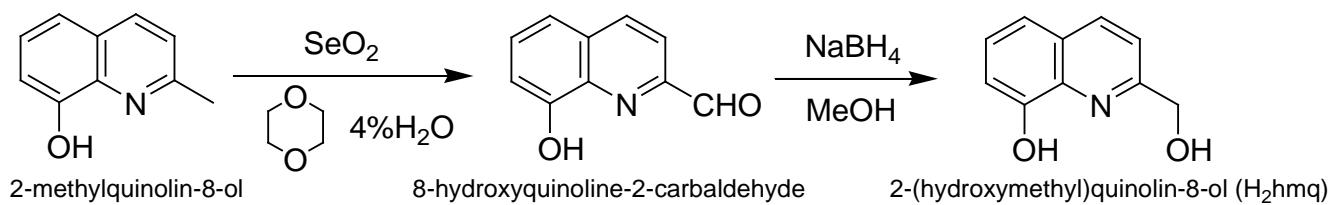
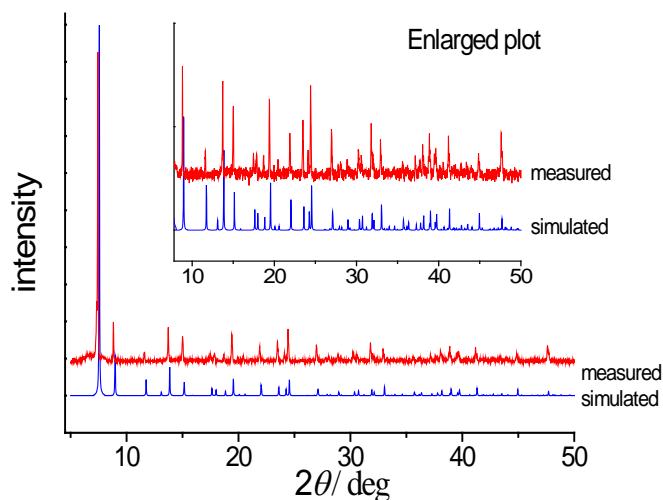


Supporting Information Available


Hydrogen-bonded Dicubane Co^{II}_7 Single-Molecule-Magnet Coordinated by In-situ Solvothermally Generated 1,2-bis(8-hydroxyquinolin-2-yl)ethane-1,2-diol) arranged in a Trefoil

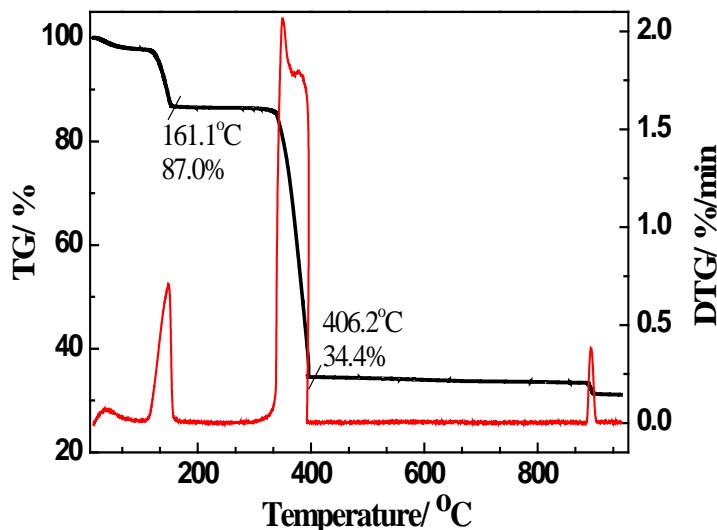
Qing Chen, Ming-Hua Zeng,^{*,†} Yan-Ling Zhou, Hua-Hong Zou and Mohamedally Kurmoo^{*,‡}

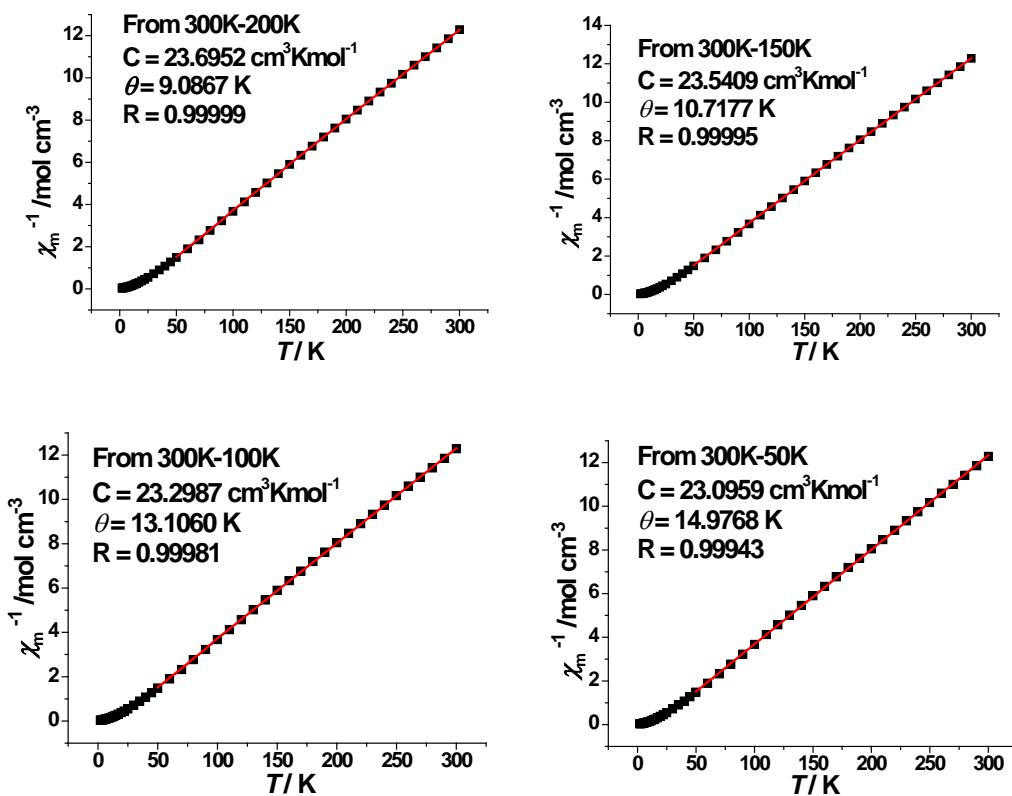
Key Laboratory of Medicinal Chemical Resources and Molecular Engineering, Guangxi Normal University, Guilin 541004, P. R. China and Laboratoire de Chimie de Coordination Organique, CNRS-UMR7140, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg Cedex, France.


E-mail: zmh@mailbox.gxnu.edu.cn ; kurmoo@chimie.u-strasbg.fr

Synthesis of ligand: 2-(hydroxymethyl)-quinolin-8-ol (H_2hmq) was prepared according to literature procedure.¹ 2-methylquinolin-8-ol was first oxidized to the aldehyde by selenium dioxide in dioxane (yield 95%), followed by reduction with NaBH_4 in methanol to give 2-(hydroxymethyl)-quinolin-8-ol (H_2hmq) in 72% yield, M.p. 121.9-122.0 °C. The ligand was identified by ^1H and ^{13}C NMR spectra: ^1H NMR (CDCl_3 , 500 MHz) δ (ppm): 8.09 (d, 1H, J = 8.49 Hz, J = 8.00 Hz, Ar-H), 7.46 (t, 1H, J = 7.93 Hz, J = 7.90 Hz, Ar-H), 7.33 (d, 1H, J = 7.19 Hz, Ar-H), 7.32(d, 1H, J = 6.63 Hz, Ar-H), 7.20 (d, 1H, J = 8.53 Hz, Ar-H), 4.89 (s, 2H, CH_2). ^{13}C NMR (CDCl_3 , 125 MHz) δ (ppm): 157.5, 151.8, 136.9, 127.8, 127.3, 119.0, 117.9, 111.1, 64.7.

Scheme S1. Synthesis of ligand H₂hmq.


Synthesis of compound 1: A mixture of Co(NO₃)₂·6H₂O (1 mmol), H₂hmq (0.5 mmol), and triethylamine (0.25 mL) in 50% ethanol (10 mL) was sealed in a 15-mL Teflon-lined stainless steel bomb. The bomb was heated at 180 °C for 120 hours. After cooling to room temperature the red block crystals were separated from the liquor, washed with ethanol and dried in air (Yield of 17 % based on H₂hmq). Elemental analysis (%): found (calcd) for **1** (Co₇C₆₄H₆₄O₂₃N₆): C, 45.73 (45.28); H, 4.05 (3.80); N, 4.73 (4.95). Selected IR data (KBr pellet, cm⁻¹): 3407s, 1600w, 1565m, 1502m, 1454s, 1329m, 1272m, 1106m, 1052m, 898w, 764m, 494w.


Figure. S1. Observed and simulated PXRD patterns of **1**.

Thermal Properties. The DT-TGA curves for **1** show several steps in the decomposition of the compound. The first weight loss below 120 °C, corresponding to the departure of ethanol guest molecules, is gradual and it is followed by a sharp one at 160 °C, corresponding to the removal of the

guest and coordinated water molecules to reach a mass percentage of 87% (calcd. 87.1%). The compound is then stable up to 330 °C where the hydroxide are removed and the pyrolysis of the organic ligand occurred leaving a mass percentage of 34.4%, which correspond to the formation of Co_2O_3 (calcd. 34.2%). The last step at 910 °C is the reduction of Co_2O_3 to CoO (remaining weight found, 31.2%; calcd. 30.9%).

Figure S2. DT-TGA curves for **1** under N_2 atmosphere.

Figure S3. Plots of χ_m^{-1} and the Curie-Weiss fit (solid curve) give for different temperature ranges (50-300 K; 100-300 K; 150-300 K; 200-300 K).

References

(1) Yoneda, A.; Newkome, G. R.; Theriot, K. J. *J. Org. Chem.* **1991**, *40*, 217.

This information is available free of charge via the Internet at <http://pubs.acs.org>.