 129.7-126.6 (5CH + 5CH*), 117.9 (q, *J* = 289 Hz, 1C + 1C*), 69.4 (CH*), 69.1 (CH), 59.5 (CH*), 56.7 (CH), 42.1 (q, *J* = 3.6 Hz, CH₂*), 39.6 (CH₂), 24.3 (CH₂), 24.0 (CH₂*), 21.1 (CH₂), 20.8 (CH₃), 20.7 (CH₃*), 19.9 (CH₂*); FTIR (neat) 3065, 2960, 1739, 1692, 1452, 1238, 1143, 1001 cm⁻¹; HRMS (ES) calcd. for C₁₅H₁₇F₃NO₃ (M+H)⁺: 316.1155,

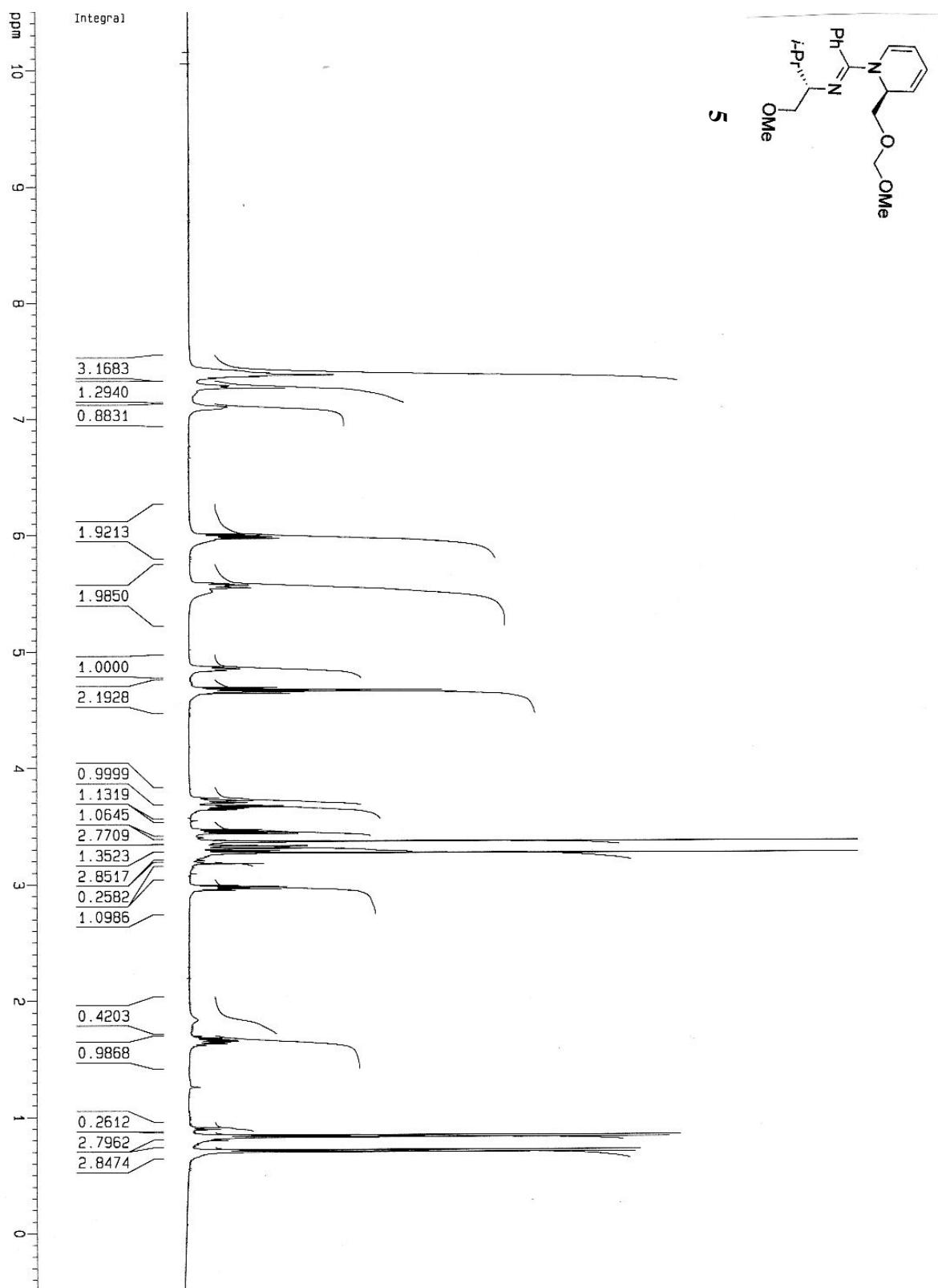
found 316.1145. Anal. calcd. for $C_{15}H_{16}F_3NO_3$: C, 57.14; H, 5.12; N, 4.44, found C, 57.55; H, 5.29; N, 4.48.

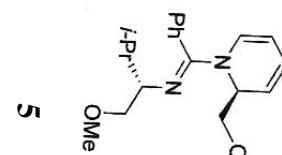
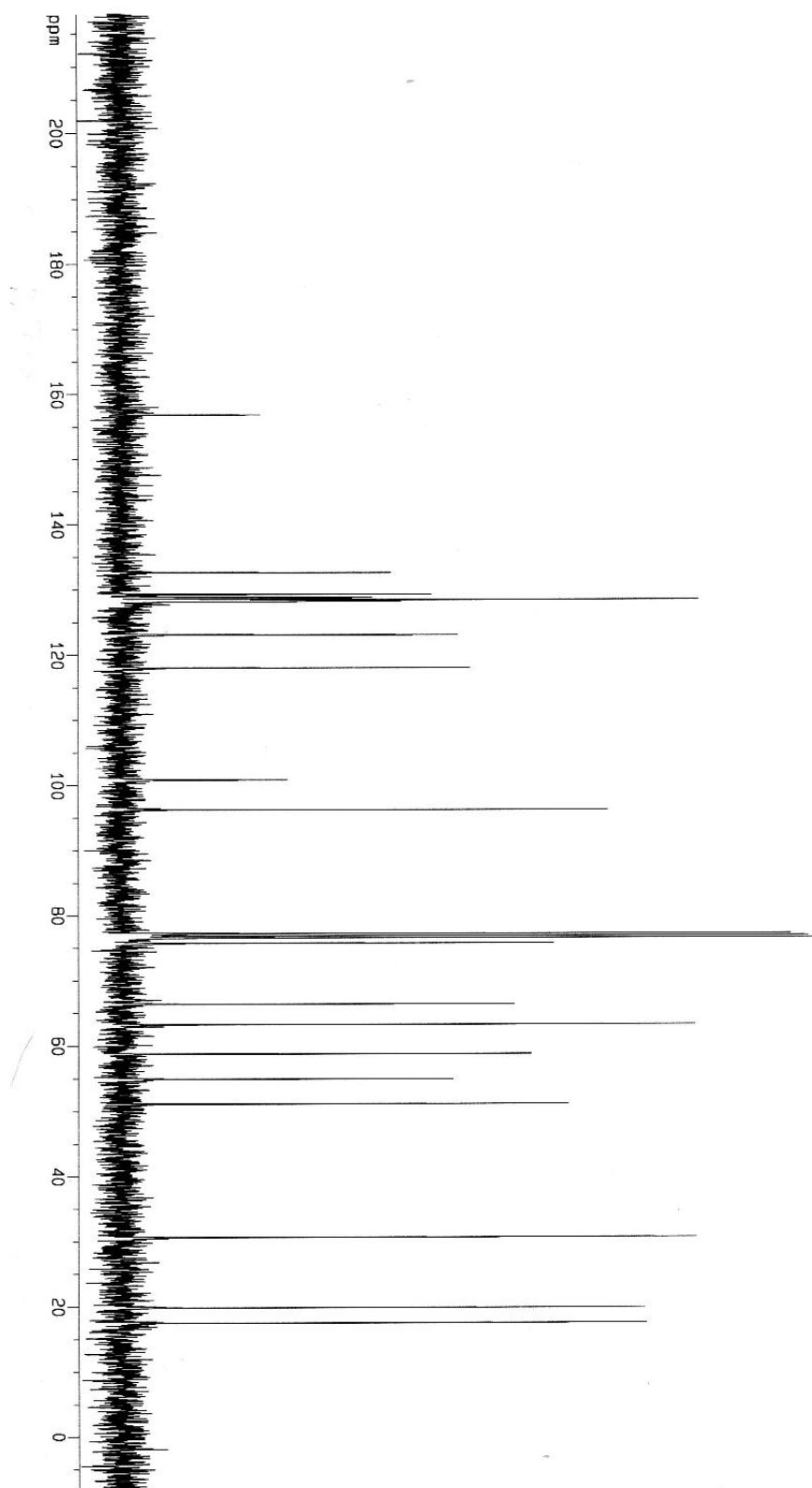
(2*S*,3*S*)-3-hydroxypiperidine-2-carboxylic acid (2).

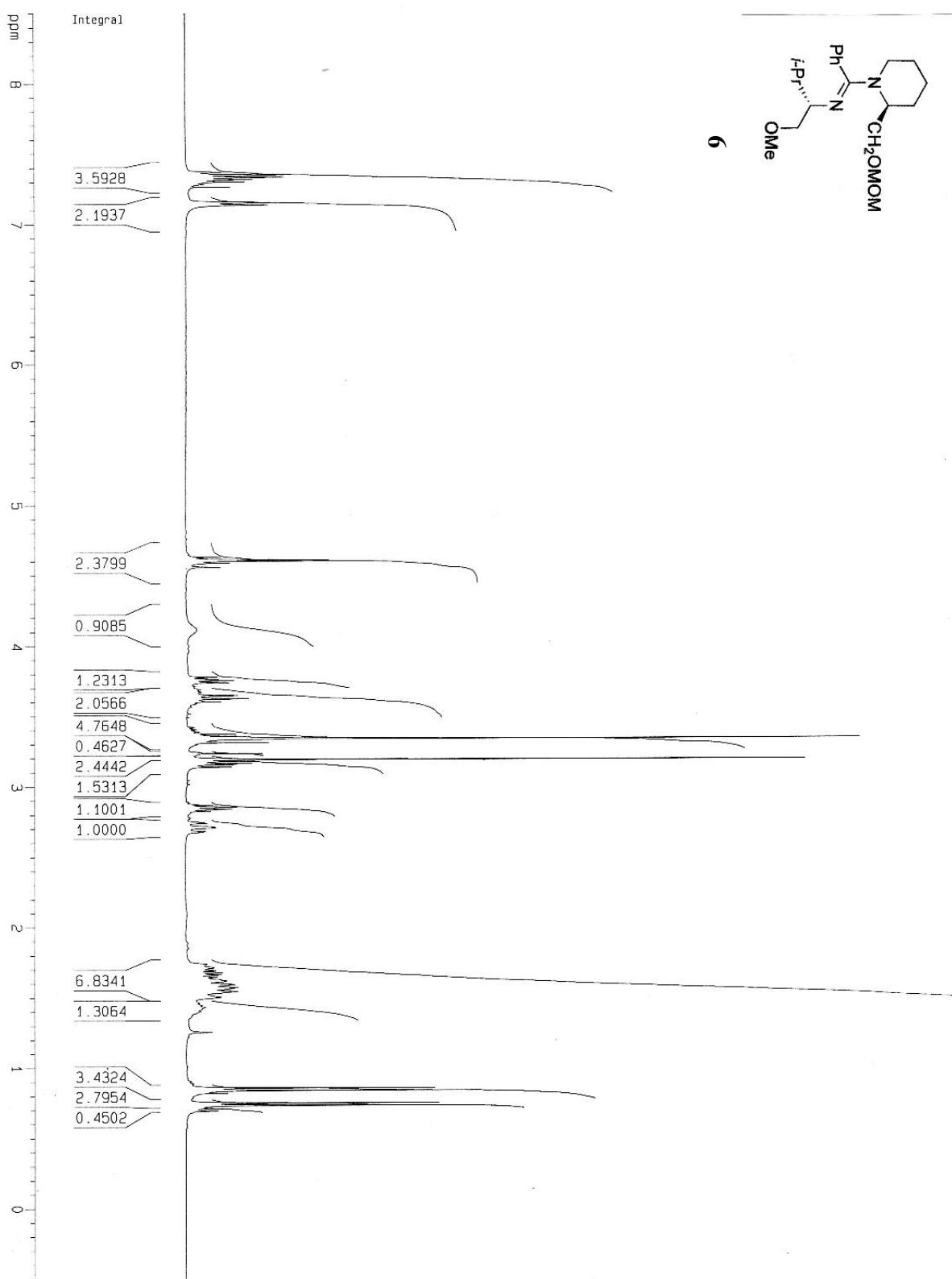
Piperidine **15** (71 mg, 0.23 mmol) was diluted with CCl_4 (1.0 mL), acetonitrile (1.0 mL) and water (1.5 mL). To the biphasic mixture were added sequentially sodium periodate (724 mg, 3.4 mmol) and ruthenium trichloride hydrate (2.6 mg, 0.011 mmol) under vigorous stirring. After 119 hours, dichloromethane was added, the mixture was filtrated over Celite®, the solids were rinsed with dichloromethane and the filtrate was dried over magnesium sulfate. The filtrate was concentrated under reduced pressure and the crude product showed 92% conversion by ^1H NMR analysis. The crude product was resubmitted to the oxidation conditions above (with 1.0 mL of CCl_4 , 1.0 mL of acetonitrile and 1.5 mL of water) with 50% of the sodium periodate stoichiometry (362 mg, 1.7 mmol) and ruthenium trichloride hydrate (1.3 mg, 0.005 mmol) for 96 hours and the mixture was filtrated over Celite®. The solids were rinsed with dichloromethane, the filtrate was dried over magnesium sulfate and concentrated under reduced pressure. The crude product was dissolved in methanol (2.5 mL), potassium carbonate (188 mg, 1.36 mmol) was added and the heterogeneous mixture was stirred for 48 hours. The mixture was diluted with methanol (10 mL), activated charcoal (1 g) was added and the black suspension was heated to reflux 15 minutes. The suspension was filtrated over Celite, the solids were rinsed with methanol and the filtrate was concentrated under reduced pressure. The residue was dissolved in aqueous HCl (5 mL of a 1.2 M solution) and purified over ion exchange chromatography : Dowex 50WX8-200, 100-200 mesh (9.5 g) was pre-washed with water (30 mL), then 1.2 M HCl (30 mL); the HCl solution of the crude product was eluted with water (30 mL), 1.5 % NH_4OH (30 mL), 3% NH_4OH (30 mL) and 5% NH_4OH (30 mL). The ninhydrin containing fractions were evaporated under reduced pressure to afford 20 mg (60%) of **2** as a white solid: M_p 230 °C (dec), lit.¹¹ 232-236 °C, lit.¹² 232 °C (dec), lit.¹³ 230-238 °C (dec); $[\alpha]_D^{20} = 13$ (*c* 0.49, HCl 10% aq.), lit. 13.5 (*c*

(11) Kumar, P.; Bodas, M. S. *J. Org. Chem.* **2005**, *70*, 360.

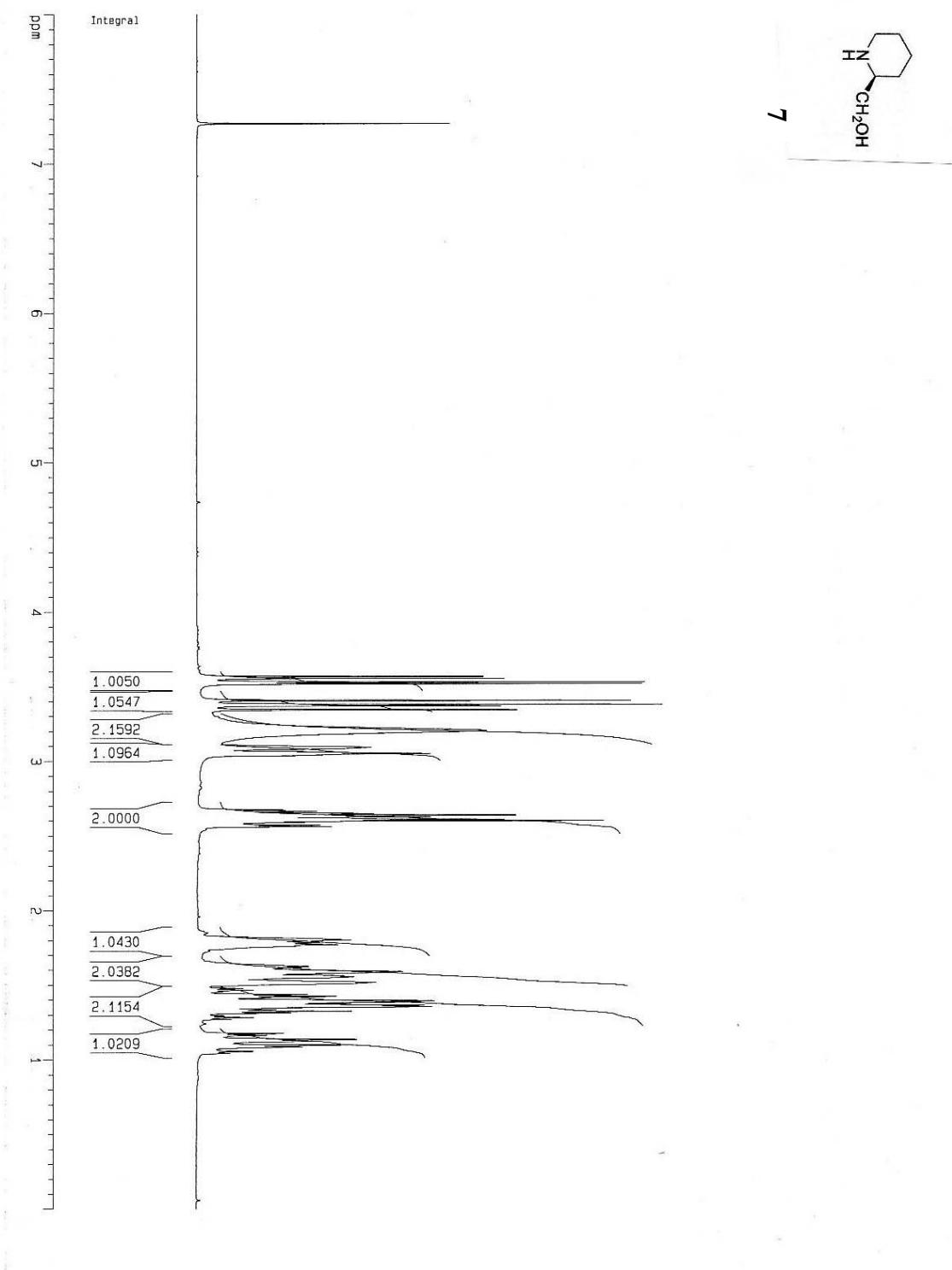
(12) Haddad, M.; Larchevêque, M. *Tetrahedron Lett.* **2001**, *42*, 5223.

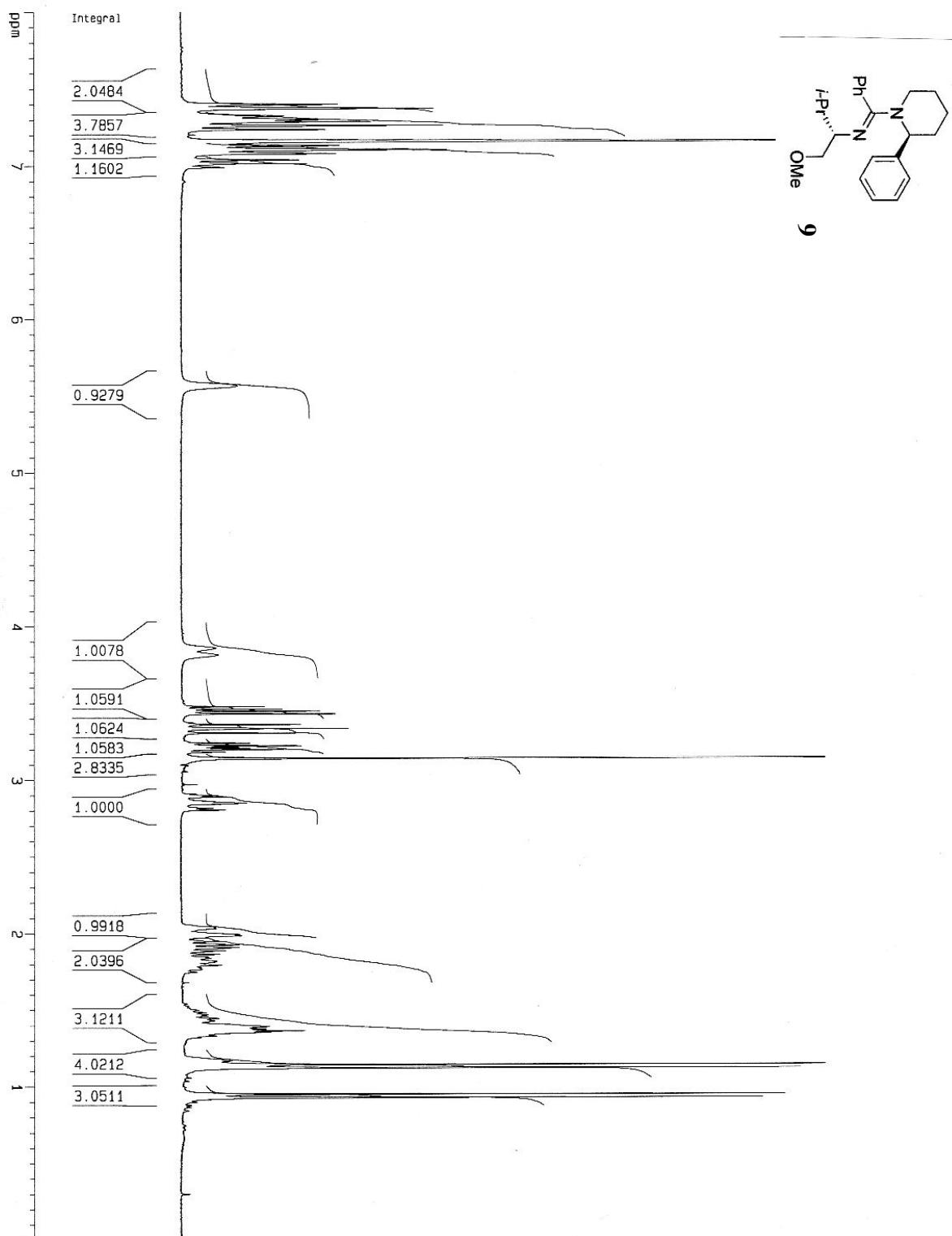

0.2, HCl 10% aq.), lit. 12.9 (*c* 0.23, HCl 10% aq.), lit.¹⁴ 15 (*c* 0.5, HCl 10% aq.), lit. (enantiomer of **2**) -13 (*c* 0.45, HCl 10% aq.). ¹H RMN (D₂O, 400 MHz)¹⁵ δ 4.12 (ddd, *J* = 10.4, 7.3, 3.0 Hz, 1H), 3.58 (d, *J* = 7.0 Hz, 1H), 3.36-3.27 (m, 1H), 3.10-3.03 (m, 1H), 2.04-1.85 (m, 2H), 1.75-1.60 (m, 2H).

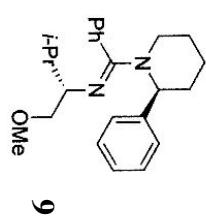
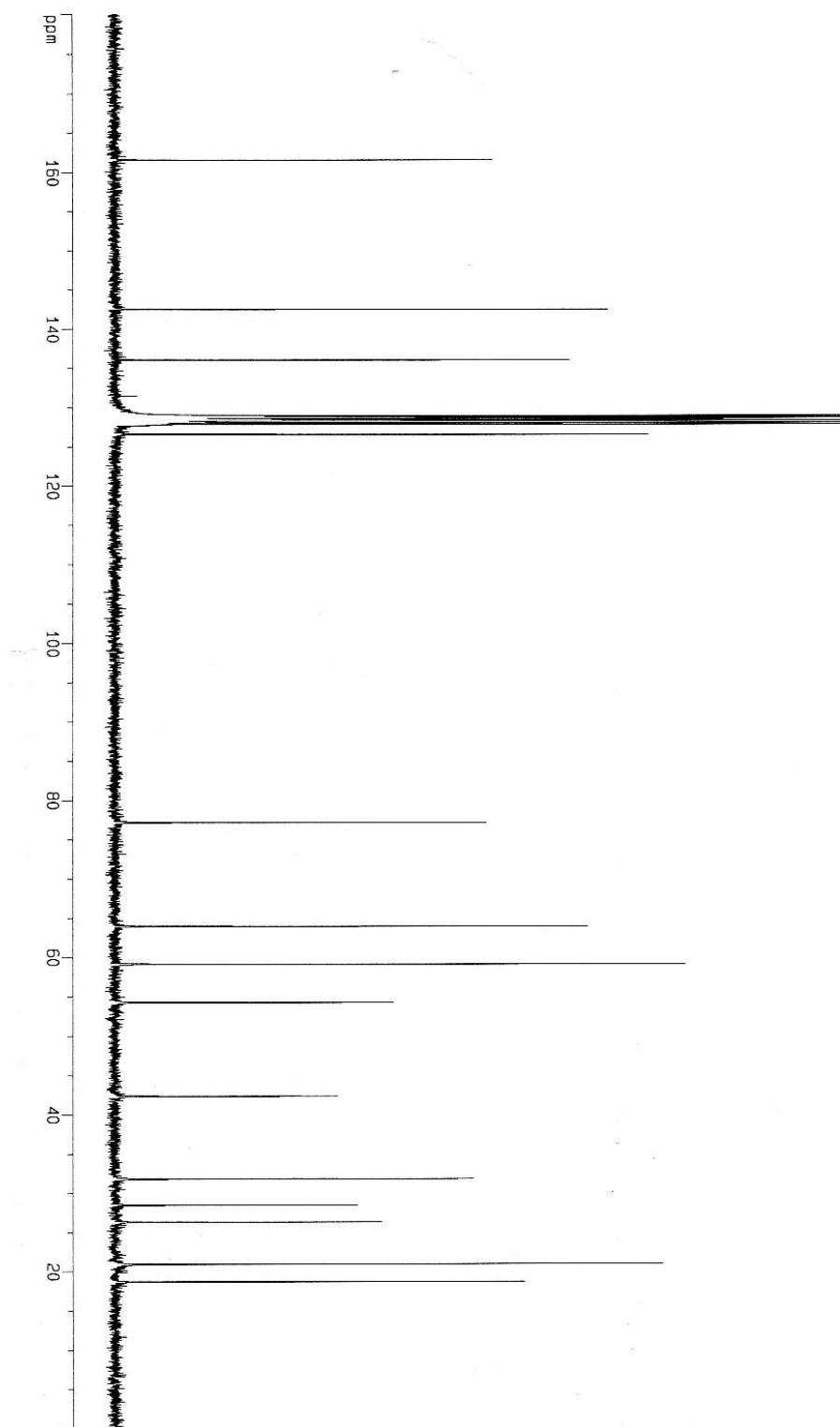



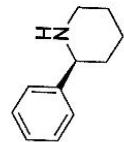
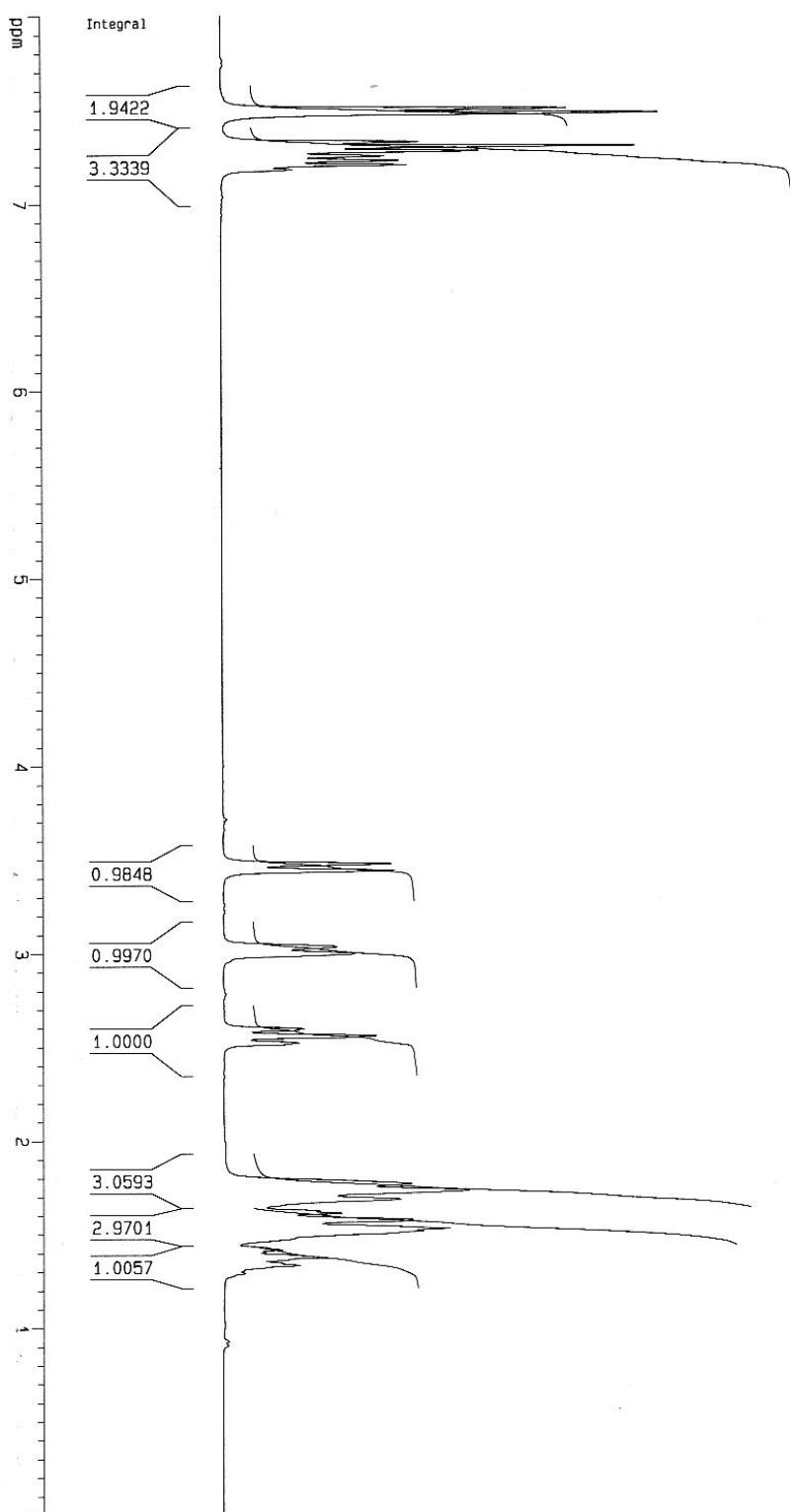

(13) Battistini, L.; Zanardi, F.; Rassu, G.; Spanu, P.; Pelosi, G.; Fava, G. G.; Ferrari, M. B.; Casiraghi, G. *Tetrahedron: Asymmetry* **1997**, *8*, 2975.

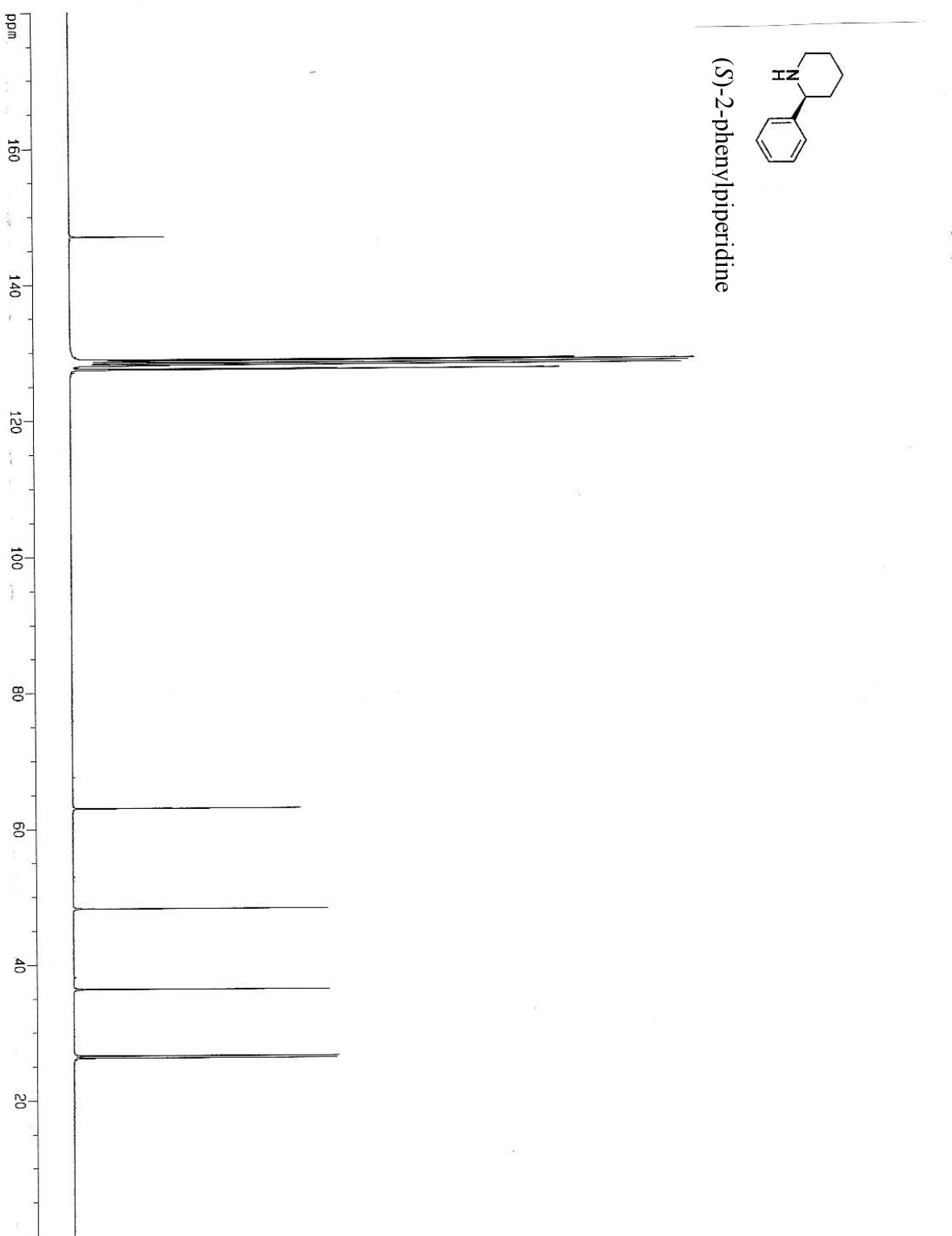
(14) Greck, C.; Ferreira, F.; Genêt, J. P. *Tetrahedron Lett.* **1996**, *37*, 2031.

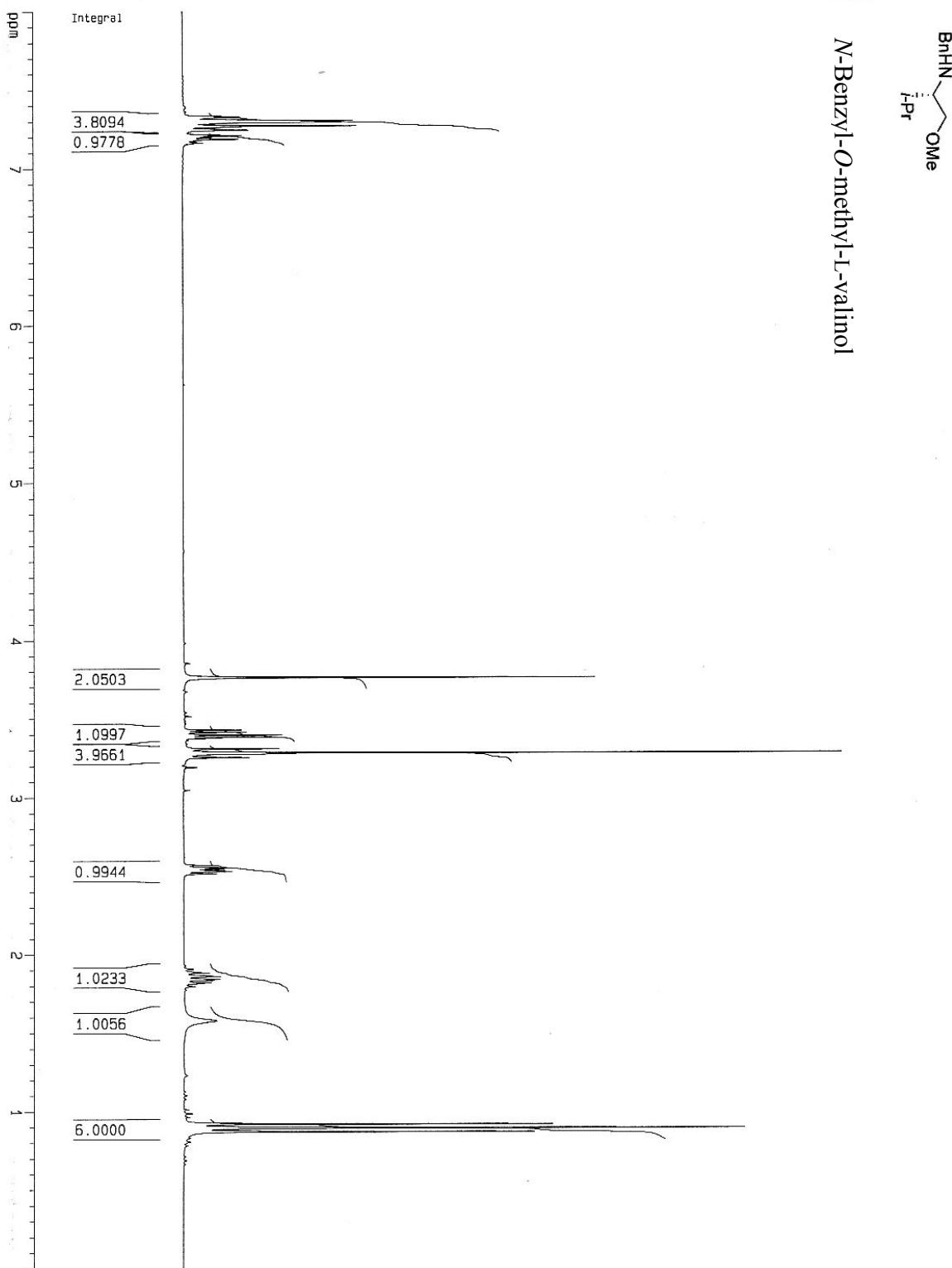

(15) We found that different chemical shifts description are reported for most precedent syntheses of **2**. Ours correlate to thoses: (a) Roemmele, R. C.; Rapoport, H. *J. Org. Chem.* **1989**, *54*, 1866. (b) Ref. 13.

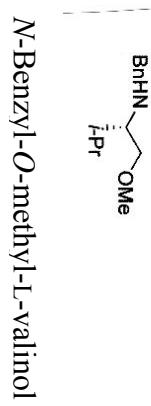
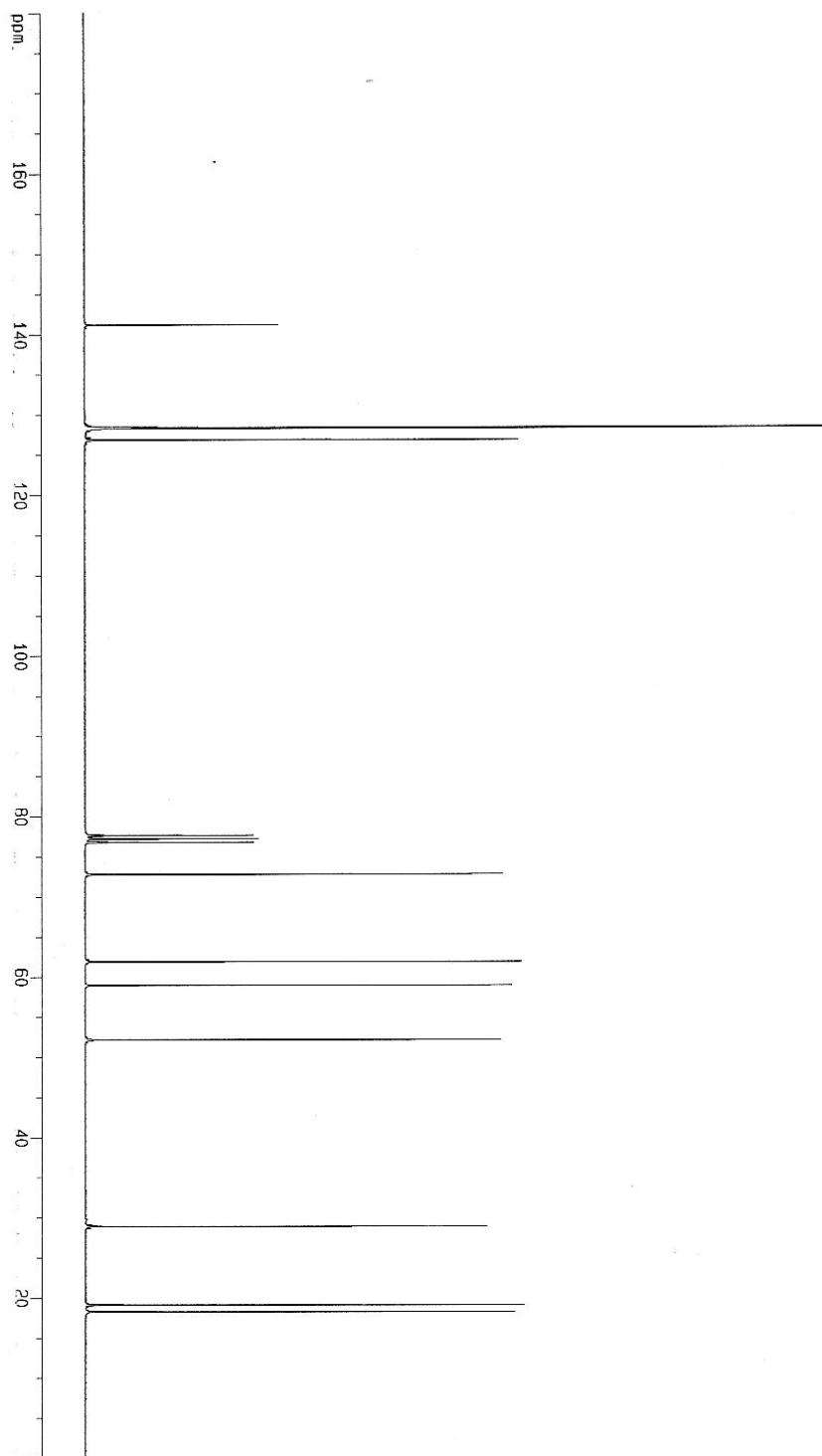


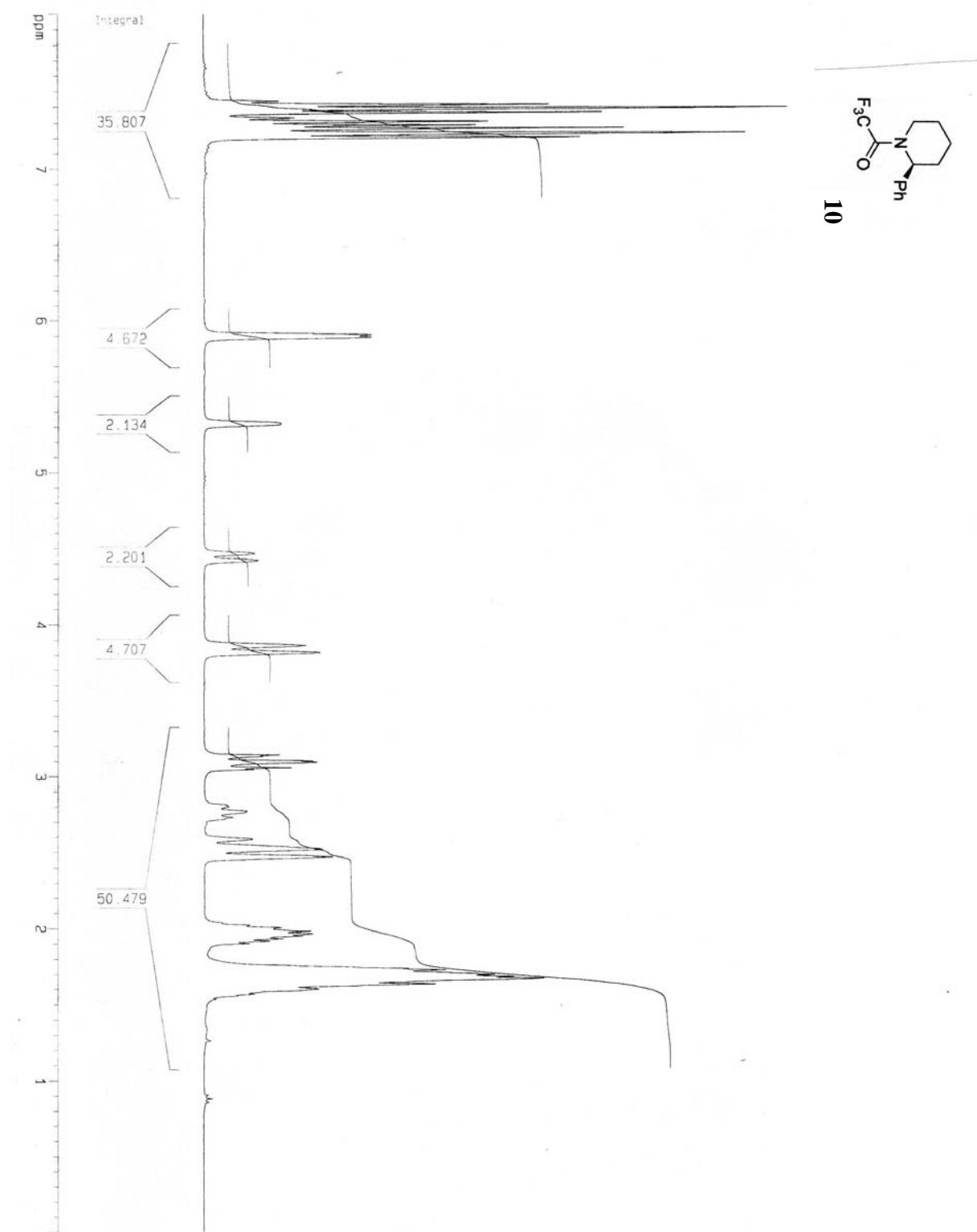



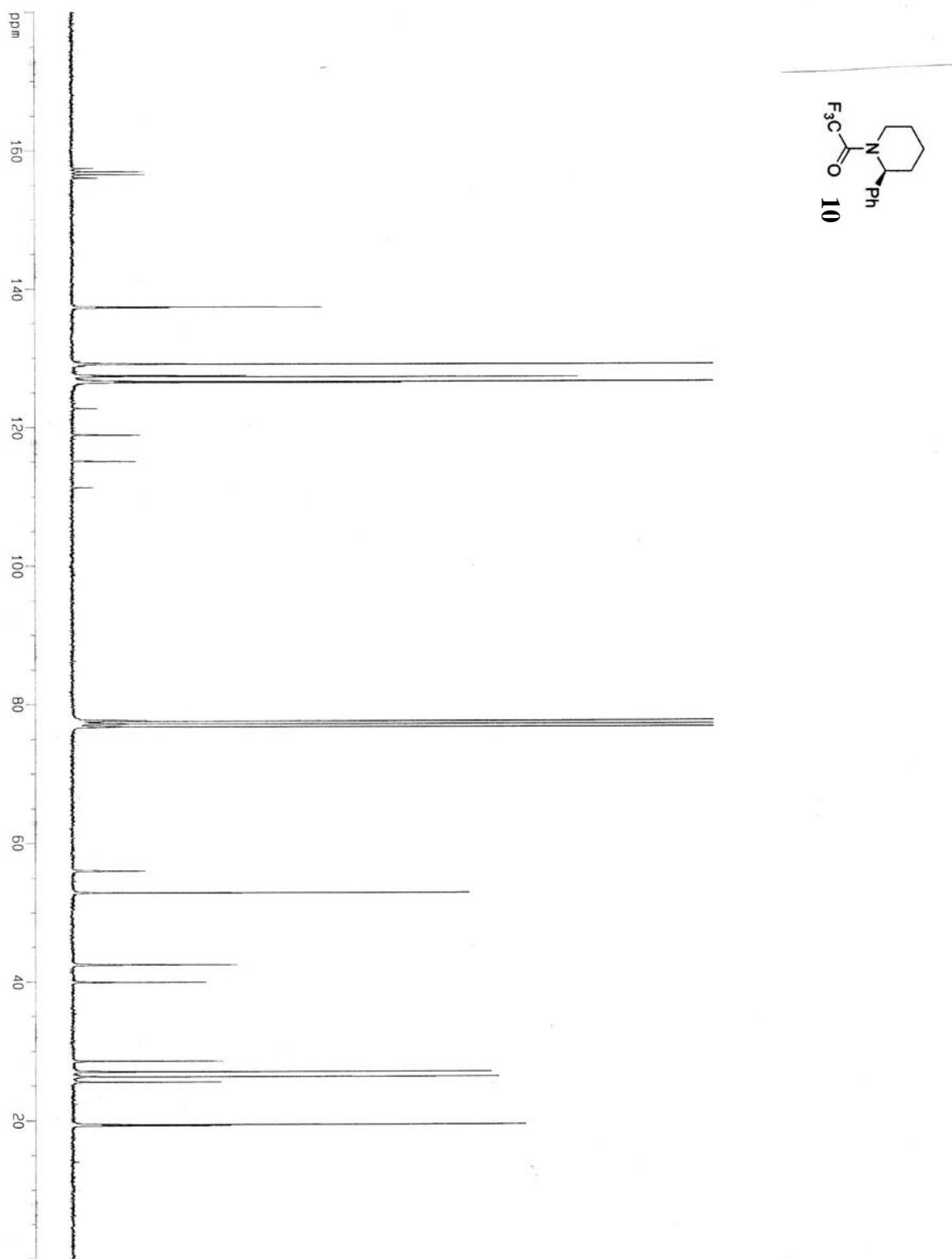



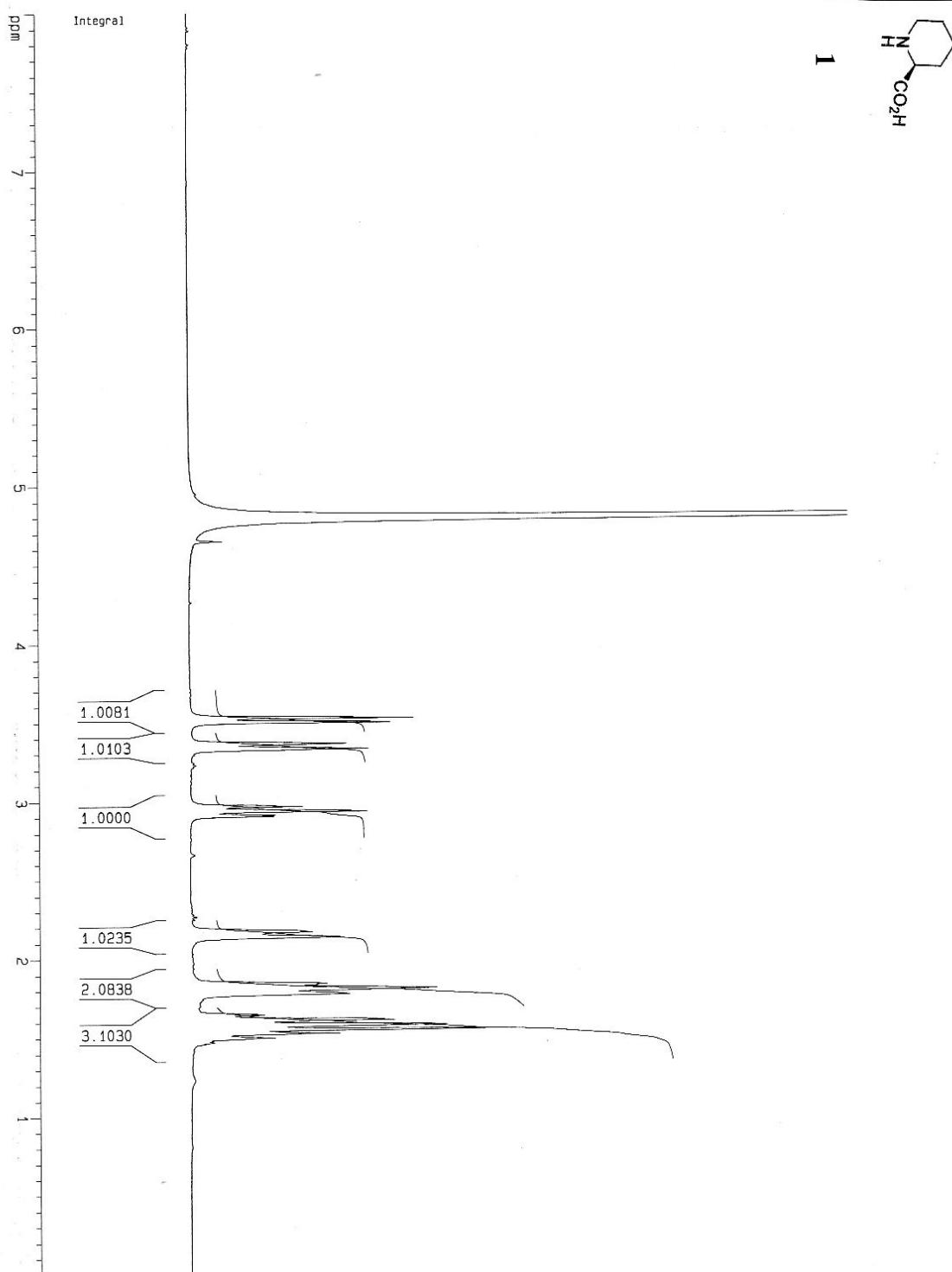


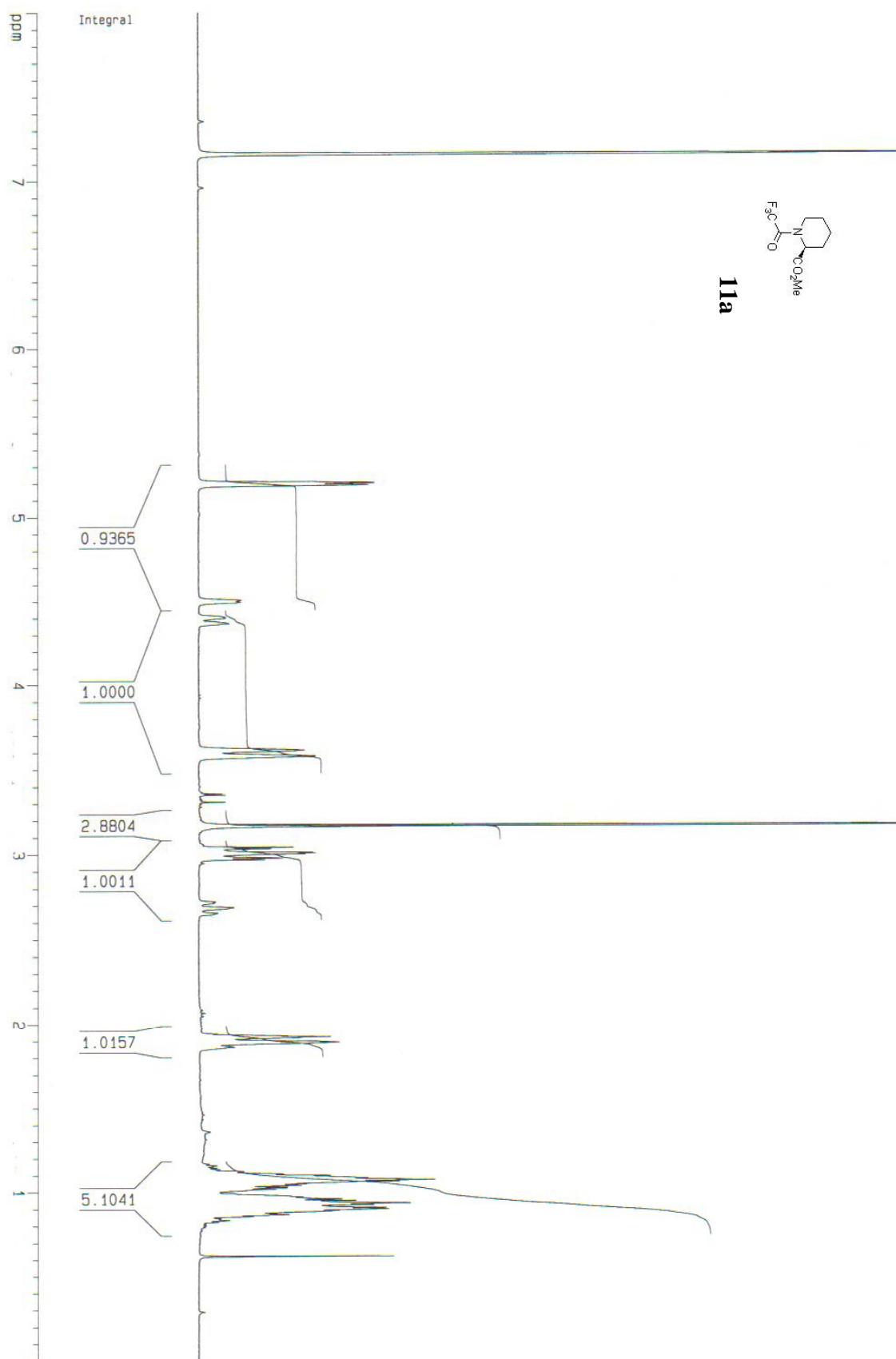


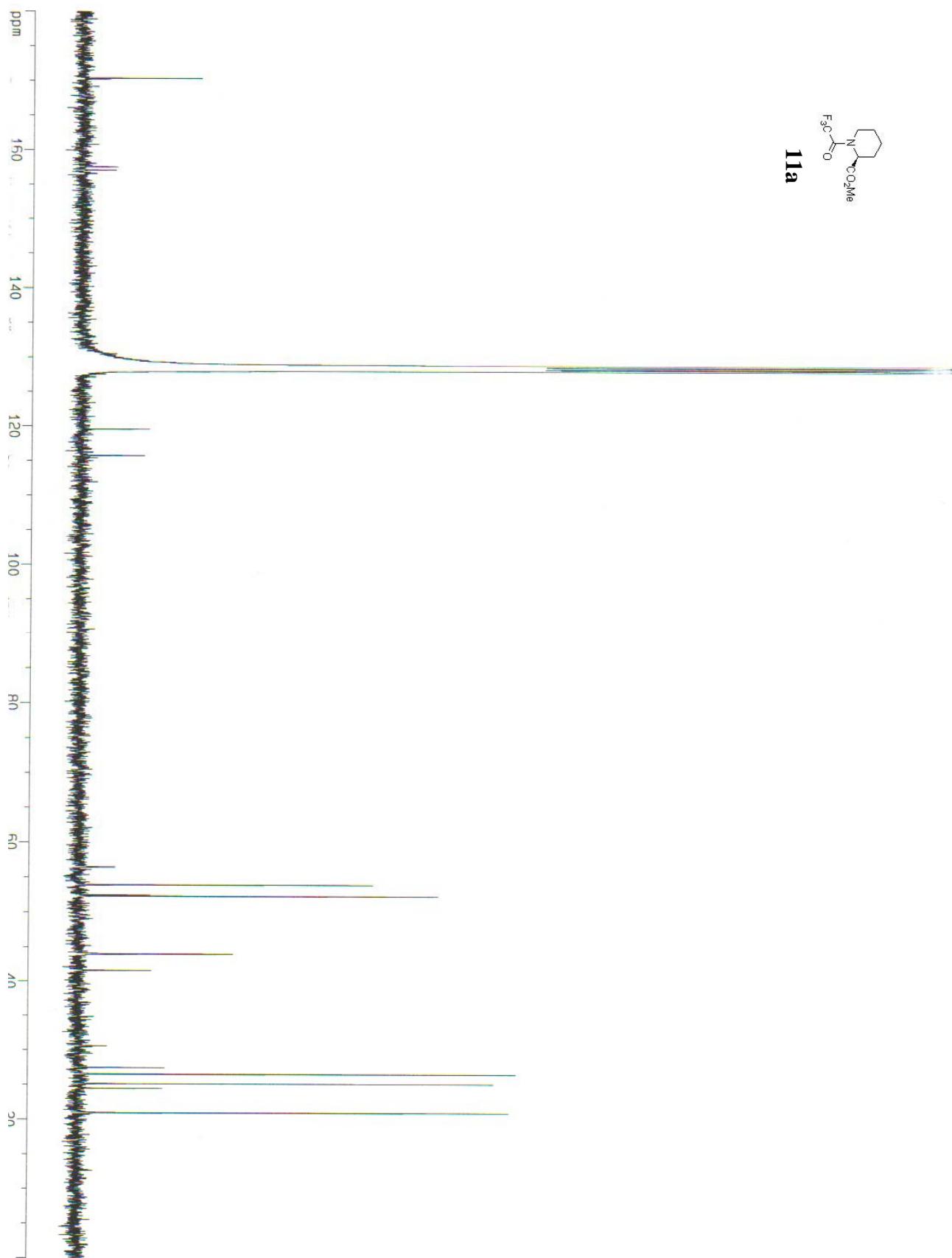



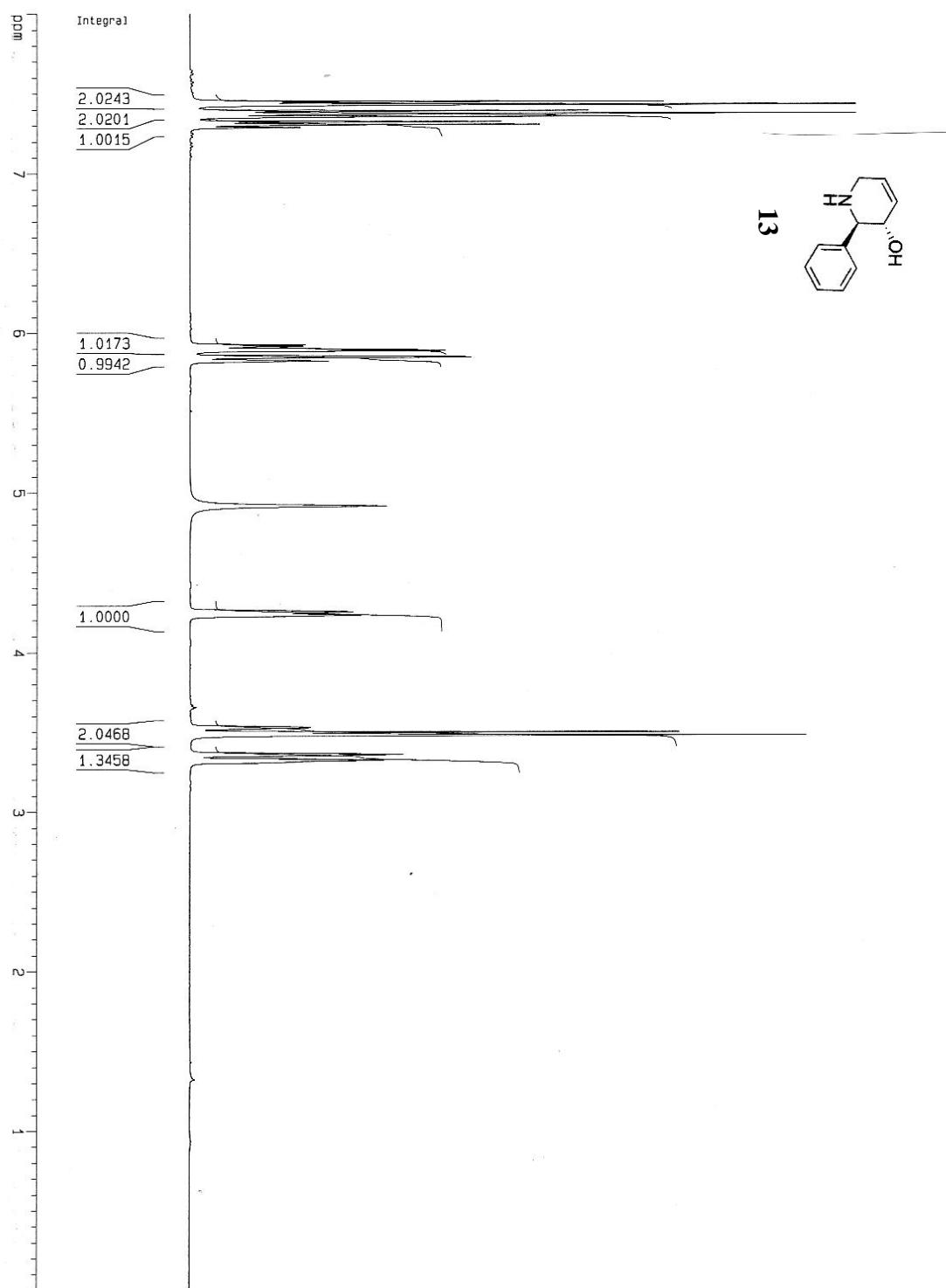


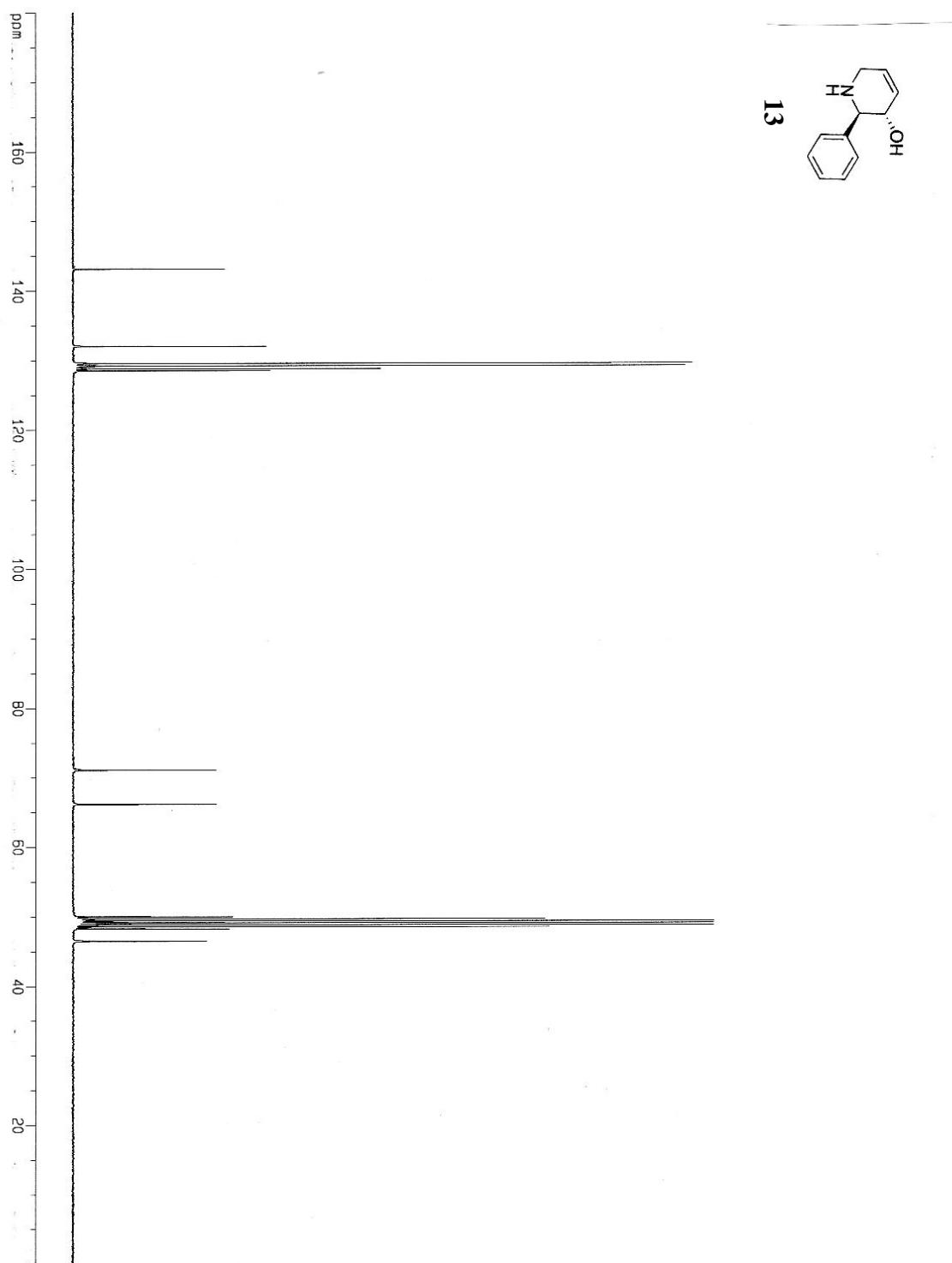

(S)-2-phenylpiperidine

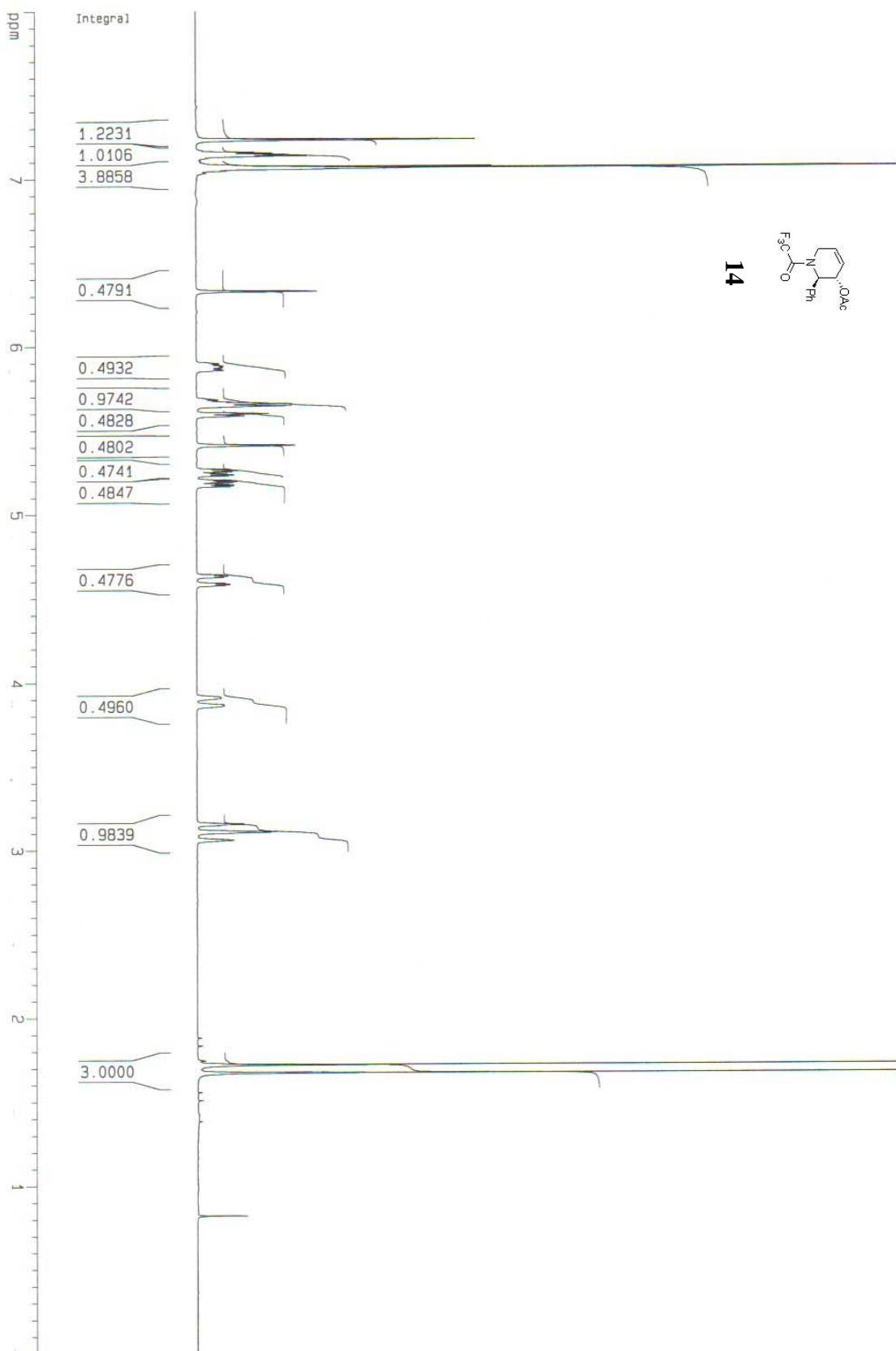


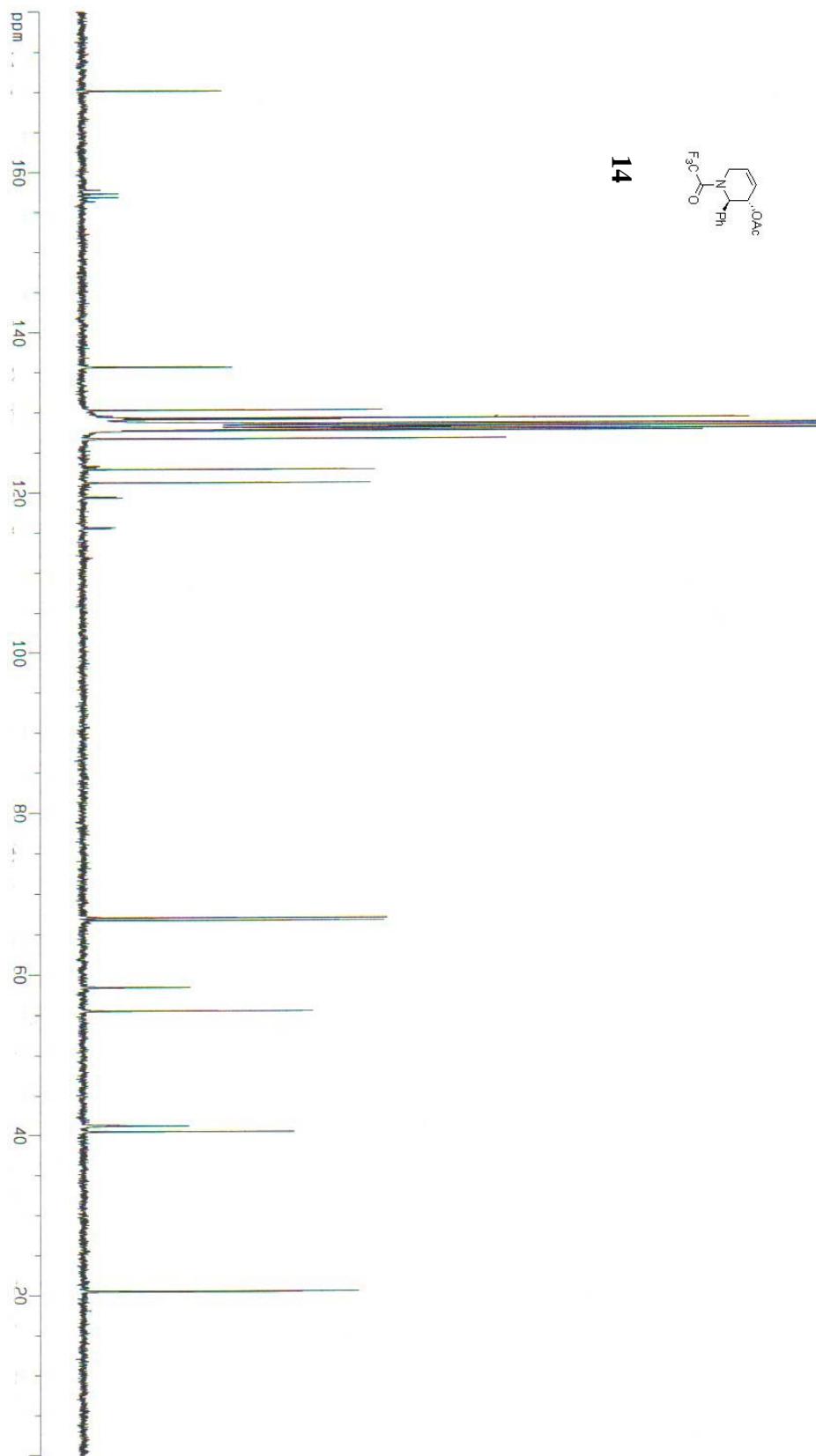


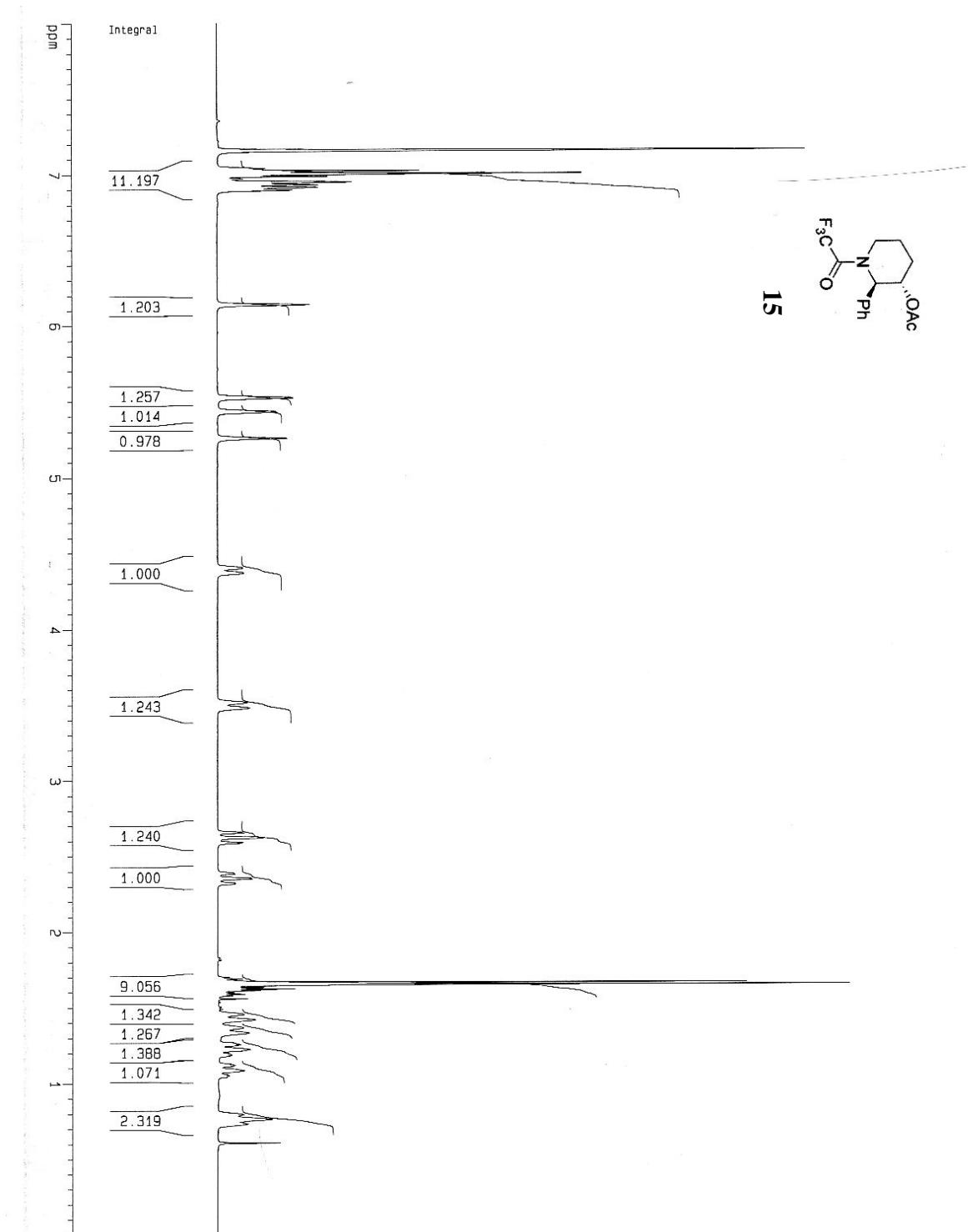


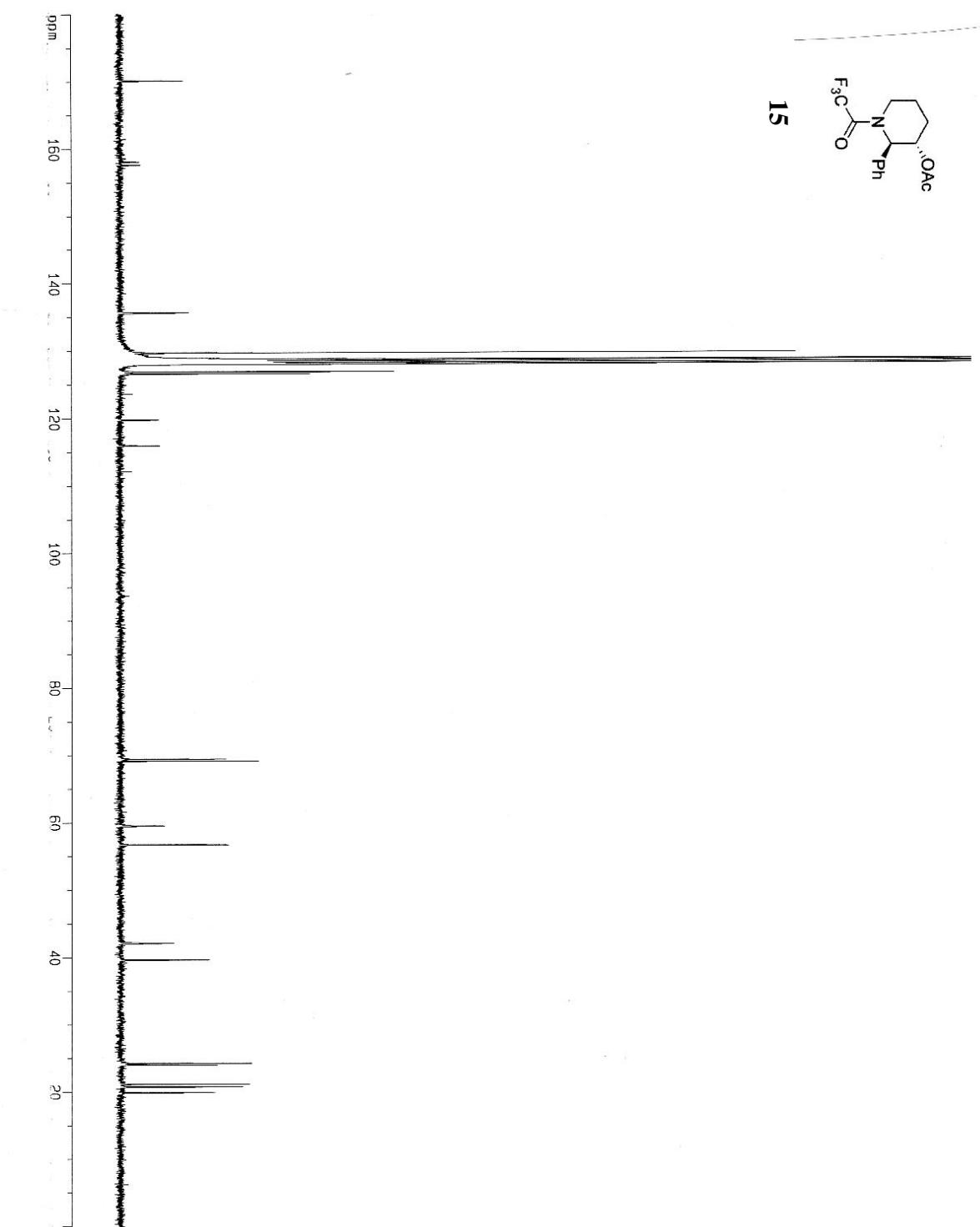


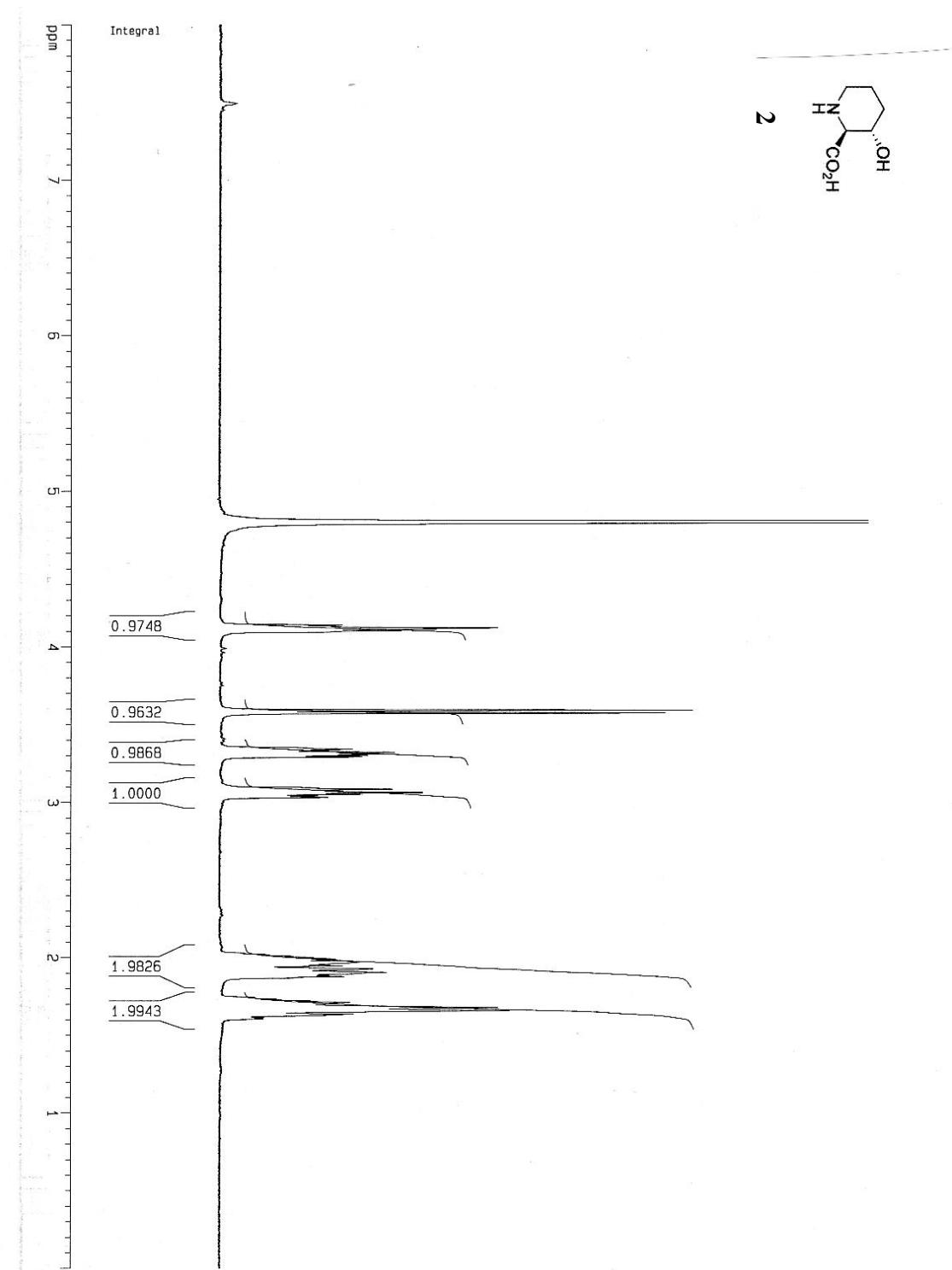


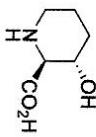












2

