

Supporting Information for

Photosensitized Splitting of Thymine Dimer or Oxetane Unit by a Covalently *N*-Linked Carbazole via Electron Transfer in Different Marcus Regions

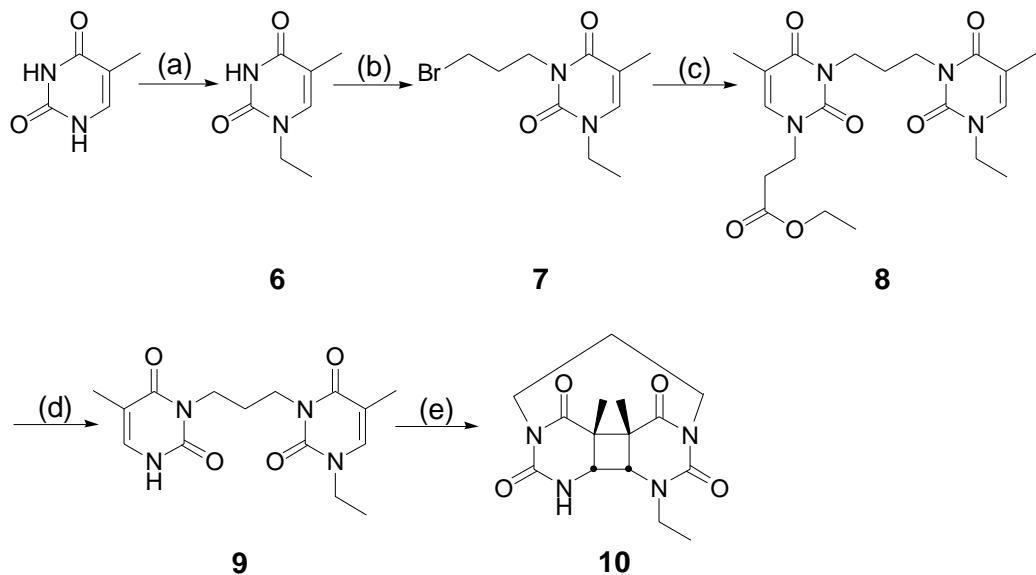
Qing-Qing Wu, Qin-Hua Song*

Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

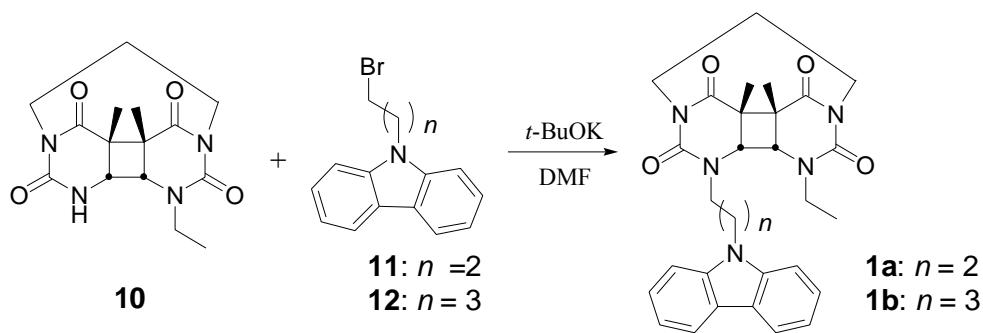
qhsong@ustc.edu.cn (Q. H. Song)

Table of Contents

Synthesis procedure of model compounds 1–3	S2–S4
Characterization data of synthesized compounds 1–16	S5–S13
Copies of ^1H , ^{13}C NMR spectra of new compounds 6–10, 1, 4, 14, 2, 5 and 3	S14–S28



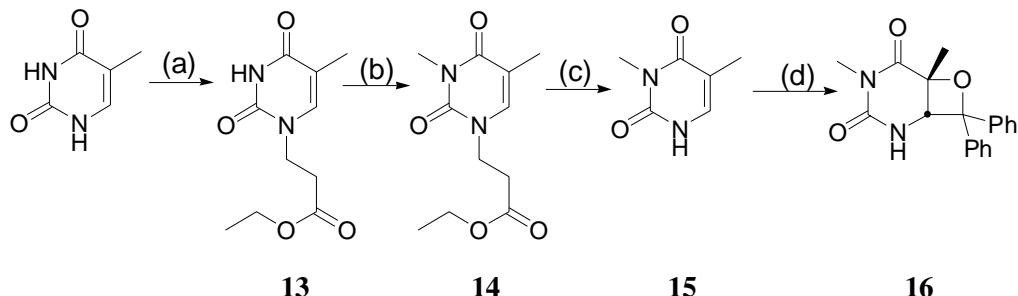
* To whom correspondence should be addressed. E-mail: qhsong@ustc.edu.cn (Q.-H. Song). Phone: +86-551-3607524; Fax: +86-551-3601592.


Synthesis of the Model Compounds

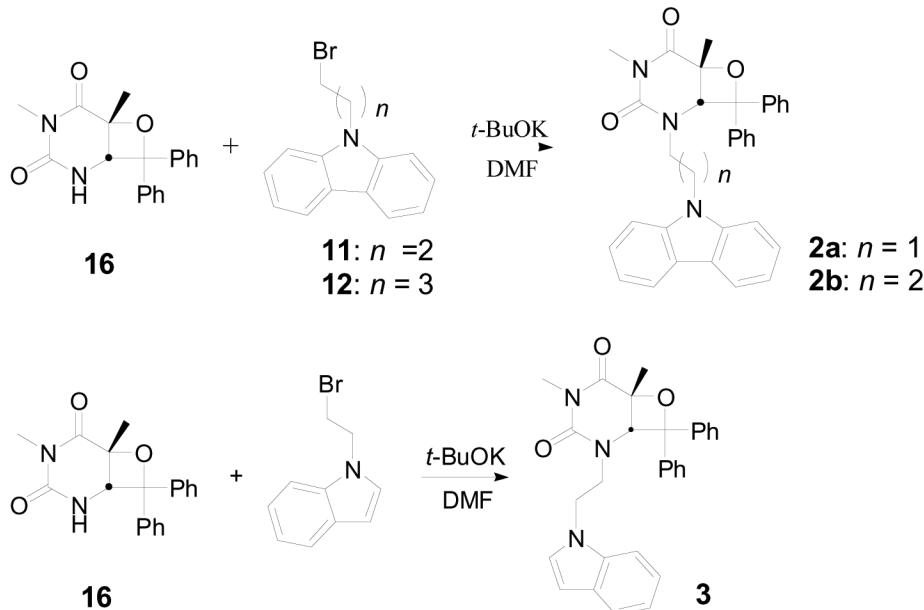
Model compounds were designed to be constructed with a thymine dimer unit or thymine oxetane unit covalently attached by a carbazole or indole moiety using a short aliphatic hydrocarbon as a linker.

For the preparation of independent thymine dimer unit, the detailed processing route¹ is depicted in Scheme S1. Thymine was dissolved into DMF to react with iodoethane to yield **6**. Reaction of **6** with dibromopropane gave **7**, which further reacted with ethyl thymine-1-propionate through the same reaction style as last step to afford **8** in a satisfying yield. **9** was obtained by dissolving **8** into toluene and pouring it into a refluxed toluene solution suspended with sodium to eliminate ethyl propionate. **9** was irradiated with a 300 W high pressure Hg lamp accompanying to bubble with high pure N₂ in MeCN/Acetone mixed solvent to lead to **10**.

Scheme S1 Reagents and conditions: (a) iodoethane, K₂CO₃, DMF, RT, 24h; (b) dibiomopropene, K₂CO₃, DMF, RT, 48h; (c) ethyl thymine-1-propionate, K₂CO₃, DMF, RT, 48h; (d) Metal sodium, toluene, reflux, overnight; (e) hν (>290nm), MeCN/Acetone, RT, 5h.



Scheme S2


The carbazole moiety was introduced onto the thymine dimer unit by a simple nucleophilic reaction^{1,2} between **10** and *N*-biomobroalkyl carbazole **11**³ and **12**³ with potassium *tert*-butoxide, and synthesis procedure is depicted in Scheme S2.

Compound **11**³ was synthesized through the procedure where carbazole reacted with dibromoethane (also utilized as solvent) in the presence of K_2CO_3 , KOH and tetrabutyl ammonium bromide (TBAB)⁴, instead, **12**³ was obtained via phase transfer catalytic reaction⁵ using TBAB serving as phase-transfer catalyst in benzene/water two-phase solvent system.

For the synthesis of thymine oxetane model compounds, a similar preparation process was adopted as that for thymine dimer models. First of all, the oxetane unit was prepared in terms of the route shown in Scheme S3. Compound **13**⁶ was obtained from the reaction between thymine and ethyl acrylate under refluxed condition, then **13**⁶ reacted with iodomethane in the presence of K_2CO_3 (dried at 300°C for 5 h) gave **14**, which dissolved into toluene and followed the condition of step (d) displayed in Scheme S1 to yield **15**.⁷ Compound **16**² can be obtained via a Paternò–Büchi [2+2]cycloaddition reaction of **15**⁷ with benzophenone² at room temperature.

Scheme S3 Reagents and conditions: (a) ethyl acrylate, NaOH, hydroquinone, reflux, 24h; (b) iodomethane, K_2CO_3 , DMF, RT, 9h; (c) Metal sodium, toluene, reflux, overnight; (d) benzophenone, $h\nu$ (> 290 nm), MeCN, RT, 5h.

Scheme S4

The oxetane unit **16** was alkylated with **11** in the presence of potassium *tert*-butoxide to yield model compound **2a** (shown in Scheme S4)². A same method was carried out to give model compound **2b** and **3**.

Irradiation of model compounds with a monochromatic light (328nm) yielded the corresponding photolysis products **4** and **5**, which were purified by separation from column chromatography (silica gel-H).

Characterization data of synthesized compounds

1-ethyl-5-methylpyrimidine-2,4(1H,3H)-dione (6). To a 20 mL DMF solution of thymine (1.50 g, 11.9 mmol), dry K_2CO_3 (1.64 g, 11.9 mmol) was added dropwise iodoethane (1.56 g, 10.0 mmol). The reaction mixture was stirred at room temperature for 24 h, and then diluted with 100 mL water. The organic components were extracted with CH_2Cl_2 three times (40 mL \times 3). Purified product **6** (0.42 g, 28%) was obtained via column chromatography (silica gel-H, ethyl acetate / petroleum ether 1:1-3:2) as white powder. R_f = 0.28 (ethyl acetate / petroleum ether 1:1). m.p. 218–220°C. IR (KBr): ν (tilde) = 3036s, 2977s, 1687s, 1474s, 1349s cm^{-1} . 1H NMR (300Hz, $DCCl_3$): δ = 1.29-1.33 (m, 3H, CH_2CH_3), 1.93 (d, J =0.9Hz, 3H, CH_3), 3.72-3.80 (m, 2H, CH_2CH_3), 7.00 (d, J =1.2Hz, 1H, CH). ^{13}C NMR (75MHz, d_6 -DMSO): δ = 164.3, 150.7, 141.1, 108.5, 42.4, 14.1, 11.9. TOFMS (EI) calcd for (M^+) $C_7H_{10}N_2O_2$: 154.0742, found 154.0736.

3-(3-bromopropyl)-1-ethyl-5-methylpyrimidine-2,4(1H,3H)-dione (7). Dibromopropane (0.77 g, 3.8 mmol), dry K_2CO_3 (0.42 g, 3.0 mmol) were added into 4 mL anhydrous DMF dissolved with **6** (0.30 g, 1.95 mmol), it was stirred at room temperature for 48 h, and then diluted with 80 mL ethyl acetate, washed with 100 mL water. Solvent was removed under reduced pressure. The crude products were purified via column chromatography (silica gel-H, ethyl acetate / petroleum ether 3:2). **7** (0.36 g, 67%) was obtained as colorless oil. R_f = 0.51 (ethyl acetate / petroleum ether 2:1). 1H NMR (300Hz, $DCCl_3$): δ = 1.28-1.33 (m, 3H, CH_2CH_3), 1.93-1.94 (d, J =1.2Hz, 3H, CH_3), 2.18-2.27 (m, 2H, $CH_2CH_2CH_2$), 3.40-3.45 (m, 2H, $CH_2CH_2CH_2$), 3.74-3.82 (m, 2H, CH_2CH_3), 4.07-4.12 (m, 2H, $CH_2CH_2CH_2$), 6.98 (d, J =1.2Hz, 1H, CH). ^{13}C NMR (75MHz, $CDCl_3$): δ = 163.6, 151.0, 138.1, 109.7, 44.4, 40.1, 30.9, 30.4, 14.2, 12.8. TOFMS (EI) calcd for (M^+) $C_{10}H_{15}N_2O_2Br$: 274.0317, found 274.0313.

Ethyl3-(3-(3-ethyl-5-methyl-2,6-dioxo-2,3-dihydropyrimidin-1(6H)-yl)propyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-ylpropanoate (8). A reaction mixture of **7** (0.48 g, 1.8 mmol),

ethyl thymine-1-propionate (0.73 g, 3.2 mmol) and dry K_2CO_3 (0.44 g, 3.2 mmol) in 4 mL anhydrous DMF was stirred at room temperature for 48 h. After reaction, 50 mL ethyl acetate was poured in for dilution and washed with 50 ml water. Solvent was removed under reduced pressure. The crude products were purified via column chromatography (silica gel-H, ethyl acetate / petroleum ether 3:2-3:0). **8** (0.54 g, 74%) was obtained as colorless oil. R_f = 0.69 (ethyl acetate). IR (KBr): nu(tilde) = 2975m, 1734s, 1700s, 1667s, 1466s cm^{-1} . 1H NMR (300Hz, $DCCl_3$): δ = 1.20-1.31 (m, 6H, CH_3 , CH_2CH_3), 1.90 (d, J =0.9Hz, 3H, CH_3), 1.91-2.04 (m, 2H, $CH_2CH_2CH_2$), 2.73-2.77 (m, 2H, CH_2), 3.72-3.79 (m, 2H, CH_2CH_3), 3.94-4.06 (m, 6H, $CH_2CH_2CH_2$, CH_2CH_2), 4.11-4.19 (m, 2H, CH_2CH_3), 6.95 (d, J =0.9Hz, 1H, CH), 7.13 (d, J =0.9Hz, 1H, CH). ^{13}C NMR (75MHz, $CDCl_3$): δ = 171.2, 163.6, 151.1, 151.0, 139.4, 137.9, 109.6, 109.2, 60.8, 45.7, 44.3, 39.1, 33.0, 26.1, 14.2, 14.0, 12.9, 12.8. TOFMS (EI) calcd for (M^+) $C_{20}H_{28}N_4O_6$: 420.2009, found 420.1949.

1-ethyl-5-methyl-3-(3-(5-methyl-2,6-dioxo-2,3-dihdropyrimidin-1(6H)-yl)propyl)pyrimidine-2,4(1H,3H)-dione (9). A solution of anhydrous toluene (20 mL) containing sodium (0.20 g, 8.7 mmol) was refluxed for 20 min to disperse sodium, then cooled to room temperature. **8** (0.54 g, 1.3 mmol) dissolved in 20 mL toluene was added and reflux was resumed for 20 h under N_2 atmosphere. 1 mL CH_3COOH and 10 ml CH_3OH were added to clear reaction mixture, solvent was removed and crude product was purified by column chromatography (silica gel-H, ethyl acetate). **9** (0.34 g, 82%) was obtained as white powder. R_f = 0.41 (ethyl acetate). m.p. 183–184°C. IR (KBr): nu(tilde) = 2973m, 2927m, 1698s, 1666s, 1630s, 1453m cm^{-1} . 1H NMR (300Hz, $DCCl_3$): δ = 1.27-1.33 (m, 3H, CH_2CH_3), 1.91-1.92 (m, 6H, CH_3 , CH_3), 1.96-2.06 (m, 2H, $CH_2CH_2CH_2$), 3.73-3.80 (m, 2H, CH_2CH_3), 4.00-4.07 (m, 4H, $CH_2CH_2CH_2$), 6.96-7.00 (m, 2H, CH, CH), 8.82-8.84 (d, J =4.8Hz, 1H, NH). ^{13}C NMR (75MHz, d_6 -DMSO): δ = 163.7, 163.0, 151.2, 150.5, 139.7, 136.2, 107.7, 107.1, 43.5, 38.4, 37.6, 25.8, 14.0, 12.5, 12.4. TOFMS (EI) calcd for (M^+) $C_{15}H_{20}N_4O_4$: 320.1485, found 320.1491.

1-ethyl-3,3'-trimethylene-*cis,syn*-thymine dimer (10). **9** (0.14 g, 0.44 mmol) was dissolved in a mixed solution of MeCN (30 mL) and acetone (20 mL) placed in a Pyrex photochemical reactor and

bubbled with N₂ for 20 min and then irradiated for 5 h with a 300W high pressure Hg lamp. During irradiation, N₂ bubbling was continued. The reaction mixture was evaporated to dryness in vacuo. The product **10** (0.10 g, 71%) as white solid was obtained via recrystallization from CH₃Cl / petroleum ether. *R*_f = 0.38 (ethyl acetate). m.p. 237–239°C. IR (KBr): ν(tilde) = 3114w, 2964m, 2938w, 1720s, 1690s, 1658s, 1475s cm⁻¹. ¹H NMR (300Hz, DCCl₃): δ = 1.13-1.18 (m, 3H, CH₂CH₃), 1.49 (s, 3H, CH₃), 1.50 (s, 3H, CH₃), 2.90-2.97 (m, 1H, CH₂CH₂CH₂), 3.78-3.99 (m, 5H, CH₂CH₂CH₂, CH₂CH₃), 4.16-4.23 (m, 2H, CH₂CH₂CH₂), 6.20 (s, 1H, NH). ¹³C NMR (75MHz, d₆-DMSO): δ = 170.8, 170.2, 152.0, 151.1, 56.5, 51.6, 49.7, 49.2, 41.2, 40.8, 40.1, 22.2, 17.5, 17.3, 12.2. TOFMS (EI) calcd for (M⁺) C₁₅H₂₀N₄O₄: 320.1485, found 320.1482.

9-(2-bromoethyl)-9H-carbazole (11).³ To a mixture of K₂CO₃ (1.8 g, 0.013 mol), KOH (2.2 g, 0.04 mol) and tetrabutyl ammonium bromide (0.04 g, 0.12 mmol) in ethylene dibromide (10 mL) was added carbazole (1.0 g, 6.0 mmol) and stirred fiercely at 50°C for 5.5 h, then it was diluted with dichloromethane and washed with water three times. The solvent was removed under reduced pressure, the crude product was purified by column chromatography (silica gel-H, petroleum ether) to give **11** (0.42 g, 26%) as white powder. ¹H NMR (300Hz, DCCl₃): δ = 3.65-3.70 (m, 2H, CH₂CH₂), 4.69-4.74 (m, 2H, CH₂CH₂), 7.24-7.29 (m, 3H, carbazole-H), 7.42-7.51 (m, 3H, carbazole-H), 8.09-8.11 (d, J=7.8Hz, 2H, carbazole-H).

9-(3-bromopropyl)-9H-carbazole (12).³ To a mixture of tetrabutyl ammonium bromide (0.10 g, 0.31 mmol) and aqueous 50% NaOH (3 mL) was added a solution of carbazole (1.0 g, 6.0 mmol) and propane dibromide (2 mL) in benzene (3 mL). The mixture was stirred at room temperature for 12 h. Water was added and the organic components were extracted with dichloromethane. Solvent was removed, purification via column chromatography (silica gel-H, petroleum ether) gave **12** (0.64 g, 37%) as light yellow powder. ¹H NMR (300Hz, DCCl₃): δ = 2.40-2.49 (m, 2H, CH₂CH₂CH₂), 3.37-3.41 (m, 2H, CH₂CH₂CH₂), 4.49-4.53 (m, 2H, CH₂CH₂CH₂), 7.20-7.29 (m, 3H, carbazole-H), 7.44-7.50 (m, 3H, carbazole-H), 8.09-8.11 (d, J=7.8Hz, 2H, carbazole-H).

Model compound 1a. Potassium tert-butoxide (35 mg, 0.31 mmol) was added to a 4 mL anhydrous DMF solution dissolved with **10** (50 mg, 0.16 mmol) and stirred at room temperature for 30min. Then 9-(2-bromoethyl)-9H-carbazole **11** (90 mg, 0.32 mmol) was added into, stirring was continued for 4 h. The reaction mixture was diluted with 80 mL CH_2Cl_2 , washed with 80 mL water. Purified **1a** (16 mg, 20%) as white power was obtained via column chromatography(silica gel-H, ethyl acetate / petroleum ether 1:1-1:0) and following recrystallization from CH_2Cl_2 / petroleum ether. $R_f = 0.57$ (ethyl acetate / petroleum ether 2:1). m.p. $>250^\circ\text{C}$. IR (KBr): $\nu(\text{tilde}) = 1695\text{s}, 1660\text{s}, 1640\text{s}, 1460\text{s}$ cm^{-1} . ^1H NMR (300Hz, DCCl_3): $\delta = 0.15$ (s, 3H, CH_3), 1.01-1.06 (m, 3H, CH_3), 1.13 (s, 3H, CH_3), 1.58-1.60 (m, 1H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 2.42-2.45 (d, $J=7.2\text{Hz}$, 1H, CH), 2.89-3.01 (m, 1H, CH_2CH_2), 3.41-3.43 (d, $J=6.9\text{Hz}$, 1H, CH), 3.94-4.81 (m, 8H, $\text{CH}_2\text{CH}_2\text{CH}_2$, CH_2CH_2), 7.23-7.30 (m, 4H, carbazole-H), 7.40-7.46 (m, 2H, carbazole-H), 8.08-8.11 (d, $J=7.5\text{Hz}$, 2H, carbazole-H). ^{13}C NMR (100MHz, CDCl_3): $\delta = 170.0, 169.3, 151.8, 151.3, 140.0, 126.4, 122.8, 120.7, 119.7, 108.0, 60.5, 57.7, 50.5, 50.4, 48.2, 42.8, 41.6, 41.3, 40.7, 22.8, 17.9, 16.5, 13.0$. TOFMS (EI) calcd for (M^+) $\text{C}_{29}\text{H}_{31}\text{N}_5\text{O}_4$: 513.2376, found 513.2354.

Model compound 1b. Potassium tert-butoxide (35 mg, 0.31 mmol) was added to a 4 mL anhydrous DMF solution dissolved with **10** (50 mg, 0.16 mmol) and stirred at room temperature for 30min. Then 9-(3-bromopropyl)-9H-carbazole **12** (90 mg, 0.30 mmol) was added into, stirring was continued for 4 h. The reaction mixture was diluted with 80 mL CH_2Cl_2 , washed with 80 mL water. Purified **1b** (35 mg, 44%) as white power was obtained via column chromatography (silica gel-H, ethyl acetate / petroleum ether 1:1-1:0) and following recrystallization from CH_2Cl_2 / petroleum ether. $R_f = 0.51$ (ethyl acetate / petroleum ether 2:1). m.p. $212-214^\circ\text{C}$. IR (KBr): $\nu(\text{tilde}) = 1689\text{s}, 1667\text{s}, 1642\text{s}, 1455\text{s}$ cm^{-1} . ^1H NMR (300Hz, DCCl_3): $\delta = 0.85-0.90$ (m, 3H, CH_3), 1.20 (s, 3H, CH_3), 1.30 (s, 3H, CH_3), 1.61-1.62 (m, 1H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 1.83-1.88 (m, 1H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 2.19-2.31 (m, 4H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 3.17-3.19 (d, $J=6.9\text{Hz}$, 1H, CH), 3.29-3.31 (d, $J=7.2\text{Hz}$, 1H, CH), 3.76-3.94 (m, 3H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 4.12-4.19 (m, 3H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 4.38-4.41 (m, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 7.24-7.51 (m, 6H, carbazole-H), 8.11-8.14 (d, $J=7.8\text{Hz}$, 2H, carbazole-H). ^{13}C NMR (100MHz, CDCl_3): $\delta = 170.0,$

151.8, 151.2, 140.2, 126.0, 122.9, 120.5, 119.4, 108.7, 58.6, 57.9, 50.9, 50.2, 46.0, 43.0, 41.6, 41.3, 40.4, 27.6, 22.7, 18.1, 18.1, 13.0. TOFMS (EI) calcd for (M⁺) C₃₀H₃₃N₅O₄: 527.2533, found 527.2510.

Ethyl 3-(5-methyl-2,4-dioxo-3,4-dihdropyrimidin-1(2H)-yl)propanoate (13).⁶ Thymine (5.0 g, 0.040 mol) was added to a 70 mL mixed ethanol solution of NaOH (138 mg, 3.5 mmol), hydroquinone (50 mg, 0.45 mmol), ethyl acrylate (5.3 g, 0.053 mol). The reaction mixture was refluxed for 24 h, then frozen-stored overnight. The precipitation was filtered, washed with cool ethanol two times and recrystallized from ethanol to give **13** (3.6 g, 42 %) as white needle-like solid. ¹H NMR (300Hz, DCCl₃): δ = 1.22-1.26 (m, 3H, CH₂CH₃), 1.89 (d, J=1.2Hz, 3H, CH₃), 2.72-2.76 (m, 2H, CH₂CH₂), 3.92-3.96 (m, 2H, CH₂CH₂), 4.10-4.18 (m, 2H, CH₂CH₃), 7.17 (d, J=0.9Hz, 1H, CH).

Ethyl 3-(3,5-dimethyl-2,4-dioxo-3,4-dihdropyrimidin-1(2H)-yl)propanoate (14). A mixture of **13** (0.67 g, 3.0 mmol), dry K₂CO₃ (0.63 g, 4.7 mmol), iodomethane (0.75 mL) in anhydrous DMF (4 mL) was stirred at room temperature for 9 h, and then diluted with 50 mL ethyl acetate, washed with 100 mL water and dried with Na₂SO₄. Purification via column chromatography (silica gel-H, ethyl acetate / petroleum ether 3:2) gave **14** (0.7 g, 94 %) as colorless oil. R_f = 0.55 (ethyl acetate / petroleum ether 1:1). IR (KBr): nu(tilde) = 2982w, 1734s, 1701s, 1670s, 1472s cm⁻¹. ¹H NMR (300Hz, DCCl₃): δ=1.23-1.28 (m, 3H, CH₂CH₃), 1.93 (d, J=0.9Hz, 3H, CH₃), 2.75-2.79 (m, 2H, CH₂CH₂), 3.35 (s, 3H, NCH₃), 3.96-4.00 (m, 2H, CH₂CH₂), 4.11-4.19 (m, 2H, CH₂CH₃), 7.17 (s, 1H, CH). ¹³C NMR (75MHz, CDCl₃): δ = 171.1, 163.7, 151.2, 139.2, 108.9, 60.7, 45.6, 32.9, 27.5, 13.9, 12.7. TOFMS (EI) calcd for (M⁺) C₁₁H₁₆N₂O₄: 240.1110, found 240.1082.

3,5-dimethylpyrimidine-2,4(1H,3H)-dione (15).⁷ A solution of anhydrous toluene (20 mL) containing sodium (0.2 g, 8.7 mmol) was intensity refluxed for 20 min to disperse sodium, then cooled to room temperature. **14** (0.7 g, 2.9 mmol) dissolved in 10mL toluene was added and reflux was resumed for 20 h under N₂ atmosphere. 1 mL CH₃COOH and 10 ml CH₃OH were added to clear

reaction mixture, solvent was removed and crude product was purified by column chromatography (silica gel-H, ethyl acetate / petroleum ether 3:1). **15** (0.3 g, 75 %) was obtained as white powder. ¹H NMR (300Hz, DCCl_3): δ = 1.90-1.91 (d, $J=0.9\text{Hz}$, 3H, CH_3), 3.31 (s, 3H, CH_3), 6.98-7.00 (m, 1H, CH), 9.11 (s, 1H, NH).

4,6-dimethyl-8,8-diphenyl-7-oxa-2,4-diazabicyclo[4.2.0]octane-3,5-dione (16).² A 40 mL CH_3CN solution of **15** (0.14 g, 1.0 mmol) and benzophenone (0.36 g, 2.0 mmol) was placed in Pyrex photochemical reactor and bubbled with N_2 for 20 min and then irradiated for 5 h with a 300W high pressure Hg lamp. During irradiation, N_2 bubbling was continued. The reaction mixture was evaporated to dryness in vacuo. The product **16** (90 mg, 28%) as white solid was obtained via column chromatography (silica gel-H, ethyl acetate / petroleum ether 1:3). ¹H NMR (300Hz, DCCl_3): δ = 1.77 (s, 3H, CH_3), 2.80 (s, 3H, NCH_3), 4.68-4.70 (d, $J=4.8\text{Hz}$, 1H, CH), 5.81-5.82 (d, $J=3.6\text{Hz}$, 1H, NH), 7.26-7.37 (m, 10H, benzene-H).

Model compound 2a. Potassium tert-butoxide (35 mg, 0.31 mmol) was added to a 4 mL anhydrous DMF solution dissolved with **16** (50 mg, 0.16 mmol) and stirred at room temperature for 30 min. Then 9-(2-bromopropyl)-9H-carbazole (85 mg, 0.32 mmol) was added into, stirring was continued for 4 h. The reaction mixture was diluted with 80 ml CH_2Cl_2 , washed with 80 mL water. Purified **2a** (14 mg, 18%) as white power was obtained via column chromatography (silica gel-H, ethyl acetate / petroleum ether 1:3) and following recrystallization from CH_2Cl_2 / petroleum ether. R_f = 0.63 (ethyl acetate / petroleum ether 2:1). m.p. 203–204°C. IR (KBr): ν (tilde) = 1713s, 1676s, 1462s cm^{-1} . ¹H NMR (300Hz, DCCl_3): δ = 0.30 (s, 3H, CH_3), 2.94 (s, 3H, CH_3), 3.01 (s, 1H, CH), 3.33-3.37 (m, 1H, CH_2CH_2), 4.03-4.07 (m, 1H, CH_2CH_2), 4.30-4.43 (m, 1H, CH_2CH_2), 4.86-4.91 (m, 1H, CH_2CH_2), 6.56-6.58 (d, $J=7.2\text{Hz}$, 2H, benzene-H), 7.00-7.32 (m, 14H, carbazole-H + benzene-H). 8.08-8.14 (d, $J=7.8\text{Hz}$, 2H, carbazole-H). ¹³C NMR (100MHz, CDCl_3): δ = 169.3, 151.6, 142.9, 140.2, 139.0, 128.3, 128.2, 128.1, 127.8, 126.2, 125.8, 125.2, 123.0, 121.1, 119.9, 108.6, 108.3, 90.6, 75.3, 63.8, 46.5, 40.4, 27.3, 22.4. TOFMS (EI) calcd for (M^+) $\text{C}_{33}\text{H}_{29}\text{N}_3\text{O}_3$: 515.2209, found 515.2175.

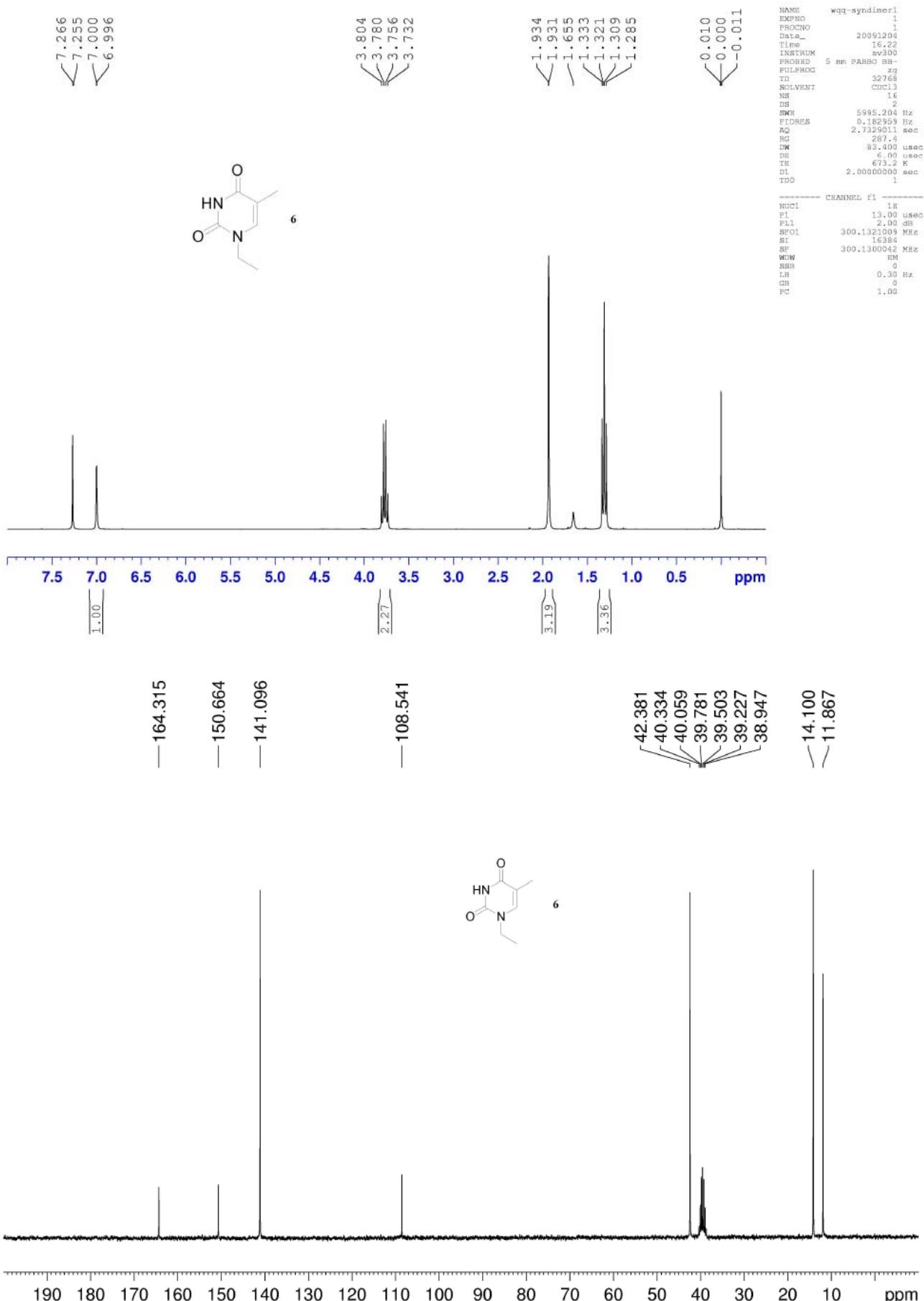
Model compound 2b. Potassium tert-butoxide (35 mg, 0.31 mmol) was added to a 4 mL anhydrous DMF solution dissolved with **16** (50 mg, 0.16 mmol) and stirred at room temperature for 30 min. Then 9-(3-bromopropyl)-9H-carbazole (85 mg, 0.30 mmol) was added into, stirring was continued for 4 h. The reaction mixture was diluted with 80 ml CH_2Cl_2 , washed with 80 mL water. Purified **2b** (15 mg, 19%) as white power was obtained via column chromatography (silica gel-H, ethyl acetate / petroleum ether 1:3) and following recrystallization from CH_2Cl_2 / petroleum ether. R_f = 0.65 (ethyl acetate / petroleum ether 2:1). m.p. 180–182°C. IR (KBr): ν (tilde) = 1720s, 1678s, 1473s, 1462s cm^{-1} . ^1H NMR (300Hz, DCCl_3): δ = 1.53 (s, 3H, CH_3), 2.20-2.24 (m, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 2.67 (m, 1H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 2.94 (s, 3H, CH_3), 3.84-3.89 (m, 1H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 4.21 (s, 1H, CH), 4.37-4.45 (m, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 6.70-6.73 (m, 2H, benzene-H), 6.94-7.54 (m, 14H, carbazole-H + benzene-H), 8.17-8.20 (d, J =7.5Hz, 2H, carbazole-H). ^{13}C NMR (100MHz, CDCl_3): δ = 169.4, 151.6, 143.5, 140.2, 138.5, 128.4, 128.2, 128.0, 127.6, 126.0, 125.7, 124.7, 123.1, 120.7, 119.4, 108.6, 108.5, 91.3, 75.9, 64.1, 45.9, 40.2, 27.4, 27.0, 23.7. TOFMS (EI) calcd for (M^+) $\text{C}_{34}\text{H}_{31}\text{N}_3\text{O}_3$: 529.2365, found 529.2369.

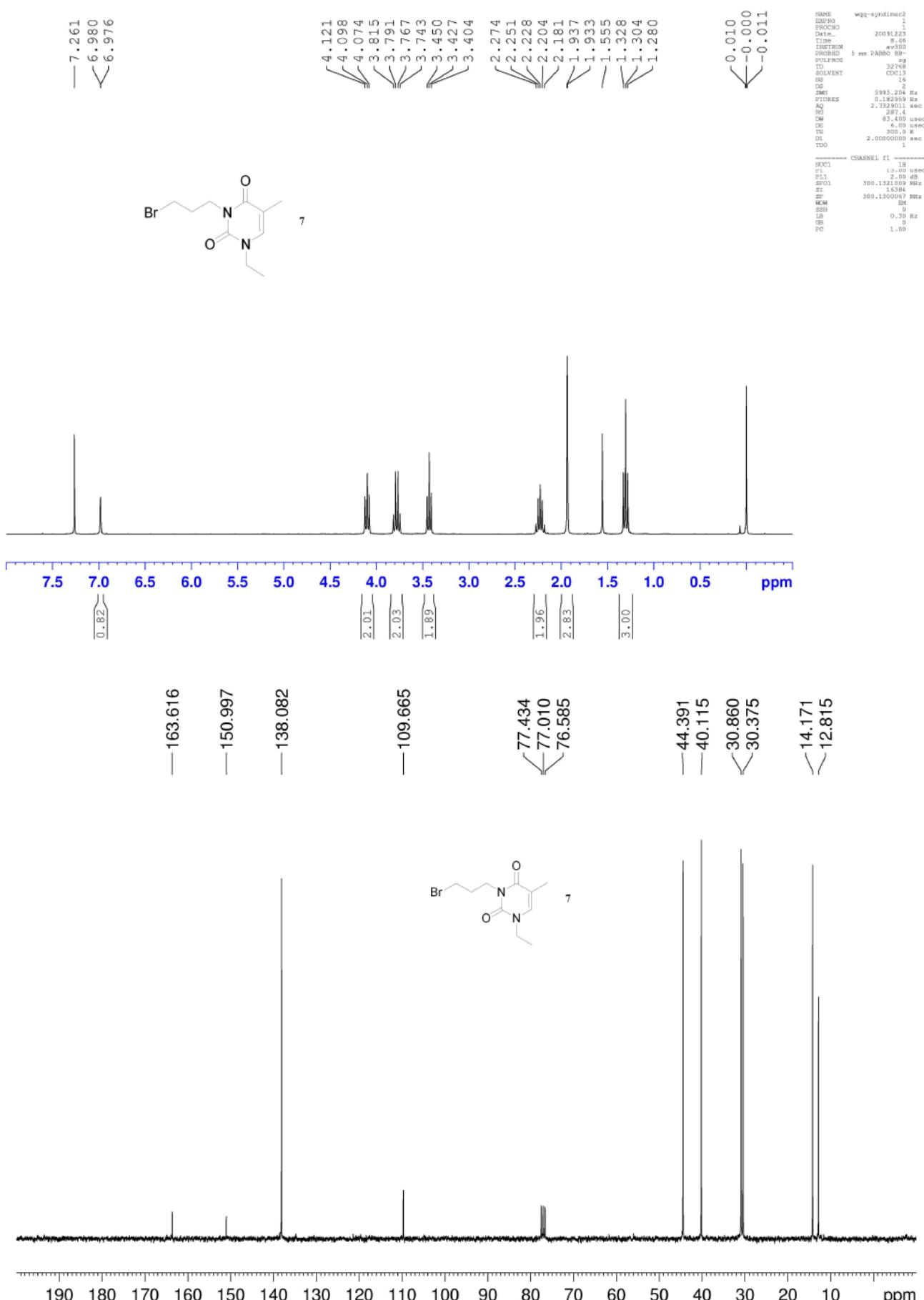
Model compound 3. potassium tert-butoxide (35 mg, 0.31 mmol) and **16** (50 mg, 0.16 mmol) was added to anhydrous DMF of 4 mL and stirred at room temperature for 30 min by following addition of 1-(2-bromoethyl)-1H-indole (100 mg, 0.45 mmol), the reaction processed for another 4 h, and then diluted with 80 ml CH_2Cl_2 , washed with 80 mL water. Solvent was removed and purified **3** (20 mg, 27%) as white power was obtained via column chromatography (silica gel-H, ethyl acetate / petroleum ether 1:3) and following recrystallization from CH_2Cl_2 / petroleum ether. R_f = 0.54 (ethyl acetate / petroleum ether 2:1). m.p. 159–161°C. IR (KBr): ν (tilde) = 1709s, 1673s, 1469s cm^{-1} . ^1H NMR (300MHz, CDCl_3): δ = 0.87 (s, 3H, CH_3), 2.93 (s, 3H, CH_3), 3.15-3.21 (m, 1H, CH_2CH_2), 3.25 (s, 1H, CH), 4.07-4.11 (m, 1H, CH_2CH_2), 4.25-4.30 (m, 1H, CH_2CH_2), 4.50-4.58 (m, 1H, CH_2CH_2), 6.58-6.59 (d, J =3Hz, 1H, benzene-H), 6.88-6.91 (m, 2H, indole-H), 7.09-7.32 (m, 12H, benzene-H + indole-H) 7.64 (d, J =8.1Hz, 1H, indole-H); ^{13}C NMR (100MHz, CDCl_3): δ = 169.6, 151.5, 143.1, 138.9, 136.3, 128.8, 128.5, 128.2, 128.1, 128.0, 127.4, 125.8, 125.4, 122.3, 121.8, 120.2, 108.9,

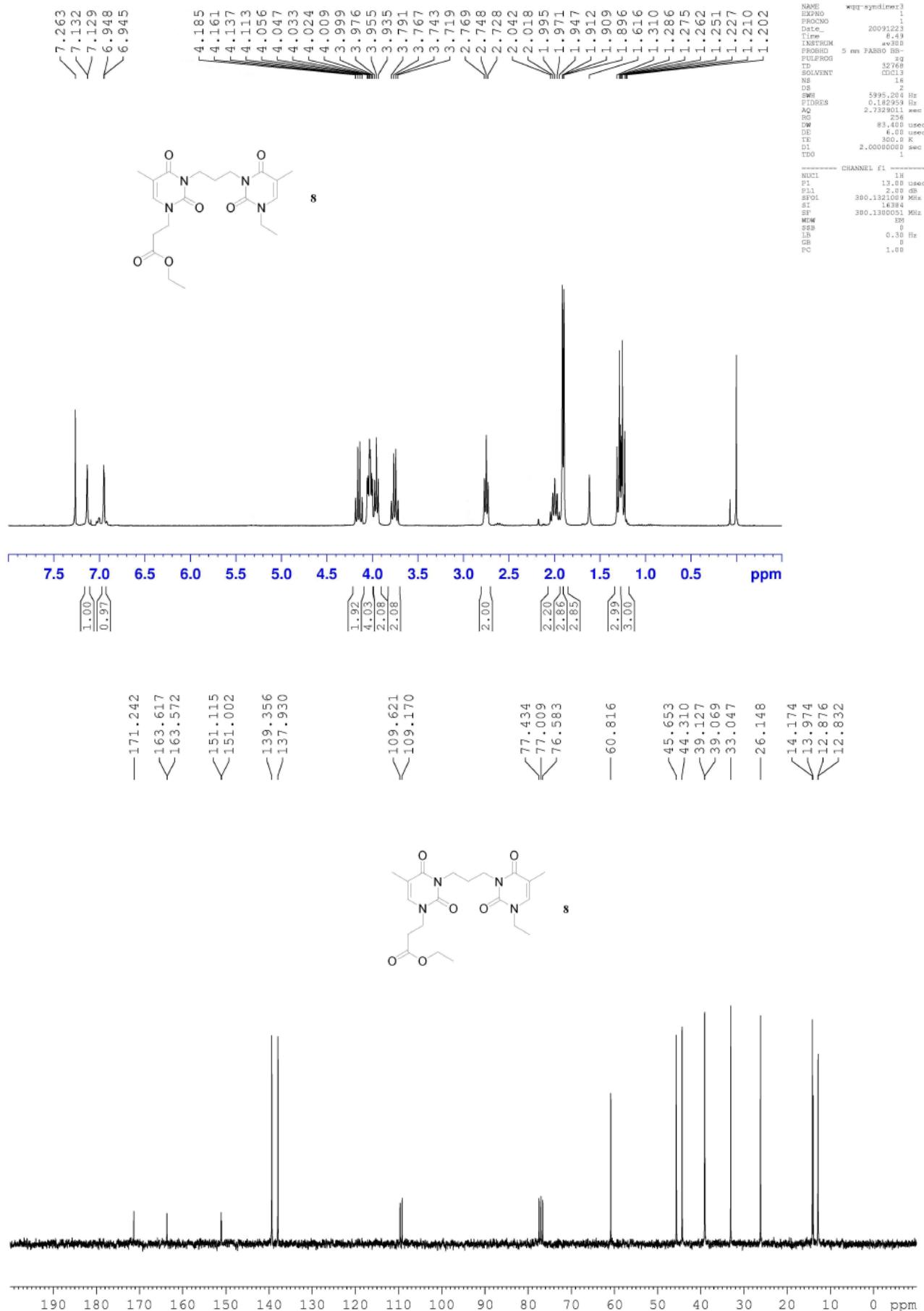
102.8, 90.9, 75.8, 64.4, 48.9, 44.1, 27.3, 23.0. TOFMS (EI) calcd for (M⁺) C₂₉H₂₇N₃O₃: 465.2052, found 465.2028.

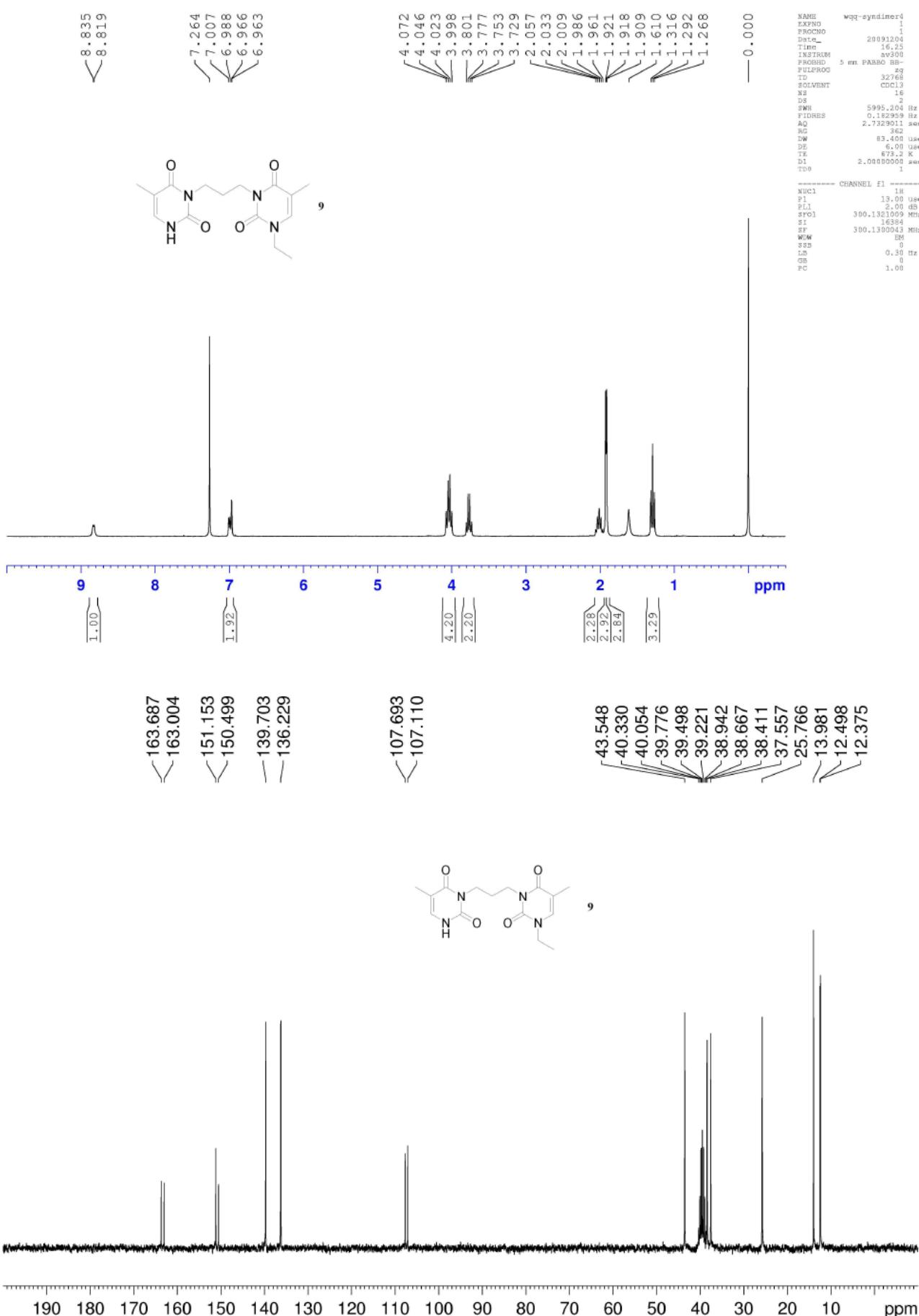
Photolysis product 4a. 1a (25 mg, 0.049 mmol) was dissolved in methanol of 30 mL and irradiated with a Xe lamp for 2 h, **4a** (16 mg, 64%) was isolated via column chromatography (silica gel-H, ethyl acetate / petroleum ether 2:1) as white powder. R_f = 0.51 (ethyl acetate / petroleum ether 2:1). m.p. 201-203°C. IR (KBr): nu(tilde) = 2953w, 1693s, 1667s, 1640s, 1463s cm⁻¹. ¹H NMR (300Hz, DCCl₃): δ = 1.23-1.33 (m, 6H, CH₃, CH₂CH₃), 1.93 (s, 3H, CH₃), 1.93-2.07 (m, 2H, CH₂CH₂CH₂), 3.74-3.82 (m, 2H, CH₂CH₃), 4.00-4.13 (m, 6H, CH₂CH₂, CH₂CH₂CH₂), 4.62-4.66 (m, 2H, CH₂CH₂CH₂), 5.66 (s, 1H, CH), 6.97 (d, 1H, CH), 7.20-7.46 (m, 6H, carbazole-H), 8.06-8.08 (d, J=7.8Hz, 2H, carbazole-H). ¹³C NMR (100MHz, d₆-DMSO): δ = 163.0, 162.6, 150.8, 150.2, 139.9, 139.8, 139.7, 125.7, 122.2, 120.2, 119.0, 108.9, 107.7, 107.4, 47.2, 43.6, 40.5, 38.3, 25.4, 14.0, 12.6, 12.2. TOFMS (EI) calcd for (M⁺) C₂₉H₃₁N₅O₄: 513.2376, found 513.2341.

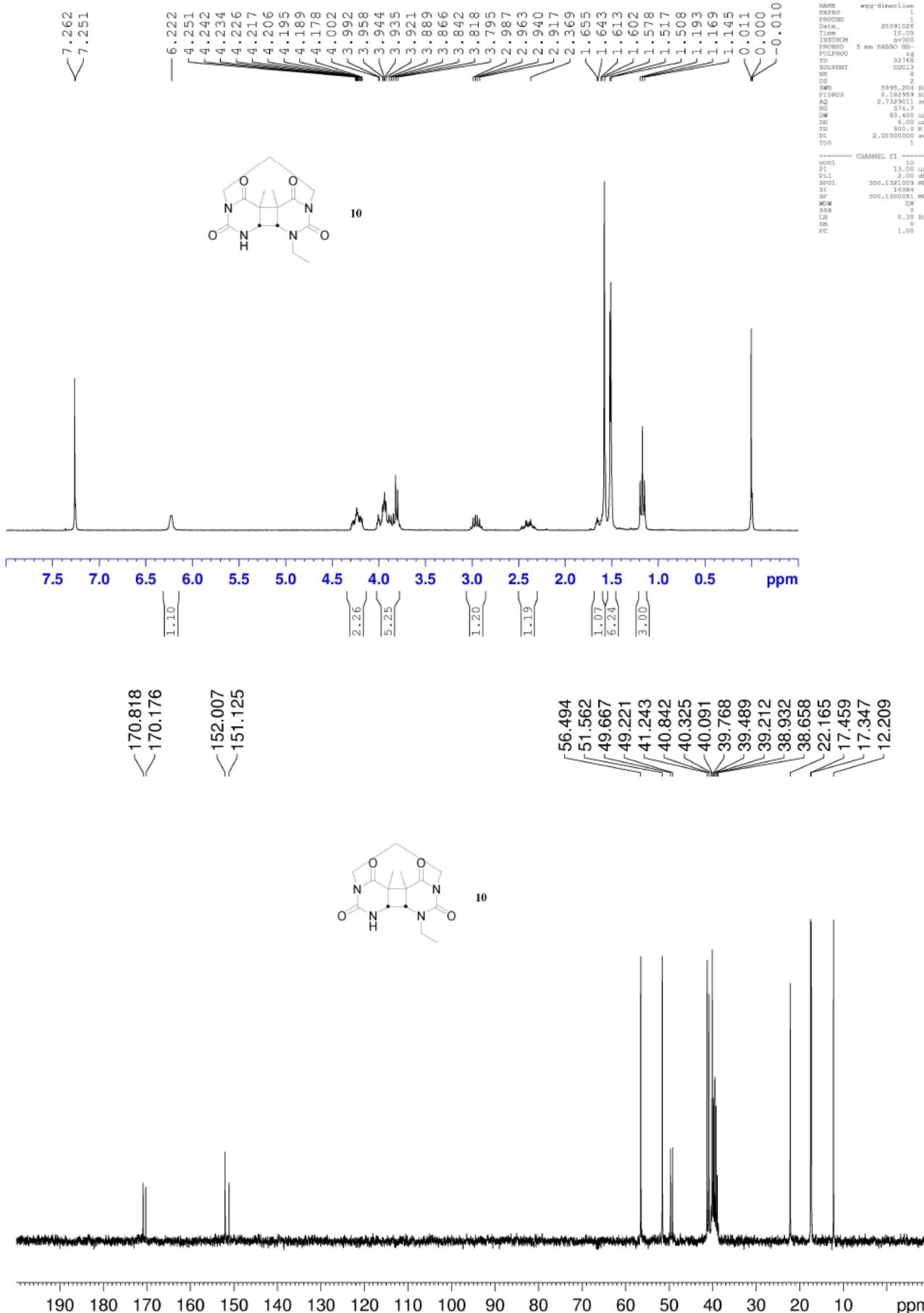
Photolysis product 4b. 1b (25 mg, 0.047 mmol) was dissolved in methanol of 30 mL and irradiated with a Xe lamp for 2 h, **4b** (20 mg, 80%) was isolated via column chromatography (silica gel-H, ethyl acetate / petroleum ether 2:1) as white powder. IR (KBr): nu(tilde) = 2957w, 2925w, 1697s, 1667s, 1655s, 1464s cm⁻¹. R_f = 0.55 (ethyl acetate / petroleum ether 2:1). m.p. 170-172°C. ¹H NMR (300Hz, DCCl₃): δ = 1.24-1.26 (m, 3H, CH₂CH₃), 1.74 (s, 3H, CH₃), 1.88 (s, 3H, CH₃), 1.95-2.00 (m, 2H, CH₂CH₂CH₂), 2.31-2.36 (m, 2H, CH₂CH₂CH₂), 3.67-3.74 (m, 4H, CH₂CH₂CH₂), 3.98-4.04 (m, 4H, CH₂CH₃, CH₂CH₂CH₂), 4.40-4.44 (m, 2H, CH₂CH₂CH₂), 6.55 (s, 1H, CH), 6.91 (s, 1H, CH), 7.21-7.48 (m, 6H, carbazole-H), 8.08-8.11 (d, J=7.8Hz, 2H, carbazole-H). ¹³C NMR (100MHz, DCCl₃): δ = 163.7, 163.5, 151.4, 151.1, 140.1, 138.0, 137.9, 125.9, 123.0, 120.5, 119.2, 109.8, 108.5, 47.7, 44.4, 40.3, 39.3, 39.2, 28.0, 26.4, 14.3, 13.1, 12.9. TOFMS (EI) calcd for (M⁺) C₃₀H₃₃N₅O₄: 527.2533, found 527.2482.


Photolysis product 5a. 2a (25 mg, 0.049 mmol) was dissolved in methanol of 30 mL and irradiated with a Xe lamp for 2 h, **5a** (10 mg, 63%) was isolated via column chromatography (silica gel-H, ethyl acetate / petroleum ether 1:1) as white powder. R_f = 0.65 (ethyl acetate / petroleum ether 2:1).


m.p. 209-211°C. IR (KBr): nu(tilde) = 2942w, 2924w, 1701s, 1666s, 1634s, 1464s cm^{-1} . ^1H NMR (300Hz, DCCl_3): δ = 1.30 (d, $J=0.9\text{Hz}$, 3H, CH_3), 3.33 (s, 3H, NCH_3), 4.07-4.11 (m, 2H, CH_2CH_2), 4.63-4.67 (m, 2H, CH_2CH_2), 5.69-5.70 (d, $J=0.9\text{Hz}$, 1H, CH), 7.19-7.44 (m, 6H, carbazole-H), 8.05-8.07 (d, $J=7.8\text{Hz}$, 2H, carbazole-H). ^{13}C NMR (100MHz, DCCl_3): δ = 163.5, 151.7, 140.1, 137.6, 126.1, 123.2, 120.6, 119.7, 109.4, 108.1, 48.2, 40.7, 27.8, 12.2. TOFMS (EI) calcd for (M^+) $\text{C}_{20}\text{H}_{19}\text{N}_3\text{O}_2$: 333.1477, found 333.1422.


Photolysis product 5b. 2b (25 mg, 0.047 mmol) was dissolved in methanol of 30 mL and irradiated with a Xe lamp for 2 h, **5b** (11 mg, 69%) was isolated via column chromatography (silica gel-H, ethyl acetate / petroleum ether 1:1) as white powder. R_f = 0.66 (ethyl acetate / petroleum ether 2:1). m.p. 189-190°C. IR (KBr): nu(tilde) = 2952w, 2924w, 1696s, 1666s, 1633s, 1469s cm^{-1} . ^1H NMR (300Hz, DCCl_3): δ = 1.72 (d, $J=0.6\text{Hz}$, 3H, CH_3), 3.29 (s, 3H, NCH_3), 4.40-4.44 (m, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 3.70-3.75 (m, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 2.30-2.39 (m, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 6.53 (d, $J=0.6\text{Hz}$, 1H, CH), 7.21-7.49 (m, 6H, carbazole-H), 8.08-8.10 (d, $J=7.8\text{Hz}$, 2H, carbazole-H). ^{13}C NMR (100MHz, $d_6\text{-DMSO}$): δ = 163.2, 150.9, 139.8, 139.4, 125.6, 122.2, 118.8, 109.1, 117.5, 46.6, 39.8, 27.6, 27.4, 12.5. TOFMS (EI) calcd for (M^+) $\text{C}_{21}\text{H}_{21}\text{N}_3\text{O}_2$: 347.1634, found 347.1607.


References


1. Tang, W. J.; Guo, Q. X.; Song, Q. H. *J. Phys. Chem. B.* **2009**, 113, 7205–7210.
2. Breeger, S.; von Meltzer, M.; Hennecke, U.; Carell, T. *Chem. Eur. J.* **2006**, 12, 6469 – 6477.
3. Li, X.; Wang, J.; Mason, R.; Bu, X. R.; Harrison, J. *Tetrahedron*. **2002**, 58, 3747-3753.
4. Bogdal, D.; Jaskot, K. *Synth Commun.* **2002**, 30(18), 3341-3352.
5. Li, X.; Mintz, E. A.; Bu, X. R.; Zehnder, O.; Bosshard, C.; Gunter, P. *Tetrahedron*. **2000**, 56, 5785-5791.
6. Song, Q. H.; Tang, W. J.; Hei, X. M.; Wang, H. B.; Guo, Q. X.; Yu, S. Q. *Eur. J. Org. Chem.* **2005**, 1097–1106.
7. Itahara, T. *Bull. Chem. Soc. Jpn.* **1997**, 70, 2239-2248.

