Supporting Information

Hofmann Rearrangement of Carboxamides Mediated by Hypervalent Iodine Species Generated in situ from Iodobenzene and Oxone: Reaction Scope and Limitation

Aleksandra A. Zagulyaeva, Christopher T. Banek, Mekhman S. Yusubov, and Viktor V. Zhdankin*

Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, 55812, USA and The Siberian State Medical University and The Tomsk Polytechnic University, 634050 Tomsk, Russia

vzhdanki@d.umn.edu

Contents:	Page
1. General Methods	S 1
2. Experimental procedures and characterization data	S2
3. NMR spectra of compounds	S7
4. References	S24

General. All commercial reagents were ACS reagent grade and used without further purification. NMR spectra were recorded at 300 and 500 MHz (¹H NMR) and 75 MHz (¹³C NMR). Chemical shifts (δ) are reported in parts per million. GC-MS analysis was carried out with a HP 5890A Gas Chromatograph using a 5970 Series mass selective detector.

Preparation of benzylamine hydrochloride 3•HCl from 2-phenylacetamide 2 via Hofmann rearrangement.

To a mixture of Oxone® (1.23 g, 2 mmol) and *iodobenzene* (0.204 g, 1 mmol) in CH₃CN/H₂O (6 mL, 1:1, v/v), 2-phenylacetamide **2** (0.135 g, 1 mmol) was added under stirring at room temperature. The reaction mixture was stirred at room temperature for 7 h (the reaction was monitored by GC-MS). After completion of the reaction, the reaction mixture was filtered under reduced pressure. The insoluble residue (mainly containing inorganic salts) was washed with CH₃CN (5 mL) and discarded. The combined filtrate was mixed with HCl (15 mL, 20% aqueous solution), and the mixture was washed with ether (10 mL) to remove all non-polar impurities. The aqueous layer was concentrated at reduced pressure to give a sticky solid, which was thoroughly dried in vacuum. Crystallization from ethanolether afforded 0.136 g (95%) of benzylamine hydrochloride **3•HCl** as a slightly yellow crystalline solid, mp 253-255 °C (lit.¹, mp 258-260 °C).¹H NMR 300 MHz (CD₃OD): δ 4.12 (br s, 2H, -CH₂-), 7.40 -7.48 (m, 5H, Ph).

Preparation of (±)-α-phenylpropylamine 5 from 2-phenylbutyramide 4

To the mixture of Oxone® (1.23 g, 2 mmol) and iodobenzene (0.204 g, 1 mmol) in CH₃CN/H₂O (6 mL, 1:1, v/v), 2-phenylbutyramide **4** (0.163 g, 1 mmol) was added under stirring at room temperature. The reaction mixture was stirred at room temperature for 7 h (the reaction was monitored by GC-MS). After completion of the reaction, the reaction mixture was diluted with H₂O (10 mL), and extracted with CHCl₃ (3x10 mL). The organic phase was separated, and dried over Na₂SO₄ (anhydrous). Evaporation of CHCl₃ under reduced pressure afforded 0.115 g (85%) of (±)- α -phenylpropylamine **5** as a pale yellow oil. ¹H NMR 300 MHz (CDCl₃): δ 0.87 (t, *J*=7.5 Hz, 3H, -CH₂CH₃), 1.61 (br s, 2H, NH₂), 1.67-1.72 (m, 2H, -CH₂CH₃), 3.80 (t, *J*=6.9 Hz, 1H, -CH-), 7.31-7.33 (m, 5H, Ph). The product was identical to a commercially available sample (Aldrich) according to NMR and GC-MS data.

General procedure for preparation of carbamates 7a-k from amides 6a-k via Hofmann rearrangement.

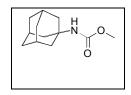
$$R \stackrel{O}{\longleftarrow} \frac{\text{PhI (1 mol-equiv), Oxone (2 mol-equiv)}}{\text{CH}_3\text{OH, rt}} \qquad R \stackrel{H}{\longleftarrow} O$$

$$6a-k \qquad \qquad 7a-k$$

To the mixture of Oxone® (2 mol-equiv) and iodobenzene (1 mol-equiv) in MeOH (5 mL), an appropriate amide **6a-k** (1 mmol) was added under stirring at room temperature. The reaction mixture was stirred at room temperature for 7-12 h (the reaction was monitored by GC-MS). After completion of the reaction, the solvent was evaporated under vacuum. The resulting residue was diluted with H₂O (10 mL), and extracted with EtOAc (3x10 mL). The organic phase was separated, and dried over MgSO₄ (anhydrous). Evaporation of EtOAc under reduced pressure afforded a final product which in case of crystalline products was additionally purified by recrystallization from CHCl₃/hexane.

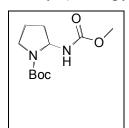
Methyl N-isopropylcarbamate 7c.

Reaction of isobutyramide **6c** (0.087 g, 1 mmol) according to the general procedure afforded 0.111 g (95%) of product **7c**, isolated as an oil.
$$^{1}H$$
 NMR 500 MHz (CDCl₃): δ 1.15 (d, J =6.3 Hz, 6H, 2C \underline{H}_3), 3.65 (s, 3H, COOC \underline{H}_3), 3.81 (br s, 1H, C \underline{H}), 4.55 (br s, 1H, N \underline{H}). EI-MS m/z (relative intensity, %): 117 [M]⁺ (<5), 102


 $[M-CH_3]^+(100)$, 86 $[M-CH_3O]^+(5)$, 70 $[C_3H_4NO]^+(6)$, 59 $[C_2H_3O_2]^+(26)$, 58 $[C_3H_8N]^+(50)$.

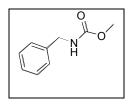
Methyl N-cyclobutylcarbamate 7d.

Methyl N-cyclohexylcarbamate 7e.

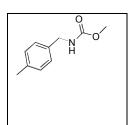

(CDCl₃): δ 1.09-1.20 (m, 3H), 1.31-1.38 (m, 2H), 1.58-1. 62 (m, 1H), 1.67-1.72 (m, 2H), 1.92-1.94 (m, 2H), 3.48 (br s, 1H, C<u>H</u>), 3.65 (s, 3H, COOC<u>H</u>₃), 4.56 (br s, 1H, N<u>H</u>).

Methyl N-(1-adamantanyl)carbamate 7f.

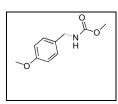
Reaction of 1-adamantanecarboxamide **6f** (0.179 g, 1 mmol) according to the general procedure afforded 0.188 g (90%) of product, isolated as a microcrystalline solid, mp 118-120 °C (lit.³, mp 120 °C). ¹H NMR 300 MHz (CDCl₃): δ 1.67 (s, 6H), 1.93 (s, 6H), 2.07 (s, 3H), 3.60 (s, 3H, COOCH₃), 4.54 (br s, 1H, NH).


Methyl (1-Boc-pyrrolidin-2-yl)carbamate 7g.

Reaction of 1-Boc-L-prolinamide **6g** (0.214 g, 1 mmol) according to the general procedure afforded 0.183 g (75%) of product **7g**, isolated as an oil. ^{1}H NMR 300 MHz (CDCl₃): δ 1.44 (s, 9H, COOC(C<u>H</u>₃)₃), 1.81-1.84 (m, 2H), 2.34-2.38 (m, 2H), 3.16 (br s, 2H), 3.68 (s, 3H, COOC<u>H</u>₃), 4.63 (br s, 2H, N<u>H</u> and C<u>H</u>). ^{13}C NMR 75 MHz (CDCl₃): δ 21.02, 28.62 (COOC(<u>C</u>H₃)₃), 33.21, 46.74, 51.88 (COO<u>C</u>H₃),

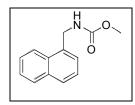

79.43, 83.04, 174.02, 179.51.

Methyl N-benzylcarbamate 7h.


Reaction of 2-phenylacetamide **6h** (0.135 g, 1 mmol) according to the general procedure afforded 0.160 g (97%) of product **7h**, isolated as a microcrystalline solid, mp 63-65 °C (lit.⁴, mp 64-65 °C). ¹H NMR 300 MHz (CDCl₃): δ 3.69 (s, 3H, COOCH₃), 4.36 (s, 2H, -CH₂-), 5.09 (br s, 1H, NH), 7.28-7.34 (m, 5H, Ph).

Methyl N-(4-methylbenzyl)carbamate 7i.

Reaction of 2-(p-tolyl)acetamide **6i** (0.149 g, 1 mmol) according to the general procedure afforded 0.166 g (93%) of product **7i**, isolated as a white microcrystalline solid, mp 68-70 °C. ¹H NMR 300 MHz (CDCl₃): δ 2.33 (s, 3H, -CH₃), 3.69 (s, 3H, COOCH₃), 4.32 (s, 2H, -CH₂-), 4.98 (br s, 1H, NH), 7.12-7.19 (m, 4H_{arom.}).


Methyl N-(p-methoxylbenzyl)carbamate 7j.

Reaction of 2-(4-methoxyphenyl)acetamide **6j** (0.165 g, 1 mmol) according to the general procedure afforded 0.185 g (95%) of product **7j**, isolated as a white microcrystalline solid, mp 73-74 °C (lit.⁵, mp 73-74 °C). ¹H NMR 300 MHz (CDCl₃): δ 3.68 (s, 3H, COOC<u>H₃</u>), 3.78 (s, 3H, -OC<u>H₃</u>), 4.28 (br s, 2H, -C<u>H₂</u>-), 4.97

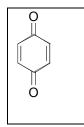
(br s, 1H, NH), 6.84-6.90 (m, 2H_{arom.}), 7.19-7.24 (m, 2H_{arom.}).

Methyl N-[(1-naphthyl)methyl]carbamate 7k.

Reaction of 1-naphthaleneacetamide **6k** (0.185 g, 1 mmol) according to the general procedure afforded 0.200 g (93%) of product, isolated as pale yellow microcrystalline solid, mp 84-86 °C (lit.⁶, mp 84-88 °C). ¹H NMR 300 MHz (CDCl₃): δ 3.68 (s, 3H, COOC<u>H₃</u>), 4.79 (br s, 2H, -C<u>H₂</u>-), 5.09 (br s, 1H, N<u>H</u>),

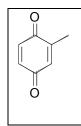
7.39-7.41 (m, 2H, Ar<u>H</u>), 7.46-7.52 (m, 2H, Ar<u>H</u>), 7.77-7.78 (m, 1H, Ar<u>H</u>), 7.84-7.86 (m, 1H, Ar<u>H</u>), 7.96-8.01 (m, 1H, ArH).

General procedure for preparation of 1,4-benzoquinones 10a-e from amides 8a-e.

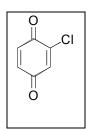

$$R \xrightarrow{\text{II}} NH_2 \xrightarrow{\text{PhI, Oxone}} R \xrightarrow{\text{II}} NH_2 \xrightarrow{\text{NH}_2} NH_2$$
8a-e

8a-e

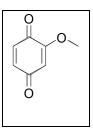
10a-d


To the mixture of Oxone[®] (2 mol-equiv) and iodobenzene (1 mol-equiv) in CH_3CN/H_2O (6 mL, 1:1, v/v), an appropriate amide **8a-e** (1 mmol) was added under stirring at room temperature. The reaction mixture was stirred at room temperature for 7-12 h (the reaction was monitored by GC-MS). After completion of the reaction, the reaction mixture was diluted with H_2O (10 mL), and extracted with $CHCl_3$ (3x10 mL). The organic phase was separated, and dried over Na_2SO_4 (anhydrous). Evaporation of $CHCl_3$ under reduced pressure afforded a pure product **10**.

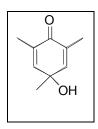
1,4-Benzoquinone 10a.


Reaction of benzamide **8a** (0.121 g, 1 mmol) according to the general procedure afforded 0.106 g (98%) of product **10a**, isolated as an orange microcrystalline solid, mp 115-116 °C (lit.⁷, mp 116 °C). ¹H NMR 300 MHz (CDCl₃): δ 6.78 (s, 4H). The same product was obtained in reaction with 4-methoxybenzamide **8e** (0.102 g, 94%).

2-Methyl-1,4-benzoquinone 10b.

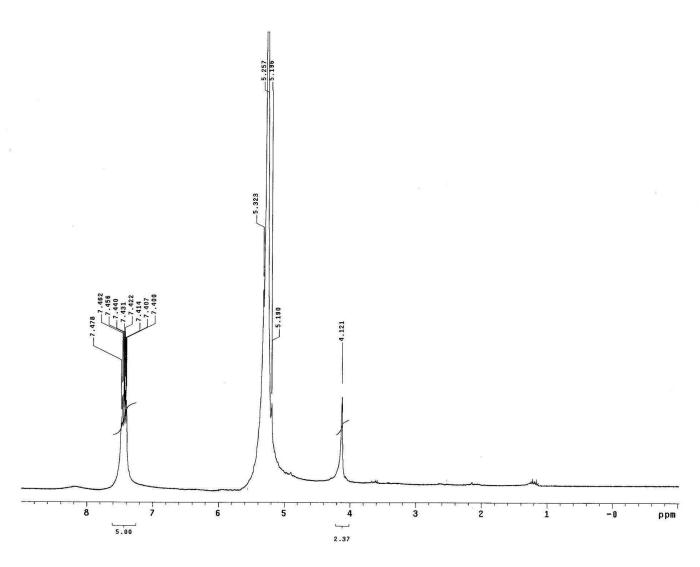

Reaction of o-toluamide **8b** (0.135 g, 1 mmol) according to the general procedure afforded 0.122 g (100%) of product **10b**, isolated as a yellow microcrystalline solid, mp 68-69 °C (lit.⁷, mp 69 °C). ¹H NMR 300 MHz (CDCl₃): δ 2.03 (s, 3H, -C $\underline{\text{H}}_3$), 6.59 (s, 1H), 6.65-6.76 (m, 2H).

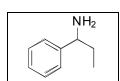
2-Chloro-1,4-benzoquinone 10c.


Reaction of 2-chlorobenzamide **8c** (0.155 g, 1 mmol) according to the general procedure afforded 0.135 g (95%) of product **10c**, isolated as a yellowish microcrystalline solid, mp 54-56 °C (lit.⁷, mp 55-56 °C). ¹H NMR 300 MHz (CDCl₃): δ 6.80 (d, J=9.8 Hz, 1H), 6.91 (d, J=9.8 Hz, 1H), 6.99 (s, 1H).

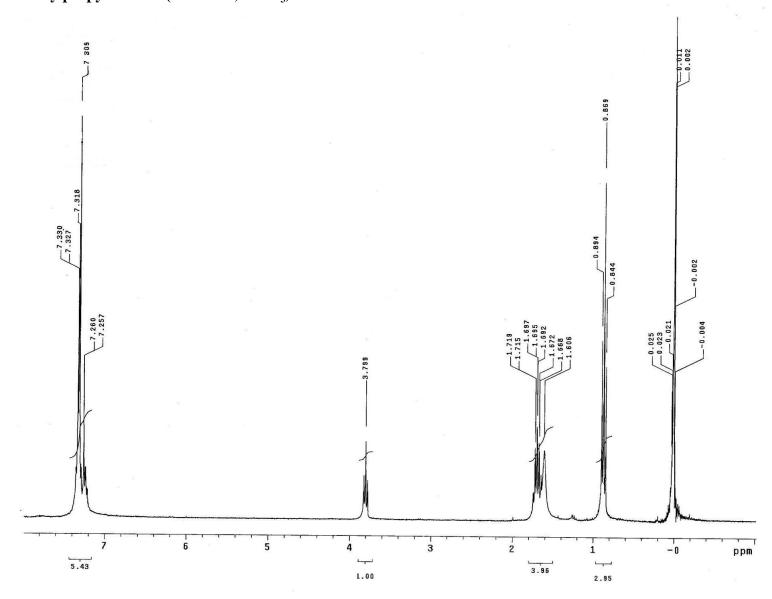
2-Methoxy-1,4-benzoquinone 10d.

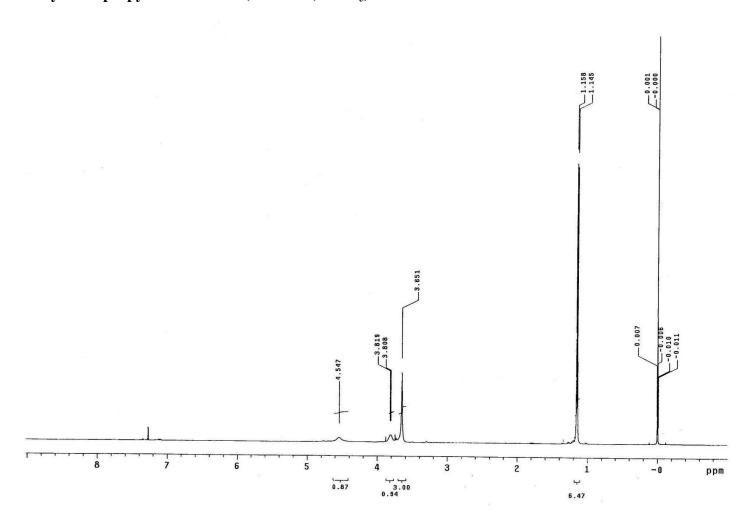

Reaction of 3-methoxybenzamide **8d** (0.151 g, 1 mmol) according to the general procedure afforded 0.134 g (97%) of product **10d**, isolated as a slightly brown microcrystalline solid, mp 142-144 °C (lit.⁷, mp 144 °C). ¹H NMR 300 MHz (CDCl₃): δ 3.83 (s, 3H, -OCH₃), 5.95 (br s, 1H), 6.72 (br s, 2H).

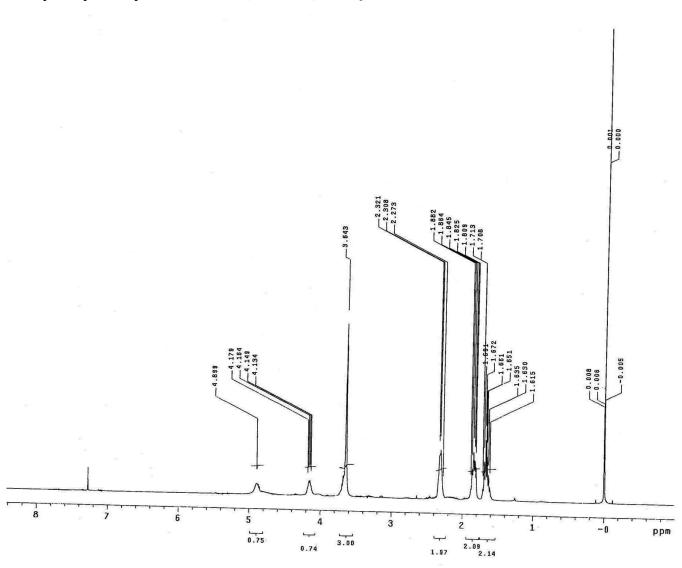

4-Hydroxy-2,4,6-trimethylcyclohexa-2,5-dienone 10e.

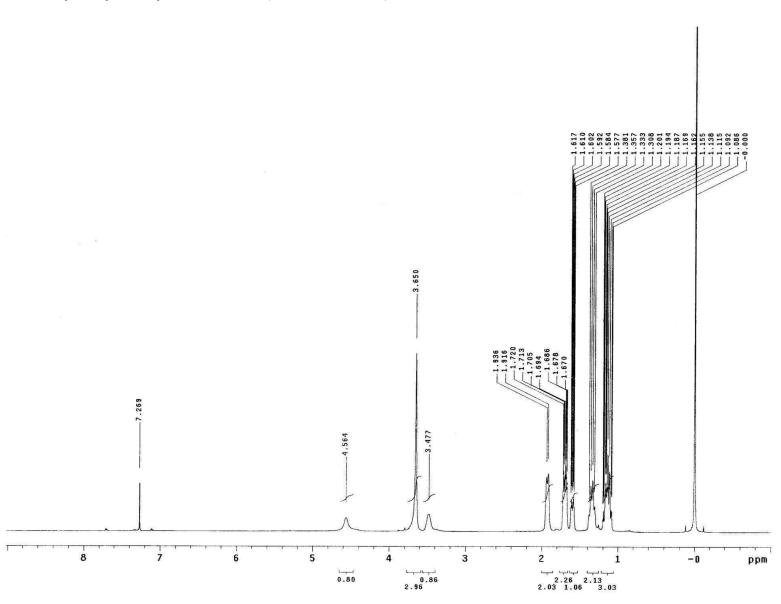


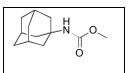
Reaction of 2,4,6-trimethylbenzamide **8f** (0.163 g, 1 mmol) according to the general procedure afforded product **10e**, isolated as a semisolid mass which on recrystallization from EtOH/water yields pure crystalline product 0.144 g (95%), mp 44.5-45.5 °C (lit.8, mp 45-46 °C). 1 H NMR 300 MHz (CDCl₃): δ 1.43 (s, 3H, 4-C $\underline{\text{H}}_{3}$), 1.86 (s, 6H, 2,6-C $\underline{\text{H}}_{3}$), 6.62 (br s, 2H).


3. Copies of ¹H and ¹³C NMR spectra Benzylamine hydrochloride 3•HCl (300 MHz, CDCl₃)

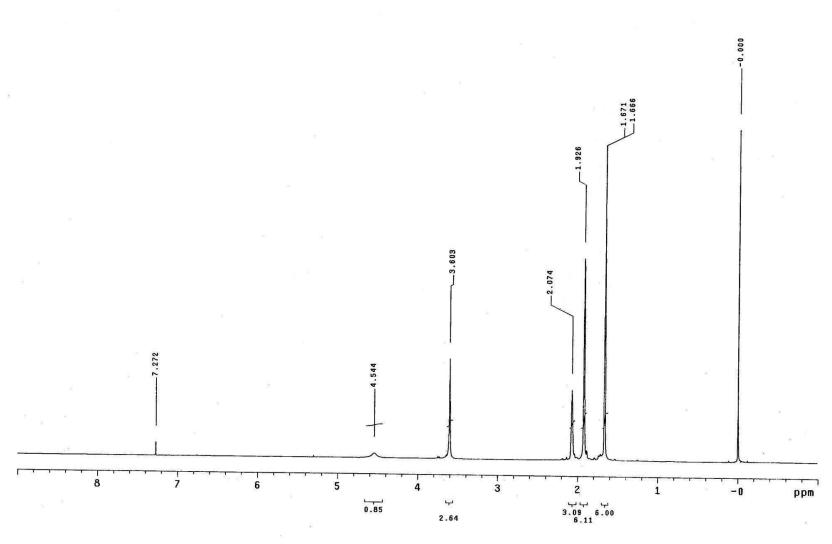



(\pm)- α -Phenylpropylamine 5 (300 MHz, CDCl₃)

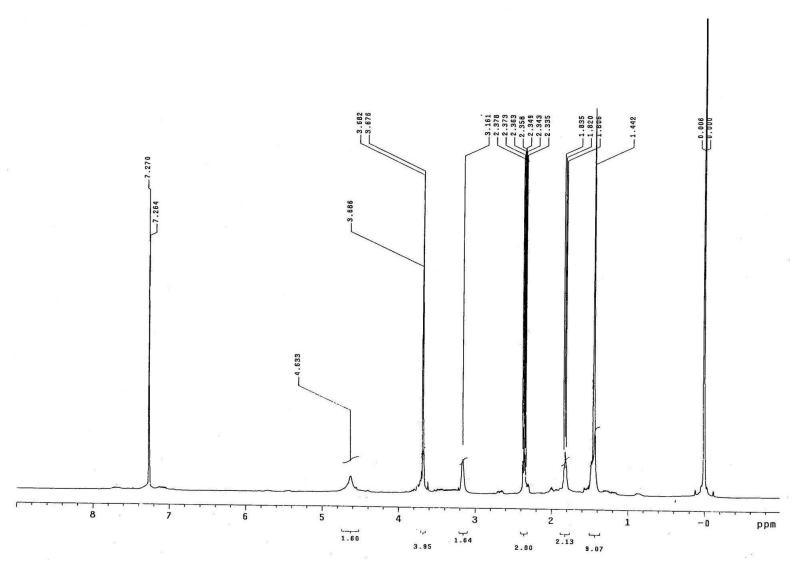

Methyl N-isopropylcarbamate 7c (500 MHz, CDCl₃)



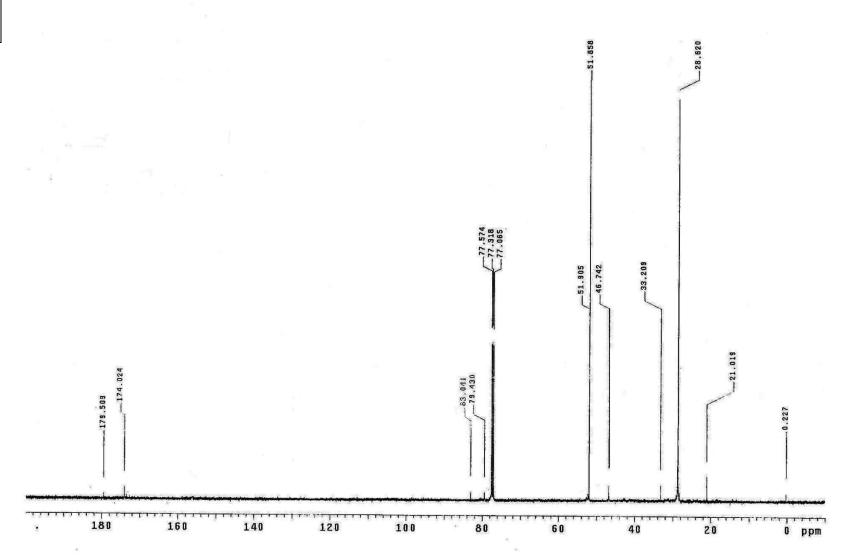
Methyl N-cyclobutylcarbamate 7d (300 MHz, $CDCl_3$)

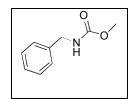


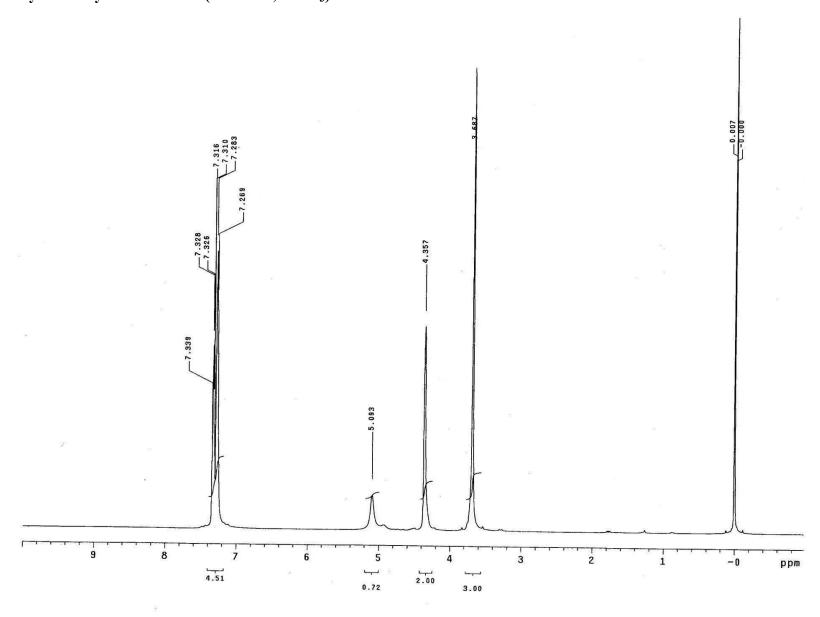
Methyl N-cyclohexylcarbamate 7e (500 MHz, CDCl₃)



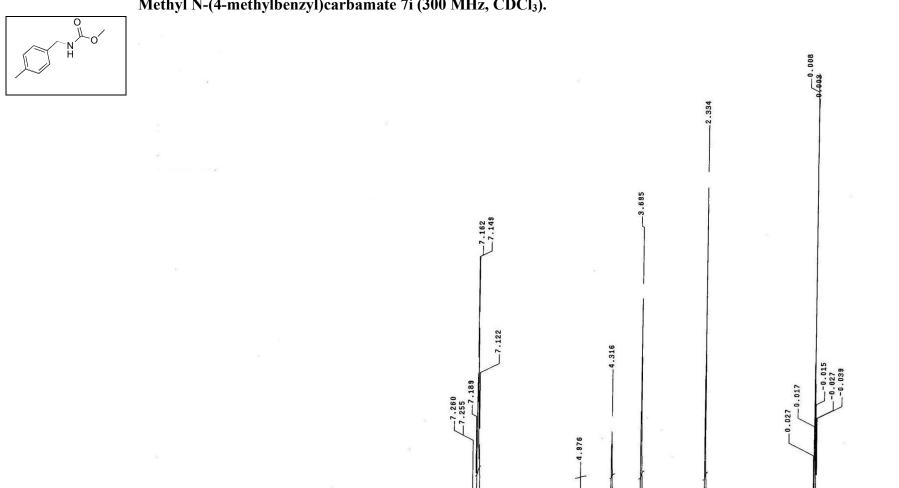
Methyl N-(1-adamantanyl)carbamate 7f (300 MHz, CDCl₃)




Methyl (1-Boc-pyrrolidin-2-yl)carbamate 7g (300 MHz, CDCl₃)

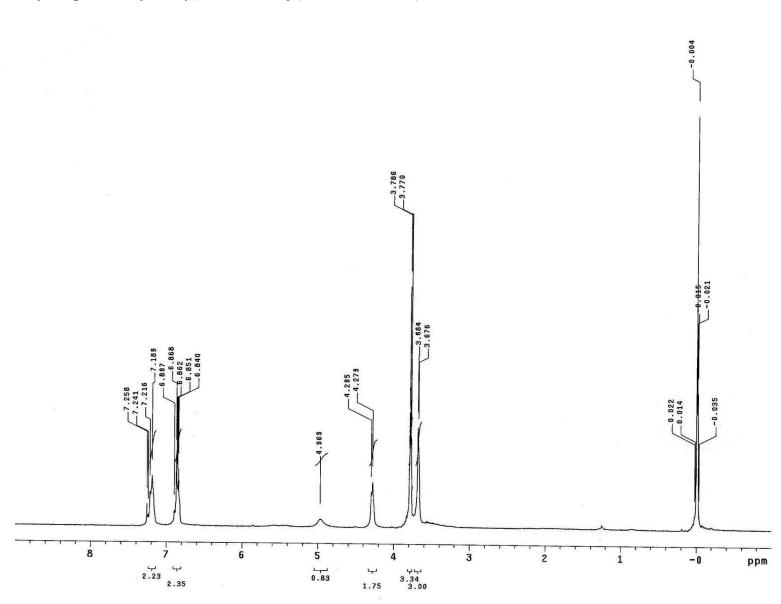

N H H Boc

Methyl (1-Boc-pyrrolidin-2-yl)carbamate 7g (75 MHz, CDCl₃)

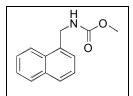


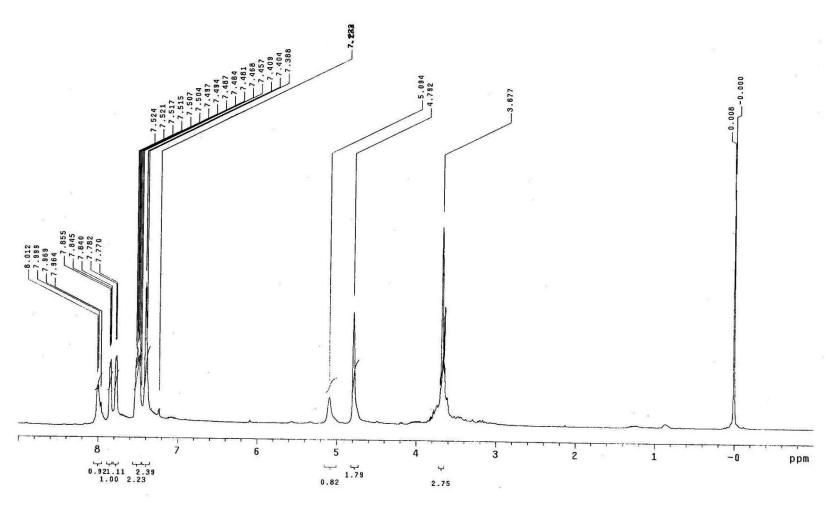
Methyl N-benzylcarbamate 7h (300 MHz, CDCl₃)

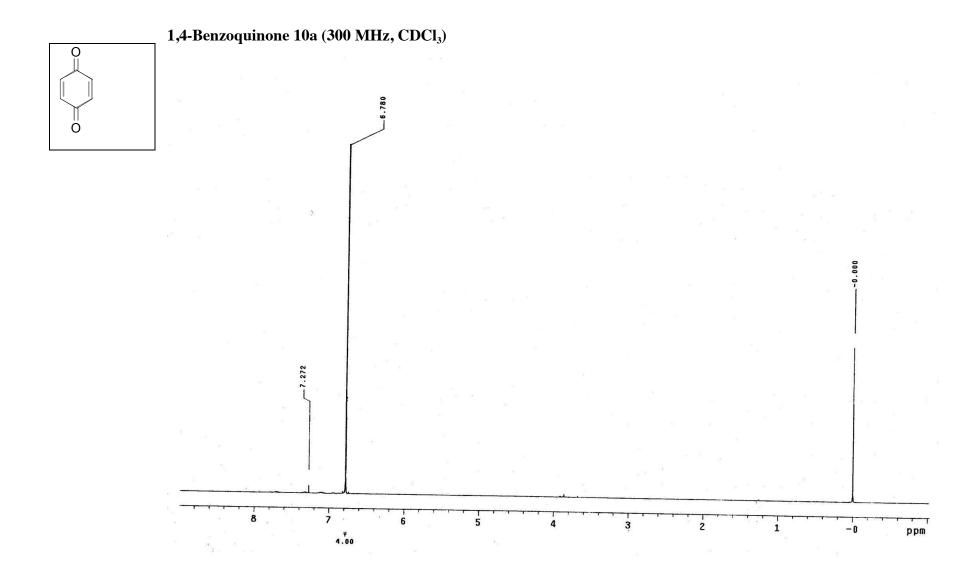
Methyl N-(4-methylbenzyl)carbamate 7i (300 MHz, CDCl₃).



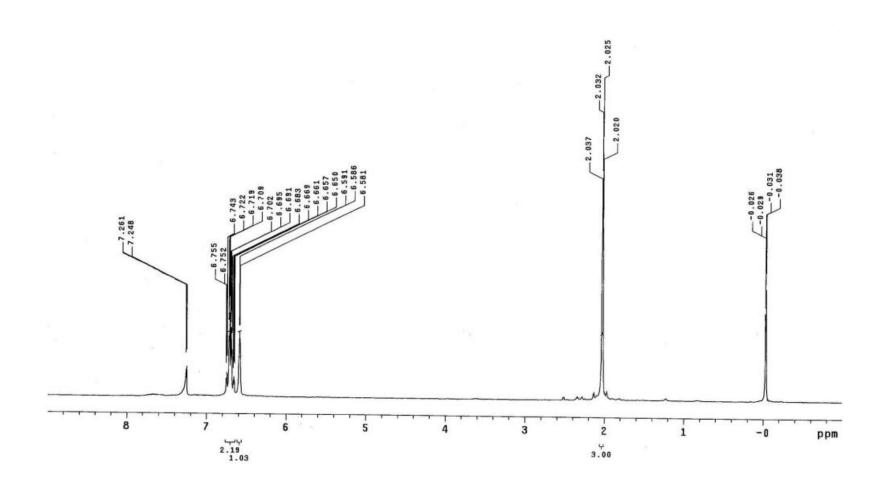
수 4.23

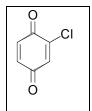

ppm

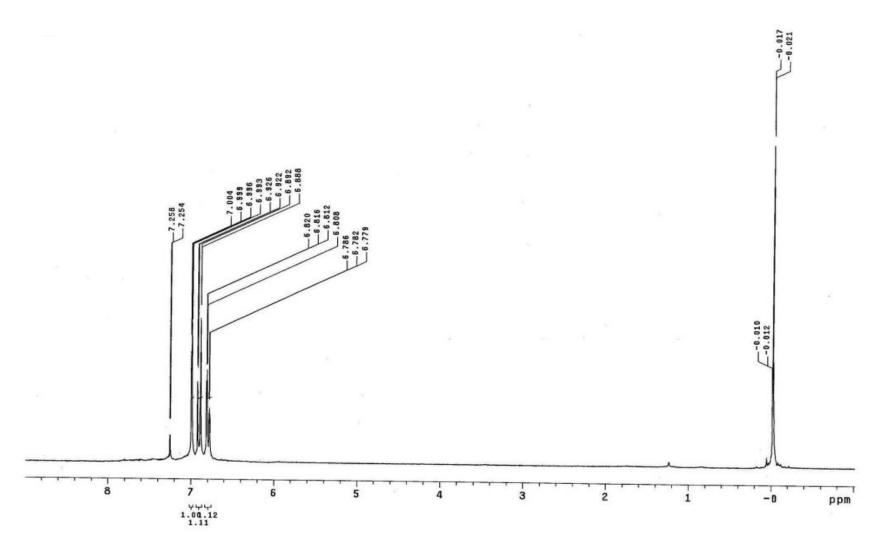

ب 3.30


Methyl N-(p-methoxylbenzyl)carbamate 7j (300 MHz, CDCl₃)

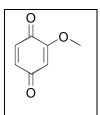
Methyl N-[(1-naphthyl)methyl]carbamate 7k (300 MHz, CDCl₃).

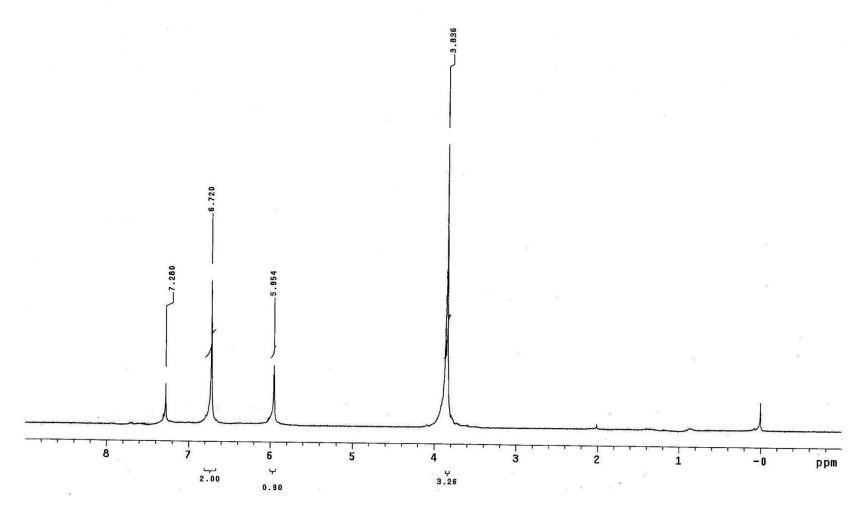


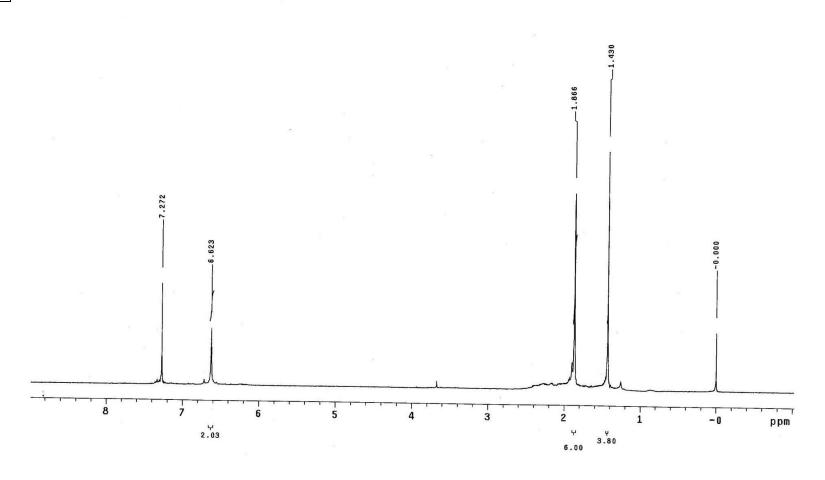



0

2-Methyl-1,4-benzoquinone 10b (300 MHz, $CDCl_3$)




2-Chloro-1,4-benzoquinone 10c (300 MHz, $CDCl_3$)



2-Methoxy-1,4-benzoquinone 10d (300 MHz, $CDCl_3$).

 $\hbox{4-Hydroxy-2,4,6-trimethylcyclohexa-2,5-dienone 10e (300 MHz, CDCl}_3)$

References

- 1. Davies, S. G.; Mortimer, D. A. B.; Mulvaney, A. W.; Russell, A. J.; Skarphedinsson, H.; Smith, A. D.; Vickers, R. J. *Org. Biomol. Chem.* **2006**, *6*, 1625.
- 2. Radlick, P.; Brown, L. R. Synthesis 1974, 290.
- 3. Stetter, H.; Wulff, K. Chem. Ber. 1962, 95, 2302.
- 4. Huang, X.; Seid, M.; Keillor, J. W. Tetrahedron Lett. 1997, 38, 313.
- 5. Chong, J. M.; Park, S. B. J. Org. Chem. 1993, 58, 7300.
- 6. Ito, Y.; Ushitora, H. *Tetrahedron* **2006**, *62*, 226.
- 7. Fischer, A. Synthesis **1985**, 641.
- 8. Nilson, A.; Ronlan, A.; Parker, V. D. J. Chem. Soc., Perkin Trans. I 1973, 2336.