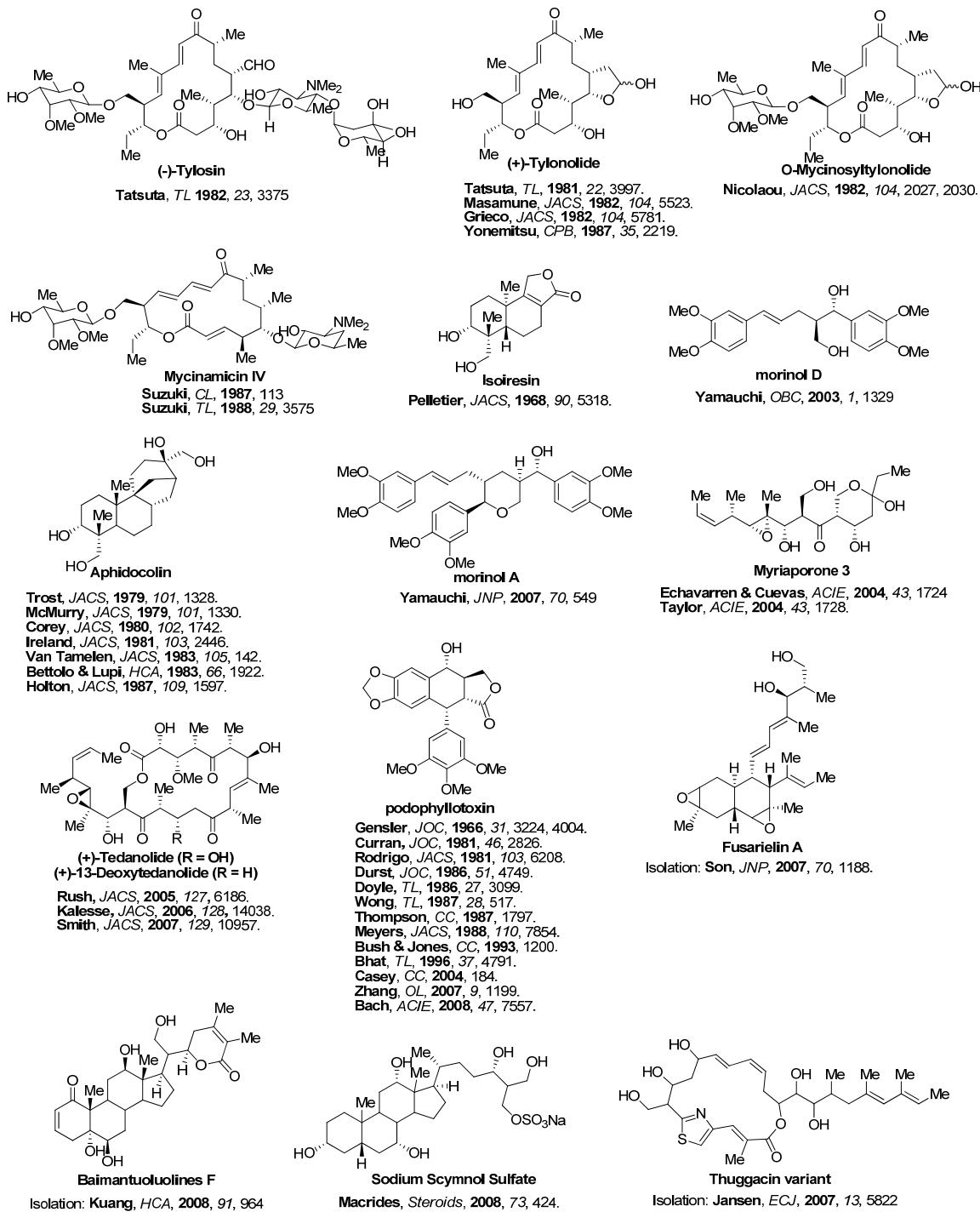


Supplementary Information


***anti*-Diastereo and Enantioselective Carbonyl (Hydroxymethyl)allylation from the Alcohol or Aldehyde Oxidation Level: Allyl Carbonates as Allylmetal Surrogates**

Yong Jian Zhang,^{†,‡} Jin Haek Yang,[†] Sang Hoon Kim,[†] and Michael J. Krische*,[†]

[†]*University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, and* [‡]*School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China*

Table of Contents

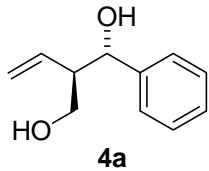
Natural Products Containing α -Hydroxymethylated Alcohol -----	S2
General Experimental Details -----	S3
Procedures for the Preparation of BIPHEP- I and (<i>S</i>)- I -----	S4
General Procedure for the Carbonyl (Hydroxymethyl)allylation -----	S4
Spectroscopic Data for (Hydroxymethyl)allylated Products -----	S5-S31
Confirmation of Absolute Configuration of 4b -----	S32
Synthesis of Oxetane 5c -----	S33-S35
Synthesis of Dihydropyran 6c -----	S36-S39
Synthesis of Dihydropyran 7c -----	S40-S42
Prparation of Carbonate 1c -----	S43
Procedure for Intramolecular Decarboxylative C-C Bond Forming Transfor Hydrogenation -----	S44

Figure S1. Natural Products containing α -hydromethylated alcohol

General Experimental Details. All reactions were run under an atmosphere of argon, unless otherwise indicated. Anhydrous solvents were transferred *via* oven-dried syringe. Reaction tubes were oven-dried and cooled under a stream of argon. Reactions tubes were purchased from Fischer Scientific (catalog number 14-959-35C). Tetrahydrofuran was obtained from solvent delivery system (Innovative Technology Inc. Ps-MD-5). Commercially available alcohols and aldehydes were purified by distillation or recrystallization prior to use. 4-Vinyl-1,3-oxolan-2-one was purchased from Aldrich and used after distillation. Allyl benzyl carbonate (**1b**) was prepared according to the literature report.¹ Analytical thin-layer chromatography (TLC) was carried out using 0.2-mm commercial silica gel plates (DC-Fertigplatten Kieselgel 60 F₂₅₄). Preparative column chromatography employing silica gel was performed according to the method of Still.² Solvents for chromatography are listed as volume/volume ratios. Infrared spectra were recorded on a Perkin-Elmer 1600 spectrometer. High-resolution mass spectra (HRMS) were obtained on a Karatos MS9 and are reported as m/z (relative intensity). Accurate masses are reported for the molecular ion $[M+H]^+$, $[M-H]^+$ or a suitable fragment ion. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with a Varian Gemini 400 (400 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from trimethylsilane or ppm relative to the center of the singlet at 7.26 ppm for deuteriochloroform. Coupling constants are reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with a Varian Gemini 400 (100 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, ppm relative to the center of the triplet at 77.0 ppm for deuteriochloroform. ¹³C NMR spectra were routinely run with broadband decoupling.

¹ Guibe, F.; M'leux, S. *Tetrahedron Lett.* **1981**, 22, 3591.

² Still, W.C.; Kahn, M.; Mitra, A. *J. Org. Chem.* **1978**, 43, 2923.


Preparation of (S)-I: To a mixture of $[\text{Ir}(\text{cod})\text{Cl}]_2$ (87.3 mg, 0.13 mmol, 100 mol%), (S)-SEGPHOS (159 mg, 0.26 mmol, 200 mol%), Cs_2CO_3 (169 mg, 0.52 mmol, 400 mol%), 4-CN-3-NO₂BzOH (100 mg, 0.52 mmol, 400 mol%) and allyl acetate (65 mg, 0.65 mmol, 500 mol%) in a sealed tube under N₂ atmosphere was added THF (2.6 mL, 0.05 M). The reaction mixture was stirred for 30 min at ambient temperature and heated for 1.5 hr at 80 °C, at which point the reaction mixture was allowed to cool to ambient temperature. The reaction mixture was filtered and washed with THF (10 mL). The filtrate was concentrated *in vacuo* and hexanes (50 mL) was added. A yellow precipitate formed, which was collected by filtration and dried under vacuum (101 mg, 0.098 mmol, 75% yield).

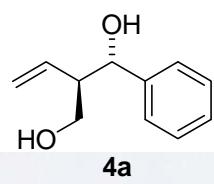
Preparation of BIPHEP-I: To a mixture of $[\text{Ir}(\text{cod})\text{Cl}]_2$ (87.3 mg, 0.13 mmol, 100 mol%), BIPHEP (136 mg, 0.26 mmol, 200 mol%), Cs_2CO_3 (169 mg, 0.52 mmol, 400 mol%), 4-CN-3-NO₂BzOH (100 mg, 0.52 mmol, 400 mol%) and allyl acetate (65 mg, 0.65 mmol, 500 mol%) in a sealed tube under N₂ atmosphere was added THF (2.6 mL, 0.05 M). The reaction mixture was stirred for 30 min at ambient temperature and heated for 1.5 hr at 80 °C, at which point the reaction mixture was allowed to cool to ambient temperature. The reaction mixture was filtered and washed with THF (10 mL). The filtrate was concentrated *in vacuo* and hexanes (50 mL) was added. A yellow precipitate formed, which was collected by filtration and dried under vacuum (108 mg, 0.11 mmol, 88% yield).

General Procedure for the Carbonyl (Hydroxymethyl)allylation from Alcohols: To a re-sealable pressure tube (13 x 100 mm) equipped with magnetic stir bar were added (S)-I (10.3 mg, 0.01 mmol, 5 mol%), alcohol (0.2 mmol, 100 mol%). The tube was evacuated and backfilled with nitrogen (3 times). 4-Vinyl-1,3-dioxolan-2-one (38 μL , 0.4 mmol, 200 mol%) and THF (0.2 mL, 1.0 M concentration with respect to alcohol) were added and the rubber septum was quickly replaced with a screw cap. The mixture was heated at 90 °C (oil bath temperature) for 48 hr, at which point the reaction mixture was allowed to cool to ambient temperature. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂) under the conditions noted to furnish the corresponding product.

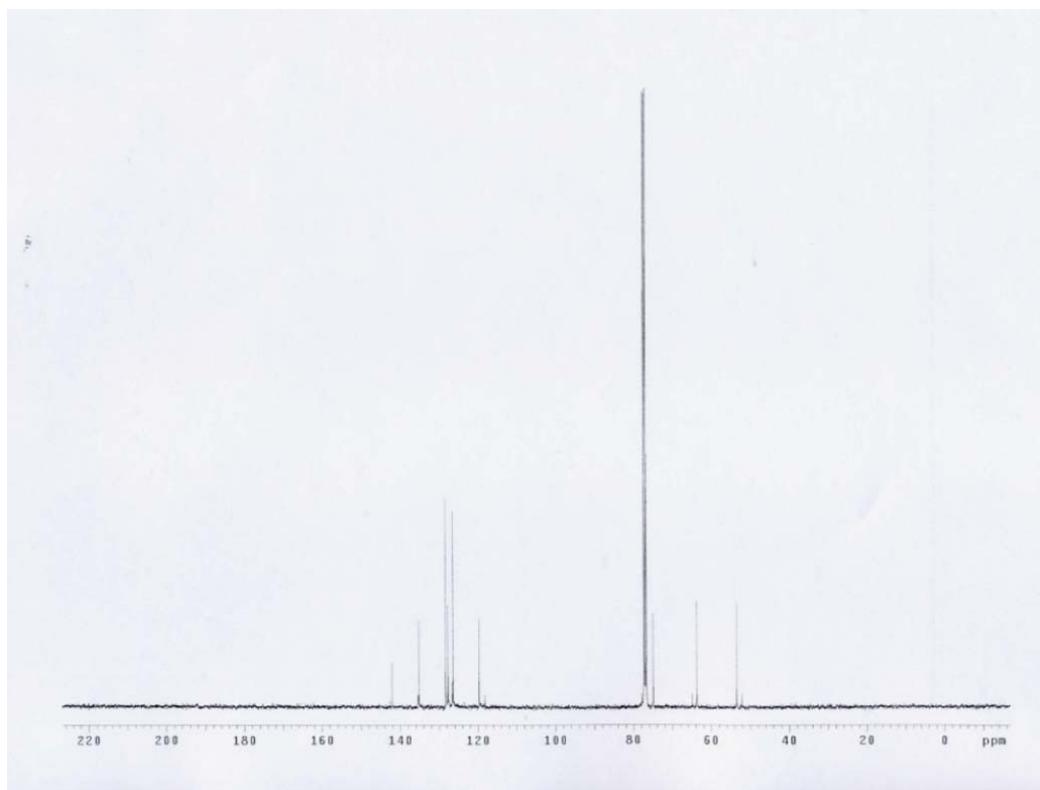
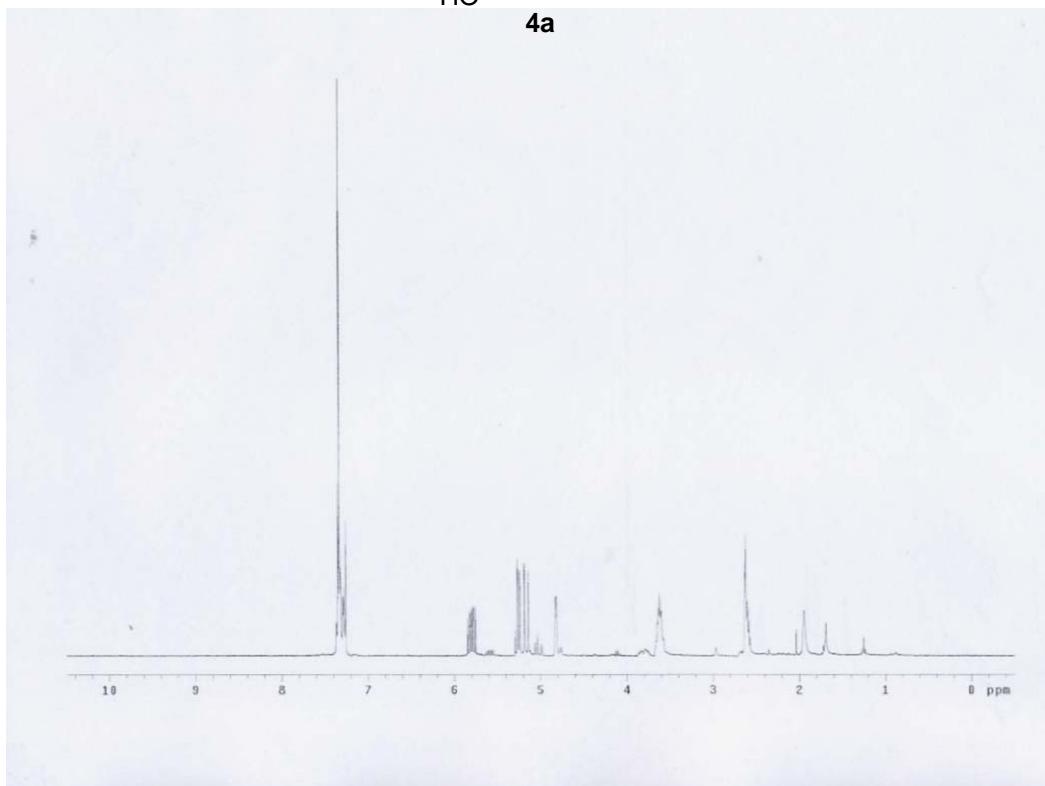
General Procedure for the Carbonyl (Hydroxymethyl)allylation from Aldehydes: To a re-sealable pressure tube (13 x 100 mm) equipped with magnetic stir bar were added (S)-I (10.3 mg, 0.01 mmol, 5 mol%), aldehyde (0.2 mmol, 100 mol%). The tube was evacuated and backfilled with nitrogen (3 times). 4-Vinyl-1,3-dioxolan-2-one (38 μL , 0.4 mmol, 200 mol%), isopropanol (31 μL , 0.4 mmol, 200 mol%) and THF (0.2 mL, 1.0 M concentration with respect to aldehyde) were added and the rubber septum was quickly replaced with a screw cap. The mixture was heated at 90 °C (oil bath temperature) for 48 hr, at which point the reaction mixture was allowed to cool to ambient temperature. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂) under the conditions noted to furnish the corresponding product.

(1*S*,2*R*)-1-Phenyl-2-vinylpropane-1,3-diol (4a)

In accordance with the general procedure, the product was isolated by flash column chromatography (SiO₂: ethyl acetate:hexanes, 1:2). The reaction from benzyl alcohol gave the title compound (23.6 mg, *anti:syn* = 6:1) as a colorless oil in 67% yield, and the reaction from benzaldehyde gave the product (22.5 mg, *anti:syn* = 5:1) in 63% yield.

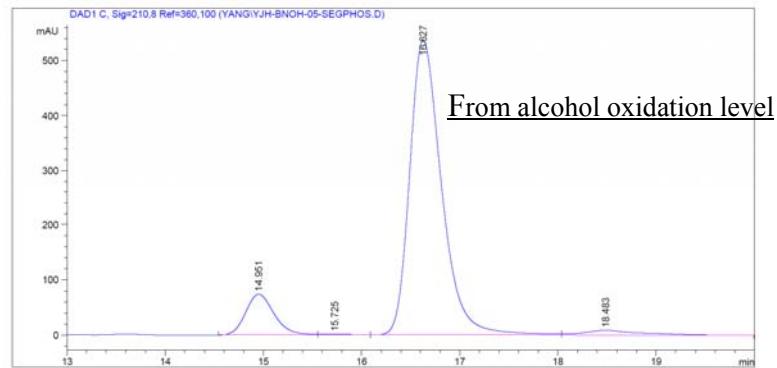

¹H NMR (400 MHz, CDCl₃): δ 7.26 – 7.37 (m, 5H), 5.82 (ddd, J = 8.8, 10.4, 17.2 Hz, 1H), 5.26 (ddd, J = 0.4, 2.0, 10.0 Hz, 1H), 5.17 (ddd, J = 0.8, 1.6, 17.2 Hz, 1H), 4.83 (dd, J = 3.2, 6.0 Hz, 1H), 3.58 – 3.68 (m, 2H), 2.58 – 2.64 (m, 1H), 2.56 (d, J = 3.2 Hz, 1H), 1.87 (t, J = 5.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 142.0, 135.2, 128.3, 127.7, 126.4, 119.7, 75.0, 63.7, 53.4.

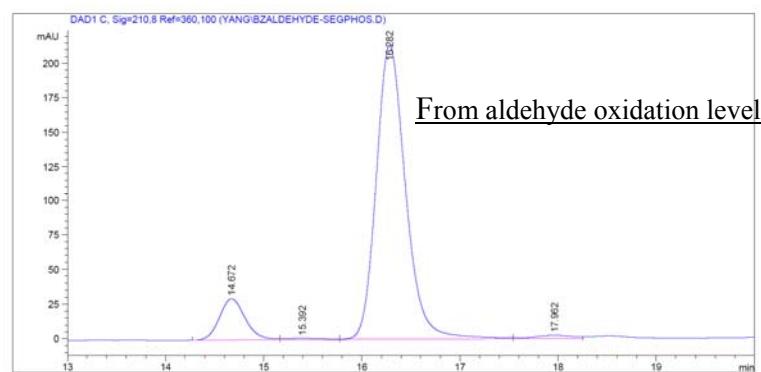


HRMS (ESI-MS): Calcd. for C₁₁H₁₄O₂+Na (M+Na): 201.0891, Found: 201.0885.

FTIR (neat): 3384, 3055, 1264, 733 cm⁻¹.

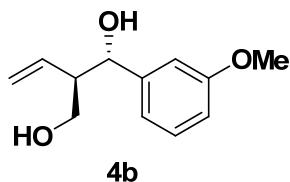
HPLC (Chiralcel OB-H column, hexanes:*i*-PrOH = 93:7, 0.5 mL/min, 210 nm), ee = 94% from benzyl alcohol, ee = 99% from benzaldehyde.



4a



Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.904	VV	0.2960	4026.30981	209.69662	5.6952
2	15.647	VV	0.3118	3724.62646	184.27650	5.2685
3	16.505	VV	0.3830	3.10874e4	1263.67078	43.9730
4	18.254	VB	0.4383	3.18582e4	1125.30078	45.0633

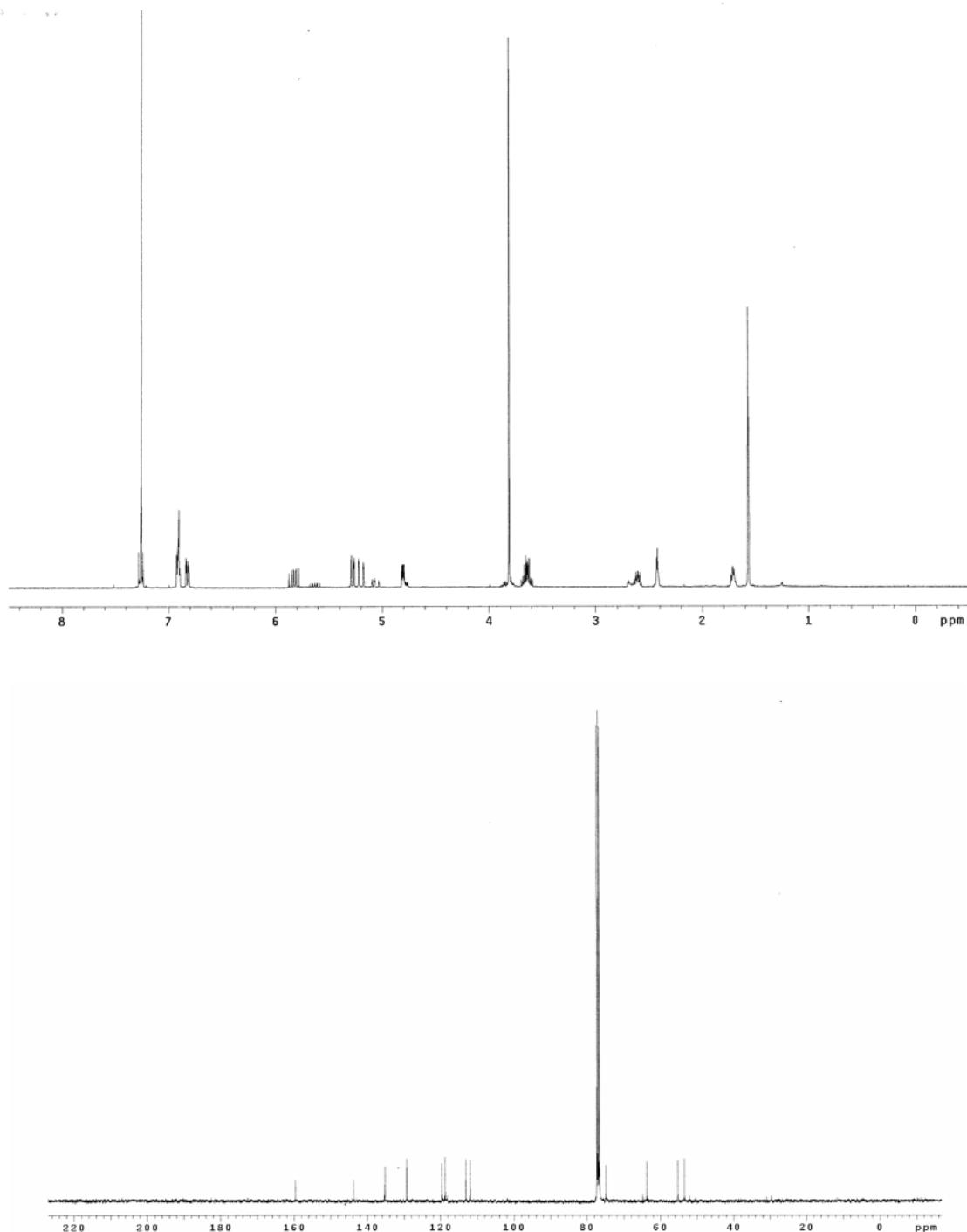
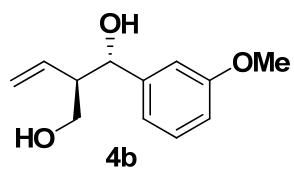


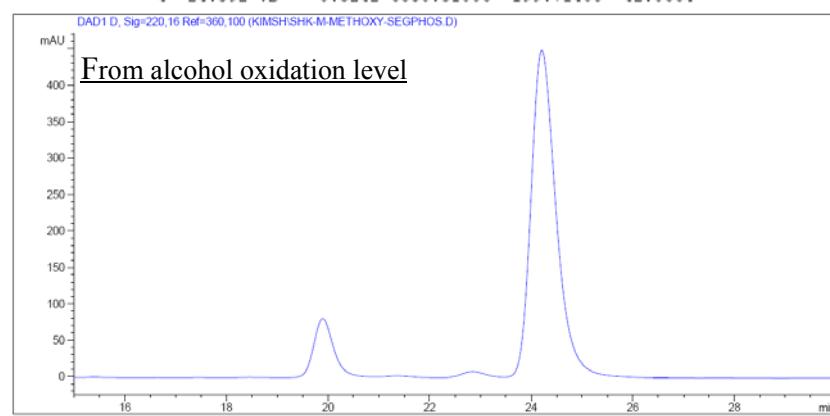
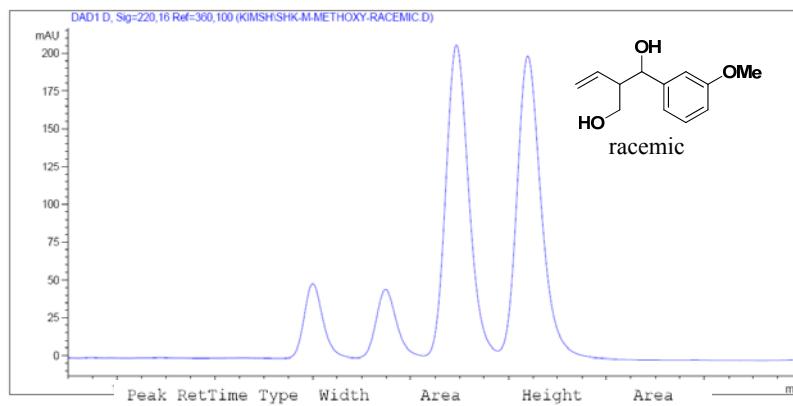
Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.951	BV	0.3086	1511.87122	74.56531	10.7373
2	15.725	VV	0.3271	46.87523	2.07822	0.3329
3	16.627	VV	0.3481	1.21558e4	536.95856	86.3304
4	18.483	VB	0.5708	366.01489	8.84497	2.5994

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.672	BV	0.2820	550.58826	30.01999	10.8019
2	15.392	VV	0.3555	29.73244	1.14289	0.5833
3	16.282	VB	0.3231	4449.84717	213.54999	87.3010
4	17.962	BV	0.3855	66.96167	2.46070	1.3137

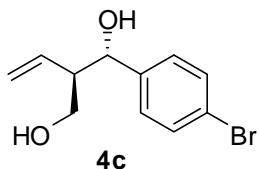
(1*S*,2*R*)-1-(3-Methoxyphenyl)-2-vinylpropane-1,3-diol (4b)

In accordance with the general procedure, the product was isolated by flash column chromatography (SiO₂: ethyl acetate:hexanes, 1:2). The reaction from 3-methoxybenzyl alcohol gave the title compound (30.0 mg, *anti:syn* = 7:1) as a colorless oil in 72% yield, and the reaction from 3-methoxybenzaldehyde gave the product (30.8 mg, *anti:syn* = 6:1) in 74% yield.



¹H NMR (400 MHz, CDCl₃): δ 7.28 – 7.24 (m, 1H), 6.93 – 6.90 (m, 2H), 6.84 – 6.81 (m, 1H), 5.78 (ddd, *J* = 8.8, 10.4, 17.6 Hz, 1H), 5.28 (dd, *J* = 1.6, 10.4 Hz, 1H), 5.20 (ddd, *J* = 1.6, 1.6, 17.6 Hz, 1H), 4.81 (dd, *J* = 3.2, 6.0 Hz, 1H), 3.82 (s, 3H), 3.70 – 3.60 (m, 2H), 2.64 – 2.58 (m, 1H), 2.43 (d, *J* = 3.6 Hz, 1H), 1.72 (dd, *J* = 4.8, 6.0 Hz, 1H)



¹³C NMR (100 MHz, CDCl₃): δ 159.6, 143.8, 135.2, 129.3, 119.6, 118.7, 113.1, 111.9, 74.8, 63.7, 55.2, 53.4

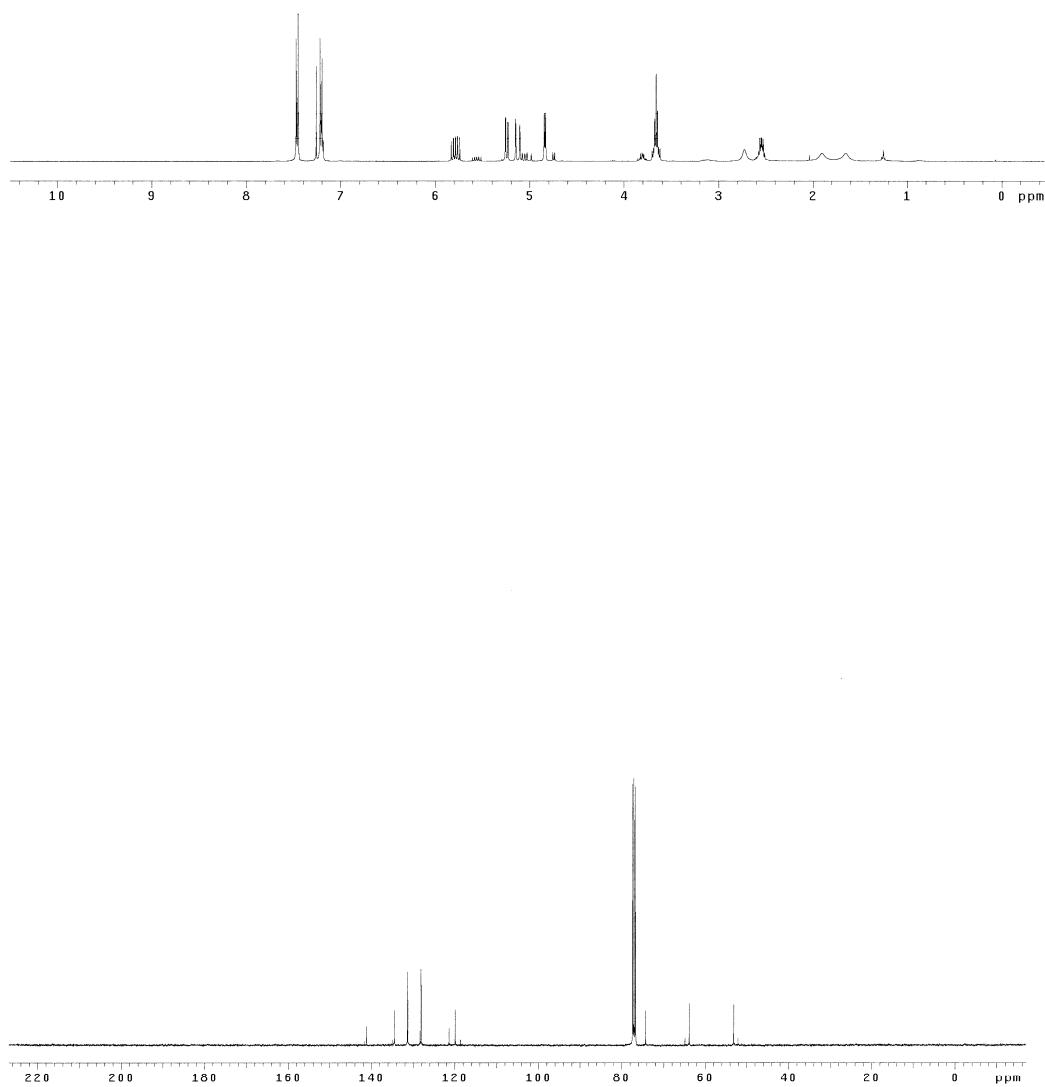
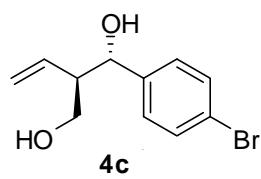
HRMS (CI): Calcd. for C₁₂H₁₅O₃ (M-H): 207.1021, Found: 207.1020

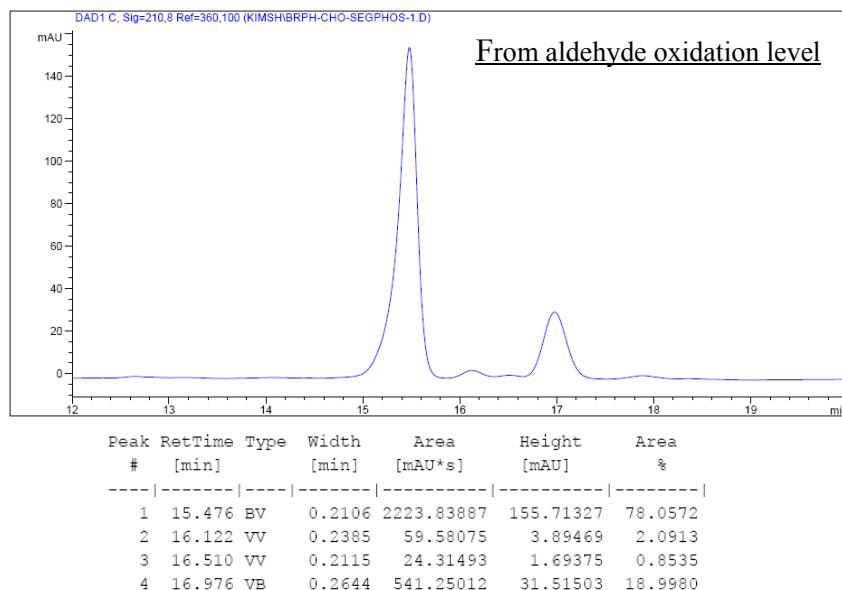
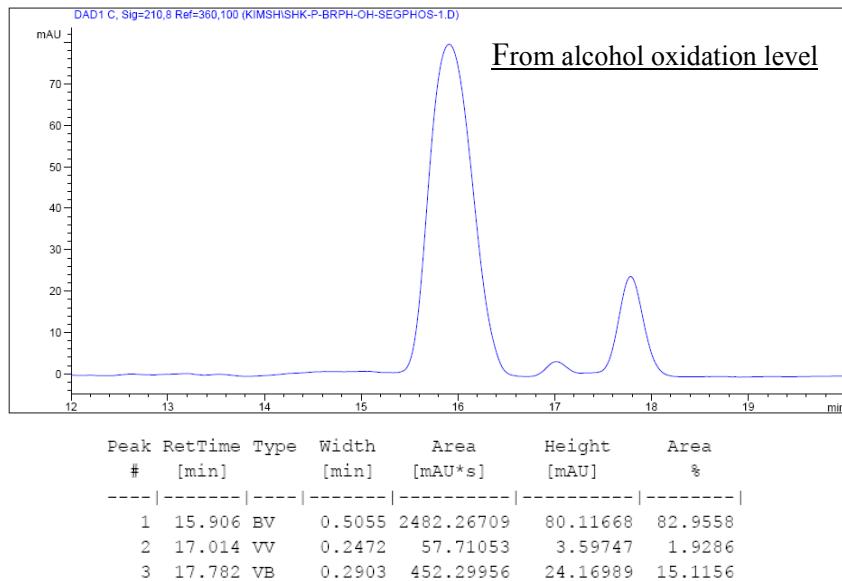
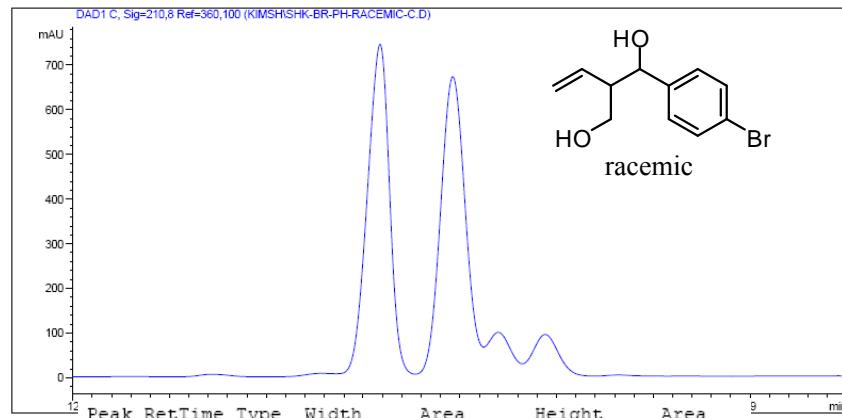

FTIR (neat): 3384, 2924, 1601, 1436, 1260, 1043, 764cm⁻¹

HPLC (Connecting Chiralcel OD-H column and AD-H column, hexanes:*i*-PrOH = 87:13, 1.0 mL/min, 220 nm), ee = 97% from 3-methoxybenzyl alcohol, ee = 98% from 3-methoxybenzaldehyde.

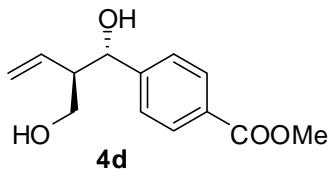
(1*S*,2*R*)-1-(4-Bromophenyl)-2-vinylpropane-1,3-diol (4c)

In accordance with the general procedure, the product was isolated by flash column chromatography (SiO₂: ethyl acetate:hexanes, 1:2). The reaction from 4-bromobenzyl alcohol gave the title compound (35.0 mg, *anti:syn* = 5:1) as a colorless oil in 68% yield, and the reaction from 4-bromobenzaldehyde gave the product (33.0 mg, *anti:syn* = 5:1) in 64% yield.



¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 5.78 (ddd, *J* = 8.4, 10.8, 17.2 Hz, 1H), 5.24 (dd, *J* = 1.6, 10.8 Hz, 1H), 5.13 (dd, *J* = 1.6, 17.2 Hz, 1H), 4.84 (d, *J* = 5.2 Hz, 1H), 3.66 (m, 2H), 2.73 (bs, 1H), 2.58 – 2.51 (m, 1H), 1.90 (bs, 1H).




¹³C NMR (100 MHz, CDCl₃): δ 141.1, 134.5, 131.3, 128.1, 121.4, 119.9, 74.3, 63.8, 53.1.

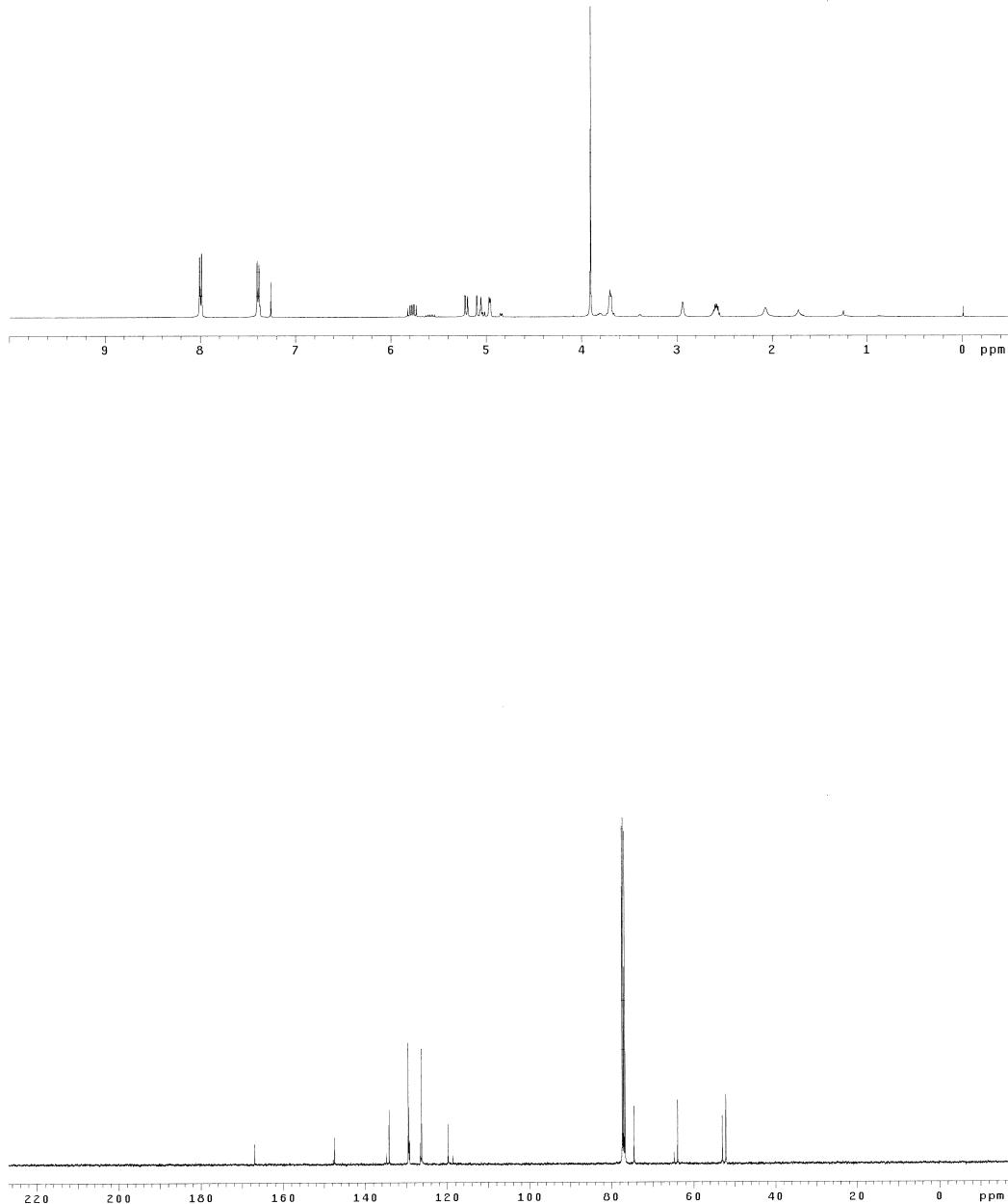
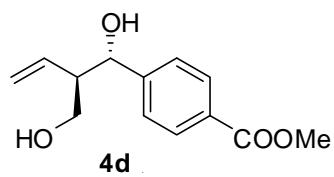
HRMS (CI): Calcd. for C₁₁H₁₂BrO₂ (M–H): 255.0021, Found: 255.0019.

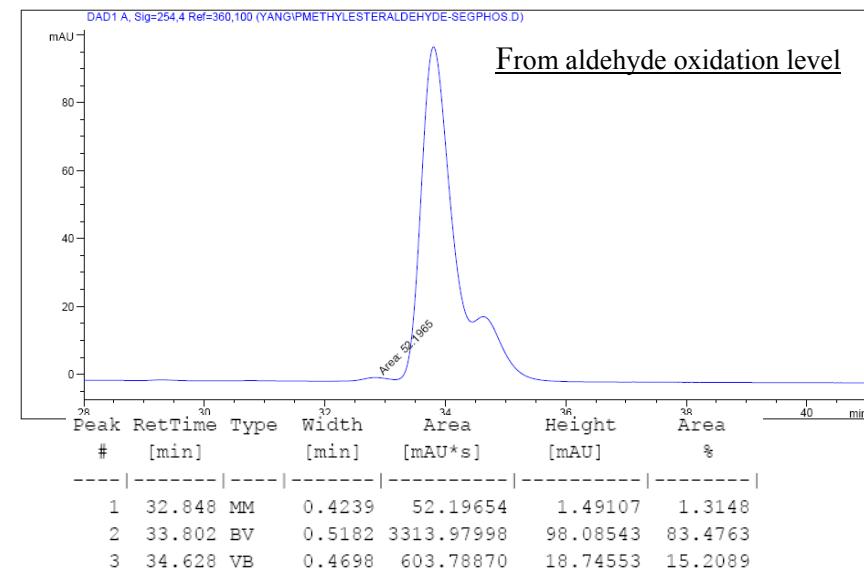
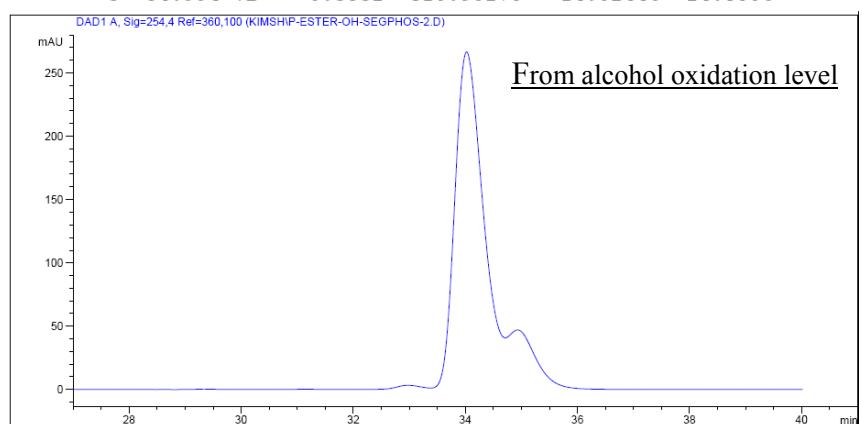
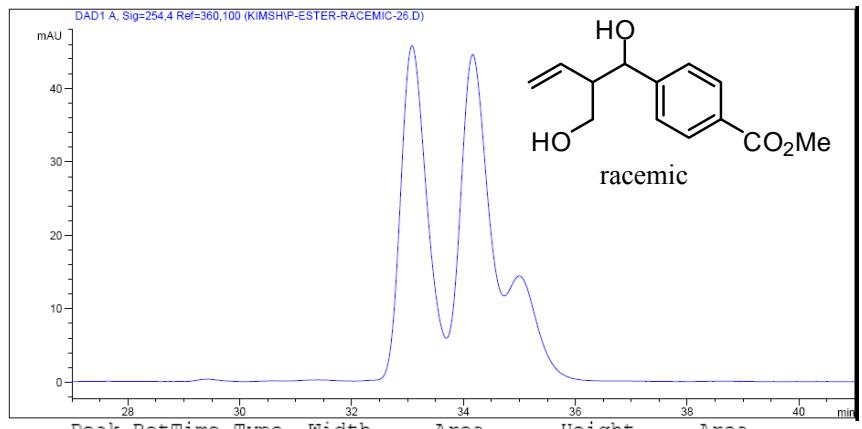

FTIR (neat): 3356, 3076, 2884, 1639, 1487, 1402, 1070, 1010, 832 cm⁻¹.

HPLC (connecting two Chiralcel AS-H columns, hexanes:*i*-PrOH = 90:10, 1.0 mL/min, 220 nm), ee = 95% from 4-bromobenzyl alcohol, ee = 95% from 4-bromobenzaldehyde.

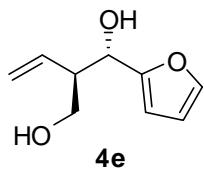
Methyl 4-((1*S*,2*R*)-1-hydroxy-2-(hydroxymethyl)but-3-enyl)benzoate (4d)

In accordance with the general procedure, the product was isolated by flash column chromatography (SiO₂: ethyl acetate:hexanes, 1:2). The reaction from methyl 4-(hydroxymethyl)benzoate gave the title compound (33.0 mg, *anti:syn* = 5:1) as a colorless oil in 70% yield, and the reaction from methyl 4-formylbenzoate gave the product (32.8 mg, *anti:syn* = 4:1) in 70% yield.



¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 5.78 (ddd, *J* = 8.8, 10.4, 17.2 Hz, 1H), 5.21 (dd, *J* = 1.6, 10.4 Hz, 1H), 5.08 (dd, *J* = 1.6, 17.2 Hz, 1H), 4.96 (d, *J* = 5.2 Hz, 1H), 3.90 (s, 3H), 3.73 – 3.66 (m, 2H), 2.94 (bs, 1H), 2.63 – 2.55 (m, 1H), 2.07 (bs, 1H).




¹³C NMR (100 MHz, CDCl₃): δ 167.0, 147.5, 134.2, 129.6, 129.5, 126.3, 119.8, 74.5, 63.9, 53.0, 52.1.

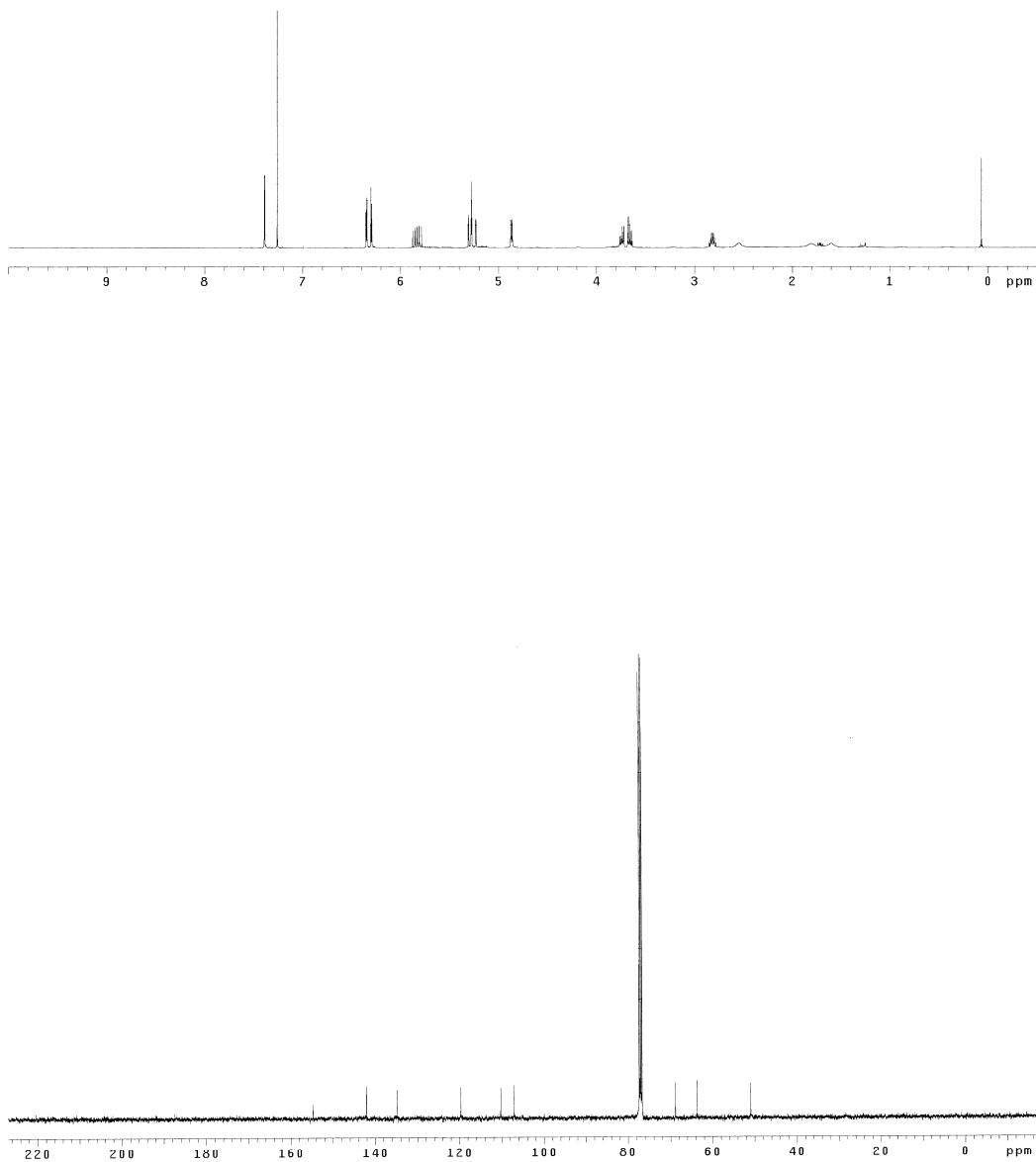
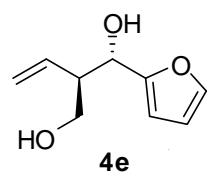
HRMS (CI): Calcd. for C₁₃H₁₇O₄ (M+H): 237.1127, Found: 237.1126.

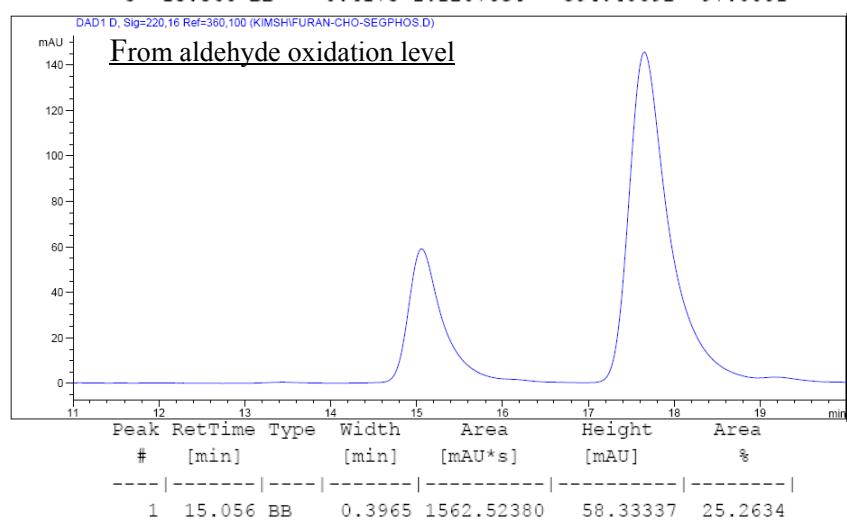
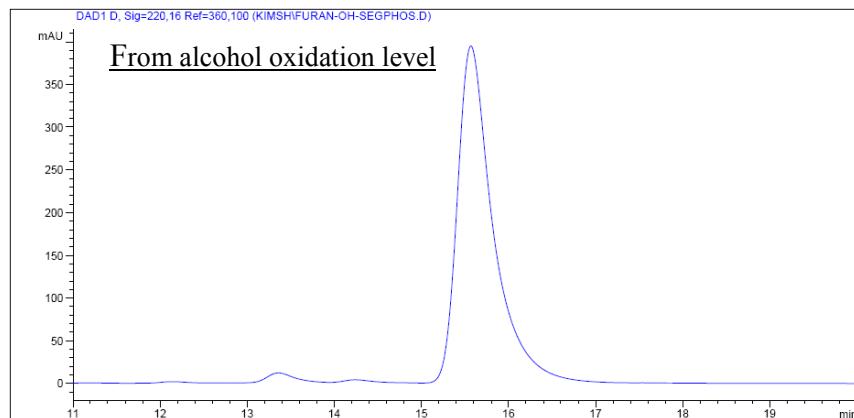
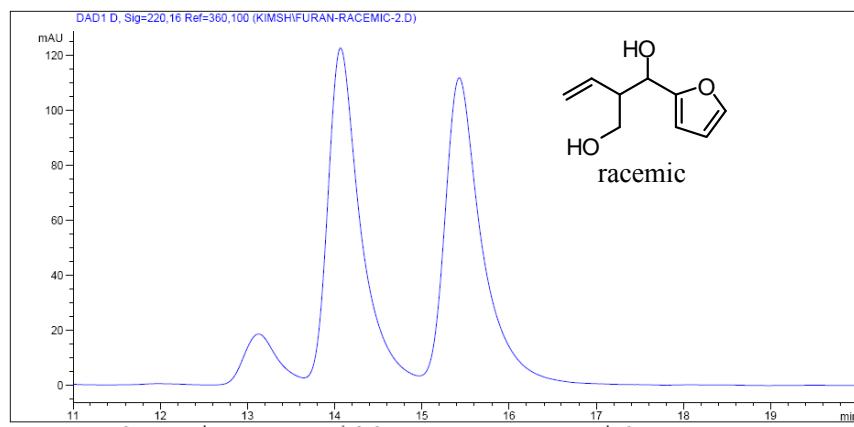

FTIR (neat): 3392, 2952, 1703, 1640, 1436, 1279, 1018, 810, 735 cm⁻¹.

HPLC (connecting two Chiralcel OJ-H columns and one Chiralcel AD-H column, hexanes:*i*-PrOH = 85:15, 0.8 mL/min, 254 nm), ee = 98% from methyl 4-(hydroxymethyl)benzoate, ee = 98% from methyl 4-formylbenzoate.

(1*S*,2*R*)-1-(Furan-2-yl)-2-vinylpropane-1,3-diol (4e)

In accordance with the general procedure, the product was isolated by flash column chromatography (SiO₂: ethyl acetate:hexanes, 1:2). The reaction from furfuryl alcohol gave the title compound (24.4 mg, *anti:syn* = 9:1) as a colorless oil in 72% yield, and the reaction from 2-furaldehyde gave the product (22.5 mg, *anti:syn* = 5:1) in 67% yield.



¹H NMR (400 MHz, CDCl₃): δ 7.39 (m, 1H), 6.35 – 6.34 (m, 1H), 6.30 – 6.29 (m, 1H), 5.83 (ddd, *J* = 8.4, 10.4, 17.6 Hz, 1H), 5.29 (ddd, *J* = 0.8, 1.6, 10.4 Hz, 1H), 5.25 (ddd, *J* = 1.2, 1.6, 17.2 Hz, 1H), 4.87 (d, *J* = 5.6 Hz, 1H), 3.74 (dd, *J* = 6.0, 10.8 Hz, 1H), 3.66 (dd, *J* = 6.0, 10.8 Hz, 1H), 2.85 – 2.78 (m, 1H), 2.55 (bs, 1H), 1.81 (bs, 1H).




¹³C NMR (100 MHz, CDCl₃): δ 154.8, 142.0, 134.8, 119.6, 110.2, 107.1, 68.8, 63.6, 50.9.

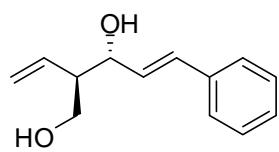
HRMS (CI): Calcd. for C₉H₁₁O₃ (M–H): 167.0708, Found: 167.0708.

FTIR (neat): 3354, 3079, 2886, 1640, 1505, 1422, 1148, 1010, 922, 738 cm⁻¹.

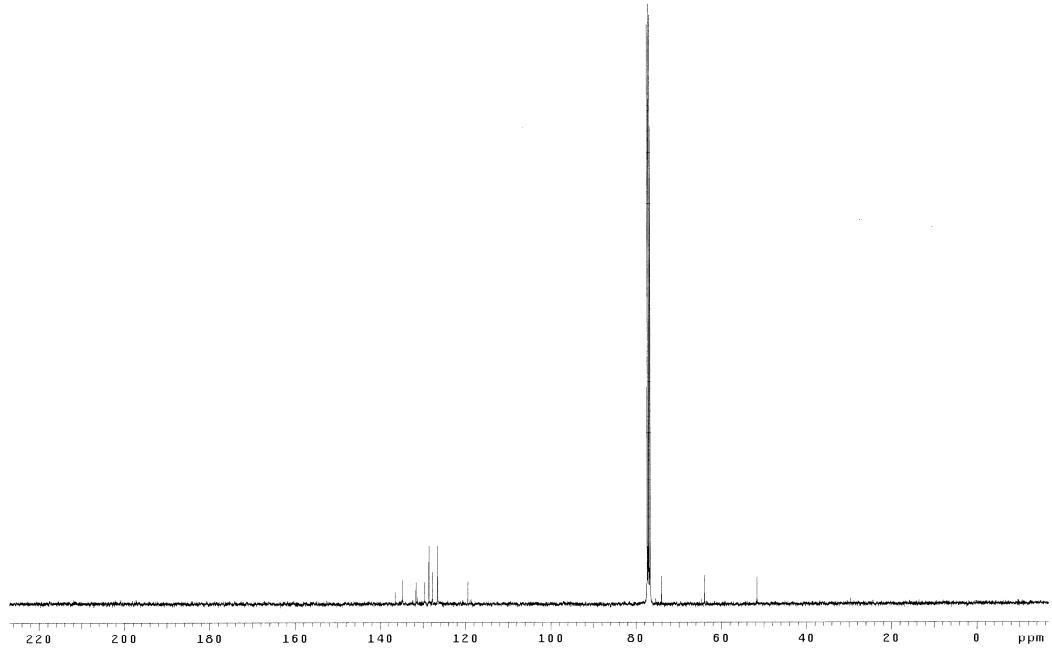
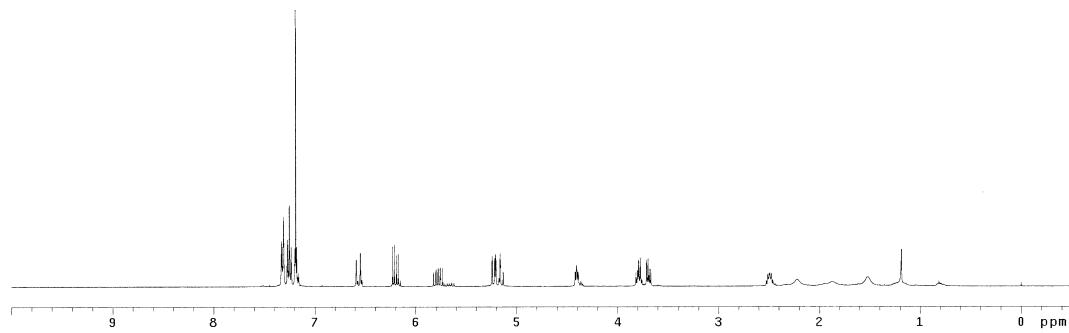
HPLC (Chiralcel AD-H column, hexane:*i*-PrOH = 92:8, 1.0 mL/min, 210 nm), ee = 99% from furfuryl alcohol, ee = 97% from 2-furaldehyde.

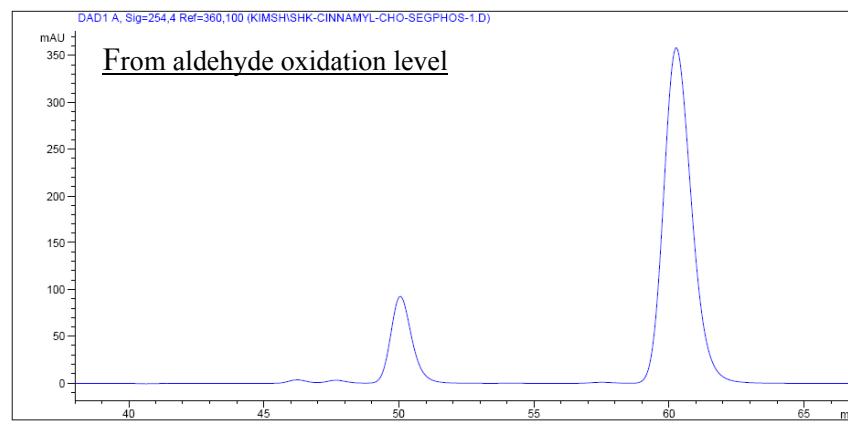
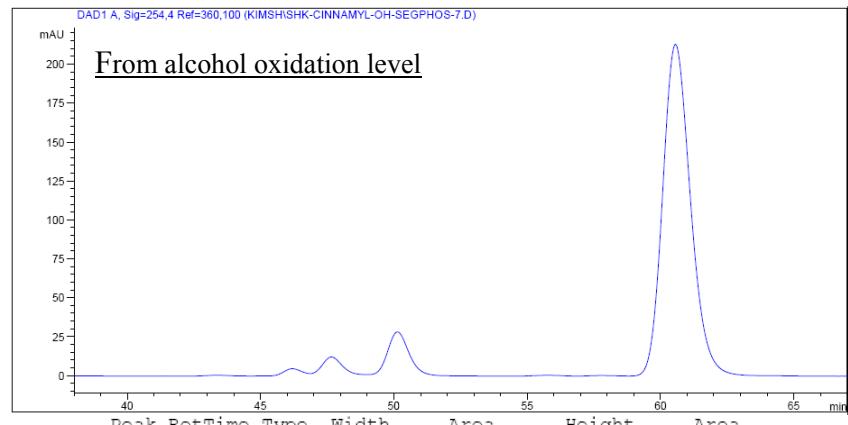
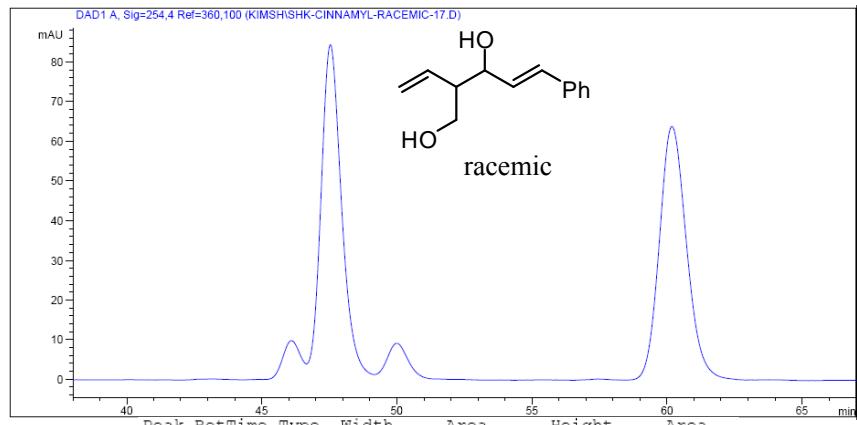
(2*R*,3*R*,*E*)-5-Phenyl-2-vinylpent-4-ene-1,3-diol (4f)

In accordance with the general procedure, the product was isolated by flash column chromatography (SiO₂: ethyl acetate:hexanes, 1:2). The reaction from *trans*-cinnamyl alcohol gave the title compound (30.0 mg, *anti:syn* = 7:1) as a colorless oil in 74% yield, and the reaction from *trans*-cinnamaldehyde gave the product (27.8 mg, *anti:syn* = 7:1) in 68% yield.

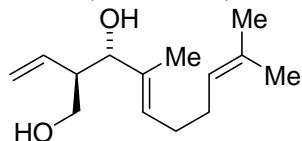

¹H NMR (400 MHz, CDCl₃): δ 7.40 – 7.37 (m, 2H), 7.34 – 7.31 (m, 2H), 7.27 – 7.24 (m, 1H), 6.64 (d, *J* = 16.0 Hz, 1H), 6.27 (dd, *J* = 6.8, 16 Hz, 1H), 5.85 (ddd, *J* = 8.4, 10.4, 17.2 Hz, 1H), 5.30 (dd, *J* = 1.6, 10.4 Hz, 1H), 5.25 (dd, *J* = 1.6, 17.2 Hz, 1H), 4.48 (dd, *J* = 5.6, 6.0 Hz, 1H), 3.87 (dd, *J* = 6.4, 10.8 Hz, 1H), 3.76 (dd, *J* = 6.0, 10.8 Hz, 1H), 2.60 – 2.53 (m, 1H), 2.29 (bs, 1H), 1.94 (bs, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 136.5, 134.8, 131.6, 129.6, 128.6, 127.8, 126.5, 119.4, 74.0, 63.9, 51.6.



HRMS (CI): Calcd. for C₁₃H₁₅O₂ (M–H): 203.1072, Found: 203.1074.




FTIR (neat): 3342, 3078, 2282, 1739, 1639, 1599, 1448, 1229, 966, 751, 692 cm⁻¹.

HPLC (connecting two Chiralcel AD-H columns and one Chiralcel OD-H column, hexanes:*i*-PrOH = 92:8, 1.0 mL/min, 254 nm), ee = 93% from *trans*-cinnamyl alcohol, ee = 99% from *trans*-cinnamaldehyde.

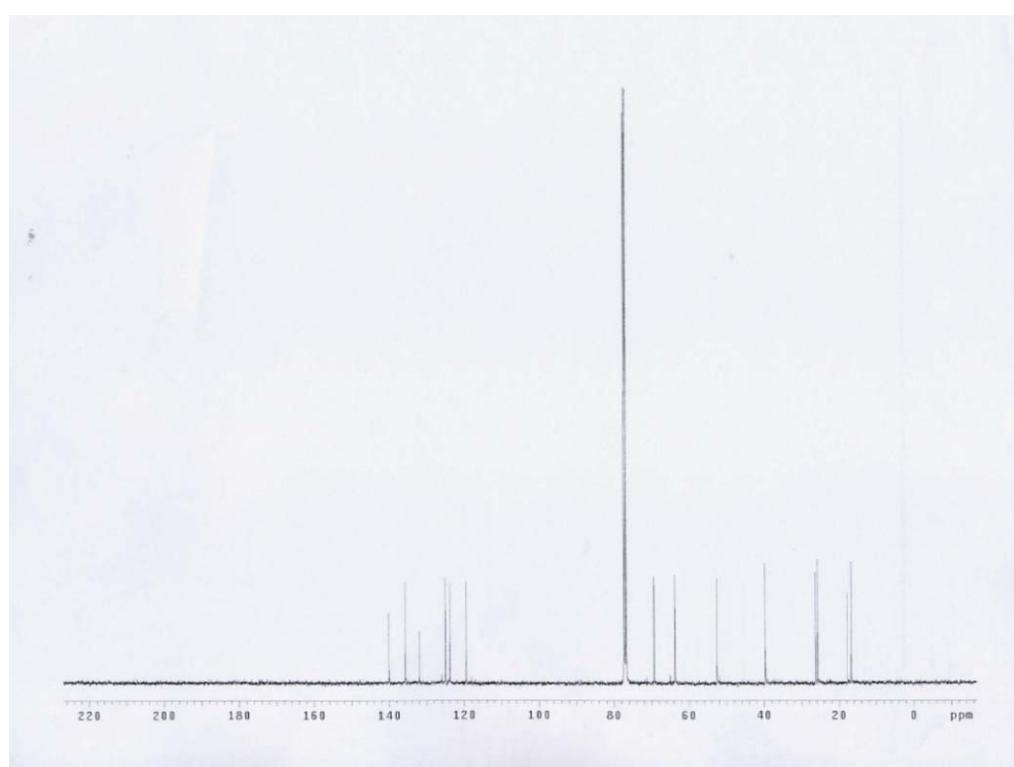
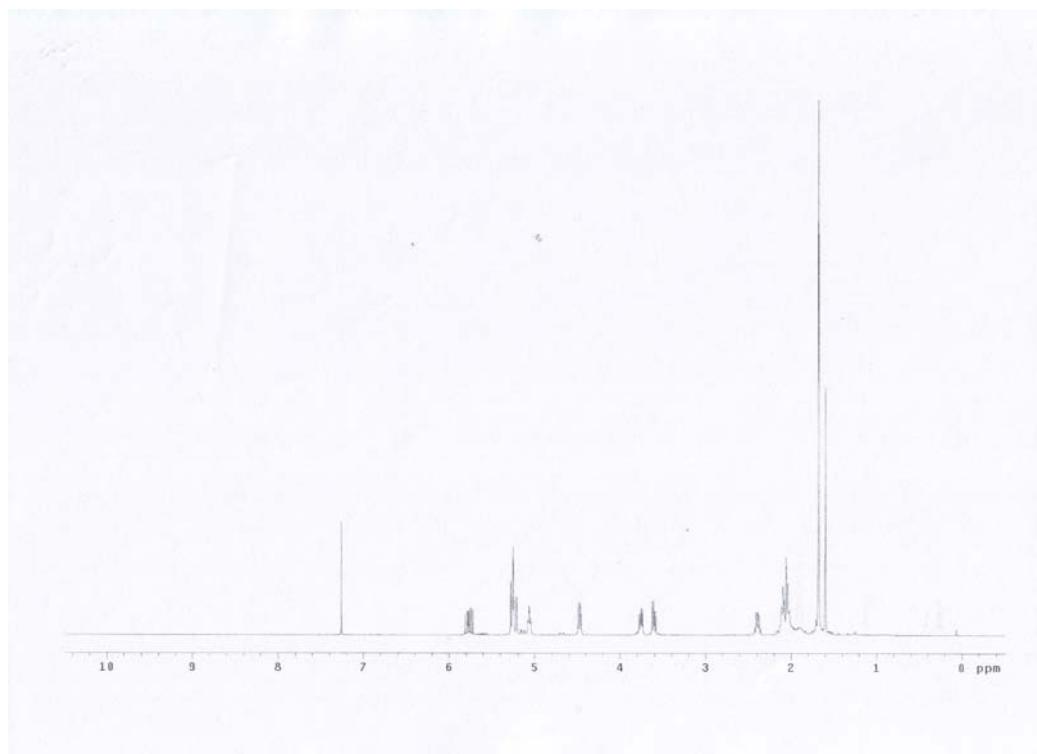
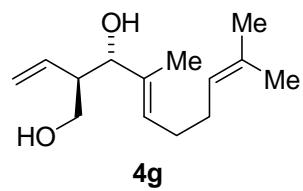


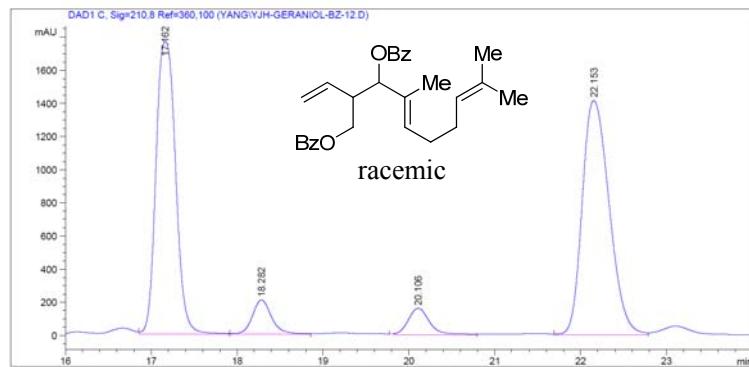
4f

(2*R*,3*S*,*E*)-4,9-Dimethyl-2-vinyldeca-4,8-diene-1,3-diol (4g)

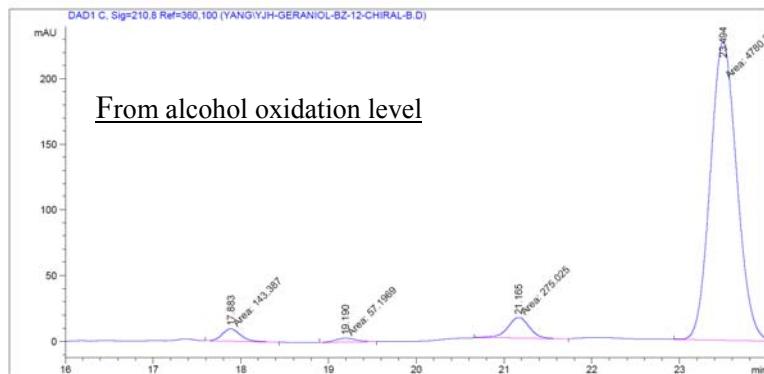
4g

In accordance with the general procedure, the product was isolated by flash column chromatography (SiO₂: ethyl acetate:hexanes, 1:2). The reaction from geraniol gave the title compound (27.7 mg, *anti:syn* = 10:1) as a colorless oil in 66% yield, and the reaction from (*E*)-3,7-dimethyl-2,6-octadienal gave the product (26.4 mg, *anti:syn* = 14:1) in 63% yield.

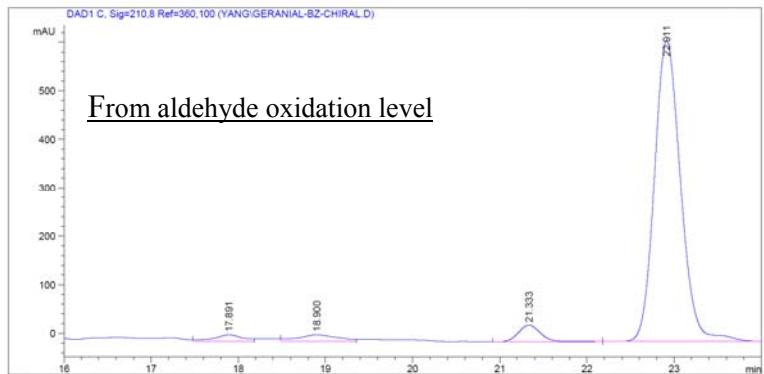



¹H NMR (400 MHz, CDCl₃): δ 5.76 (ddd, *J* = 8.8, 10.4, 17.2 Hz, 1H), 5.21 – 5.28 (m, 3H), 5.06 (dt, *J* = 0.4, 6.4 Hz, 1H), 4.47 (dd, *J* = 5.6, 8.8 Hz, 1H), 3.75 (dd, *J* = 6.4, 10.8 Hz, 1H), 3.60 (dd, *J* = 6.4, 10.8 Hz, 1H), 2.37 – 2.41 (m, 1H), 2.02 – 2.11 (m, 6H), 1.68 (s, 3H), 1.67 (s, 3H), 1.60 (s, 3H).


¹³C NMR (100 MHz, CDCl₃): δ 140.0, 135.7, 131.9, 125.0, 123.8, 119.4, 69.3, 63.7, 52.5, 39.7, 26.3, 25.7, 17.7, 16.7.

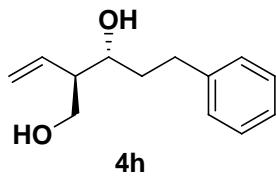
HRMS (ESI-MS): Calcd. for C₁₄H₂₄O₂+Na (M+Na): 247.1674, Found: 247.1668.


FTIR (neat): 3350, 2966, 2917, 1666, 1290, 915 cm⁻¹.

HPLC The enantioselectivity was determined by transformation of **4g** to corresponding dibenzoate. (connecting Chiralcel AD-H and OD-H column, hexanes:*i*-PrOH = 97:3, 0.5 mL/min, 210 nm), ee = 95% from geraniol, ee = 97% from geranal.



Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.162	VV	0.2535	2.81415e4	1769.80334	43.1889
2	18.282	VV	0.2438	3367.86450	209.25429	5.1687
3	20.106	VV	0.2676	2785.43359	159.60603	4.2748
4	22.153	VV	0.3465	3.08643e4	1414.86780	47.3676

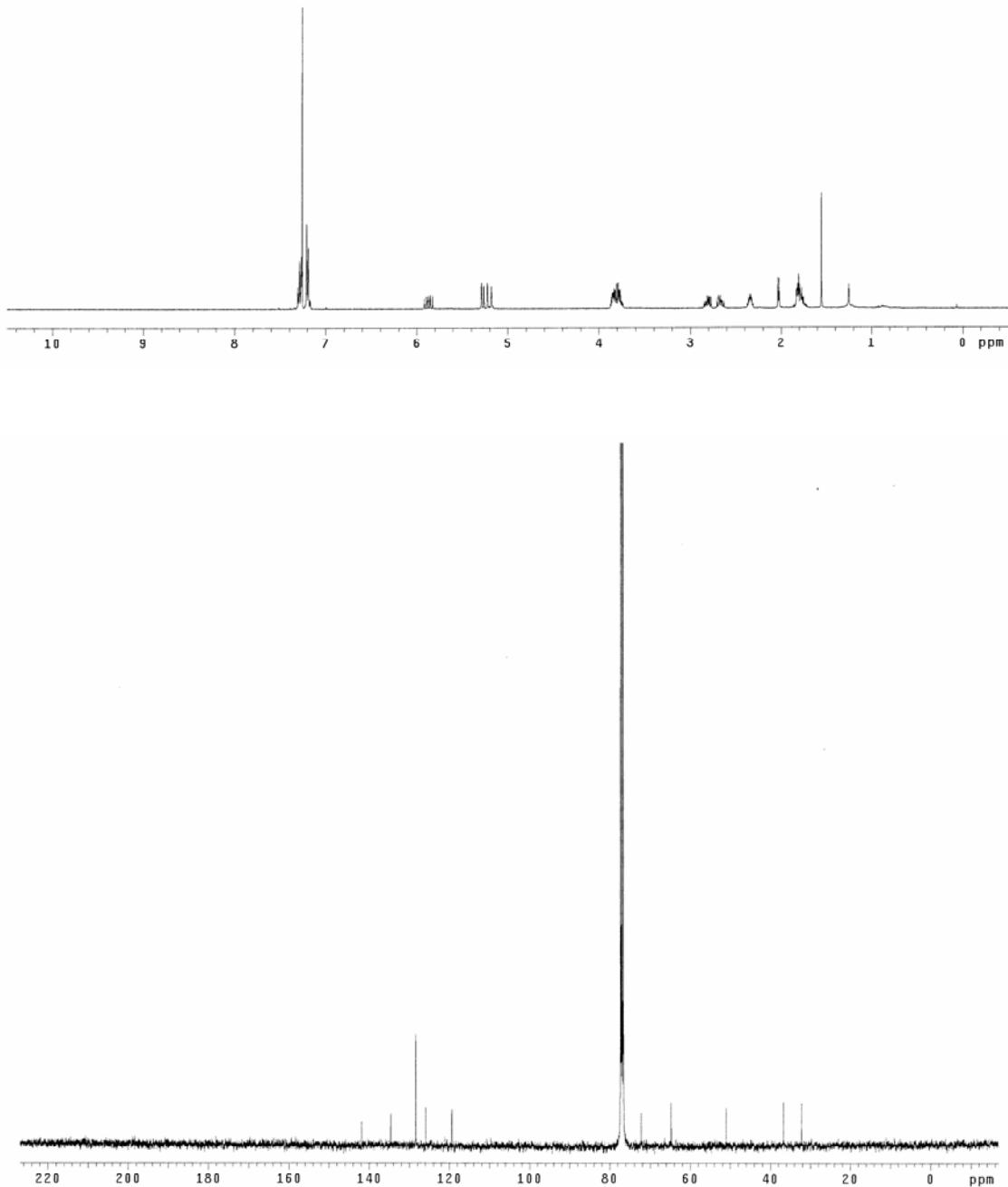
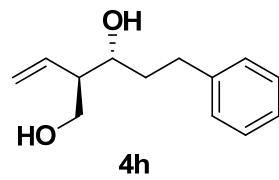


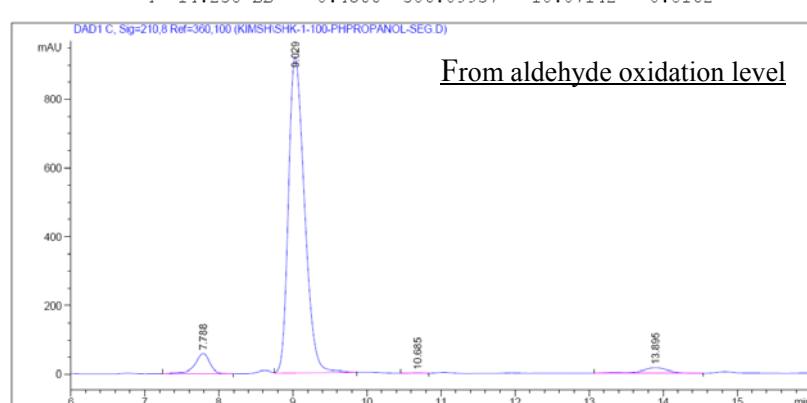
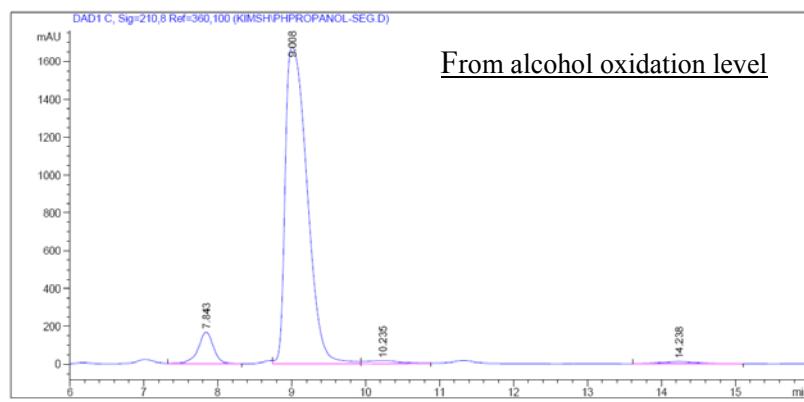
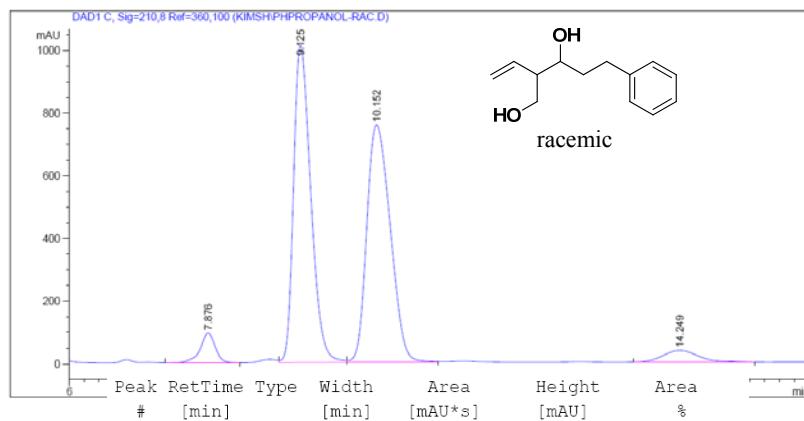
Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.883	MM	0.2510	143.38678	9.52284	2.7281
2	19.190	MM	0.2938	57.19692	3.24419	1.0882
3	21.165	MM	0.2899	275.02454	15.81079	5.2326
4	23.494	MM	0.3506	4780.39160	227.21985	90.9511

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.891	VV	0.3257	316.58041	13.69504	2.2016
2	18.900	VV	0.4368	454.50034	14.22511	3.1608
3	21.333	VV	0.2801	620.56354	34.13235	4.3156
4	22.911	VB	0.3243	1.29877e4	620.21704	90.3219

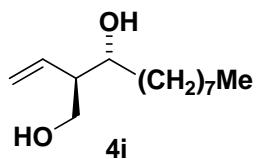
(2*R*,3*R*)-5-Phenyl-2-vinylpentane-1,3-diol (4h)

In accordance with the general procedure, the product was isolated by flash column chromatography (SiO₂: ethyl acetate:toluene, 1:3). The reaction from 3-phenylpropan-1-ol gave the title compound (27.6 mg, *anti:syn* = 9:1) as a colorless oil in 67% yield, and the reaction from 3-phenylpropanal gave the product (25 mg, *anti:syn* = 8:1) in 61% yield.



¹H NMR (400 MHz, CDCl₃): δ 7.31 – 7.26 (m, 2H), 7.21 – 7.17 (m, 3H), 5.87 (ddd, *J* = 8.8, 10.0, 17.6 Hz, 1H), 5.28 (dd, *J* = 1.6, 10.0 Hz, 1H), 5.20 (ddd, *J* = 1.6, 1.6, 17.6 Hz, 1H), 3.86 – 3.75 (m, 3H), 2.85 – 2.77 (m, 1H), 2.71 – 2.63 (m, 1H), 2.35 – 2.32 (m, 1H), 2.03 (d, *J* = 4.8 Hz, 1H), 1.83 – 1.75 (m, 3H)




¹³C NMR (100 MHz, CDCl₃): δ 141.9, 134.6, 128.4, 128.4, 125.9, 119.3, 72.3, 64.8, 51.0, 36.7, 32.2

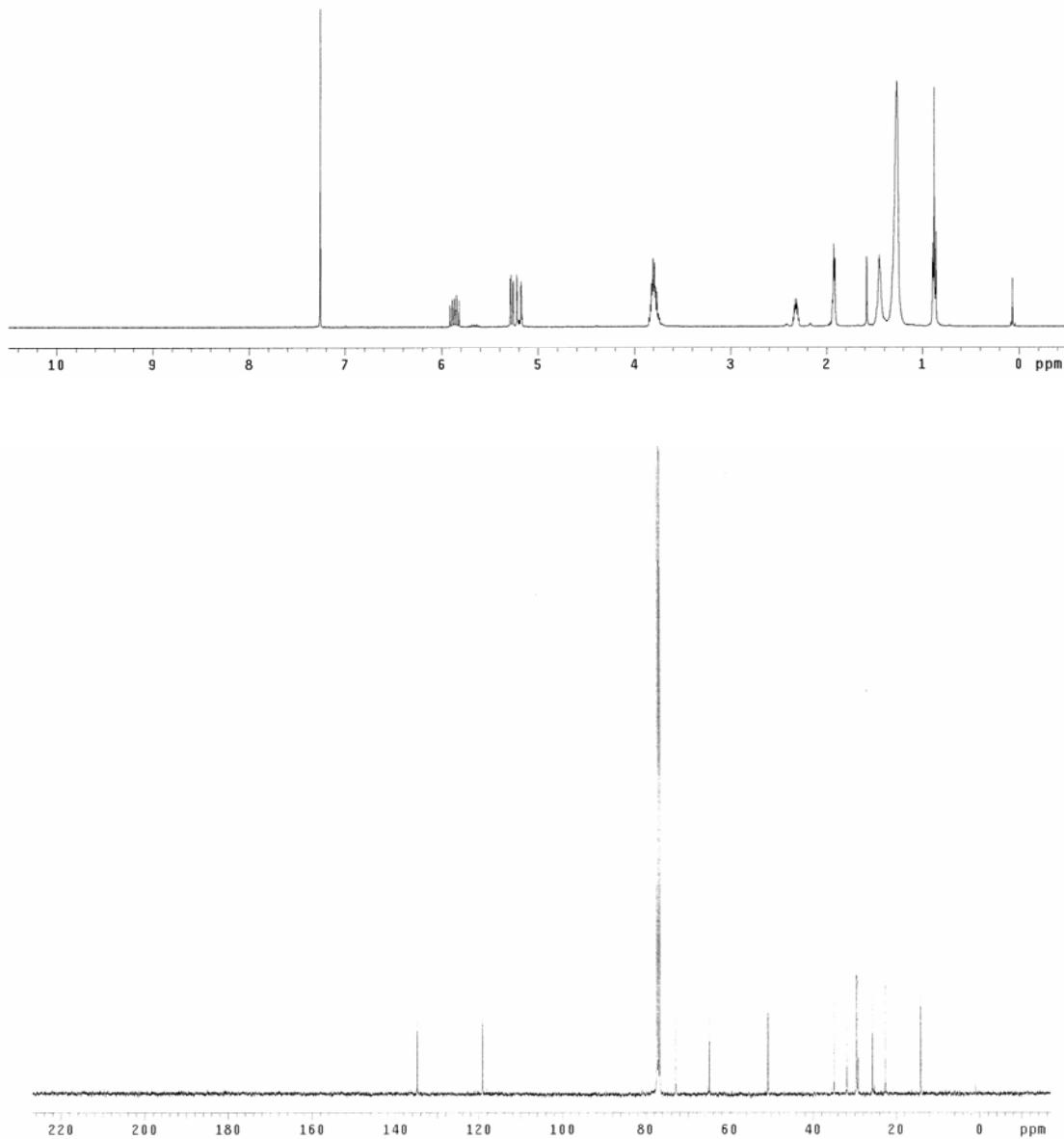
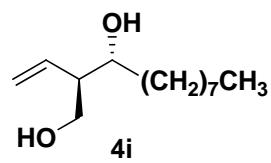
HRMS (CI): Calcd. for C₁₃H₁₉O₂ (M+H): 207.1385, Found: 207.1383

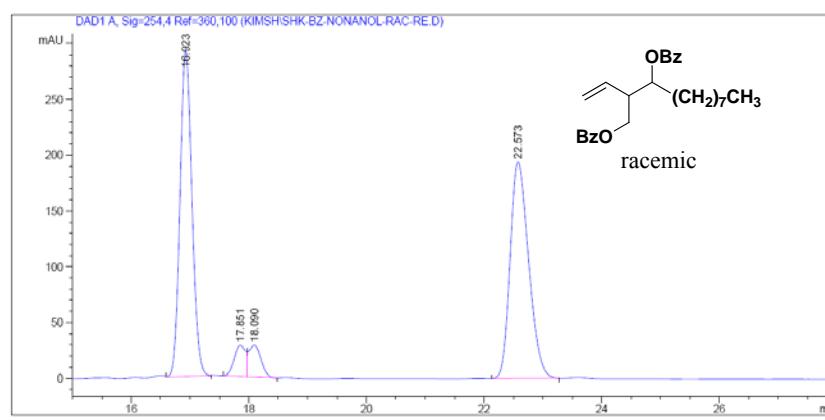

FTIR (neat): 3354, 2921, 1455, 1085, 1055, 1028, 919, 699 cm⁻¹

HPLC (Chiralcel OB-H column, hexanes:*i*-PrOH = 95:5, 1.0 mL/min, 210 nm), ee = 97% from 3-phenylpropan-1-ol, ee = 99% from 3-phenylpropanal.

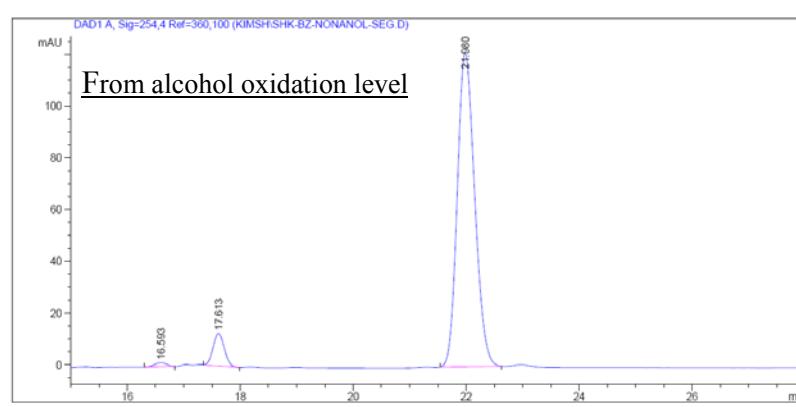
(2*R*,3*R*)-2-Vinylundecane-1,3-diol (4i**)**

In accordance with the general procedure, the product was isolated by flash column chromatography (SiO₂: ethyl acetate:hexanes, 1:3). The reaction from nonan-1-ol gave the title compound (25.7 mg, *anti:syn* = 9:1) as a colorless oil in 60% yield, and the reaction from nonanal gave the product (24.8 mg, *anti:syn* = 8:1) in 58% yield.

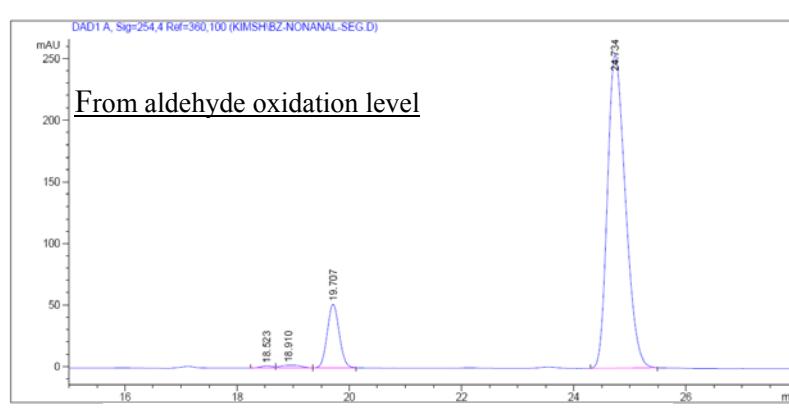


¹H NMR (400 MHz, CDCl₃): δ 5.87 (ddd, *J* = 8.8, 10.4, 17.6 Hz, 1H), 5.55 (dd, *J* = 1.6, 10.4 Hz, 1H), 5.20 (dd, *J* = 1.6, 17.6 Hz, 1H), 3.85 – 3.72 (m, 3H), 2.35 – 2.29 (m, 1H), 1.93 (bs, 2H), 1.50 – 1.20 (m, 14H), 0.88 (t, *J* = 7.2 Hz).


¹³C NMR (100 MHz, CDCl₃): δ 134.8, 119.1, 72.9, 64.9, 50.8, 35.0, 31.9, 29.6, 29.5, 29.3, 25.8, 22.7, 14.1

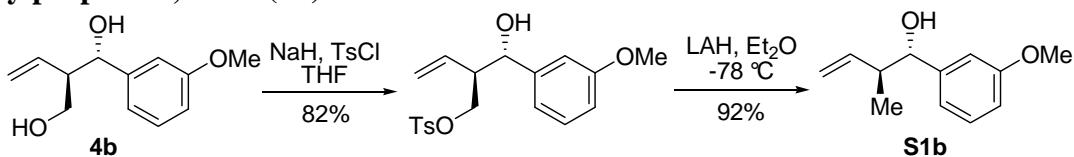
HRMS (CI): Calcd. for C₁₃H₂₇O₂ (M+H): 215.2011, Found: 215.2010.


FTIR (neat): 3339, 2924, 2854, 1465, 1276, 1036, 916, 750 cm⁻¹.

HPLC The enantioselectivity was determined by transformation of **4i** to corresponding dibenzoate. (Connecting Chiralcel AD-H column and OD-H column, hexanes:*i*-PrOH = 97:3, 0.5 mL/min, 254 nm), ee = 98% from nonan-1-ol, ee = 97% from nonanal.

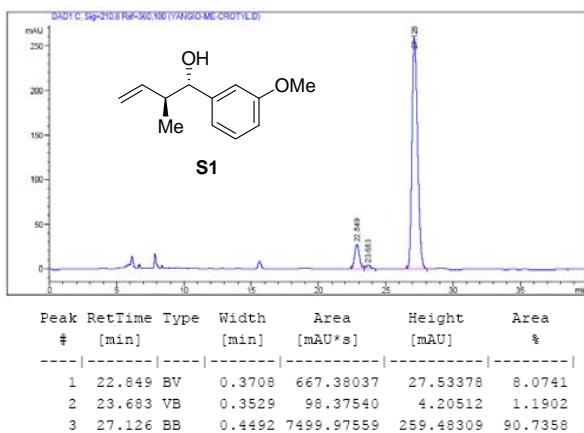
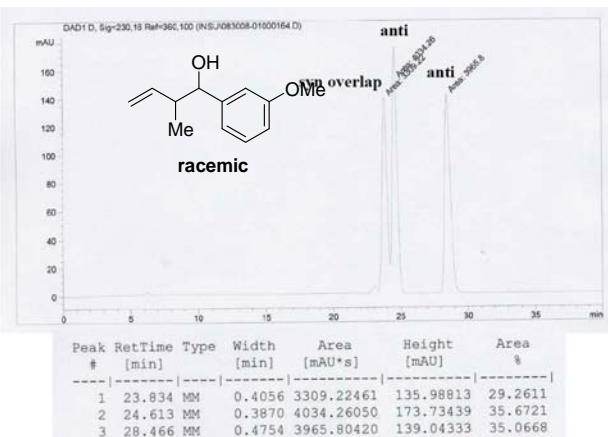


Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.923	VB	0.2185	4123.70508	292.38681	45.0539
2	17.851	BV	0.2038	377.12216	27.87433	4.1203
3	18.090	VB	0.2181	409.87469	28.44050	4.4781
4	22.573	BB	0.3389	4242.13232	194.16255	46.3477



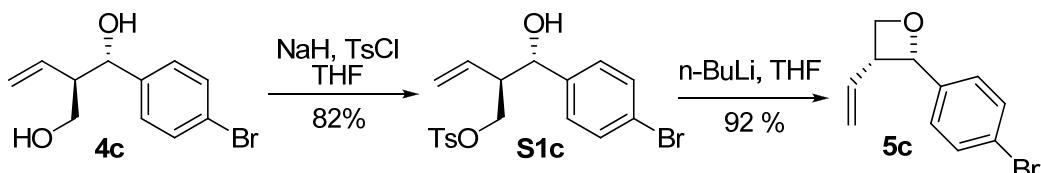
Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.593	BV	0.2481	24.04416	1.55752	0.8611
2	17.613	BB	0.2161	172.92590	12.59985	6.1932
3	21.980	BB	0.3333	2595.21973	121.45881	92.9457

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.523	BV	0.2129	27.63643	1.97922	0.4220
2	18.910	VV	0.3506	59.65333	2.28498	0.9109
3	19.707	VB	0.2302	773.62268	51.82526	11.8138
4	24.734	BB	0.3466	5697.56787	254.66058	86.8532



Confirmation of the Absolute Configuration of (1S,2R)-1-(3-methoxyphenyl)-2-vinylpropane-1,3-diol (4b)

Scheme S1

The absolute configuration of **4b** was confirmed by transformation of **4b** to corresponding crotylated compound **S1b**. The mono-tosylation of primary alcohol of **4b** in the presence of NaH with *p*-toluenesulfonyl chloride in THF followed by reduction with LAH in diethyl ether furnished **S1b** in 75% overall yield (Scheme S1).³ The (1S,2R) configuration of compound **4b** was deduced by chiral HPLC analysis in comparison with our previous report.⁴


HPLC (Chiralcel AD-H column, hexane:*i*-PrOH = 96:4, 0.5 mL/min, 210 nm), ee = 97%.

³ Roush, W. R.; Bannister, T. D.; Wendt, M. D.; Jablonowski, J. A.; Schedit, K. A. *J. Org. Chem.* **2002**, *67*, 4275

⁴ Kim, I. S.; Han, S. B.; Krische, M. J. *J. Am. Chem. Soc.* **2009**, *131*, 2514

Synthesis of 2-(4-bromophenyl)-3-vinyloxetane (5c)

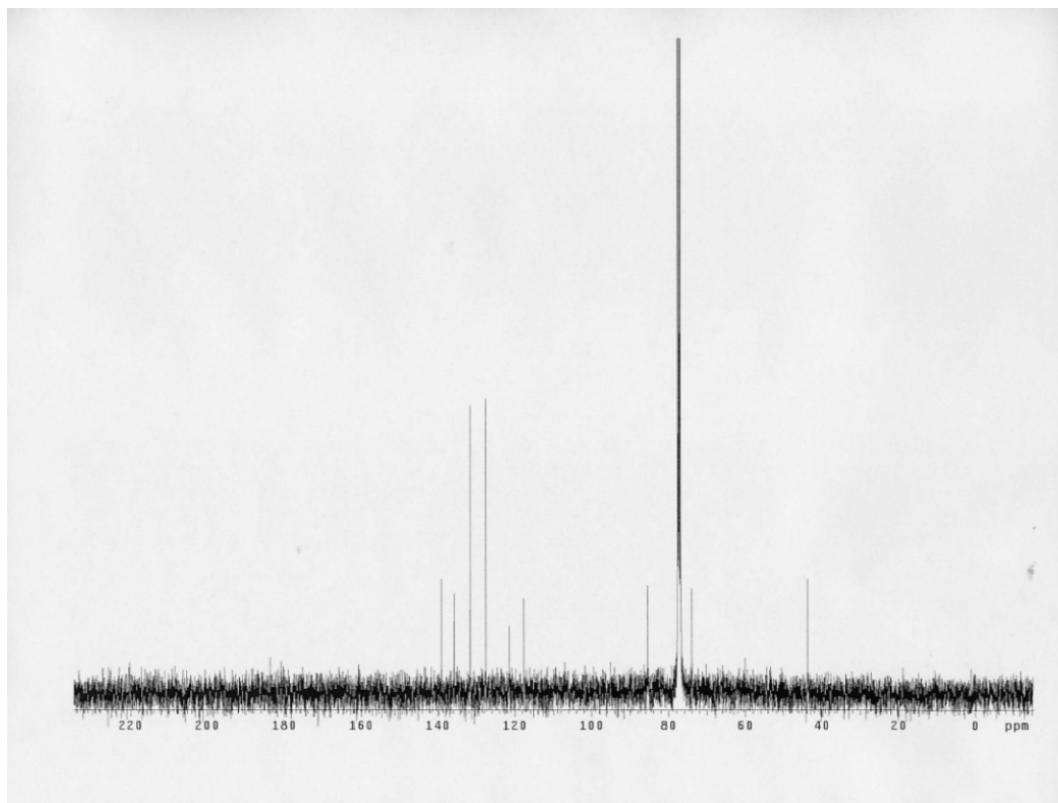
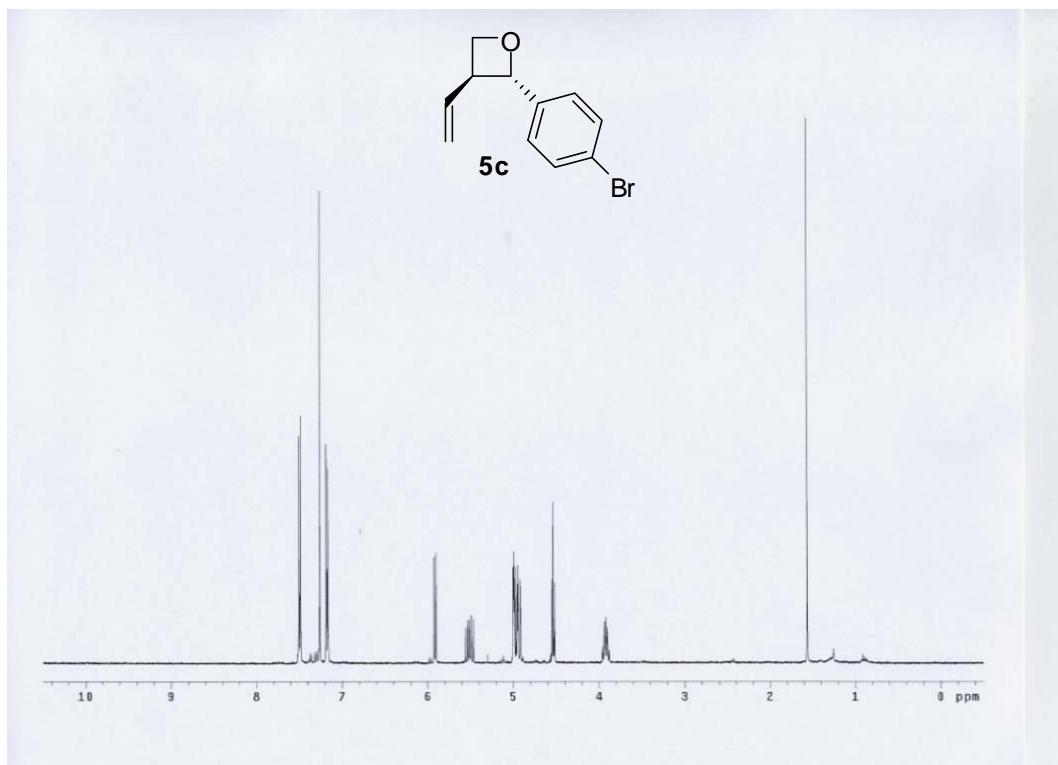
(4-Bromophenyl)(hydroxy)methylbut-3-enyl 4-methylbenzenesulfonate (S2c). To a suspension of NaH (14.4 mg of 60% dispersion in mineral oil, 0.36 mmol, 200 mol%) in THF (1.0 mL) was added dropwise a solution of **4c** (40.6 mg, 0.18 mmol, 100 mol%) in THF (0.2 mL, 0.15 M) at 0 °C. The mixture was stirred for 30 min at ambient temperature and then *p*-toluenesulfonyl chloride (37.6 mg, 0.19 mmol, 105 mol%) was added. The reaction mixture was stirred at ambient temperature for 2 hr, at which point the reaction was quenched with water and extracted with diethyl ether (2 mL \times 3). The organic layer was dried over MgSO₄, filtered, and the solvent was removed *in vacuo*. The obtained residue was purified by flash column chromatography (SiO₂: ethyl acetate:hexanes, 1:3) to furnish **S2c** (59.8 mg, 82%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 5.67 (ddd, *J* = 8.4, 10.4, 17.2 Hz, 1H), 5.18 (dd, *J* = 0.8, 10.4 Hz, 1H), 5.03 (dd, *J* = 0.4, 17.2 Hz, 1H), 4.81 (t, *J* = 4.4 Hz, 1H), 4.15 (dd, *J* = 7.2, 10.0 Hz, 1H), 3.87 (dd, *J* = 5.2, 9.6 Hz, 1H), 2.61 (m, 1H), 2.47 (s, 3H), 2.16 (dd, *J* = 10.4 Hz, 1H).

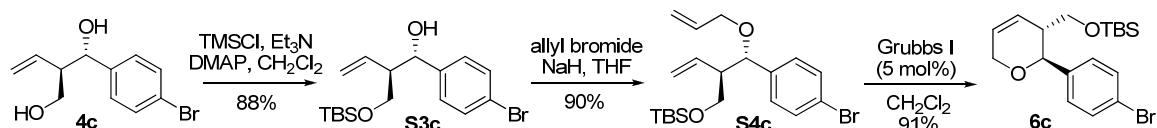
¹³C NMR (100 MHz, CDCl₃): δ 145.1, 140.5, 132.6, 132.1, 131.4, 129.9, 128.0, 127.9, 121.5, 120.8, 71.4, 70.0, 50.7, 21.7.

HRMS (CI): Calcd. for C₁₈H₁₈BrO₂S (M-H): 409.0109, Found: 409.0107.

FTIR (neat): 3535, 2922, 1355, 1172 cm⁻¹.



2-(4-Bromophenyl)-3-vinyloxetane (5c). To a solution of **S2c** (59.8 mg, 0.15 mmol, 100 mol%) in THF (1.5 mL, 0.1 M) was added dropwise *n*-BuLi (75.0 μ L of 2.0 M solution in THF, 0.15 mmol, 100 mol%) at 0 °C. The mixture was stirred for 30 min at ambient temperature and refluxed for 8 hr, at which point the reaction was allowed to cool to 0 °C, quenched with water, and extracted with diethyl ether (2 mL \times 3). The combined organic layer was dried over MgSO₄, filtered, and the solvent was removed *in vacuo*. The obtained residue was purified by flash column chromatography (SiO₂: ethyl acetate:hexanes, 1:10) to furnish **5c** (32.5 mg, 92%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 5.91 (d, *J* = 8.4 Hz, 1H), 5.51 (ddd, *J* = 8.8, 10.0, 12.8 Hz, 1H), 4.91 – 5.00 (m, 3H), 4.54 (t, *J* = 8.4 Hz, 1H), 3.92 (m, 1H).


¹³C NMR (100 MHz, CDCl₃): δ 139.1, 135.7, 131.6, 127.5, 121.5, 117.6, 85.4, 73.9, 43.7.

HRMS (CI): Calcd. for C₁₁H₁₂BrO (M+H): 239.0072, Found: 239.0065.

FTIR (neat): 2857, 1485, 988, 920 cm⁻¹.

Synthesis of 2-(4-bromophenyl)-3-(*tert*-butyldimethylsilyloxy)methyl-3,6-dihydro-2*H*-pyran-3-yl (6c)

1-(4-Bromophenyl)-2-(*tert*-butyldimethylsilyloxy)methyl-3-buten-1-ol (S3c). To a solution of **4c** (40.0 mg, 0.16 mmol, 100 mol%), triethylamine (26.4 μ L, 0.19 mmol, 120 mol), and DMAP (2.0 mg, 0.02 mmol, 10 mol%) in CH_2Cl_2 (1 mL, 0.16 M) was added TBSCl (29.0 mg, 0.19 mmol, 120 mol%) at 0 $^{\circ}$ C. The reaction mixture was stirred overnight at ambient temperature, and then quenched with saturated aqueous NaHCO_3 (1 mL), and extracted with CH_2Cl_2 (1 mL \times 3). The organic layer was dried over MgSO_4 , filtered, and the solvent was removed *in vacuo*. The obtained residue was purified by flash column chromatography (SiO_2 : ethyl acetate:hexanes, 1:10) to furnish **S3c** (52 mg, 88%) as a colorless oil.

$^1\text{H NMR}$ (400 MHz, CDCl_3): 7.45 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 5.82 (ddd, J = 8.8, 10.4, 17.6 Hz, 1H), 5.15 (dd, J = 2.0, 10.4 Hz, 1H), 5.01 (ddd, J = 1.2, 2.0, 17.6 Hz, 1H), 4.94 (dd, J = 3.6, 3.6 Hz, 1H), 3.76 – 3.69 (m, 2H), 3.43 (d, J = 3.6 Hz, 1H), 2.52 – 2.41 (m, 1H), 0.93 (s, 9H), 0.07 (s, 6H)

$^{13}\text{C NMR}$ (100 MHz, CDCl_3): δ 141.5, 134.5, 131.0, 128.2, 120.9, 118.7, 74.8, 65.4, 52.4, 25.8, 18.2, -5.6

HRMS (CI): Calcd. for $\text{C}_{17}\text{H}_{26}\text{BrO}_2\text{Si}$ (M-H): 369.0885, Found: 369.0889

FTIR (neat): 3446, 2954, 1640, 1487, 1255, 1084, 834, 777 cm^{-1}

(2-(Allyloxy(4-bromophenyl)methyl)but-3-enyloxy)(*tert*-butyl)dimethylsilane (S4c).

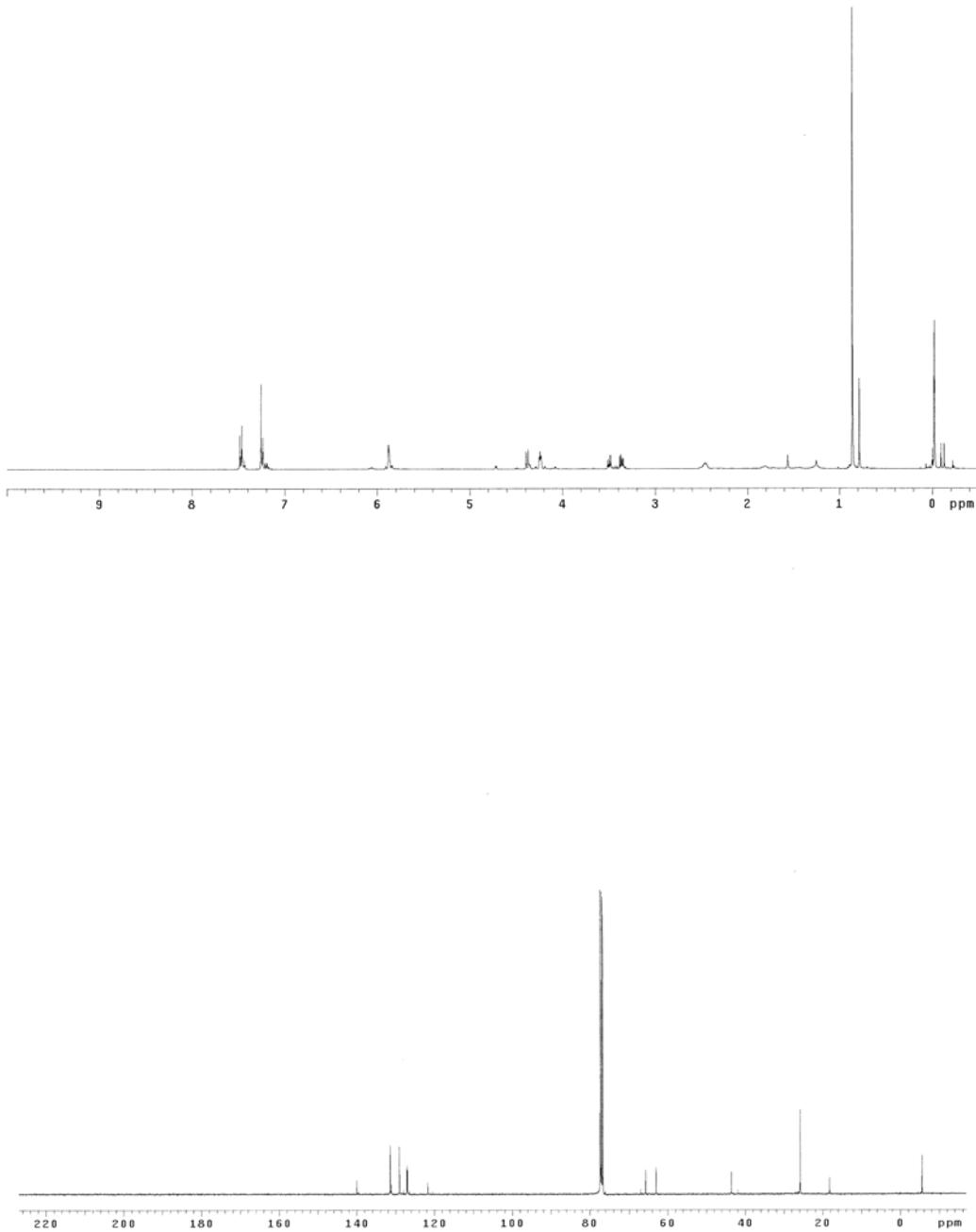
To a suspension of NaH (8.0 mg of 60% dispersion in mineral oil, 0.20 mmol, 150 mol%) in THF (1 mL) was added dropwise a solution of **S3c** (50 mg, 0.13 mmol, 100 mol%) in THF (0.3 mL) at 0 °C. The mixture was stirred for 30 min at ambient temperature and then allyl bromide (17.3 µL, 0.20 mL, 150 mol%) was added dropwise at 0 °C. The reaction mixture was refluxed for 8 hr, at which point the reaction was allowed to cool to 0 °C, and quenched with water and extracted with diethyl ether (1 mL ×3). The combined organic layer was dried over MgSO₄, filtered, and the solvent was removed *in vacuo*. The obtained residue was purified by flash column chromatography (SiO₂: ethyl acetate:hexanes, 1:50) to furnish **S4c** (48.0 mg, 90%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): 7.44 (d, *J* = 8.4 Hz, 2H), 7.14 (d, *J* = 8.4 Hz, 2H), 5.92 – 5.77 (m, 2H), 5.22 (ddd, *J* = 1.6, 3.6, 17.2 Hz, 1H), 5.13 (ddd, *J* = 1.6, 3.6, 10.4 Hz, 1H), 5.05 (dd, *J* = 2.0, 10.4 Hz, 1H), 4.89 (ddd, *J* = 0.8, 2.0, 17.6 Hz, 1H), 4.61 (d, *J* = 4.8 Hz, 1H), 3.95 – 3.90 (m, 1H), 3.77 – 3.71 (m, 1H) 3.71 (dd, *J* = 7.2, 10.0 Hz, 1H), 3.43 (dd, *J* = 5.2, 10.0 Hz, 1H), 2.38 – 2.31 (m, 1H), 0.91 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H)

¹³C NMR (100 MHz, CDCl₃): δ 140.4, 135.2, 134.9, 131.1, 128.9, 120.9, 117.9, 116.5, 79.1, 70.0, 63.5, 53.9, 25.9, 18.3, -5.4, -5.5

HRMS (CI): Calcd. for C₂₀H₃₀BrO₂Si (M-H): 409.1198, Found: 409.1208

FTIR (neat): 3078, 2954, 1487, 1255, 1090, 836, 776 cm⁻¹


2-(4-bromophenyl)-3-(*tert*-butyldimethylsilyloxy)methyl-3,6-dihydro-2H-pyran-3-yl (6c). A solution of **S4c** (45 mg, 0.11 mmol, 100 mol%) and Grubbs I (4.5 mg, 5.5 μ mol, 5 mol%) in CH_2Cl_2 (1.1 mL, 0.1 M) was stirred at ambient temperature for 8 hr, at which point the reaction solvent was removed *in vacuo*. The obtained residue was purified by flash column chromatography (SiO_2 : ethyl acetate:hexanes, 1:30) to furnish **6c** (38.4 mg, 91%) as a colorless oil.

$^1\text{H NMR}$ (400 MHz, CDCl_3): 7.48 (d, J = 8.8 Hz, 2H), 7.25 (d, J = 8.8 Hz, 2H), 5.91 – 5.84 (m, 2H), 4.38 (d, J = 8.4 Hz, 1H), 4.25 – 4.23 (m, 2H), 3.49 (dd, J = 4.0, 10.0 Hz, 1H), 3.36 (dd, J = 5.6, 10.0 Hz, 1H), 2.42 – 2.49 (m, 1H), 0.86 (s, 9H), -0.02 (s, 3H), -0.02 (s, 3H)

$^{13}\text{C NMR}$ (100 MHz, CDCl_3): δ 140.0, 131.4, 129.0, 127.1, 126.9, 121.7, 77.2, 65.7, 63.0, 43.6, 25.8, 18.2, -5.5

HRMS (CI): Calcd. for $\text{C}_{18}\text{H}_{28}\text{BrO}_2\text{Si}$ ($\text{M}+\text{H}$): 383.1042, Found: 383.1043

FTIR (neat): 2953, 1651, 1471, 1252, 1072, 833, 775 cm^{-1}

Synthesis of (4-bromophenyl)(3,6-dihydro-2H-pyran-3-yl)methanol (7c)

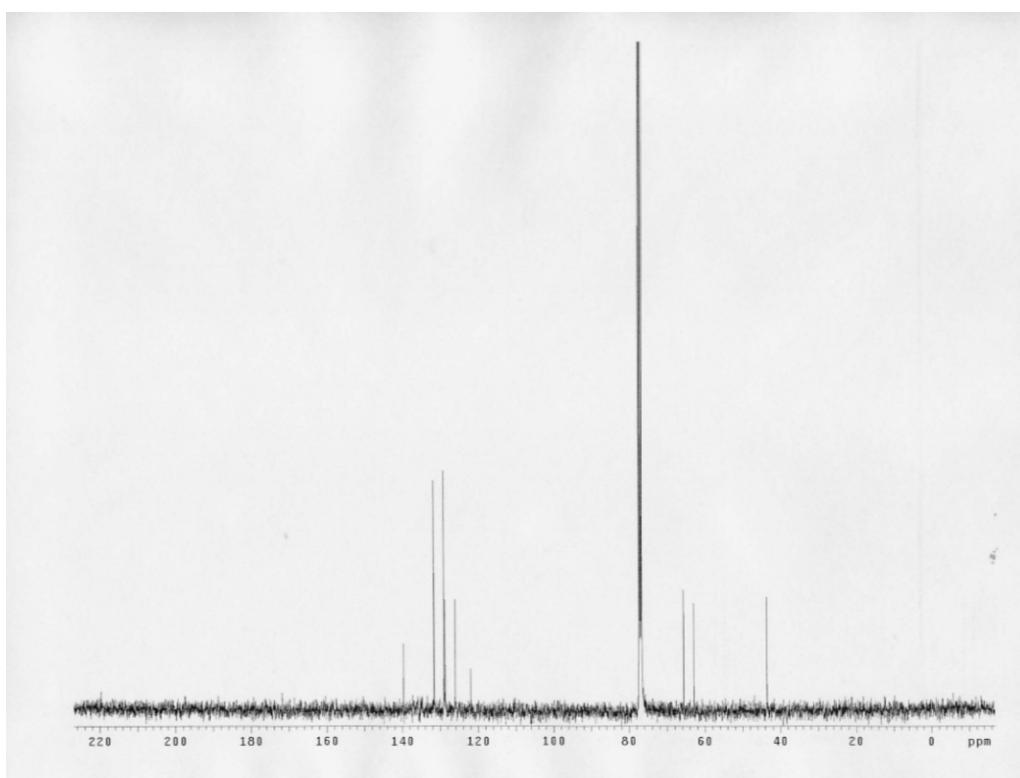
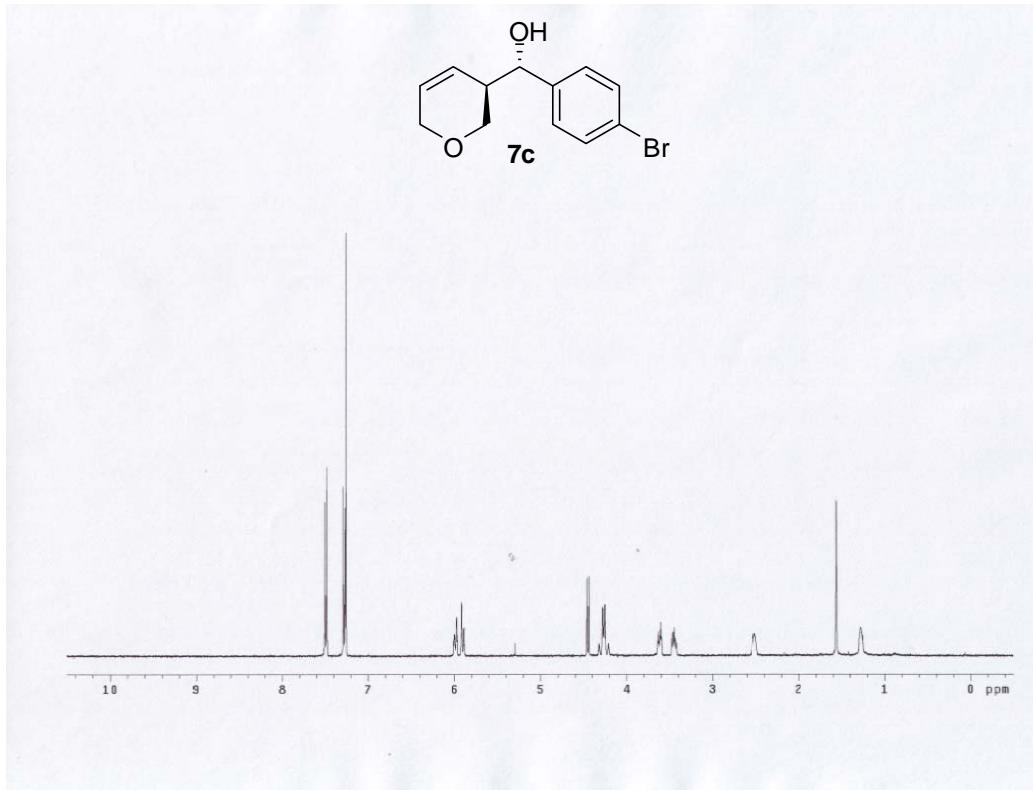
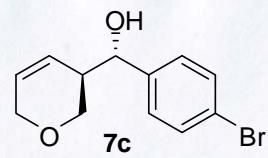
2-(Allyloxymethyl)-1-(4-bromophenyl)but-3-en-1-ol (S5c). To a suspension of NaH (14.6 mg of 60% dispersion in mineral oil, 0.36 mmol, 200 mol%) in THF (1.2 mL) was added dropwise a solution of **4c** (47.0 mg, 0.18 mmol, 100 mol%) in THF (0.6 mL, 0.1 M) at 0 °C. The mixture was stirred for 30 min at ambient temperature and then allyl bromide (17.3 µL, 0.20 mmol, 110 mol%) was added dropwise at 0 °C. The reaction mixture was stirred for 4 hr at ambient temperature, at which point the reaction was quenched with water and extracted with diethyl ether (1 mL ×3). The combined organic layer was dried over MgSO₄, filtered, and the solvent was removed *in vacuo*. The obtained residue was purified by flash column chromatography (SiO₂: ethyl acetate:hexanes, 1:3) to furnish **S5c** (44.3 mg, 82%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 5.86 (m, 1H), 5.74 (ddd, *J* = 8.8, 10.0, 17.2 Hz, 1H), 5.13 – 5.25 (m, 3H), 5.01 (dd, *J* = 1.2, 17.6 Hz, 1H), 4.52 (d, *J* = 5.2 Hz, 1H), 3.65 – 3.76 (m, 2H), 3.56 (m, 1H), 2.55 (m, 1H), 2.01 (m, 1H).

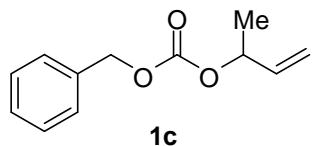
¹³C NMR (100 MHz, CDCl₃): δ 138.8, 134.8, 134.3, 131.4, 128.9, 121.5, 118.9, 117.2, 81.4, 69.8, 63.5, 52.8.

HRMS (CI): Calcd. for C₁₄H₁₈BrO₂ (M+H): 297.0490, Found: 297.0497

FTIR (neat): 3398, 3077, 2923, 1486, 1070, 1010, 919 cm⁻¹.




(4-Bromophenyl)(3,6-dihydro-2H-pyran-3-yl)methanol (7c). A solution of **S5c** (44.3 mg, 0.15 mmol, 100 mol%) and Grubbs I (6.2 mg, 7.5 μ mol, 5 mol%) in CH_2Cl_2 (1.5 mL, 0.1 M) was stirred at ambient temperature for 8 hr, at which point the reaction solvent was removed *in vacuo*. The obtained residue was purified by flash column chromatography (SiO_2 : ethyl acetate:hexanes, 1:3) to furnish **7c** (36.4 mg, 90%) as a colorless oil.

$^1\text{H NMR}$ (400 MHz, CDCl_3): δ 7.49 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 5.99 (ddd, J = 2.4, 2.4, 10.0 Hz, 1H), 5.91 (ddd, J = 2.0, 2.0, 10.0 Hz, 1H), 4.50 (d, J = 8.4, 1H), 4.27 (m, 2H), 3.62 (m, 1H), 3.45 (m, 1H), 2.51 (m, 1H), 1.26 (m, 1H).


$^{13}\text{C NMR}$ (100 MHz, CDCl_3): δ 139.7, 131.6, 129.0, 128.7, 126.0, 121.9, 77.2, 65.6, 62.9, 43.6.

HRMS (CI): Calcd. for $\text{C}_{12}\text{H}_{14}\text{BrO}_2$ ($\text{M}+\text{H}$): 269.0177, Found: 269.0178.

FTIR (neat): 3396, 2927, 2881, 1489, 1024, 1011, 818 cm^{-1} .

Preparation of Benzyl But-3-en-2-yl Carbonate (1c)

To a solution of but-3-en-2-ol (2.0 g, 28.0 mmol, 100 mol%) and pyridine (2.2 mL, 28.0 mmol, 100 mol%) in diethyl ether (28.0 mL, 1.0 M) was added dropwise benzyl carbonochloridate (4.8 g, 28.0 mmol, 100 mol%) at 0 °C. The reaction mixture was stirred overnight at ambient temperature, at which point the reaction was quenched with saturated aqueous NH₄Cl (20.0 mL) and extracted with diethyl ether (20.0 mL × 3). The combined organic layer was dried over MgSO₄, filtered and the solvent was removed *in vacuo*. The obtained residue was purified by flash column chromatography (SiO₂; ethyl acetate:hexanes, 1:20) to furnish **1c** (5.2 g, 91%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.41 – 7.31 (m, 5H), 5.87 (ddd, *J* = 6.0, 10.4, 17.2 Hz, 1H), 5.30 (ddd, *J* = 1.2, 1.2, 17.2 Hz, 1H), 5.25 – 5.16 (m, 4H), 1.38 (d, *J* = 6.4 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): δ 154.4, 137.0, 135.3, 128.5, 128.5, 128.3, 116.6, 75.3, 69.4, 20.0

HRMS (CI) Calcd. for C₁₂H₁₅O₃ [M+H]⁺: 207.1021, Found: 207.1021

FTIR (neat): 2984, 1738, 1455, 1246, 1040, 789, 696 cm⁻¹

The Procedure for Intramolecular Decarboxylative C-C Bond Forming Transform

Hydrogenation of 1b: To a re-sealable pressure tube (13 x 100 mm) equipped with magnetic stir bar was added (S)-BIPHEP-I (9.5 mg, 0.01 mmol, 5 mol%). The tube was evacuated and backfilled with nitrogen (3 times). **1b** (38.4 mg, 0.2 mmol, 100 mol%) and THF (0.2 mL, 1.0 M concentration with respect to **1b**) were added and the rubber septum was quickly replaced with a screw cap. The mixture was heated at 70 °C (oil bath temperature) for 48 hr, at which point the reaction mixture was allowed to cool to ambient temperature. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂, ethyl acetate:hexanes, 1:10) to furnish desired product (8.9 mg, 30%) as a colorless oil.

The Procedure for Intramolecular decarboxylative C-C Bond Forming Transform

Hydrogenation of 1c: To a re-sealable pressure tube (13 x 100 mm) equipped with magnetic stir bar was added (S)-BIPHEP-I (9.5 mg, 0.01 mmol, 5 mol%). The tube was evacuated and backfilled with nitrogen (3 times). **1c** (41.2 mg, 0.2 mmol, 100 mol%) and THF (0.2 mL, 1.0 M concentration with respect to **1c**) were added and the rubber septum was quickly replaced with a screw cap. The mixture was heated at 50 °C (oil bath temperature) for 48 hr, at which point the reaction mixture was allowed to cool to ambient temperature. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂, ethyl acetate:hexanes, 1:10) to furnish desired product (13.6 mg, 42%, *anti:syn*, 5:1) as a colorless oil.