

SUPPLEMENTARY INFORMATION

Photochemical Degradation of Marbofloxacin and Enrofloxacin in Natural Waters

Michela Sturini,[†] Andrea Speltini,[†] Federica Maraschi,[†] Antonella Profumo,[†] Luca Pretali,[‡] Elisa Fasani,[‡] and Angelo Albini[‡]

Reagents and Materials.

Details of the analytical determinations.

Table S1. Mass spectra of the photoproducts of ENR

Table S2. Mass spectra of the photoproducts of MARTable S3. Ions Concentrations Determined in Tap and River Ticino.

Table S4. ¹H NMR spectrum of photoproduct D from ENR

Table S5. ¹³C NMR spectrum of photoproduct D from ENR

Figure S1. Representative variation of the solar radiation intensity during the day, both in summer and

in winter. Figure S2. Comparison of photoproducts from ENR under solar and artificial light

Figure S3. Photodegradation profiles obtained by solar-simulated irradiation of MAR and ENR in tap water samples (500 mL, pH 7.9) enriched with 50 $\mu\text{g L}^{-1}$ of either FQs.

(9 pages)

Reagents and Materials.

MAR and ENR were supplied by Fluka (Sigma-Aldrich), acetonitrile (ACN) by VWR, H₃PO₄ (85% w/w) by Carlo Erba and ultra-pure water from a Millipore Milli-Q system. Humic acid sodium salt (MW=100,000-150,000, Aldrich) was used to quantify aquatic humic acids (HAs, see 31). FQs stock solutions of 300 µg mL⁻¹ in methanol 0.1% v/v NaOH 1 M were prepared under red light and stored at 4 °C for <3 months. Working solutions of 30 µg mL⁻¹ in 25 mM H₃PO₄ were stored at 4 °C and renewed weekly.

CaSO₄ (99%, Sigma-Aldrich), NaCl (100.1%, J.T. Baker), MgNO₃ hexahydrate (97%, Sigma-Aldrich), K₂HPO₄ (≥ 99.0%, Sigma-Aldrich) and KH₂PO₄ (99.5%, Merck) salts were used. Ultra-pure HCl acid (37% w/w) and NaOH 0.1 M solution prepared from NaOH anhydrous pellets (97%, Carlo Erba) were employed for pH correction.

Details of Analytical Determination.

The HPLC system consisted of a pump Series 200 (Perkin Elmer) equipped with vacuum degasser, programmable fluorescence detector (FD) and diode array detector (UV) Series 200 (Perkin Elmer). The FD excitation/emission wavelengths selected were 297/507 nm for MAR and 280/450 nm for ENR. After an equilibration period of 5 min, 50 µL of each sample were injected into a 250 × 4.6 mm, 5 µm Ascentis RP-Amide (Supelco) coupled with a similar guard-column. The mobile phase was 25 mM H₃PO₄-ACN (85:15) at a flow rate of 1 mL min⁻¹.

Preparative HPLC experiments were performed with the same HPLC system on a 250 x 10 mm, 5 µm Inertsil ODS-2 (GL Sciences Inc.) preceded by a similar guard-column. Mobile phase was H₂O (pH adjusted to 2.5 with HCl)-ACN (90:10) at a flow rate of 4 mL min⁻¹.

LC-MS analysis was performed by using an Agilent 1100 HPLC with a Gemini C18 (250 x 4.6 mm, 5 µm) column, maintained at 30 °C. A gradient was used for the mobile phase (solvent A: formic acid

0.5% v/v in ultra-pure water; solvent B: ACN) as follows: 15% B until 10 min, 20 % B from 10 to 12 min and 0% B until 1 min, 60% B from 1 to 50 min, for ENR and MAR, respectively. The flow rate was 1.2 mL min⁻¹ and the injection volume was 5 µL. The MS-system consisted of a linear trap Thermo LXQ.

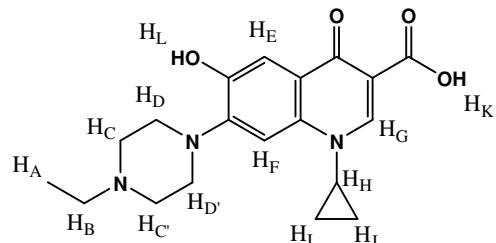
A DX 500 Dionex Ion Chromatograph equipped with a GP40 gradient pump, CD20 conductivity detector and anion self-regenerating suppressor (ASRS 400, 4 mm) has been used for the determination of anions content in tap, ditch and river water. 70 µL of each sample were injected into a 250 x 4 mm IonPac AS23 coupled with a AG23 50 x 4 mm guard-column. The eluent was 0.8 mM NaHCO₃-4.5 mM Na₂CO₃ at a flow rate of 1 mL min⁻¹.

A Perkin Elmer ICP-OES Optima 3300 DV was used for calcium and magnesium determination, following the operating conditions suggested by the manufacturer.

The pH was monitored with a combined Orion glass electrode 9102 SC, standardized in H⁺ activity. ¹H-NMR, ¹³C-NMR and ¹³C-DEPT spectra were acquired on a Bruker Avance 300 MHz spectrometer and the chemical shifts are reported relative to TMS.

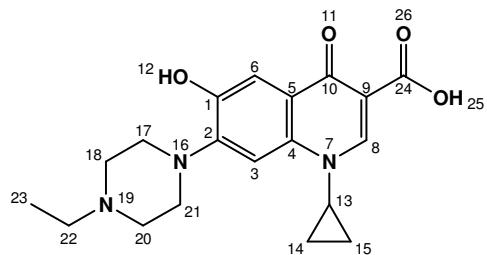
Table S3. Ions Concentrations Determined in Tap and River Ticino

Ion	Concentration (mg L ⁻¹)	
	Tap water	River Ticino water
Calcium	35.0	37.0
Magnesium	10.0	7.6
Chloride	4.8	10.5
Phosphate	< 0.2	< 0.2
Nitrate	0.6	8.5
Sulphate	4.4	33.2


Table S1. Mass Spectroscopic Data of the Photoproducts of ENR

Fragment	HPLC/ESI-MS/MS											
	comp. D		comp. C		comp. A		comp. B		comp. E		ENR	
	m/e	int. ^a	m/e	int.	m/e	int.	m/e	int.	m/e	int.	m/e	int.
[M+1] ⁺	358.2	10	316.3	80	342.3	15	334.3	25	374.2	100	360.3	10
[M+1-HF] ⁺	-	-	-	-	-	-	314.3	10	-	-	-	-
[M+1-H ₂ O] ⁺	340.3	5	298.3	20	324.3	5	-	-	356.3	70	-	-
[M+1-CO ₂] ⁺	314.3	100	-	-	298.3	100	-	-	-	-	316.3	100
[M+1-C ₂ H ₇ N] ⁺	-	-	271.2	25	-	-	289.2	10	-	-	-	-
[M+1-C ₄ H ₉ N] ⁺	-	-	245.2	100	-	-	263.2	100	-	-	-	-
[M+1-C ₅ H ₉ NO ₂] ⁺	-	-	-	-	-	-	219.2	15	-	-	-	-

^a Relative percent.


Table S4. ^1H -NMR Signals of ENR Photodegradation Product D in DMSO-d6

Signal	^1H - NMR		Signal	^1H - NMR	
	comp. D	comp. D		comp. D	comp. D
H_A	n.p.	3	H_G	n.p.	1
	δ [ppm]	1.2		δ [ppm]	8.6
	M	m		m	s
$\text{H}_\text{B},$ $\text{H}_\text{C,C'}$	n.p.	6	H_H	n.p.	1
	δ [ppm]	3.1-3.2		δ [ppm]	3.8
	M	m		m	m
$\text{H}_\text{D,D'}$	n.p.	4	$\text{H}_\text{I}, \text{H}_\text{J}$	n.p.	4
	δ [ppm]	3.6		δ [ppm]	1.3
	M	bs		m	m
H_E	n.p.	1	H_K	n.p.	1
	δ [ppm]	7.7		δ [ppm]	10.8
	M	s		m	s
H_F	n.p.	1	H_L	n.p.	1
	δ [ppm]	7.5		δ [ppm]	10.5
	M	s		m	bs

Table S5. ^{13}C -NMR Signals of ENR Photodegradation Product D in DMSO-d6

Signal	$^{13}\text{C-NMR}$ comp. D		Signal	$^{13}\text{C-NMR}$ comp. D		
	C	c.t.		C	c.t.	
C ₁	c.t.	C	C ₁₀	c.t.	C	
		δ [ppm]	135.9		δ [ppm]	176.1
C ₂	c.t.	C	C ₁₃	c.t.	C	
		δ [ppm]	148.9		δ [ppm]	35.7
C ₃	c.t.	CH	C ₁₄₋₁₅	c.t.	2xCH ₂	
		δ [ppm]	105.7		δ [ppm]	7.5
C ₄	c.t.	C	C ₁₇₋₂₁	c.t.	2xCH ₂	
		δ [ppm]	144.8		δ [ppm]	50.7
C ₅	c.t.	C	C ₁₈₋₂₀	c.t.	2xCH ₂	
		δ [ppm]	120.2		δ [ppm]	50.2
C ₆	c.t.	CH	C ₂₂	c.t.	CH ₂	
		δ [ppm]	108.6		δ [ppm]	46.0
C ₈	c.t.	CH	C ₂₃	c.t.	CH ₃	
		δ [ppm]	146.0		δ [ppm]	8.9
C ₉	c.t.	C	C ₂₄	c.t.	C	
		δ [ppm]	106.2		δ [ppm]	166.4

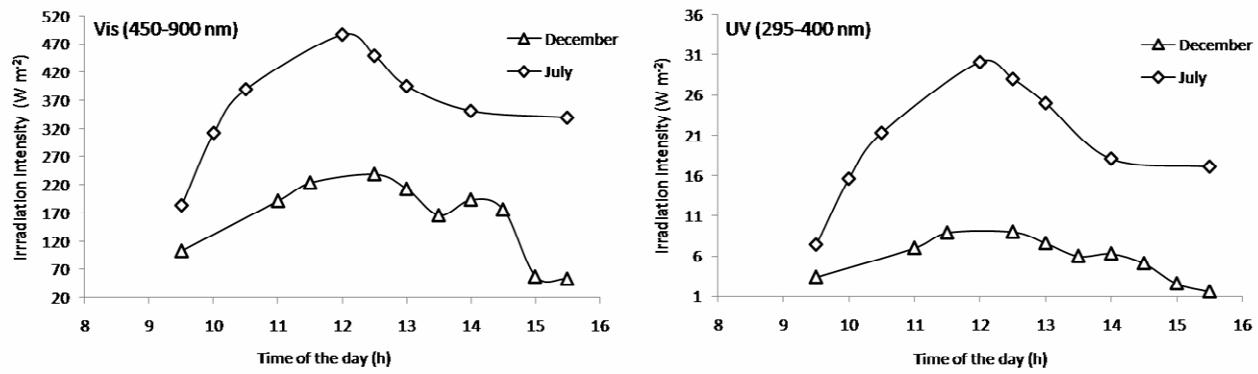
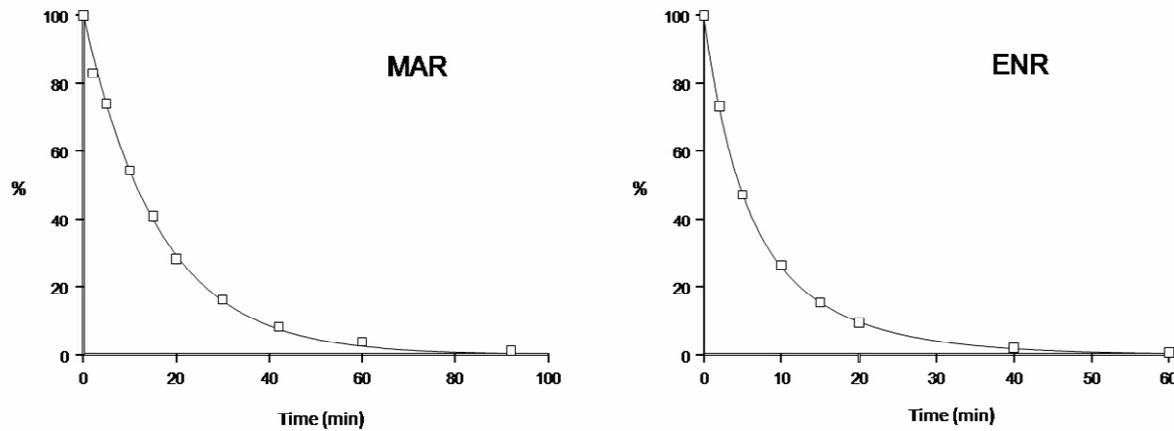


Table S2. Mass Spectroscopic Data of the Photoproducts of MAR


Fragment	HPLC/ESI-MS/MS					
	comp. A		comp. B		MAR	
	m/e	int. ^a	m/e	int.	m/e	int.
[M+1] ⁺	641.5	1	322.3	5	363.1	100
[M+1-H ₂ O] ⁺	623.4	100	304.3	75		
[M+1-CO ₂] ⁺	-	-	278.3	100		
[M+1-C ₄ H ₇ NO ₂] ⁺	-	-	221.2			

^a Relative percent.

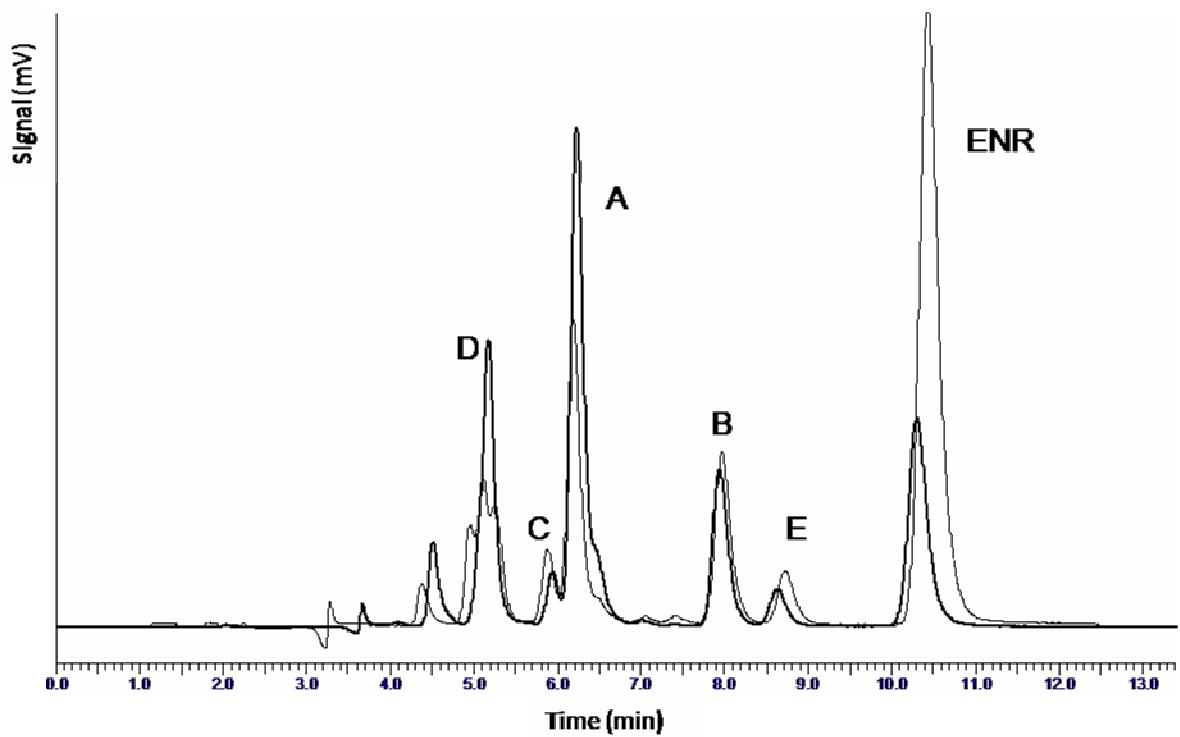


FIGURE S1. Irradiation intensity (W m^{-2}) measured in two different seasons under natural sunlight conditions.

FIGURE S3. Photodegradation profiles obtained by solar-simulated irradiation of MAR and ENR in tap water samples (500 mL, pH 7.9) enriched with $50 \mu\text{g L}^{-1}$ of either FQs.

FIGURE S2. FD chromatograms obtained by irradiation of a tap water sample enriched with $50 \mu\text{g L}^{-1}$ of ENR under natural solar light for 15 min (bold line) and under mercury lamp light (315 nm, 200 W) for 10 min (thin line).