N-Triflylthiophosphoramide Catalyzed Enantioselective Mukaiyama Aldol Reaction of Aldehydes with Silyl Enol Ethers of Ketones

Cheol Hong Cheon and Hisashi Yamamoto*

Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637

Table of Contents

1. General Procedures ·····	2
2. Synthesis of Chiral Brønsted Acids (1-3) ·····	2
3. Catalytic Asymmetric Mukaiyama Aldol Reactions of Aldehydes and Silyl Enol Ethers of Keto	nes
	6
3-1. Optimization of Reaction Condition ····	6
3-1-1. Reactivity Comparison ·····	6
3-1-2. Effect of Substituents at 3,3'-Position of Binaphthyl Backbone	7
3-1-3. Effect of Size of Silyl Groups ·····	7
3-1-4. Further Optimization ·····	8
3-2. Enantioselective Mukaiyama Aldol Reaction of Aldehydes with Silyl Enol Ether	of
Acetophenone ····	9
3-2-1. Characterization of Compounds 6aa-6al ······	9
3-3. Enantioselective Mukaiyama Aldol Reaction of Benzaldehyde with Silyl Enol Ethers	s of
Ketones	13
3-3-1. Characterization of Compounds 6ba-6ga	14
4. Mechanistic Studies ····	16
4-1. Effect of 2,6-Di(t-butyl)pyridine (DTBP)	16
4-2. Mukaiyama Aldol reaction with Silylated Brønsted Acid	17
4-2-1. Generation of Silylated Brønsted acid ·····	17
4-2-2. Mukaiyama aldol Reaction with Silylated Brønsted Acid ·····	18
5. References ·····	. 19

1. General Procedures

All reactions were carried out in oven- or flame-dried glassware under an atmosphere of dry argon unless otherwise noted. Except as otherwise indicated, all reactions were magnetically stirred and monitored by analytical thin layer chromatography (TLC) using Whatman pre-coated silica gel glass plates (0.25 mm) with F254 indicator or Merck pre-coated silica gel plates with F254 indicator. Visualization was accomplished by UV light (254 nm), with combination of potassium permanganate and/or phosphomolybdic acid solution as an indicator. Flash column chromatography was performed according to the method of Still using silica gel 60 (mesh 230-400) supplied by Silicycle. Yields refer to chromatographically and spectrographically pure compounds, unless otherwise noted.

Commercial grade reagents and solvents were used without further purification except as indicated below. Toluene (anhydrous, 99.8 %, 18 L in Pure-PacTM), dichloromethane (anhydrous, 99.9%, 18L in Pure-PacTM), hexanes (anhydrous, 99.9%, 18L in Pure-PacTM), and THF (anhydrous, 99.9%, 18L in Pure-PacTM) purchased from Aldrich were purified by M. BRAUN solvent purification system (A2 Alumina). 1 H NMR, 13 C NMR, 19 F NMR and 31 P NMR spectra were recorded on a Bruker Avance 500 (500 MHz 1 H, 125 MHz 13 C, 471 MHz 19 F, 202 MHz 31 P). Tetramethylsilane was used as an internal standard for 1 H NMR (δ : 0.0 ppm), CDCl₃ for 13 C NMR (δ : 77.0 ppm), CFCl₃ for 19 F NMR (δ : 0.0 ppm) as an external standard, and H₃PO₄ for 31 P NMR (δ : 0.0 ppm) as an external standard. The proton spectra are reported as follows δ (position of proton, multiplicity, coupling constant J, number of protons). Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (quintet), h (septet), m (multiplet) and br (broad). High performance liquid chromatography (HPLC) was performed on a Varian ProStar Series equipped with a variable wavelength detector using chiral stationary columns (0.46 cm x 25 cm) from Daicel. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter.

2. Synthesis of Chiral Brønsted Acids (1-3)

All N-triflylphosphoramide $\mathbf{1}$, 1 N-triflylthiophosphoramides $\mathbf{2a-2d}$, and N-triflylselenophosphoramide $\mathbf{3}^2$ were synthesized following the reported procedure.

Synthesis of *N*-triflylthiosphosphoramide 2e

(S)-3,3'-Bis-(2,6-diisopropyl-4-(9-anthryl)-phenyl)-2,2'-dihydroxy-1,1'-dinaphthyl³

This compound was synthesized following the reported procedure and ${}^{1}H$ NMR was in agreement with the literature. ${}^{1}H$ NMR (500 MHz, CDCl₃) δ 1.16 (d, J = 7.0 Hz, 6H), 1.22 (d, J = 6.5 Hz, 6H), 1.26 (d, J = 7.0 Hz, 6H), 1.31 (d, J = 6.5 Hz, 6H), 2.93-2.98 (m, 2H), 3.10-3.14 (m, 2H), 5.22 (s, 2H), 7.37-7.55 (m, 18H), 7.78 (d, J = 8.5 Hz, 2H), 7.95 (d, J = 8.5 Hz, 2H), 8.04-8.13 (m,8H), 8.55 (s, 2H).

Preparation of **2e** via thiophosphorylation followed by amidation sequence:

 $Ar = 2,6-(iPr)_2-4-(9-anthryl)-C_6H_2$

Initial trial to synthesize *N*-triflylthiophosphoramide **2e** carrying very bulky 2,6-(*i*-Pr)₂-4-(9-anthryl)-phenyl group at the 3,3'-position of the binaphthyl scaffold was conducted by the same method for the previous synthesis of *N*-triflylthiosphosphoramide.² However, amidation between the resulting thiophosphoryl chloride and NH₂Tf was very slow presumably due to steric effect of the bulky substituent at the 3,3'-position of the binaphthyl backbone and the thiophosphoryl chloride was obtained as a major product. Thus, we needed to develop other synthetic routes to synthesize thiosphosphoramide **2e**.

Preparation of **2e** via phosphorylation, amidation followed by oxidation:

In order to overcome the low reactivity in the amidation stop between the resulting thiophosphoryl chloride and NH_2Tf , we chose an alternative method: phosphorylation, amdiation, followed by oxidation as shown the above scheme.

Ar 1) PBr₃ (1.1 eq), NEt₃ (10 eq)
$$S_8$$
 (5 eq)

OH 2) NH₂Tf (2.0 eq) toluene, rt, 2 h toluene, 80 °C, 24 h toluene, rt, 2 h

Ar = 2,6-(iPr)₂-4-(9-anthryl)-C₆H₂

The procedure was as shown below: To a solution of (*S*)-3,3'-bis-(2,6-diisopropyl-4-(9-anthryl)-phenyl)-2,2'-dihydroxy-1,1'-dinaphthyl (0.582 g; 0,606 mmol; 1.0 eq) and NEt₃ (0.613 g; 6.06 mmol; 10 eq) was added PBr₃ (0.180 g; 0.667 mmol; 1.1 eq) dropwise. The reaction mixture was stirred for 20 min and monitored by ³¹P NMR. After complete consumption of the starting material, NH₂Tf (0.181 g; 1.21 mmol; 2.0 eq) was added to the reaction mixture and the reaction mixture was allowed to stir for additional 2 h. After complete comsumption of the resulting phosphoryl bromide, element sulfur was added to the reaction mixture and the reaction mixture was stirred for 24 h at 80 °C. After 24 h, the reaction mixture was cooled to room temperature, quenched with NaHCO₃ (aq), extracted with ether (50 mL x 3), dried over Na₂SO₄, and concentrated. After purification by column chromatography on silica gel

(hexanes/EtOAc, 2/1), the product was re-dissolved in Et₂O was washed with 4 N HCl (aq) twice, dried over anhydrous Na₂SO₄, and concentrated in vacuo. Foam-like pale brown solid was obtained in 65 % yield.

¹H NMR (CDCl₃, 500 MHz) δ: 0.97 (d, J = 6.7 Hz, 3H), 1.06 (d, J = 6.6 Hz, 3H), 1.16 (d, J = 6.7 Hz, 3H), 1.24 (d, J = 6.7 Hz, 2H), 1.29 (d, J = 6.4 Hz, 6H), 1.42-1.46 (m, 6H), 2.80-2.85 (m, 1H), 2.92-2.97 (m, 1H), 3.00-3.05 (m, 1H), 3.16-3.21 (m, 1H), 5.32 (s, 1H), 7.28-7.34 (m, 4H), 7.39-7.48 (m, 12H), 7.63 (t, J = 7.0 Hz, 2H), 7.78 (d, J = 9.0 Hz, 1H), 7.84 (d, J = 9.0 Hz, 2H), 7.92 (d, J = 8.0 Hz, 1H), 8.03-8.11 (m, 6H), 8.24-8.27 (d, J = 17.0 Hz, 2H), 8.51-8.53 (d, J = 15.0 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ: 22.5, 23.3, 23.7, 23.8, 25.6, 25.8, 27.8, 30.8, 31.2,31.3, 31.9, 117.8, 120.5 (q, J = 60 Hz), 122.2, 122.8 (2C), 125.0, 125.1, 125.2, 125.3, 125.4 (2C), 125.5, 125.9, 126.4, 126.7 (2C), 126.8, 126.9, 127.0, 127.1 (2C), 127.2, 127.3, 127.4, 127.5, 126.6, 127.7, 128.1, 128.3, 128.5, 128.6, 128.7, 130.0, 130.2 (2C), 130.4, 130.8, 131.2, 131.4, 131.5, 131.6, 131.7, 132.3, 132,4 (2C). 133.2, 133.8, 134.3, 137.4, 138.4, 139.1, 139.9, 144.9, 145.0, 146.2, 146.4, 146.6, 147.4, 148.2, 149.3; ¹⁹F NMR (CDCl₃, 471 MHz) δ:-78.88; ³¹P NMR (202 MHz, CDCl₃) δ: 52.7; [α]_D²⁷ = +36.9 (c 1.2, CHCl₃); MS (APCI) Exact mass calcd for C₇₃H₆₁F₃NO₄PS₂(M-1): 1166.3 Found: 1166.2.

Other *N*-triflylthiophophoramides **2a** and **2d** were prepared by the same method for the synthesis of **2e**.

(S)-{3,3'-bis-(2,6-diisopropylphenyl)-1,1'-binaphthalen-2,2'-yl}-N-triflylthiophosphoramide (2a)

¹H NMR (CDCl₃, 500 MHz) δ: 0.82-0.83 (d, J = 6.8 Hz, 3H), 0.87-0.88 (d, J = 6.7 Hz, 3H), 1.16-1.27 (m, 12H), 1.30-1.35 (m, 6H), 2.66-2.72 (h, J = 7.0 Hz, 1H), 2.77-2.83 (h, J = 7.0 Hz, 1H), 2.95-3.00 (h, J = 7.0 Hz, 1H), 3.03-3.08 (h, J = 7.0 Hz, 1H), 7.08-7.09 (d, J = 8.0 Hz, 1H), 7.14-7.15 (d, J = 9.0 Hz, 1H), 7.18-7.20 (d, J = 8.0 Hz, 2H), 7.23-7.34 (m, 6H), 7.46-7.50 (m, 2H), 7.85 (s, 1H), 7.91-7.93 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ: 21.2, 21.7, 23.6, 23.8, 25.1, 25.6, 27.0, 27.5, 29.8, 30.8, 30.9, 31.1, 117.8, 118.5 (q, J = 132 Hz), 121.9, 122.3 (2C), 122.6, 123.3, 123.7, 125.6, 125.7, 126.3, 126.4, 127.3, 128.3, 128.4 (2C), 128.5, 130.8, 130.9, 131.6, 132.3, 132.8, 132.9, 133.0, 134.4, 135.4, 145.6, 145.7, 147.1,

147.2, 148.3, 148.4, 148.7, 149.1; 19 F NMR (CDCl₃, 471 MHz) δ :-78.84; 31 P NMR (202 MHz, CDCl₃) δ : 64.2; $[\alpha]_D^{27} = +31.2$ (c 1.0, CHCl₃); MS (APCI) Exact mass calcd for $C_{45}H_{45}F_3NO_4PS_2$ (M-1): 814.2 Found: 814.1.

(*S*)-{3,3'-bis-(2,6-diisopropyl-4-(2,4,6-triisopropylphenyl)-phenyl)-1,1'-binaphthalen-2,2'-yl}-*N*-triflyl-thiophosphoramide (**2d**)

¹H NMR (CDCl₃, 500 MHz) δ: 0.76-0.77 (d, J = 7.0 Hz, 3H), 0.86-0.88 (d, J = 6.5 Hz, 3H), 1.00-1.02 (d, J = 7.0 Hz, 3H), 1.05-1.22 (m, 36H), 1.30-1.34 (m, 15H), 2.60-2.66 (h, J = 7.0 Hz, 2H), 2.70-2.78 (m, 3H), 2.92-2.98 (m, 3H), 3.04-3.10 (h, J = 7.0 Hz, 1H), 3.29-3.32 (h, J = 7.0 Hz, 1H), 7.03-7.05 (d, J = 9.5 Hz, 4H), 7.09-7.12 (m, 5H), 7.16 (s, 1H), 7.26-7.28 (m, 2H), 7.47-7.50 (t, J = 7.0 Hz, 2H), 7.86 (s, 1H), 7.93-7.96 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ: 22.2, 23.7, 24.0, 24.1, 24.2 (3C), 24.4, 24.5, 24.6 (2C), 25.0, 26.6, 27.2, 30.4, 30.5 (3C), 30.6, 30.7, 30.8, 30.9 (2C), 34.4, 119.3 (q, J = 272 Hz), 120.8, 120.9, 122.2 (2C), 123.3 (2C), 123.4 (2C), 124.2, 124.3, 124.9, 125.6, 125.6 (2C), 126.4 (2C), 127.1, 127.2, 128.2, 128.3, 130.8, 131.1, 131.6 (2C), 132.4 (2C), 132.8, 133.1, 133.2, 137.8, 137.9, 140.6, 146.5, 146.6, 146.8, 146.9, 147.5, 147.6, 147.7, 147.8, 147.9, 148.1; ¹⁹F NMR (CDCl₃, 471 MHz) δ:-78.50; ³¹P NMR (202 MHz, CDCl₃) δ: 62.0; $[\alpha]_D^{27}$ = +36.4 (c 1.0, CHCl₃); MS (APCI) Exact mass calcd for C₇₅H₈₉F₃NO₄PS₂ (M-1): 1218.59 Found: 1218.58.

3. Catalytic Asymmetric Mukaiyama Aldol Reactions of Aldehydes and Silyl Enol Ethers of **Ketones**

3-1. Optimization of Reaction Condition

General Procedures: To a solution of benaldehyde 5a (0.10 mmol; 10.6 mg; 1.0 eq) and chiral Brønsted source (0.03 eq) was added silyl enol ether of acetophenone 4a (0.11 mmol; 21.1 mg; 1.1 eq) dropwise. The reaction mixture was monitored by TLC. When benzaldehyde 5a was completely consumed, the reaction mixture was quenched with saturated aqueous NaHCO₃ and extracted with ether. The resulting aldol product was dissolved in ether and treated with 1 N HCl to deprotect the silyl ether. After the deprotection was over, the reaction mixture was extracted with ether. The organic layer was combined, washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash column chromatography (EtOAc/hexanes, 1/5) on silica gel. Enantiomeric ratio (e.r.) was determined by HPLC with a chiral OD-H column.

3-1-1. Reactivity Comparison

The reactivities of oxo-, thio-, and seleno-phosphoramides 1-3 were compared in enantioselective Mukaiyama aldol reaction of benzaldehyde 5a with silvl enol ether of acetophenone 4a. Unlike the previous protonation reaction,² the reactivities of these acids showed dramatic difference in Mukaiyama aldol reaction. Thio- and seleno-phosphoramides 2b and 3 afforded the desired aldol product 6aa in excellent yields, whereas oxophosphoramide 1 did not give any product. In addition, thiophosphoramide

 ^a Isolation yield after column chromatography separation.
 ^b Enantiomeric ratio (er) was determined using chiral HPLC using a chiral OD-H column.

2b gave slightly better enantioselectivity than selenophosphoramide 3. Thus, thiophosphoramide 2 was chosen for the further investigation of enantioselective Mukaiyama aldol reaction.

3-1-2. Effect of Substituents at 3,3'-Position of Binaphthyl Backbone

We tried to optimize the catalyst structure. Although all the thiophosphoramides 2a-e provided the aldol product 6aa, the enantioselectivities highly depended on the size of the aryl substituents at the 3,3'-position of the binaphthyl backbone. Particularly, the enantioselectivity increased with the size of para-substituent at the aryl substituent at the 3,3'-position of the binaphthyl backbone.²⁻⁵ Thiophosphoramide 2e carrying bulky 9-anthryl substituent at the para-position of the aryl substituent gave the aldol product in 67:33 er.

3-1-3. Effect of Size of Silyl Groups

OSi 	+	2e (3 mol %)	HCI (1N)	O OH
Ph	H∕ Ph	toluene, rt, time (h)	rt, 30 min	Ph
4a	5a			6aa
entry	Si	time (h)	yield (%) ^a	er ^b
1	TMS	1	94	67:34
2 ^c	TBS	2	96	56:14
3	PMDS	2	93	64:36
4 ^d	TIPS	4	87	59:41

^a Isolation yield after column chromatography separation.

^b Enantiomeric ratio (er) was determined using chiral HPLC using a chiral OD-H column.

We further investigated the effect of size of silyl groups on enantioselectivity. Although reactivity did not show significant dependence on the silyl groups, enantioselectivity exhibited strong dependence on the size of the silyl group. As the size of silyl group increased, the enantioselectivity decreased: Among silyl groups tested, TMS silyl enol ether of acetophenone gave the best enantioselectivity, and thus we chose the TMS group for the future investigation.

3-1-4. Further optimization

Then, we attempted to optimize the reaction conditions, such as temperature and solvent. The enantioselectivity highly depended on the temperature. Enantioselectivity increased from 67:33 to 87:13 er when reaction was carried out at -78 °C (entry 2). Then, we screened solvent. Dichloromethane gave significantly lower enantioselectivity (62:38 er vs 87:13 er), although it increased the reactivity (4 h vs 6 h) (entry 3). The reaction did not proceed at all in hexanes presumably poor solubility of catalyst **2e** (entry 4). Then we tried to increase the enantioselectivity further by decreasing reaction temperature. The enantioselectivity could be improved to 89:11 er at -86 °C (entry 5). It could further increase up to 92:8 er

^a Isolation yield after column chromatography separation.

^b Enantiomeric ratio (er) was determined using chiral HPLC using a chiral OD-H column.

^c Deprotection of the aldol product was carried out at room temperature for 3 h.

^d TBAF was used for removal of the TIPS ether of the aldol adduct.

^a Isolation yield after column chromatography.

^b Enantiomeric ratio (er) was determined by HPLC using a chiral OD-H column.

^c 1 mol % of catalyst was used.

in the 1:1 mixture of toluene and hexanes (entry 6). To our delight, the catalyst loading could be decreased to 1 mol % without any loss of enantioselectivity (entry 7).

3-2. Enantioselective Mukaiyama Aldol Reaction of Aldehydes with Silyl Enol Ether of Acetophenone

General procedure: To a solution of aldehyde (0.10 mmol; 1.0 eq) in toluene/hexanes (1:1 (v/v), 0.5 mL) was added chiral Brønsted acid **2e** (1.2 mg; 0.001 mmol; 0.01 eq) in toluene/hexanes (1:1 (v/v), 0.5 mL) at room temperature. The mixture was stirred for 30 min at room temperature and them cooled to -86 °C. Silyl enol ether of acetophenone **4a** (0.11 mmol; 21.1 mg; 1.1 eq) was added dropwise to the reaction mixture at -86 °C and the reaction mixture was monitored by TLC. When the aldehyde was completely consumed, the reaction mixture was quenched with saturated aqueous NaHCO₃ and extracted with ether. The resulting aldol product was dissolved in ether and treated with 1 N HCl to deprotect the silyl ether. After deprotection was over, the reaction mixture was extracted with ether. The organic layer was combined, washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash column chromatography (EtOAc/hexanes, 1/5) on silica gel. Enantiomeric ratio (e.r.) was determined by HPLC with a chiral column.

3-2-1. Characterization of Compounds 6aa-6al

The product (**6aa**)⁶ was obtained as a white solid in 95 % yield and 92:8 er. ¹H NMR (CDCl₃, 500 MHz) δ : 3.38-3.39 (d, J = 8.0 Hz, 2H), 3.59 (d, J = 3.0 Hz, 1H), 5.34-5.37 (td, J = 6.0 Hz, 2.0 Hz, 1H), 7.29-7.32 (t, J = 7.5 Hz, 1H), 7.37-7.40 (t, J = 8.0 Hz, 2H), 7.44-7.48 (m, 4H), 7.57-7.61 (t, J = 8.0 Hz, 1H), 7.95-7.97 (d, J = 9.0 Hz, 2H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 47.5, 70.2, 125.9, 127.8, 128.3, 128.7, 128.8, 133.8, 136.7, 143.1. 200.3. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 90:10, flow rate = 1.0 mL/min, λ = 254 nm), t_r(major, R) = 11.3 min., t_r(minor, S) = 10.5 min. [α]_D²⁷ = +60.8 (C 1.0, CHCl₃) (Lit. [α]_D²⁰ = +60 (C 0.83, CHCl₃) for (C) enantiomer (85:15 er)).

NO₂ The product (**6ab**)⁶ was obtained as a white solid in 94 % yield and 96:4 er. ¹H NMR (CDCl₃, 500 MHz) δ : 3.31-3.43 (m, 2H), 3.87 (d, J = 3.0 Hz, 1H), 5.44-5.47 (dt, J = 9.0, 3.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 2H), 7.61-7.63 (m, 3H), 7.95 (dd, J = 8.0, 1.5 Hz, 2H), 8.22 (dt, J = 8.0, 2.0 Hz, 2H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 47.1, 69.3, 123.9, 126.7, 128.3, 128.9, 134.1, 136.3, 147.4, 150.4, 199.6. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel AD-H column equipped with an AD-H guard column (hexanes:2-propanol = 80:20, flow rate = 1.0 mL/min, λ = 254 nm), t_r (major, R) = 13.7 min., t_r (minor, S) = 11.3 min. [α]_D²⁷ = +52.3 (c 1.0, CHCl₃) (Lit. [α]_D²⁰ = +27 (c 2.88, CHCl₃) for (R) enantiomer (73:27 er)).

The product (**6ac**)⁶ was obtained as a white solid in 96 % yield and 94:6 er. ¹H NMR (CDCl₃, 500 MHz) δ : 3.34-3.47 (m, 3H), 3.85 (d, J = 2.5 Hz, 1H), 5.45 (d, J = 9.0 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.56 (t, J = 8.0 Hz, 1H), 7.62 (t, J = 6.8 Hz, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.96 (d, J = 8.5 Hz, 2H), 8.16 (d, J = 8.5 Hz, 1H), 8.33 (s, 1H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 47.1, 69.2, 121.0, 122.7, 128.3, 129.0, 129.7, 132.1, 134.1, 136.3, 145.2, 148.6, 199.7. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel AS-H column equipped with an AS-H guard column (hexanes:2-propanol = 90:10, flow rate = 1.0 mL/min, λ = 254 nm), t_r (major, R) = 35.7 min., t_r (minor, S) = 27.9 min.. $[\alpha]_D^{27}$ = +60.2 (C 1.0, CHCl₃).

The product $(6ad)^7$ was obtained as a white solid in 91 % yield and 94:6 er. ¹H NMR (CDCl₃, 500 MHz) δ : 3.18-3.24 (dd, J = 18, 9.6 Hz, 1H), 3.69-3.73 (dd, J = 15 Hz, 2.5 Hz, 1H), 4.00 (d, J = 3.0 Hz, 1H), 5.85-5.87 (dt, J = 7.5 Hz, 3.0 Hz, 1H), 7.45-7.49 (m, 3H), 7.60 (t, J = 7.5 Hz, 1H), 7.70 (t, J = 7.5 Hz, 1H), 7.96-8.00 (m, 4H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 46.6, 66.1, 124.6, 128.4, 128.5, 128.6, 128.9, 134.0, 136.5, 138.7, 147.4, 200.1. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel AS-H column equipped with an AS-H guard column (hexanes:2-propanol = 90:10, flow rate = 1.0 mL/min, λ = 254 nm), t_r(major, R) = 36.1 min., t_r(minor, S) = 28.6 min.. [α]_D²⁷ = -58.0 (C 1.0, CHCl₃).

Br The product (**6ae**)⁸ was obtained as a white solid in 92 % yield and 91:9 er. ¹H NMR (CDCl₃, 500 MHz) δ: 3.33-3.35 (m, 2H), 5.30-5.32 (dd, J = 8.0 Hz, 4.0 Hz, 1H), 7.31-7.33 (d, J = 8.0 Hz, 2H), 7.46-7.52 (m, 4H), 7.58-7.61 (t, J = 8.0 Hz, 1H), 7.93-7.96 (dd, J = 8.5 Hz, 1.5 Hz, 2H).; ¹³C NMR (CDCl₃, 125 MHz) δ: 47.3, 69.5, 121.5, 127.6, 128.3, 128.9, 131.7, 133.9, 136.5, 142.1. 200.0. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 90:10, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_r (major, R) = 16.2 min., t_r (minor, S) = 13.7 min.. [α]_D²⁷ = +41.1 (c 1.0, CHCl₃).

The product (**6af**)⁶ was obtained as a white solid in 93 % yield and 90:10 er. ¹H NMR (CDCl₃, 500 MHz) δ : 3.33-3.37 (m, 2H), 5.32-5.34 (dd, J = 8.0 Hz, 4.0 Hz, 1H), 7.35-7.40 (m, 4H), 7.46-7.49 (t, J = 7.5 Hz, 2H), 7.59-7.62 (t, J = 7.5 Hz, 1H), 7.94-7.96 (d, J = 8.0 Hz, 2H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 47.4, 69.5, 127.3, 128.3, 128.8, 128.9, 133.5, 133.9, 136.5, 141.5. 200.1. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel AD-H column equipped with an AD-H guard column (hexanes:2-propanol = 90:10, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_r (major, R) = 18.4 min., t_r (minor, S) = 15.1 min.. $\lceil \alpha \rceil_D^{27} = +47.3$ (c 1.0, CHCl₃).

OMe The product (**6ag**)⁸ was obtained as colorless oil in 96 % yield and 92:8 er. ¹H NMR (CDCl₃, 500 MHz) δ : 3.36-3.38 (m, 2H), 3.51 (d, J = 3.0 Hz, 1H), 3.82 (s, 3H), 5.30 (m, 1H), 6.91-6.93 (d, J = 8.0 Hz, 2H), 7.36-7.38 (d, J = 8.0 Hz, 2H), 7.45-7.49 (t, J = 8.0 Hz, 2H), 7.58-7.60 (t, J = 7.5 Hz, 1H), 7.95-7.97 (dd, J = 8.0 Hz, 1.0 Hz, 2H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 47.5, 55.4, 69.8, 114.1, 127.2, 128.3, 128.8, 133.7, 135.3, 136.7, 159.2, 200.4. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 90:10, flow rate = 1.0 mL/min, λ = 254 nm), t_r (major, R) = 21.3 min., t_r (minor, S) = 17.0 min.. [α]_D²⁷ = +50.6 (c 1.0, CHCl₃).

O OH

The product (**6ah**)⁶ was obtained as a white solid in 94 % yield and 90:10 er. ¹H NMR (CDCl₃, 500 MHz) δ : 3.42-3.49 (m, 2H), 3.73 (d, J = 2.5 Hz, 1H), 5.52-5.55 (m, 1H), 7.46-7.53 (m, 4H), 7.54-7.56 (dd, J = 8.5 Hz, 2.0 Hz, 1H), 7.59-7.62 (t, J = 7.5 Hz, 1H), 7.84-7.88 (m, 3H), 7.92 (s, 1H), 7.97-7.99 (dd, J = 8.5 Hz, 1.0 Hz, 2H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 47.5, 70.3, 124.0, 124.6, 126.1, 126.4, 127.8, 128.2, 128.3, 128.5, 128.9, 133.1, 133.5, 133.9, 136.9, 140.4, 200.3. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 95:5, flow rate = 1.0 mL/min, λ = 225 nm), t_r (major, R) = 55.8 min., t_r (minor, S) = 52.3 min.. $[\alpha]_D^{27} = +48.4$ (C 1.0, CHCl₃).

The product (**6ai**)⁶ was obtained as a white solid in 95 % yield and 81:19 er. ¹H NMR (CDCl₃, 500 MHz) δ : 3.45-3.51 (dd, J = 18.0 Hz, 9.5 Hz, 1H), 3.56-3.60 (dd, J = 18.0 Hz, 2.0 Hz, 1H), 3.71 (d, J = 3.0 Hz, 1H), 6.15-6.17 (m, 1H), 7.45-7.48 (t, J = 8.5 Hz, 2H), 7.50-7.55 (m, 3H), 7.57-7.61 (t, J = 7.5 Hz, 1H), 7.80-7.83 (t, J = 8.0 Hz, 2H), 7.90-7.92 (m, 1H), 7.96-7.98 (dt, 7.0 Hz, 1.5 Hz, 2H), 8.04-8.06 (d, 9.0 Hz, 1H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 46.9, 66.9, 122.9, 123.3, 125.7, 125.8, 126.4, 128.2, 128.3, 128.9, 129.2, 130.0, 133.8, 133.9, 136.6, 138.6, 200.5. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 90:10, flow rate = 1.0 mL/min, λ = 254 nm), t_r (major, R) = 16.4 min., t_r (minor, S) = 12.9 min. $[\alpha]_D^{27} = +84.5$ (c 1.0, CHCl₃).

O OH Me

The product (**6aj**) was obtained as colorless oil in 97 % yield and 84:16 er. ¹H NMR (CDCl₃, 500 MHz) δ : 2.36 (s, 3H), 3.32-3.34 (m, 2H), 3.53(d, J = 3.0 Hz, 1H), 5.567-5.60 (m, 1H), 7.17 (d, J = 7.0 Hz, 1H), 7.21 (td, J = 7.0 Hz, 1.0 Hz, 1H), 7.29 (d, J = 7.0 Hz, 1H), 7.46-7.49 (t, J = 7.5 Hz, 2H), 7.60 (t, J = 8.0 Hz, 2H), 7.96-7.98 (dt, J = 7.0 Hz, 1.0 Hz, 2H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 19.2, 46.2, 66.6, 125.6, 126.5, 127.5, 128.3, 128.8, 130.5, 133.8, 134.2, 136.7, 141.1, 200.3. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 95:5, flow rate = 1.0 mL/min, λ = 254 nm), t_r (major) = 19.4 min., t_r (minor) = 15.1 min.. [α]_D²⁷ = +60.9 (c 0.68, CHCl₃).

O OH

The product $(6ak)^9$ was obtained as pale green oil in 87 % yield and 86:14 er. ¹H NMR (CDCl₃, 500 MHz) δ : 3.28-3.31 (m, 2H), 3.38 (d, J = 3.5 Hz, 1H), 4.96 (br, 1H), 6.30-6.35 (dd, J = 16.0 Hz, 6.0 Hz, 1H), 6.70-6.74 (d, J = 16.0 Hz, 1H), 7.25 (t, J = 7.0 Hz, 1H), 7.33 (t, J = 7.5 Hz, 2H), 7.40 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 8.0 Hz, 2H), 7.60 (t, J = 7.5 Hz, 1Hz), 7.97-7.99 (d, J = 7.0 Hz, 2H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 45.3, 68.8, 126.7, 127.9, 128.3, 128.7, 128.9, 130.4, 130.6, 133.8, 136.7, 137.8, 200.3. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel IC column equipped with an IC guard column (hexanes:2-propanol = 99:1, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_r (major, R) = 44.1 min., t_r (minor, S) = 38.4 min.. [α] $_D^{27} = +17.8$ (c 1.0, CHCl₃).

The product (**6al**)⁶ was obtained as colorless oil in 92 % yield and 85:15 er. ¹H NMR (CDCl₃, 500 MHz) δ : 3.17-3.21 (dd, J = 16.0 Hz, 4.0 Hz, 1H), 3.63-3.68 (dd, J = 16.0 Hz, 8.5 Hz, 1H), 5.66-5.69 (dd, J = 8.5 Hz, 4.5 Hz, 1H), 6.93-6.97 (m, 2H), 7.21-7.22 (dd, J = 5.0 Hz, 1.0 Hz, 1h), 7.46 (t, J = 7.5 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.96 (d, J = 7.5 Hz, 2H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 47.3, 66.6, 123.7, 124.9, 126.9, 128.3, 128.9, 133.9, 136.6, 146.8, 199.8. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel AS column equipped with an AS guard column (hexanes:2-propanol = 90:10, flow rate = 1.0 mL/min, λ = 254 nm), t_r (major, R) = 19.4 min., t_r (minor, S) = 15.7 min.. $[\alpha]_D^{27} = +24.0$ (C 1.0, CHCl₃).

3-3. Enantioselective Mukaiyama Aldol Reaction of Benzaldehyde with Silyl Enol Ethers of Ketones

General Procedures: To a solution of benzaldehyde **5a** (0.10 mmol; 10.6 mg, 1.0 eq) in toluene/hexanes (1:1(v/v); 0.5 mL) was added chiral Brønsted acid **2e** (1.2 mg; 0.001 mmol; 0.01 eq) in toluene/hexanes (1:1(v/v); 0.5 mL). The mixture was stirred for 30 min at -86 °C. Silyl enol ether of

acetophenone (0.11 mmol; 21.1 mg; 1.1 eq) was added dropwise to the reaction mixture and the reaction mixture was monitored by TLC. When the aldehyde was completely consumed, the reaction mixture was quenched with saturated aqueous NaHCO₃ and extracted with ether. The resulting aldol product was dissolved in ether and treated with 1 N HCl to deprotect the silyl ether. After deprotection was over, the reaction mixture was extracted with ether. The organic layer was combined, washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash column chromatography (EtOAc/hexanes, 1/5) on silica gel. Enantiomeric ratio (e.r.) was determined by HPLC with a chiral column.

3-3-1. Characterization of Compounds 6ba-6ga

The product (**6ba**)¹¹ was obtained as a white solid in 97 % yield and 92:8 er. ¹H NMR (CDCl₃, 500 MHz) δ : 3.29-3.34 (m, 2H), 3.76 (br, 1H), 3.89 (s, 3H), 5.31-5.34 (dd, J = 8.5, 3.0 Hz, 1H), 6.93 (dt, J = 9.5 Hz, 2.5 Hz, 2H), 7.30 (t, J = 8.0 Hz, 1H), 7.38 (t, J = 7.0 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.92 (dt, J = 9.5, 2.5 Hz, 2H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 47.1, 55.7, 70.3, 114.0, 125.9, 127.8, 128.7, 129.8, 130.6, 143.2, 164.1, 198.9. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel IB column equipped with an IB guard column (hexanes:2-propanol = 95:5, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_r (major) = 24.8 min., t_r (minor) = 28.0 min.. $[\alpha]_D^{27} = +39.7$ (c 1.0, CHCl₃).

The product (**6ca**)¹² was obtained as colorless oil in 98 % yield and 90:10 er. ¹H NMR (CDCl₃, 500 MHz) δ : 3.32-3.38 (dd, J = 18.0 Hz, 9.5 Hz, 1H), 3.44-3.48 (m, 1H), 3.66 (d, J = 2.5 Hz, 1H), 3.87 (s, 3H), 5.28-5.30 (d, J = 9.5 Hz, 1H), 6.95-6.97 (d, J = 8.5 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 7.28 (tt, J = 7.5 Hz, 1.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 2H), 7.42-7.43 (d, J = 7.0 Hz, 2H), 7.49 (td, J = 7.5 Hz, 2.0 Hz, 1H), 7.76-7.78 (dd, J = 8.0 Hz, 2.0 Hz, 1H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 52.6, 55.7, 70.5, 111.7, 120.9, 126.0, 127.5, 127.6, 128.6, 130.6, 134.4, 143.3, 159.1, 202.4. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 95:5, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_r (major, R) = 33.7 min., t_r (minor, S) = 27.2 min.. [α]_D²⁷ = +45.5 (c 1.0, CHCl₃).

The product (**6da**) was obtained as colorless oil in 98 % yield and 92:8 er. 1 H NMR (CDCl₃, 500 MHz) δ : 2.53 (s, 3H), 3.25-3.35 (m, 2H), 3.57 (d, J = 3.0 Hz, 1H), 5.31 (d, J = 8.5 Hz, 1H), 7.22-7.30 (m, 3H), 7.34-7.42 (m, 5H), 7.62 (d, J = 8.0 Hz, 1H).; 13 C NMR (CDCl₃, 125 MHz) δ : 21.7, 50.0, 70.5, 125.9 (2C), 127.8, 128.7, 129.1, 132.0, 132.3, 137.2, 138.8, 143.1, 204.0. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 95:5, flow rate = 1.0 mL/min, λ = 254 nm), t_r (major, R) = 18.5 min., t_r (minor, S) = 15.9 min.. $[\alpha]_D^{27}$ = +54.2 (c 1.0, CHCl₃).

The product (**6ea**)⁶ was obtained as a white solid in 94 % yield and 92:8 er. ¹H NMR (CDCl₃, 500 MHz) δ : 3.46-3.53 (m, 2H), 3.65 (br, 1H), 5.41 (t, J = 6.0 Hz, 1H), 7.32 (t, J = 7.0 Hz, 1H), 7.41 (t, J = 7.5 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.88-7.97 (m, 3H), 8.05 (dd, J = 8.5 Hz, 1.5 Hz, 1H), 8.45 (s, 1H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 47.6, 70.3, 123.7, 125.9, 127.1, 127.9, 128.0, 128.8, 128.9, 129.8, 130.4, 132.6, 134.0, 135.9, 143.1, 200.3. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 85:15, flow rate = 0.8 mL/min, $\lambda = 254$ nm), t_r (major, R) = 22.3 min., t_r (minor, S) = 15.1 min.. $\lceil \alpha \rceil_D^{27} = +59.2$ (c 1.0, CHCl₃) (Lit. $\lceil \alpha \rceil_D^{20} = +45$ (c 4.0, CHCl₃) for (R) enantiomer (79:21 er)).

The product $(6fa)^{10}$ was obtained as a white solid in 86 % yield and 16:1 dr (syn:anti) and 95:5 er (for syn) and 97:4 er (for anti). ¹H NMR (CDCl₃, 500 MHz) δ : 1.68-2.38 (m, 14H), 4.65 (d, J = 9.0 Hz, 1H), 5.23 (s, 1H), 7.18-7.29 (m, 10H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 20.3, 20.4, 26.9 (anti), 29.6 (anti), 38.7 (anti), 39.1, 71.5, 75.2 (anti), 125.5, 126.5 (anti), 127.3, 127.9 (anti), 128.3, 128.4 (anti), 142.6, 220.4. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 95:5, flow rate = 1.0 mL/min, λ = 220 nm), $t_r(syn\text{-major}) = 13.8$ min., $t_r(syn\text{-minor}) = 10.8$ min, $t_r(anti\text{-major}) = 15.4$ min., $t_r(anti\text{-minor}) = 19.2$ min..

The product (**6ha**)¹⁰ was obtained as colorless oil in 93 % yield 1.7:1 dr (syn:anti) and 76:24 er (for *syn*) and 73:27 er (for *anti*). ¹H NMR (CDCl₃, 500 MHz) δ : 2.33(d, J = 4.0 Hz, 1H), 2.61-2.65 (m, 1H), 2.81-3.00 (m, 3H), 3.18-3.22 (dd, J = 17.0 Hz, 4.0 Hz, 1H), 4.72 (d, J = 10.0 Hz, 1H), 5.53 (br, 1H), 7.20-7.38 (m, 14H), 7.49-7.56 (m, 2H), 7.69-7.74 (m, 2H).; ¹³C NMR (CDCl₃, 125 MHz) δ : 26.9, 30.1, 53.3, 54.9, 72.3, 75.9, 124.0, 124.4, 125.7, 126.7, 126.8, 127.2, 127.5, 127.6, 127.9, 128.5, 128.7, 128.8, 135.2, 135.7, 136.4, 137.2, 141.5, 142.7, 154.2, 154.9, 207.4, 209.9. Enantiomeric ratio (er) was determined by HPLC with a Chiralcel AS-H column equipped with an AS-H guard column (hexanes:2-propanol = 90:10, flow rate = 1.0 mL/min, λ = 240 nm), $t_r(syn$ -major) = 22.3 min., $t_r(syn$ -minor) = 18.5 min., $t_r(anti$ -major) = 26.3 min., $t_r(anti$ -minor) = 28.3 min.

4. Mechanistic Studies

4-1. Effect of 2,6-di(*t*-butyl)pyridine (DTBP)

In order to distinguish whether the actual catalyst for the Mukaiyama aldol reaction is Brønsted acid or silylated Brønsted acid, Mukaiyama aldol reaction was conducted in the presence of 2,6-di(*t*-butyl)pyridine (DTBP), which is known to inhibit any potential Brønsted acid catalysis.¹³

General Procedures: To a solution of benaldehyde **5a** (0.10 mmol; 10.6 mg; 1.0 eq) and Brønsted acid **2e** (0.001 mmol; 1.2 mg; 0.01 eq) in toluene/hexanes (1:1(v/v), 1 mL) was added a solution of DTBP (0.003 mmol; 0.57 mg; 0.03 eq). The mixture was allowed to stir for 1 h at room temperature and the reaction mixture was adjusted to the reaction temperature (either room temperature or -86 °C). Silyl enol ether **4a** (0.11 mmol; 21.1 mg; 1.1 eq) was added dropwise to the reaction mixture. The reaction mixture was monitored by TLC. When **5a** was completely consumed, the reaction mixture was quenched with saturated aqueous NaHCO₃ and extracted with ether. The resulting aldol product was dissolved in ether and treated with 1 N HCl to deprotect the silyl ether. After the deprotection was over, the reaction mixture was extracted with ether. The organic layer was combined, washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash column chromatography (EtOAc/hexanes, 1/5) on silica gel. Enantiomeric ratio (e.r.) was determined by HPLC with a chiral OD-H column.

At room temperature, DTBP has no effect on Mukaiyama aldol reaction in terms of reactivity as well as enantioselectivity (entries 1 and 2). However, at low temperature DTBP had a dramatic effect on the Mukaiyama aldol reaction (entries 3 and 4). DTBP completely inhibited Mukaiyama aldol reaction at low temperature (entry 4). Furthermore, when the reaction mixture at low temperature (from entry 4) was warmed up to room temperature, the aldol reaction proceeded again with the same yield and enantioselectivity of the reaction at room temperature with DTBP (eq. 1).

These results suggest that the aldol reaction predominantly proceeds through the silylated Brønsted acid at room temperature (Lewis acid pathway), whereas the aldol reaction proceeds via Brønsted acid activation of carbonyl compounds (Brønsted acid pathway).

4-2. Mukaiyama aldol reaction with the silylated Brønsted acid

4-2-1. Generation of the silylated Brønsted acid

To a solution of silyl enol ether **4a** in chloroform-d was added a solution of Brønsted acid **2e** in chloroform-d and the reaction was monitored by ¹H NMR. As soon as **2e** was added, the vinyl peaks (δ =

^a Isolation yield after column chromatography.

^b Enantiomeric ratio (er) was determined by HPLC using a chiral OD-H column.

4.43, 4.93 ppm) from the silyl enol ether disappeared and a new methyl peak from acetophenone was observed at $\delta = 2.60$ ppm. In addition, the TMS peak ($\delta = 0.25$ ppm) from **4a** disappeared and two new peaks were observed at 0.15 and 0.07 ppm. Furthermore, a new signal from the silylated Brønsted acid was observed in ³¹P NMR.

Ph 4a
$$\frac{Ar}{Ar}$$
 $\frac{CDCl_3}{rt, <10 \text{ min}}$ Ph $\frac{Ar}{Ar}$ $\frac{Ar}{O}$ $\frac{$

Furthermore, we examined the effect of DTBP on the protodesilylation between silyl enol ether **4a** and thiophosphoramide **2e**. It was turned out that DTBP has no effect on the protodesilylation (eq. 3).

TMS Ph 4a PN Tf CDCl₃ DTBP Ph + Ph Tf CDCl₃ DTBP Ph Tf Tf (3)

2e TMS-2e

Ar = 2,6-(i-Pr)₂-4-(9-anthryl)-C₆H₂

31
P NMR: δ = 52.9 ppm

4-2-2. Mukaiyama aldol Reaction with Silylated Brønsted Acid

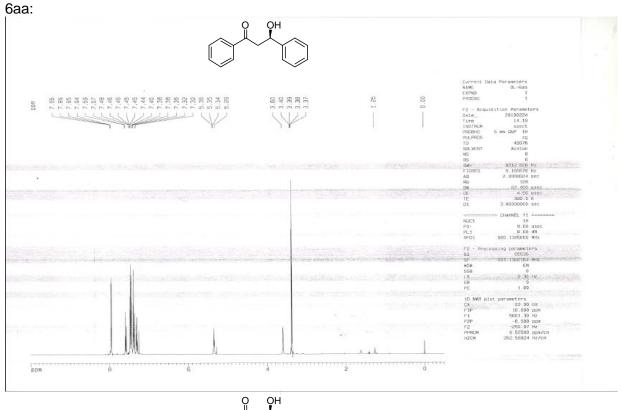
From the above reaction, the silyl enol ether **4a** rapidly silylates Brønsted acid **2e**. Based on this observation, we could generate the silylated Brønsted acid **TMS-2e** and apply this pre-silylated catalyst to Mukaiyama aldol reaction to further examine the reaction mechanism.

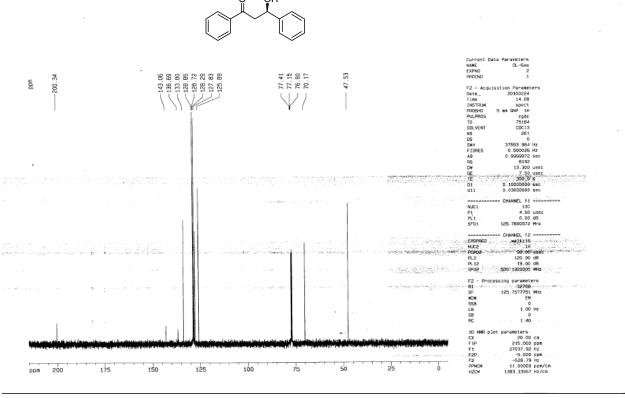
At room temperature, the desired aldol product was obtained in same yield and enantioselectivity at the standard room temperature reaction (eq. 4). However, at low temperature, the silylated Brønsted acid could not catalyze Mukaiyama aldol reaction (eq. 5).

These results are summarized in the table as shown below.

entry	cat.	temp. (°C)	time (h)	yield (%) ^a	er ^b
1	2e	rt	2	96	67:33
2	TMS-2e	rt	3	93	67:33
3	2e	-86	12	93	92:8
4	TMS-2e	-86	12	N. R.	N. D.

^a Isolation yield after column chromatography separation.


This result also supported that two different reaction pathways are operative depending on reaction temperature, and that Lewis acid catalyzed pathway would be operative at room temperature and Brønsted acid catalyzed pathway would be in effect at low temperature.


5. References

- 1. Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626.
- 2. Cheon, C. H.; Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 9246.
- 3. Cheng, X.; Goddard, R.; Buth, G.; List, B. Angew. Chem., Int. Ed. 2008, 47, 5057.
- 4. Jiao, P.; Nakashima, D.; Yamamoto, H., Angew. Chem., Int. Ed. 2008, 47, 2411.
- 5. Cheng, X.; Vellalath, S.; Goddard, R.; List, B. J. Am. Chem. Soc. 2008, 130, 15786.
- 6. Li, H.; Da, C.-S.; Xiao, Y.-H.; Li, X.; Su, Y.-N. J. Org. Chem. 2008, 73, 7398.
- 7. Mei, K.; Zhang, S.; He, S.; Li, P.; Jin, M.; Xue, F.; Luo, G.; Zhang, H.; Song, L.; Duan, W.; Wang, W. *Teterhedron Lett.* **2008**, *49*, 2681.
- 8. Itsuno, S.; Arima, S.; Haraguchi, N. Tetrahedron 2005, 61, 12074.
- 9. Kiyooka, S.; Takeshita, Y.; Tanaka, Y.; Higaki, T.; Wada, Y. Tetrahedron Lett. 2006, 47, 4453.

^b Enantiomeric ratio (ER) was determined using chiral HPLC after deprotection of silyl ether.

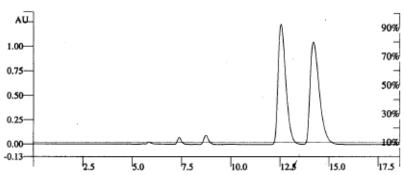
- 10. Nakajima, M.; Orito, Y.; Ishizuka, T.; Hashimoto, S. Org. Lett. 2004, 6, 3763.
- 11. For a racemate synthesis, see: Orsini, F. J. Org. Chem. **1997**, 62, 1159.
- 12. For a racemate synthesis, see: Lee, J. I.; Jung, M. G. Bull. Korean. Chem. Soc. 2005, 26, 2044.
- 13. Usage of this base to differentiate reaction pathway between Lewis acid and Brønsted acid catalysis, see: (a) Cheon, C. H.; Yamamoto, H. *Tetrahedron Lett.* **2009**, *50*, 3555. (b) Hara, K.; Akiyama, R.; Sawamura, M. *Org. Lett.* **2005**, *7*, 5621. (c) Mathieu, B.; Ghosez, L. *Tetrahedron* **2002**, *58*, 8219. (d) Zamfir, A.; Tsogoeva, S. B. *Org. Lett.* **2010**, *12*, 188. (e) Gracía-Gracía, P.; Lay, F.; Gracía-Gracía, P.; Babalakos, C.; List, B. *Angew. Chem., Int. Ed.* **2009**, *48*, 4363.

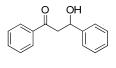
Data File: Sample ID: Operator (Inj): Injection Date:

c:\star\3-3-10 7;37;47 am -1.run Manual Sample

03/03/10 07:37:47 AM

Run Mode: Peak Measurement: Calibration Level:


Analysis Peak Area

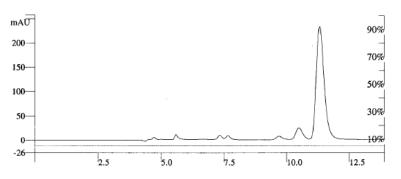

Run Time (min):

N/A 18.613

Injection Method:

c:\star\cheol hong\mukaiyama

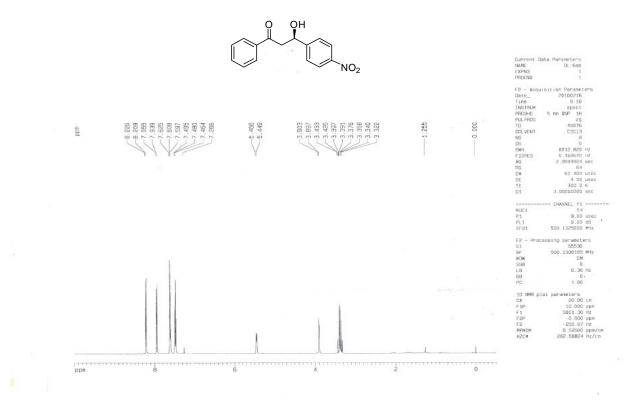
Minutes

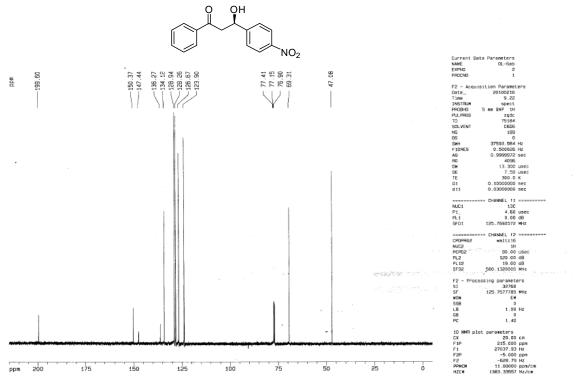

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	49.5895	12.547	0.000	172638048	0.00	ВВ	25.4
2	50.4105	14.200	0.000	175496464	0.00	BB	30.0
	100.0000		0.000	348134528			

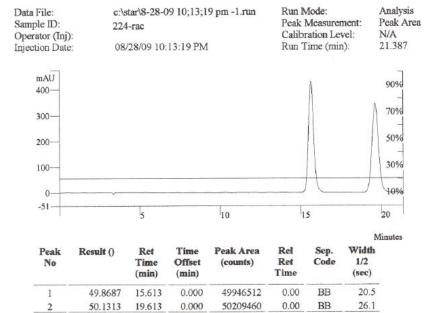
Data File: Sample ID: Operator (Inj): Injection Date: c:\star\10-11-09 11;33;41 am -1.run

16-12-tol/hx mixture

10/11/09 11:33:41 AM


Analysis Peak Area Run Mode: Peak Measurement: Calibration Level: N/A Run Time (min): 13.920




Minutes

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	7.6939	10.493	0.000	2159395	0.00	ВВ	17.5
2	92.3061	11.320	0.000	25906852	0.00	BB	20.0
	100 0000		0.000	28066248			

6ab:

O OH NO₂

Data File: Sample ID: Operator (Inj): Injection Date:	c:\star\9-28-09 6;48;33 pm -1.run 15-289-4-NO2 09/28/09 06:48:32 PM	Run Mode: Peak Measurement: Calibration Level:	Analysis Peak Area N/A
Injection Date:	09/28/09 06:48:32 PM	Run Time (min):	21.947
AU			200
1.00			90%
0.75—			70%
0.50-			50%

100155968

0.000

100.0000

0.25

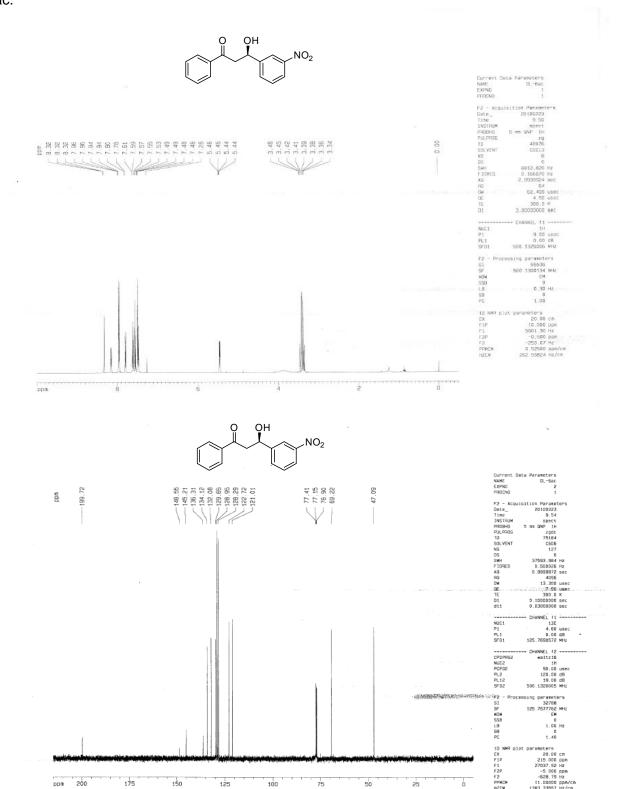
0.00--0.11-

OH	\NO ₂
	1102

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Minut Width 1/2 (sec)
1	3.8600	11.293	0.000	4275139	0.00	BB	14.3
2	96.1400	13.667	0.000	106479424	0.00	BB	17.9
	100,0000		0.000	110754560			

10

5


15

30%

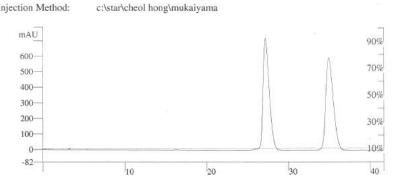
10%

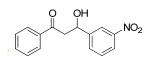
20

6ac:

Data File: Sample ID: c:\star\3-4-10 4;05;56 pm -1.run

Manual Sample


Run Mode: Peak Measurement: Calibration Level: Run Time (min):


Analysis Peak Area N/A 41.680

Operator (Inj): Injection Date:

03/04/10 04:05:56 PM

Injection Method:

Minutes

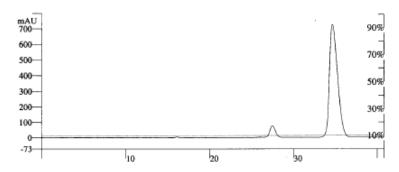
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	49.4437	27.133	0.000	190876240	0.00	BB	48.2
2	50.5563	34.893	0.000	195171344	0.00	BB	59.6
	100.0000		0.000	386047584			

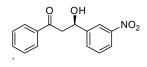
Data File: Sample ID: c:\star\3-4-10 4;49;29 pm -1.run Manual Sample

Run Mode:

Analysis Peak Area

Operator (Inj): Injection Date:

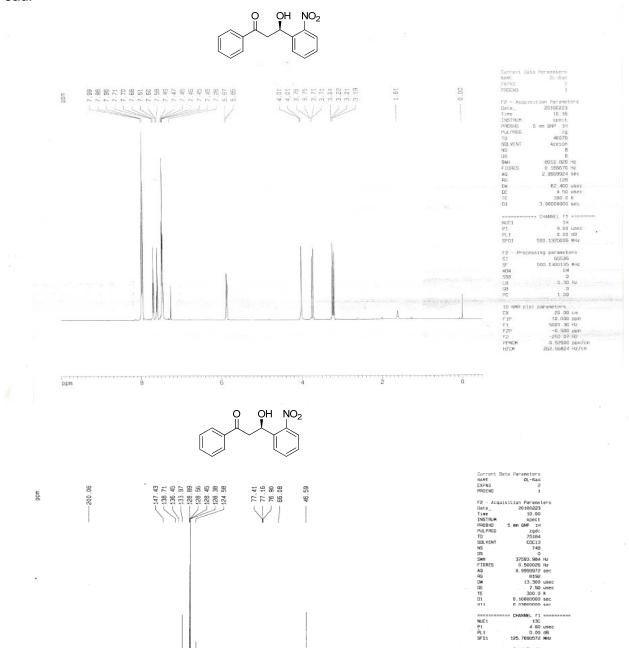

03/04/10 04:49:29 PM


Peak Measurement: Calibration Level: Run Time (min):

N/A 40.880

Injection Method:

c:\star\cheol hong\mukaiyama



Minutes

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	5.8391	27.480	0.000	15666151	0.00	ВВ	40.9
2	94.1609	34.680	0.000	252632192	0.00	BB	63.5
	100.0000		0.000	268298336			

150

1D NMR CX F1P F1 F2P F2 PPMCM HZCM parameters 20.00 cm 239.192 ppm 30080.27 Hz -59.748 ppm -7513.72 Hz 14.94698 ppm/cm 1879.59922 Hz/Cm Data File:

c:\star\data\11-10-092;05;48 pm.run

Channel:

1 = 210.00 nm RESULTS

Sample ID:

6ad-2-NO2

Aperitor Method: Rojectiond(ation):

c:\star\cheol hong\inst_2.mth 57/00609 02:05:48 PM

Instrument (Inj):

Workstation:

Verification Tolerance: N/A

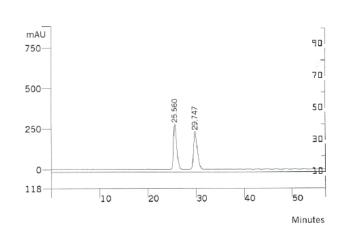
Operator (Calc):

Calc Date:

11/10/09 03:02:52 PM

Times Calculated:

Calculation Method: Instrument (Calc):


Analysis PDA

Run Mode:

Peak Measurement:

Calculation Type: Calibration Level: Peak Area

Percent N/A

Peak No	Result ()	Ret. Time (min)
1	50.1682	25.560
2	49.8318	29.747
	100.0000	

Data File:

c:\star\data\11-10-093;12;20 pm.run

Channel: Sample ID:

1 = 210.00 nm RESULTS Manual Sample

Appreter Ateiliod:

c:\star\cheol hong\inst_2.mth 3\5.640709 03:12:20 PM

Rojectione (attin): Instrument (Inj):

PDA

Workstation:

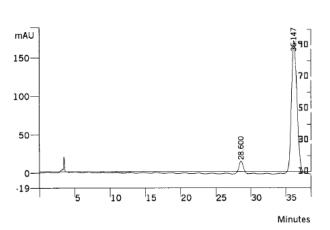
Verification Tolerance: N/A

Operator (Calc):

Calc Date:

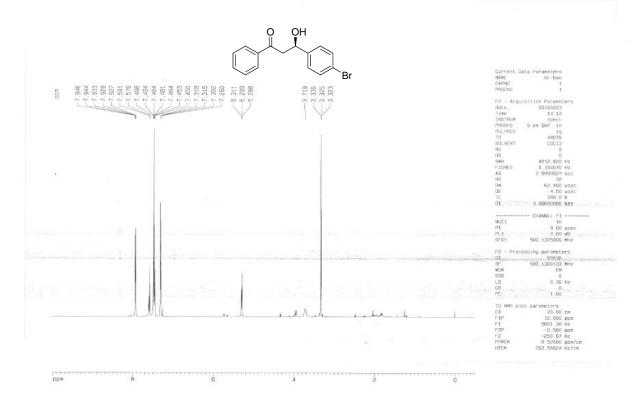
11/10/09 03:47:55 PM Times Calculated:

Calculation Method: Instrument (Calc):

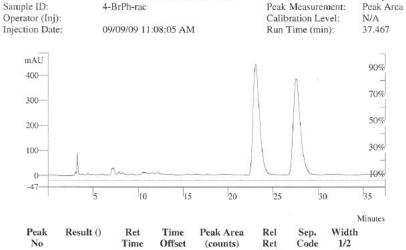

Run Mode:

Peak Measurement:

Calculation Type: Calibration Level: PDA Peak Area


Analysis

Percent N/A



Peak No	Result ()	Ret. Time (min)
1	4.6069	28.600
2	95.3931	36.147
	100.0000	

c:\star\9-9-09 11;08;05 am -1.run

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	51.4481	23.027	0.000	115483192	0.00	BB	46.8
2	48.5519	27.480	0.000	108982136	0.00	BB	50.7
	100.0000		0.000	224465328			

Data File: Channel:

c:\star\data\11-10-094;21;15 pm.run 1 = 210.00 nm RESULTS

6ae-4-Br

Sample ID: Appending Meiliod: Right Time (and):

Data File:

c:\star\cheol hong\inst_2.mth 56.843709 04:21:15 PM

Instrument (Inj):

Workstation:

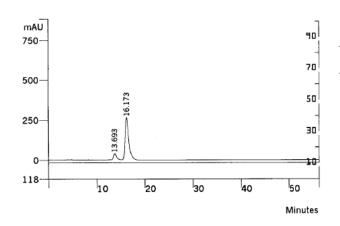
Verification Tolerance: N/A

Operator (Calc): Calc Date:

Run Mode:

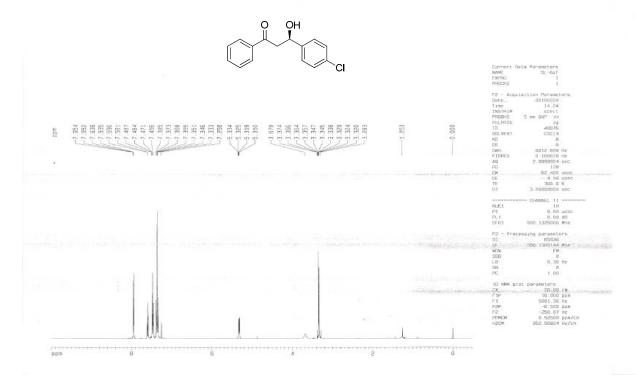
Times Calculated: Calculation Method: Analysis PDA

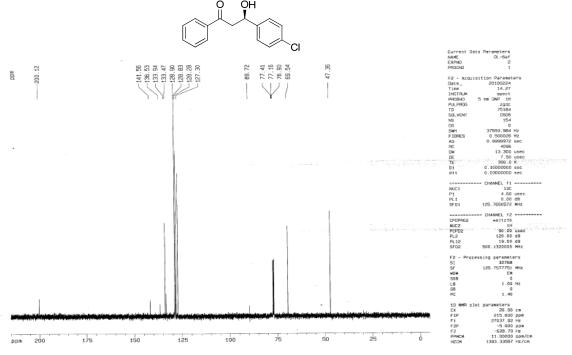
Instrument (Calc):

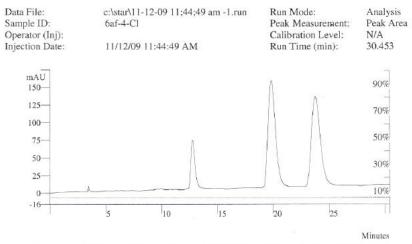

Run Mode:

Peak Measurement: Calculation Type: Calibration Level:

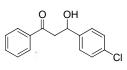
Peak Area Percent N/A


11/10/09 05:17:39 PM

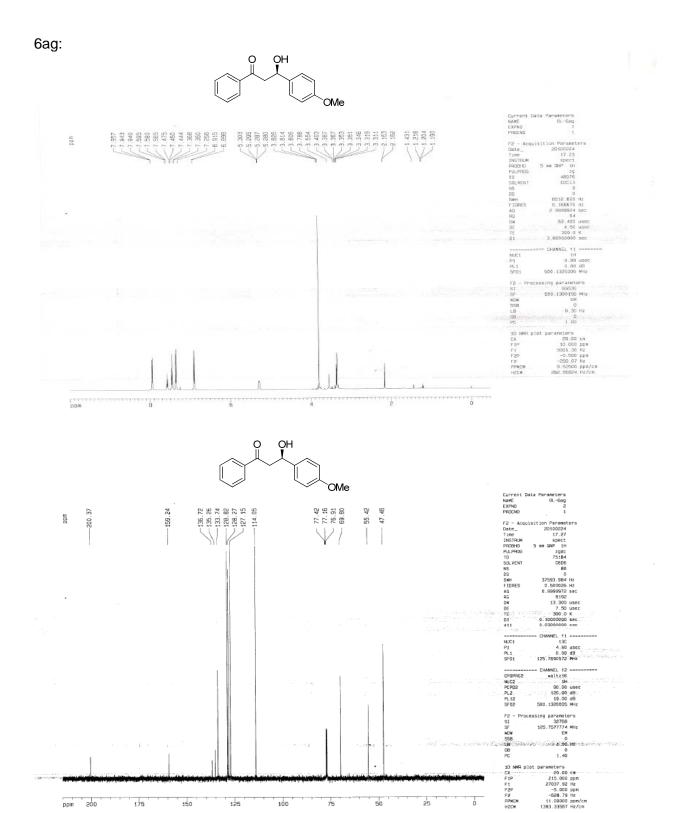

Analysis



Peak No	Result ()	Ret. Time (min)
1	9.2309	13.693
2	90.7691	16.173
	100.0000	



Run Mode:


c:\star\11-12-09 11;44;49 am -1.run 6af-4-Cl

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	49.9526	19.827	0.000	36017396	0.00	ВВ	43.9
2	50.0474	23.720	0.000	36085760	0.00	BB	52.1
	100.0000		0.000	72103152			

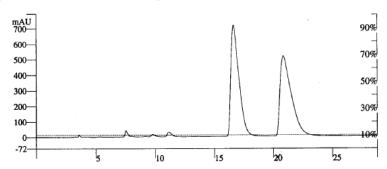
Data File: Sample ID: Operator (Inj): Injection Date:	15-24	\9-9-09 2;5 2-4-CIPh 0/09 02:57:5	•	1.run	Run Mode: Peak Measure Calibration L Run Time (m	ement: evel:	Analysis Peak Area N/A 35.440
=							7
mAU				1			90%
500—				A			
400				į			70%
300-							-
300							50%
200-				11			-
				11 .			30%
100			٨	11			4
0			$-\Lambda$				-10%
-70							
	15	10	15	20	25	30	11

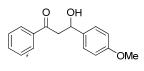
							Minut
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	10.2628	15.080	0.000	7807594	0.00	ВВ	17.1
2	89.7372	18.360	0.000	68268896	0.00	BB	22.2
	100.0000		0.000	76076488			

Data File: Sample ID: c:\star\3-3-10 12;06;16 am -1.run

Manual Sample

Operator (Inj): Injection Date:


03/03/10 12:06:16 AM


Run Mode: Peak Measurement: Analysis Peak Area

Calibration Level: Run Time (min): N/A 28.800

Injection Method:

c:\star\cheol hong\mukaiyama

Minutes

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	49.7038	16.600	0.000	172814992	0.00	BB	44.1
2	50.2962	20.813	0.000	174874832	0.00	BB	61.4
	100.0000		0.000	347689824			

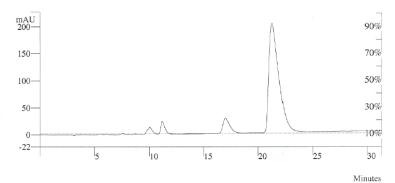
Data File: Sample ID: Operator (Inj):

Injection Date:

c:\star\3-2-10 11;29;15 pm -1.run

Manual Sample

03/02/10 11:29:15 PM

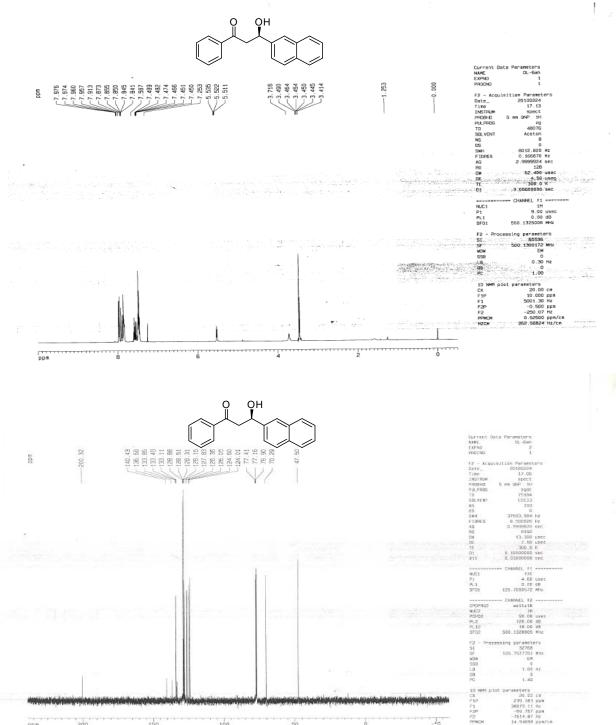

Run Mode: Peak Measurement:

Calibration Level: N/A Run Time (min): 31.360

Analysis
Peak Area
N/A

Injection Method:

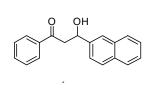
c:\star\cheol hong\mukaiyama



П	
	`OMe

			Mı
rea	Rel	Sep.	Width

No No	Result ()	Time (min)	Offset (min)	(counts)	Ret Time	Code	1/2 (sec)
1	7.7459	17.000	0.000	5500550	0.00	BB	38.5
2	92.2541	21.267	0.000	65511700	0.00	BB	58.1
	100.0000		0.000	71012248			



Sample ID: Operator (Inj): Calibration Level: N/A 11/12/09 04:30:59 PM 61.120 Injection Date: Run Time (min): mAU 90% 500-400-70% 300-50% 200-30% 100-

c:\star\11-12-09 4;30;59 pm -1.run

6ah-2naphthyl

10

							Minute
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	49.7408	50.067	0.000	356369888	0.00	BB	123.2
2	50.2592	55.853	0.000	360083392	0.00	BB	134.8
	100 0000		0.000	716453248			

30

40

Data File: Sample ID: Operator (Inj): Injection Date:

0--55

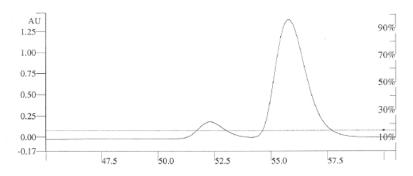
Data File:

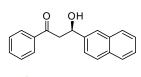
c:\star\10-14-09 1;22;03 pm -1.run 16-17-2-naphthyl

20

10/14/09 01:22:03 PM

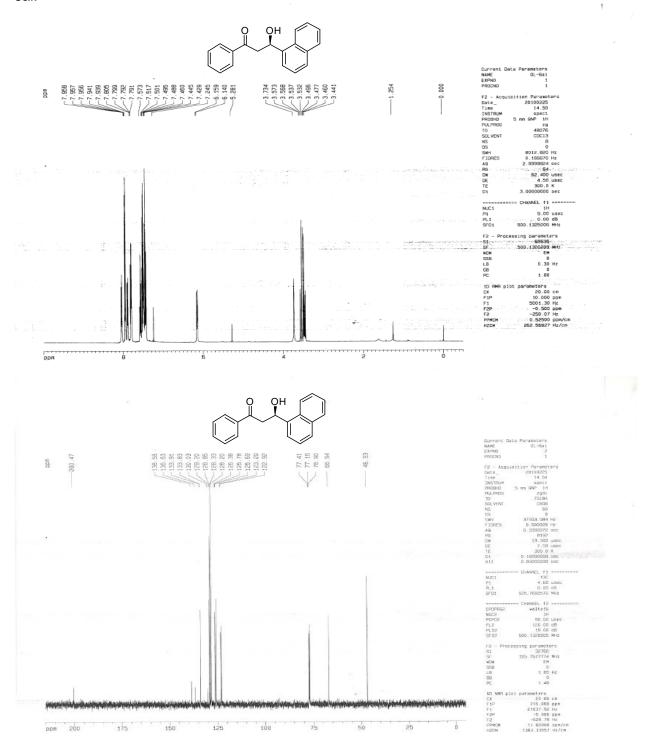
Run Mode: Analysis Peak Measurement: Peak Area Calibration Level: N/A Run Time (min): 60.533


50


Analysis

Peak Area

Run Mode:


Peak Measurement:

								inutes
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	
1	9.9545	52.280	0.000	75602712	0.00	BB	75.9	
2	90.0455	55.773	0.000	683883072	0.00	BB	88.6	
	100.0000		0.000	759485760				

Data File:

c:\star\3-3-10 8;57;50 am -1.run

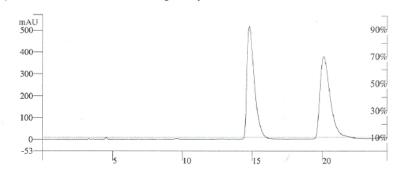
Manual Sample

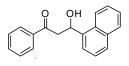
Sample ID: Operator (Inj): Injection Date:

03/03/10 08:57:50 AM

Run Mode:

Analysis Peak Area


Peak Measurement: Calibration Level:


Run Time (min):

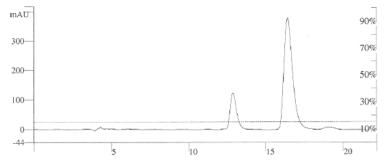
N/A 24.693

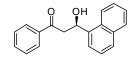
Injection Method:

c:\star\cheol hong\mukaiyama

Minutes

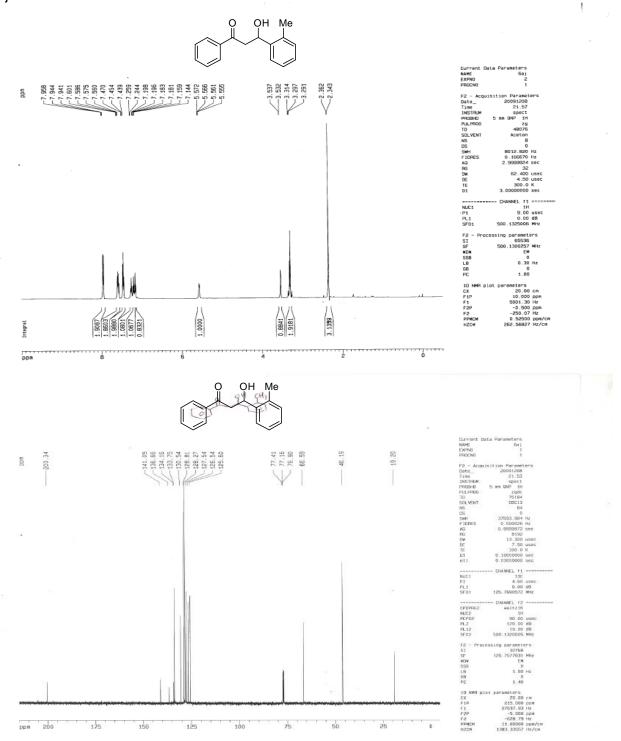
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	50.2628	14.787	0.000	98443992	0.00	BB	33.6
2	49.7372	20.093	0.000	97414728	0.00	BB	45.8
	100.0000		0.000	195858720			

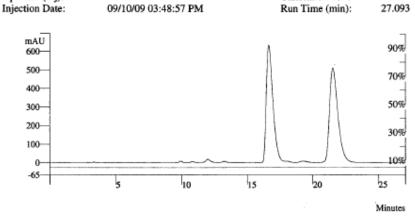

Data File: Sample ID: Operator (Inj): Injection Date: c:\star\10-20-09 5;21;04 pm -1.run 16-41-tol/hxs(1:1)


Run Mode: Peak Measurement: Analysis Peak Area N/A

10/20/09 05:21:04 PM

Calibration Level: Run Time (min):


22.187



	Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
_	1	18.9378	12.867	0.000	17839408	0.00	ВВ	26.3
	2	81.0622	16.387	0.000	76360552	0.00	BB	35.6
		100.0000		0.000	94199960			

c:\star\9-10-09 3;48;57 pm -1.run 2-MePh-rac, 15-248

O OH Me

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	49.6295	16.627	0.000	113052048	0.00	ВВ	32.5
2	50.3705	21.533	0.000	114739976	0.00	BB	40.2
	100.0000		0.000	227792032			

Data File: Sample ID: Operator (Inj): Injection Date:

Data File:

Sample ID:

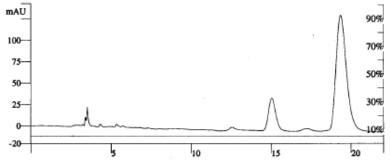
Operator (Inj):

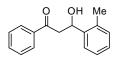
c:\star\10-20-09 9;51;25 am -1.run 16-40-tol/hex(1:1)

10/20/09 09:51:25 AM

Run Mode: Peak Measurement: Calibration Level: Run Time (min):

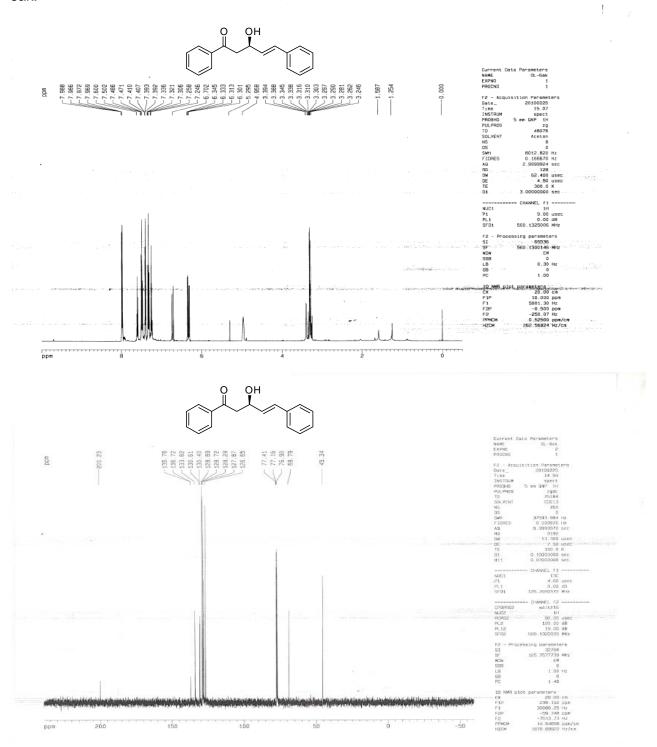
Run Mode:


Peak Measurement:


Calibration Level:

Analysis Peak Area N/A 22.053

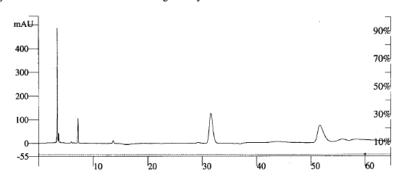
Analysis Peak Area

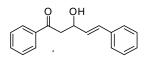

N/A

					,	/	Mi	inutes
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	
1	16.2120	15.027	0.000	6045745	0.00	BB	29.3	
2	83.7880	19.347	0.000	31246108	0.00	BB	41.7	
	100.0000		0.000	37291852				

6ak:

Data File: Sample ID: Operator (Inj): Injection Date: c:\star\3-3-10 12;06;18 pm -1.run


Manual Sample

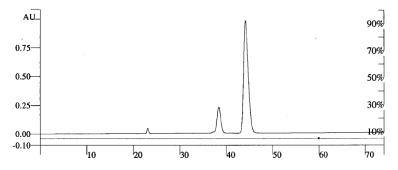

03/03/10 12:06:18 PM Calibration Level Run Time (min):

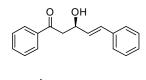
Run Mode: Peak Measurement: Calibration Level: Analysis Peak Area N/A 64.773

Injection Method:

c:\star\cheol hong\mukaiyama

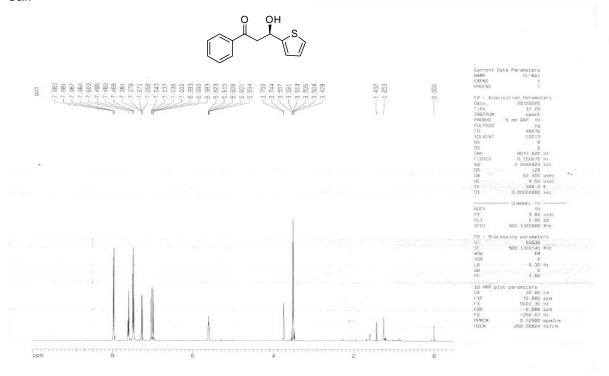
Minutes

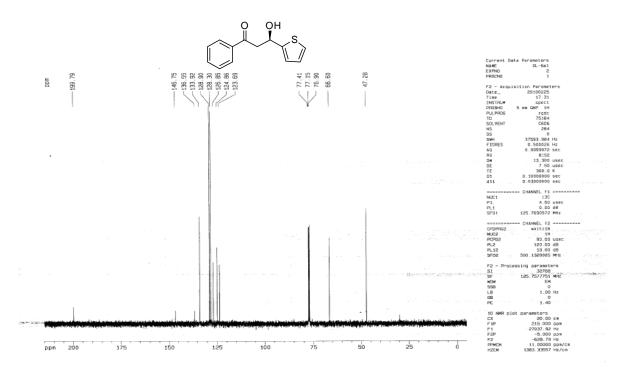

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	50.1852	31.560	0.000	28737336	0.00	ВВ	41.9
2	49.8148	51.640	0.000	28525232	0.00	BB	74.6
	100.0000		0.000	57262568			


Data File: Sample ID: Operator (Inj): Injection Date: c:\star\11-13-09 11;48;05 am -1.run

6ak-cinnamovl

jection Date: 11/13/09 11:48:05 AM


Run Mode: Analysis
Peak Measurement: Peak Area
Calibration Level: N/A
Run Time (min): 74.107

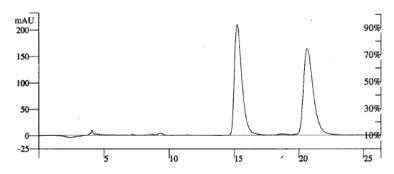


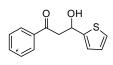
							141
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	13.9294	38.360	0.000	55779180	0.00	ВВ	48.4
2	86.0706	44.093	0.000	344662816	0.00	BB	63.9
	100.0000		0.000	400441984			

Data File: Sample ID: c:\star\3-3-10 3;12;47 pm -1.run Manual Sample

Operator (Inj): Injection Date:

03/03/10 03:12:47 PM


Run Mode: Peak Measurement: Analysis Peak Area


Calibration Level: Run Time (min):

N/A 26.347

Injection Method:

c:\star\cheol hong\mukaiyama

Minutes

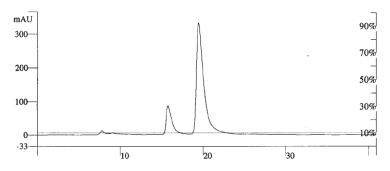
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	50.1517	15.213	0.000	43247828	0.00	BB	36.6
2	49.8483	20.627	0.000	42986264	0.00	BB	47.3
	100.0000		0.000	86234096			

Data File: Sample ID: Operator (Inj): Injection Date:

c:\star\10-5-09 9;00;21 pm -1.run

Manual Sample

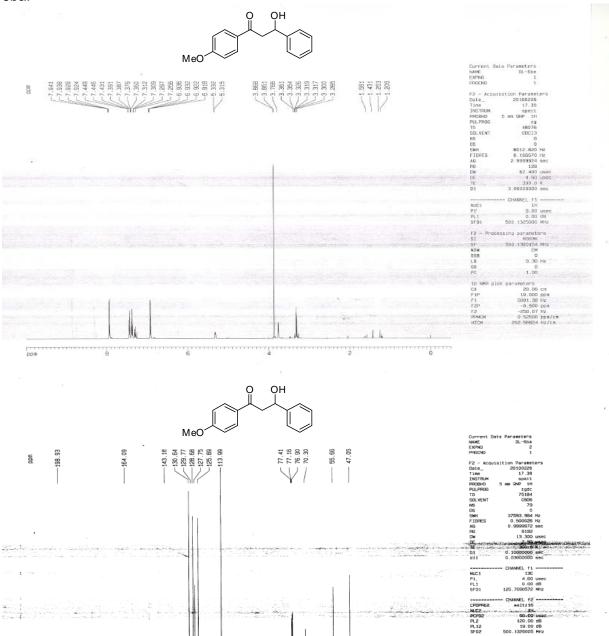
10/05/09 09:00:21 PM


Run Mode: Peak Measurement: Calibration Level:

Run Time (min): 40.933

Analysis Peak Area N/A

Injection Method:


c:\star\cheol hong\mukaiyama

O	OH I s
	S

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	15.0669	15.720	0.000	18674750	0.00	ВВ	41.4
2	84.9331	19.427	0.000	105270680	0.00	BB	51.9
	100 0000		0.000	123045432			

125

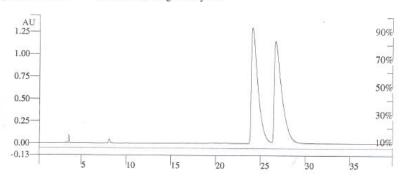
150

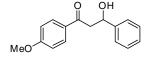
100

F2 - P SI SF HOW SSB LB GB PC Data File: Sample ID: Operator (Inj): Injection Date:

c:\star\3-4-10 11;38;03 am -1.run

Manual Sample


Run Mode: Peak Measurement: Calibration Level: Run Time (min):


Analysis Peak Area N/A 115.387

Injection Method:

c:\star\cheol hong\mukaiyama

03/04/10 11:38:03 AM

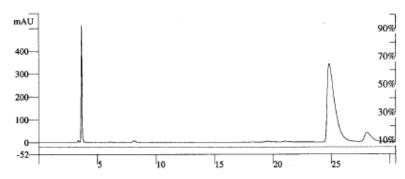
Minutes

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	49.8773	24.093	0.000	336204224	0.00	BB	46.0
2	50.1227	26.653	0.000	337858688	0.00	BB	51.2
	100.0000		0.000	674062912			

Data File: Sample ID: Operator (Inj): Injection Date: c:\star\3-4-10 1;56;05 pm -1.run

Manual Sample

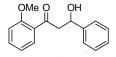
03/04/10 01:56:05 PM

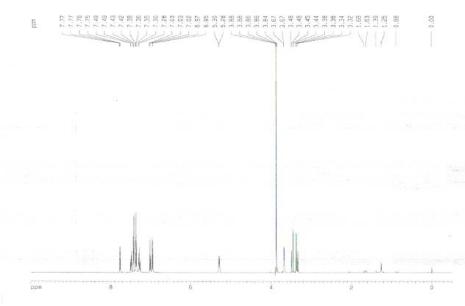

Run Mode: Peak Measurement: Calibration Level:

Run Time (min):

Analysis Peak Area N/A 30,533

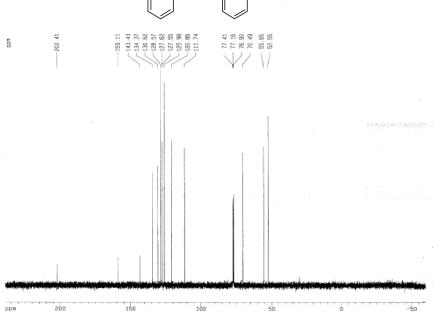
Injection Method:

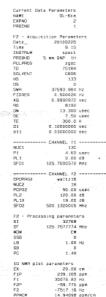

c:\star\cheol hong\mukaiyama

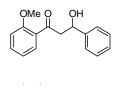


	OH <
MeO	

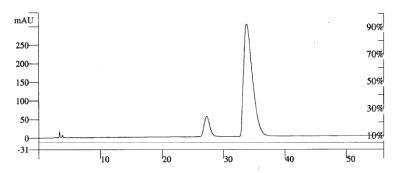
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	91.9505	24.813	0.000	79332808	0.00	BB	40.0
2	8.0495	28.040	0.000	6944919	0.00	BB	35.5
	100.0000		0.000	86277728			


6ca:

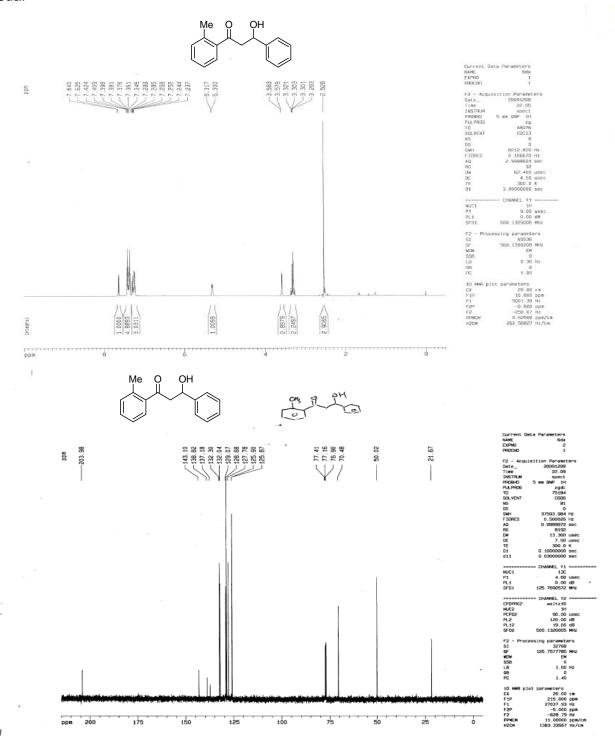



OMe O

NAME	DL-5ca	
EXPNO.	1	
CMCDHO	3	
re - acqui	sition Paramet	ters
Dote	20100225	
Time	9.12	
INSTRUM	apect	
CHBUBH	Dinn QVP tH	
PHIL PROG.	29	
†D	48076	
SDI VENT	02013	
N5	В	
ng	D.	
584	8012.820	Hz
FIDRES	0.155670	
AG	7.9999924	
HG.	64	
II M	52,400	
III.	4:50	
TE.	300.0	
Ut	3.00000000	
	0.0000000	000
	EHANNEL 11	
NUCt	314	
Pt-	9.00	wase .
FL.t.	0.00	UB.
SFDt	BDD::132500E	HH-12
F2 - Proce	ssaing paramete	97%
51	65030	
gr .	500.1300169	1612
NUM	FM	
938	0	
LB	0.30	
GB .	0	
PC	1.00	
SD NMH plo	ot parameters	
CX	20.00	
FSF	10,000	
FS	5001.30	
FZP	-0.500	
F2	-250.07	
присм	0.52500	
HZCM	262.56824	
	THE SHARES	The state of



Data File: Sample ID: Analysis Peak Area c:\star\11-17-09 10;52;59 am -1.run Run Mode: 16-115-racemic Peak Measurement: Operator (Inj): Injection Date: Calibration Level: Run Time (min): N/A 40.533 11/17/09 10:52:59 AM mAU 90% 300-70% 200-50% 100-30% -10% 0--47-20 30 10 Minutes Width Peak Result () Ret Time Peak Area Rel Sep. Time Offset Ret 1/2 No Code (counts) (min) (min) Time (sec) 1 49.9770 27.240 0.000 134677360 0.00 ВВ 61.2 50.0230 34.787 0.000 134801456 0.00 ВВ 81.6 ea


	100.0000	0.000	269478816		
Data File: Sample ID:	c:\star\11-17-09 16-117-2-OMe		8 pm -1.run	Run Mode: Peak Measurement:	Analysis Peak Area
Operator (Inj): Injection Date:	11/17/09 12:54	:18 PM		Calibration Level: Run Time (min):	N/A 56.133

OMe O	OH

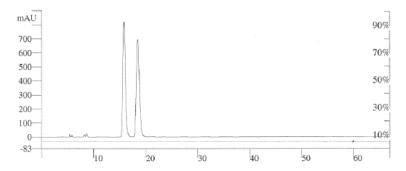
							Mi	nutes
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	
1	10.0771	27.240	0.000	17373392	0.00	ВВ	59.2	
2	89.9229	33.720	0.000	155031200	0.00	BB	92.6	
	100.0000		0.000	172404592				

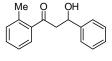
Data File: Sample ID: Operator (Inj): c:\star\11-23-09 3;54;28 pm -1.run

16-129-racemic

Peak Measurement: Calibration Level:

Run Mode:


Analysis Peak Area N/A

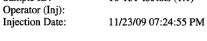

Injection Date:

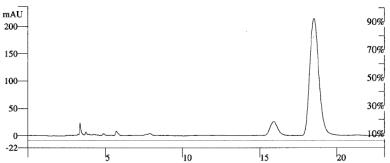
11/23/09 03:54:28 PM

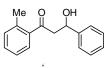
Run Time (min):

67.067

Minutes

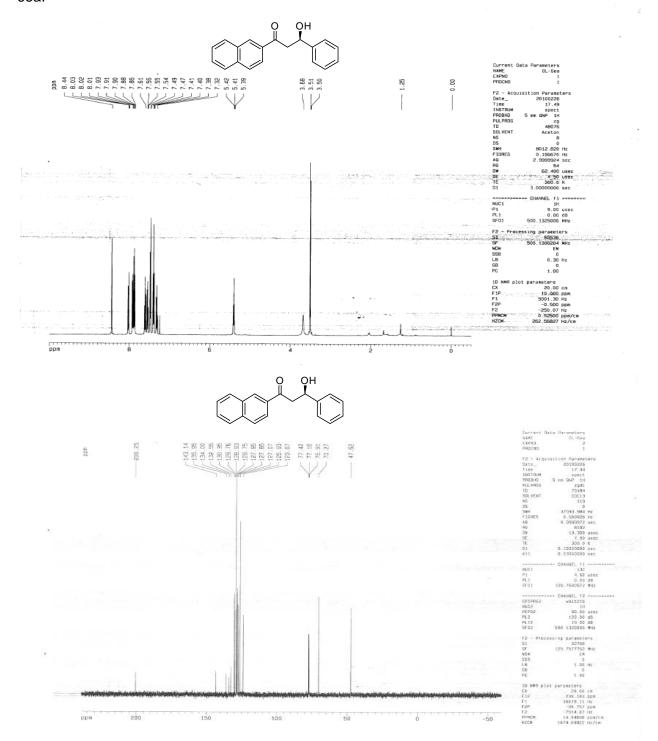

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	49.8665	15.773	0.000	146396576	0.00	BB	32.6
2	50.1335	18.413	0.000	147180448	0.00	BB	38.7
	100.0000		0.000	293577024			


Data File: Sample ID: c:\star\11-23-09 7;24;55 pm -1.run 16-131-tol/hxs (1:1)


Run Mode: Peak Measurement: Calibration Level:

Run Time (min):

Analysis Peak Area N/A 23.120



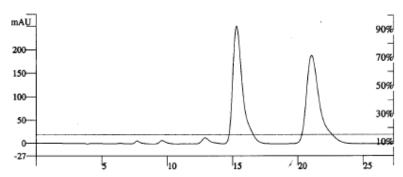
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	8.2273	15.907	0.000	4063493	0.00	ВВ	32.0
2	91.7727	18.520	0.000	45326956	0.00	BB	38.5
	100,0000		0.000	49390448			

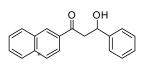
Data File: Sample ID:

c:\star\3-4-10 7;57;45 am -1.run Manual Sample

Run Mode: Peak Measurement:

Analysis Peak Area


Operator (Inj): Injection Date:


03/04/10 07:57:45 AM

Calibration Level: N/A 27.360 Run Time (min):

Injection Method:

c:\star\cheol hong\mukaiyama

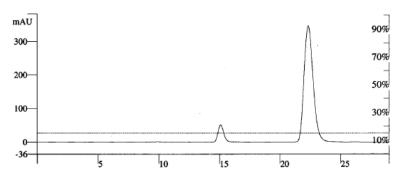
Minutes

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	
1	49.7333	15.293	0.000	68451536	0.00	BB	45.1	
2	50.2667	21.053	0.000	69185736	0.00	BB	60.5	
	100 0000		0.000	137637280				

Data File: Sample ID: Operator (Inj):

Injection Date:

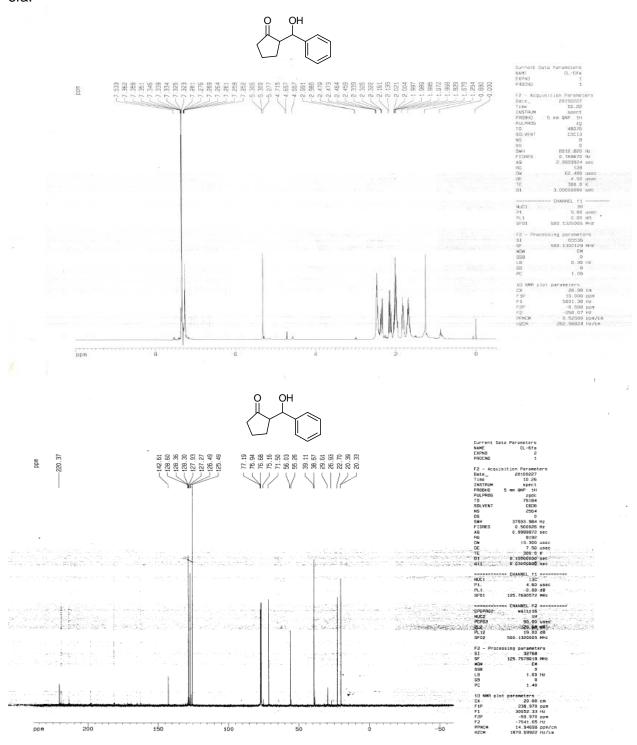
c:\star\10-27-09 4;47;21 pm -1.run


16-59-2-naphthyl

10/27/09 04:47:21 PM

Run Mode: Peak Measurement: Calibration Level:

Peak Area N/A Run Time (min): 29.040


Analysis

	OH	\

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	
1	8.1914	15.080	0.000	8223395	0.00	ВВ	30.2	
2	91.8086	22.307	0.000	92167080	0.00	BB	48.5	
	100.0000		0.000	100390472				

c:\star\11-24-09 9;52;00 pm -1.run 6fa-rac-ODH-5 %Analysis Peak Area Sample ID: Operator (Inj): Peak Measurement: Calibration Level: N/A Injection Date: 11/24/09 09:52:00 PM Run Time (min): 20.747 mAU 90% 150-70% 100-50% 50-30% 10%

Run Mode:

15

Run Mode:

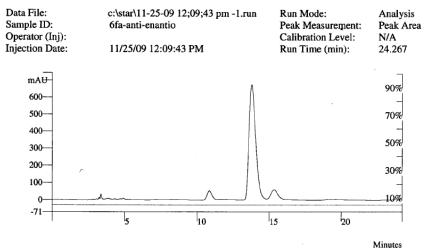
20

Analysis Peak Area

Data File:

Data File:

							Minu
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	35.2100	10.787	0.000	20668720	0.00	ВВ	22.5
2	34.4850	13.880	0.000	20243118	0.00	BB	29.1
3	14.6824	15.347	0.000	8618765	0.00	BB	31.3
4	15.6226	18.920	0.000	9170630	0.00	BB	46.8
	100.0000		0.000	58701232			

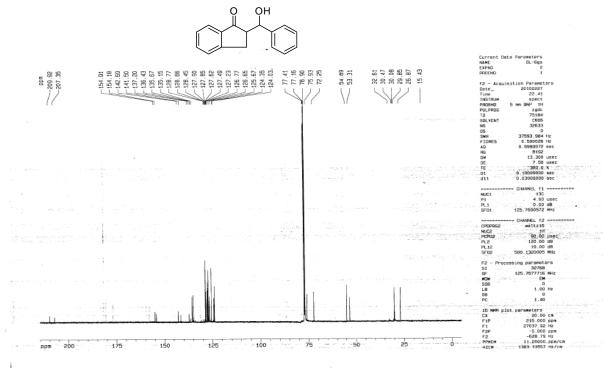

c:\star\11-25-09 12;09;43 pm -1.run

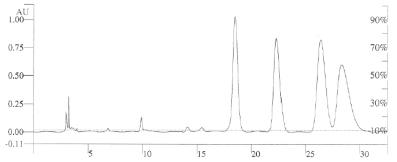
10

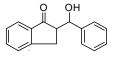
Sample ID: Operator (Inj):	6ga-syn-enantio	,09,43 piii -1.1 u ii	Peak Measurement: Calibration Level:	Peak Are		
Injection Date:	11/25/09 12:09:43	PM	Run Time (min):	24.267		
mAU		Δ.		90%		
600		A		-		
500—		11		70%		
400-		11		-		
300—		11		50% 		
200—				30%		
100—				4		
0			^	10%		
-71	5	10	15 20			
	5	10	15 20			

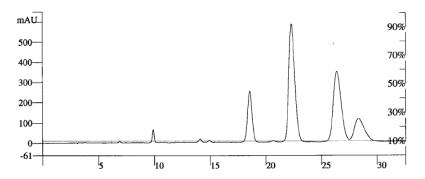
OH	
//	

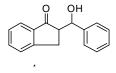
							Minut
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	4.9890	10.840	0.000	5774900	0.00	BB	21.4
2	95.0110	13.773	0.000	109977640	0.00	BB	30.0
	100.0000		0.000	115752544			

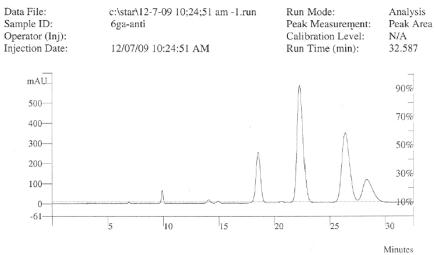



							Min
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	97.2143	15.347	0.000	9149424	0.00	BB	30.1
2	2.7857	19.293	0.000	262178	0.00	BB	30.2
	100.0000		0.000	9411602			

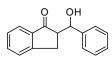

6ga:


Data File:c:\star\12-5-09 4;49;34 pm -1.runRun Mode:AnalysisSample ID:Manual SamplePeak Measurement:Peak AreaOperator (Inj):Calibration Level:N/AInjection Date:12/05/09 04:49:34 PMRun Time (min):32.560




							Minutes	
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	
1	22.5196	18.493	0.000	169327232	0.00	BB	29.8	
2	22.4038	22.307	0.000	168456208	0.00	BB	37.0	
3	27.7007	26.360	0.000	208283808	0.00	BB	50.6	
4	27.3759	28.307	0.000	205841600	0.00	BB	67.5	
	100.0000		0.000	751908800				

Data File:c:\star\12-7-09 10;24;51 am -1.runRun Mode:AnalysisSample ID:Manual SamplePeak Measurement:Peak AreaOperator (Inj):Calibration Level:N/AInjection Date:12/07/09 10:24:51 AMRun Time (min):32.587



							Minute
Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	72.4779	26.360	0.000	84845432	0.00	BB	46.5
2	27.5221	28.333	0.000	32218360	0.00	BB	55.0
	100.0000		0.000	117063792			

c:\star\12-7-09 10;24;51 am -1.run

Peak No	Result ()	Ret Time (min)	Time Offset (min)	Peak Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)
1	24.1207	18.547	0.000	35788020	0.00	BB	26.3
2	75.8793	22.280	0.000	112582392	0.00	BB	34.9
	100.0000		0.000	148370416			