Synthesis of Dihydrobenzofurans via Palladium-

Catalyzed Annulation of 1,3-Dienes by o-Iodophenyl

Acetates

Roman V. Rozhkov and Richard C. Larock*
Department of Chemistry, Iowa State University, Ames, IA 50011, USA
larock@iastate.edu

Table of Contents

S1 General

S2 Reagents

S2 General iodination / acylation procedures

S3 General procedure for the synthesis of dihydrobenzofurans

S7 References

S8 Scanned ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra for all compounds prepared

General. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 and 100.5 MHz respectively. All melting points are uncorrected. Thin layer chromatography (TLC) was performed using commercially prepared 60 mesh silica gel plates, and visualization was performed with UV light (254 nm) and an acidic KMnO_{4} solution. Low resolution mass spectra were recorded on a triple quadripole mass spectrometer. High resolution mass spectra were recorded on a double focusing magnetic sector mass spectrometer using EI at 70 eV .

Reagents. Iodine, acetic anhydride, pyridine, 1,3-cyclohexadiene, and 2,3-dimethyl-1,3-butadiene, o-iodophenol, methyl p-hydroxybenzoate, p-hydroxyacetophenone, p-hydroxybenzaldehyde, p nitrophenol, o-methoxyphenol, m-methoxyphenol, p-methoxyphenol, resorcinol, β-naphthol, trans, trans-2,4-Hexadiene (95% pure) were purchased from commercial sources. 2-Iodophenol acetate (1), ${ }^{1}$ 4-acetyl-2-iodophenol acetate (10), ${ }^{2}$ 4-formyl-2-iodophenol acetate (12), ${ }^{3}$ 4-iodoresorcinol diacetate (21), ${ }^{4}$ 1-iodo-2-naphthol acetate, ${ }^{5}$ 4-methoxy-2-iodophenol, ${ }^{6}$ 3-methoxy-2-iodophenol, ${ }^{7}$ E-1-phenyl-1,3-butadiene ${ }^{8}$ and 1,5,5-trimethyl-3-methylenecyclohexene ${ }^{9}$ were prepared according to literature procedures.

General iodination/acylation procedure. Compounds 16, 21 and 23 were prepared by direct acylation of the corresponding phenols. Compounds 5 and 7 were prepared by acylation of the corresponding o-iodophenols, which in turn were prepared by iodination of the corresponding phenols according to the procedure for the iodination of hydroxycoumarins ${ }^{7}$ indicated below.

Iodine (5.0 mmol) dissolved in 50 mL of satd aq KI solution was slowly added to a solution of the corresponding phenol (5.0 mmol) in the minimal amount of aq ammonia solution at $0-5{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred for 2 h , left overnight in the refrigerator, and then acidified by 20 $\% \mathrm{aq} \mathrm{HCl}$ to $\mathrm{pH}=4-5$. The precipitated o-iodophenol was extracted with ether, and the organic layer was washed with water. After evaporation of the ether, the resulting solid was dissolved in 20 mL of acetic anhydride (a minimal amount of DMF can be used as a co-solvent) in the presence of 1 mL of pyridine and stirred for 24 h at $100{ }^{\circ} \mathrm{C}$. Then the reaction mixture was quenched with chilled water
(caution, heat evolution!) and after 2 h extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was washed with water and aq $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and dried over anhydrous MgSO_{4} for 4 h . After evaporation of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the resulting white solid was purified by column chromatography using silica gel as a stationary phase and 5:1 hexanes-ethyl acetate as the eluent. The following compounds were prepared using this procedure.

Methyl 4-acetoxy-3-iodobenzoate (11). Obtained in a 96% yield: white solid, mp $69-72{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.51$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.5,52.8,90.6,123.1,129.6,131.1,141.1,155.0,165.2$, 168.3; IR (neat) $1788,1766 \mathrm{~cm}^{-1}$; HRMS $m / z 291.9601$ (calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{IO}_{4}, 291.9596$).

2-Iodo-4-nitrophenol (20). Obtained in a 98% yield as a yellow solid; the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched data reported in the literature. ${ }^{8}$

2-Iodo-4-methoxyphenyl acetate (22). Obtained in a 65% yield as a colorless solid, mp 89-91 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.60(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.5,55.9,79.1,109.5,114.4,139.4,152.1,161.1,168.8 ;$ IR (neat) $1766,1588 \mathrm{~cm}^{-1}$; HRMS $m / z 319.9551$ (calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3}, 319.9546$).

2-Iodo-3-methoxyphenyl acetate (25). Obtained in a 63% yield: yellow solid, mp $92-94{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 6.65-6.77(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.6,56.0,83.7,108.6,115.7,130.0,152.8,159.9,168.8 ;$ IR (neat) $1771,1583 \mathrm{~cm}^{-1} ;$ HRMS $m / z 291.9601$ (calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3}, 291.9596$).

General procedure for the synthesis of dihydrobenzofurans. The o-iodophenyl acetate $(0.25$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(5 \mathrm{~mol} \%, 0.0125 \mathrm{mmol})$, dppe ($\left.5 \mathrm{~mol} \%, 0.0125 \mathrm{mmol}\right), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol})$ and $1,4-$ dioxane (4 mL) were stirred in a capped vial for 5 min , and then water (1 mL) and the 1,3 -diene (1.0 mmol) were added. The resulting reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h , cooled to room temperature, filtered and the filtrate was concentrated to give a yellow residue. The resulting residue was purified by column chromatography using silica gel as a solid phase and 4:1 hexanes/ethyl acetate
as the eluent to afford after solvent removal the final product. The following new compounds were prepared using this procedure.
$\mathbf{1}^{\prime}, \mathbf{4 , 5 , 5}{ }^{\prime}$-Tetrahydrodibenzofuran (8). Obtained in a 72% yield as a colorless oil; the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched the data reported in the literature. ${ }^{10}$

2-Methyl-2-(1-methylethenyl)-2,3-dihydrobenzofuran (9). Obtained in a 92% yield as a colorless oil; the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched the data reported in the literature. ${ }^{9}$

3-Methyl-2-(E-1-propenyl)-2,3-dihydrobenzofuran (10). Obtained in a 75% yield as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.40-3.50(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{t}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.60-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.90(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.08-7.15 (m, 2H); IR (neat) 3029, 1593^{-1}; HRMS $m / z 174.1048$ (calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}, 174.1045$). This compound was insufficiently stable to get clean ${ }^{13} \mathrm{C}$ spectra.

Methyl 2-methyl-2-(1-methylethenyl)-2,3-dihydrobenzofuran-5-carboxylate (12). Obtained in a 100% yield as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{dd}, J=1.2,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.84(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{q}, J=0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.9,26.3,40.9,52.1,91.8,109.4,110.6,122.6,127.1,127.2,131.4,147.3,163.2,167.3 ; \mathrm{IR}$ (neat) $1714,1612 \mathrm{~cm}^{-1} ; m / z 232.1102$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}, 232.1099$).

Methyl 2-(E-2-phenylethenyl)-2,3-dihydrobenzofuran-5-carboxylate (13). Obtained in a 96% yield as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.11(\mathrm{dd}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=15.6,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 5.42-5.70(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=16.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.85-7.95(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 35.9,52.1,85.0,109.4$, 123.0, 127.0, 127.3, 127.8, 128.5, 128.9, 129.2, 131.5, 133.1, 136.2, 163.7, 167.2; IR (neat) 1713,1615 ${ }^{-1} ;$ HRMS $m / z 280.1103$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}, 280.1099$).

Methyl trans-3-methyl-2-(E-1-propenyl)-2,3-dihydrobenzofuran-5-carboxylate (14). Obtained in a 77% yield as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $3.45-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 5.19(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dq}, J=$
$16.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 16.14,18.16,39.49,52.07,89.02,109.4,115.6,122.9,126.1,126.2,131.3,131.9$, 133.6, 163.0, 167.2; IR (neat) $1714,1612 \mathrm{~cm}^{-1} ;$ HRMS $m / z 232.1102$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}, 232.1099$).

Dihydrobenzofuran 15. Obtained in a 60% yield as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{~s}$, $3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.45-2.05(\mathrm{~m}, 4 \mathrm{H}), 3.09(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 24.1,29.0,29.7$, $31.0,43.1,44.4,48.2,52.0,77.0,77.3,77.6,89.4,109.3,122.2,122.9,126.9,127.6,131.3,138.0$, 163.0, 167.3; IR (neat) $1712,1611 \mathrm{~cm}^{-1} ;$ HRMS $m / z 286.1572$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}, 286.1569$).

5-Acetyl-2-methyl-2-(1-methylethenyl)-2,3-dihydrobenzofuran (17). Obtained in an 88% yield as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{dd}, J=1.6,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{q}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.85(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.9,26.3,26.7,40.9,92.0,109.3,110.6,125.9$, $127.6,130.7,130.8,147.2,163.4,196.9$; IR (neat) $1674,1606 \mathrm{~cm}^{-1} ;$ HRMS $m / z 216.1153$ (calcd for $\left.\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}, 216.1150\right)$.

2-Methyl-2-(1-methylethenyl)-2,3-dihydrobenzofuran-5-carboxaldehyde (19). Obtained in a 98 \% yield as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{dd}, J=1.2,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.07(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{q}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.73(\mathrm{~m}, 2 \mathrm{H}), 9.82(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.9,26.3,40.7,92.4,110.0,110.8$, 126.3, 128.4, 130.5, 133.4, 147.0, 164.6, 190.9; IR (neat) 2747, 1688, $1606 \mathrm{~cm}^{-1}$; HRMS m/z 202.0997 (calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$, 202.0994).

2-Methyl-5-nitro-2-(1-methylethenyl)-2,3-dihydrobenzofuran (21). Obtained in a 72% yield as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.82(\mathrm{dd}, J=1.2,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.32(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{q}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.8,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.9,26.3,40.7,93.3$,
109.5, 111.1, 121.7, 126.1, 128.3, 141.9, 146.6, 164.5; IR (neat) $1598,1516 \mathrm{~cm}^{-1} ;$ HRMS $m / z 219.0898$ (calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}, 219.0895$).

5-Methoxy-2-methyl-2-(1-methylethenyl)-2,3-dihydrobenzofuran (23). Obtained in a 58% yield as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{dd}, J=1.2,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.94(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.18(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.83(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36-6.43$ $(\mathrm{m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 19.2,26.3,41.0,55.7,91.1,96.4,105.9,110.1$, 118.7, 125.2, 148.0, 160.3, 160.6; IR (neat) $1616,1497 \mathrm{~cm}^{-1} ;$ HRMS $\mathrm{m} / \mathrm{z} 204.1153$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$, 204.1150).

4-Methoxy-2-(E,E-4-phenyl-1,3-butadienyl)phenyl acetate (24). Obtained in a 64% yield as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 6.64(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=8.8$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.2,55.9,110.7$, $114.4,123.7,125.8,126.8,128.1,128.9,129.3,130.8,131.7,134.2,137.3,142.0,157.6,170.0$; IR (neat) $1755,1589 \mathrm{~cm}^{-1}$; HRMS $m / z 294.1261$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3}, 294.1256$).

4-Methoxy-2-methyl-2-(1-methylethenyl)-2,3-dihydrobenzofuran (26). Obtained in a 67% yield as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{dd}, J=1.6,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.96(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.18(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.83(\mathrm{q}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 19.0,26.4,39.1$, $55.6,90.7,102.8,103.1,110.0,113.6,129.3,147.9,156.8,160.4$; IR (neat) $1609,1493 \mathrm{~cm}^{-1} ;$ HRMS m / z 204.1153 (calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}, 204.1150$).

6-Acetoxy-2-methyl-2-(1-methylethenyl)-2,3-dihydrobenzofuran (28). Obtained in a 40% yield as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{t}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{q}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-6.58(\mathrm{~m}$, 2H), $7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 19.0,21.4,26.3,41.1,91.5,103.9,110.3,113.3$,
124.4, 125.1, 147.6, 151.0, 159.9, 169.8; IR (neat) $1762,1607 \mathrm{~cm}^{-1}$; HRMS $m / z 232.1102$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}, 232.1099$).

2-Methyl-2-(1-methylethenyl)-2,3-dihydrofuro[3,2-b]naphthalene (30). Obtained in a 48% yield as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.50(\mathrm{~m}$, $1 \mathrm{H}), 7.55(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $19.0,26.6,40.6,91.0,110.2,112.5,118.0,122.8,122.9,126.8,129.0,129.2,129.3,131.2,148.1,156.6$; IR (neat) $1631,1465 \mathrm{~cm}^{-1} ;$ HRMS $m / z 224.1205$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}, 224.1201$).

References

(1) Miao, H.; Yang, Z. Org. Lett. 2000, 2, 1765.
(2) Bates, R. W.; Gabel, C. J.; Ji, J. Tetrahedron Lett. 1994, 35, 6993.
(3) Thomsen, I.; Torsell, K. B. Acta Chem. Scand. 1991, 45, 539.
(4) Pirrung, M. C.; Fallon, L.; Zhu, J.; Lee, Y. R. J. Am. Chem. Soc. 2001, 123, 3638.
(5) Towsend, C. A.; Bloom, L. M. Tetrahedron Lett. 1981, 22, 3923.
(6) Charlton, J. L.; Chee, G.; McColeman, H. Can. J. Chem. 1995, 73, 1454.
(7) Zubia, E.; Luis, F. R.; Massanet, G. M.; Collado, I. G. Tetrahedron 1992, 48, 4239.
(8) Kometani, T.; Watt, D. S. J. Org. Chem. 1985, 50, 5384.
(9) Trend, R. M. R.; Yeeman K.; Ferreira, E. .; Stoltz, B. M. Angew. Chem., Int. Ed. 2003, 42, 2892.
(10) Larock, R. C.; Berrios-Peña, N.; Narayanan, K. J. Org. Chem. 1990, 55, 3447.

$\varsigma 6 \varepsilon .68 \longrightarrow$

I6Z＊60T～

\qquad
200＊ 89 T
IIE＊L9

$999^{\circ} 0 \mathrm{P}$
$9 \angle 9^{\circ} \mathrm{OD} \longrightarrow$

『Z6＊IカT
を09．9ぁT

L\＆S．$\forall 9 \tau$

$$
900^{\circ} 6 \tau
$$

$$
98 \varepsilon \cdot \tau \Sigma
$$

$$
9 z \varepsilon \cdot 9 z-
$$

$$
2
$$

$$
\nabla \succsim \tau \cdot \tau D
$$

ESD' 16

$$
\text { L68' } \varepsilon 0 \tau
$$

s\&\&•0tT

$$
\tau 0 \varepsilon \cdot \varepsilon \tau \tau
$$

$$
800^{\circ} \mathrm{\sigma ZL}
$$

$$
\varepsilon \tau \tau \cdot \varsigma Z \tau \longrightarrow
$$

$$
\begin{aligned}
& 279^{\circ} \angle D T \\
& 0 T 0^{\circ} \mathrm{TST}
\end{aligned}
$$

706.65 L
828.69T

$$
\angle Z L^{\circ} \tau Z
$$

806° च6

6LI'69T

